1
|
Ruan J, Wan G, Lin Z, Huang J, Tang X, Liu H. Disruption of sex steroid hormones biosynthesis by short-term enrofloxacin antibiotic exposure in Carassius auratus var. Pengze. CHEMOSPHERE 2023; 344:140315. [PMID: 37769911 DOI: 10.1016/j.chemosphere.2023.140315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND It has been reported that antibiotic enrofloxacin can impair reproductive function of mammals, induces multi-generational oscillatory effects on reproduction of Caenorhabditis elegans, and disturbes endocrine system in grass carp. OBJECTIVES This study aims to explore the effect of short-term enrofloxacin exposure on sex steroid hormones biosynthesis in Carassius auratus var. Pengze through assessing the contents of growth hormone (GH), thyroid hormone 4 (T4), estradiol (E2) and testosterone (T) in plasma, and investigating sex steroid hormones biosynthesis based on targeted metabonomics analysis, and determining expression level of some important genes, gonadotropin-releasing hormone (gnrh), gonadotropin hormone 1-β (gth1-β), gonadotropin hormone 2-β (gth2-β) and cyp19a1a in hypothalamus-pituitary-ovary axis (HPOA). RESULTS We found that short-term exposure of enrofloxacin disordered contents of E2 and T in plasma of fish determined by ELISA detection, T content elevation and E2 content decline, which was confirmed by the following data from targeted metabonomics analysis of plasma. The metabonomic results showed that both T and its upstream intermediate products during the process of sex steroid hormones biosynthesis in fish were increased significantly, but E2 content was decreased markedly. At the exposure 24 h of enrofloxacin, expression of gnrh in hypothalamus, gth1-β and gth2-β in pituitary were promoted. Meanwhile GH and T4 contents in plasma, two inducers of sex steroid hormones synthesis, were augmented, which indicated that sex steroid hormones biosynthesis was improved. However cyp19a1a expression in ovary was repressed, and content of estriol (E3) was upregulated. These data suggested that enrofloxacin promoted sex steroid hormones biosynthesis and conversion of E2 to estriol (E3), but inhibited the conversion of T to E2. Finally, content of E2 was declined sharply. DISCUSSION Animal specific antibacterial enrofloxacin is widely detectable in aquatic ecosystem, exposure of the agent can induce adverse effects on plants and animals. This study firstly evidenced induction of disruption of sex steroid hormones by enrofloxacin in fish, which indicates enrofloxacin is an endocrine disruption compound that can induce endocrine disruption of animals, including fish.
Collapse
Affiliation(s)
- Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jianzhen Huang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xiaochen Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
2
|
Banaee M, Faraji J, Amini M, Multisanti CR, Faggio C. Rainbow trout (Oncorhynchus mykiss) physiological response to microplastics and enrofloxacin: Novel pathways to investigate microplastic synergistic effects on pharmaceuticals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106627. [PMID: 37393734 DOI: 10.1016/j.aquatox.2023.106627] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Enrofloxacin (ENR) is a broad-spectrum antibiotic widely used due to its efficacy against pathogens. Microplastics (MPs) may bind to ENR and reduce its efficiency, whereas there would be an increase in its toxicity, bioavailability, and bio-accumulation rates. Therefore, the hypothesis is that the interaction between MPs and ENR can alter their toxicity and bioavailability. The subjective of this study is to examine the toxicity of various concentrations of ENR (0, 1.35, and 2.7 ml Kg-1 diet) and MPs (0, 1000, and 2000 mg Kg-1 diet) alone and in combination for 21 days. The rainbow trout (Oncorhynchus mykiss) is an economic aquaculture species used as an experimental model in ecotoxicology studies. Blood biochemical analytes indicated that ENR and MPs combination led to increasing enzymatic activity of each biomarker, except for gamma-glutamyl-transferase (GGT). Alterations related to triglycerides, cholesterol, glucose, urea, creatinine, total protein, and albumin blood contents were observed. An elevation in the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glucose 6-phosphate dehydrogenase (G6PDH) was found in the liver. In contrast, catalase (CAT) and glutathione peroxidase (GPx) levels decreased. Furthermore, a decline was observed in the cellular total antioxidant (ANT) levels. These findings suggested that ENR and MPs could affect fish health both independently and together. Consequently, the study determined that when both ENR and MPs were present in high concentrations, the toxicity of ENR was amplified, providing further evidence of the synergistic impact of MPs on ENR toxicity.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Javad Faraji
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mohammad Amini
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
3
|
Lin Z, Wan G, Wu J, Liu H, Zhang F, Tang X, Ruan J. Toxicologic effect of short-term enrofloxacin exposure on brain of Carassius auratus var. Pengze. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161730. [PMID: 36681334 DOI: 10.1016/j.scitotenv.2023.161730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
To further explore short-term exposure of enrofloxacin (ENR) induced toxicity in crucian carp brain that has been reported by our previous work, as well as the possible toxicological mechanisms, this study investigated the blood-brain barrier (BBB) permeability to low dosage of ENR through comprehensively assessing expression of BBB constitutive molecules zonula occludens-1 (ZO-1) and permeability glycoprotein (P-gp), as well as ENR residue in brain of crucian carp. Toxicologic effect of ENR on brain tissue was determined through evaluating expression of brain-derived proteins S100B, neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) in crucian carp brain tissue, as well as contents of the proteins in serum. The toxicological mechanisms were explored through analyzing transcriptome analysis data. Results showed that ENR possessed excellent permeability to crucian carp BBB, which was closely related to deranged BBB structure and declined ENR efflux that were attributed to downregulated expression of ZO-1 and P-gp by ENR exposure. Meanwhile, S100B, NSE and GFAP were upregulated in brain by ENR, and came out into blood across the damaged BBB. These data revealed that ENR induced disruption of BBB and damage of brain tissue in crucian carp. Transcriptome analysis data indicated that ENR induced toxicologic effect might be related to modification of metabolism, organismal systems, and genetic information processing, etc., and that PI3K/Akt, MAPK, HIF-1, and ubiquitin mediated proteolysis involved the mechanisms, most of the mechanisms were attributed to ENR induced oxidative stress in crucian carp brain.
Collapse
Affiliation(s)
- Zhen Lin
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiayi Wu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Fan Zhang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaochen Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
4
|
Corum O, Terzi E, Durna Corum D, Tastan Y, Gonzales RC, Kenanoglu ON, Arriesgado DM, Navarro VR, Bilen S, Sonmez AY, Uney K. Plasma and muscle tissue disposition of enrofloxacin in Nile tilapia ( Oreochromis niloticus) after intravascular, intraperitoneal, and oral administrations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1806-1817. [PMID: 36136094 DOI: 10.1080/19440049.2022.2121429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The aim of the study was to investigate the plasma and muscle pharmacokinetic of enrofloxacin (ENR) and its active metabolite ciprofloxacin (CIP) in Nile tilapia (Oreochromis niloticus) following single intravascular (IV), intraperitoneal (IP), or oral (PO) administration at 30 ± 1 °C. In this study, 234 healthy Nile tilapia (120-150 g) were used. The fish received a single IV, IP, or PO treatment of ENR at a dose of 10 mg/kg. The plasma and muscle tissue concentrations of ENR and CIP were measured using high-performance liquid chromatography with fluorescence detection and were evaluated using non-compartmental analysis. The elimination half-life, volume of distribution at steady state, and total body clearance of ENR were 21.7 h, 2.69 L/kg, and 0.09 L/h/kg, respectively. The peak plasma concentrations of ENR after IP or PO administration were 6.11 and 4.21 µg/mL at 0.25 and 2 h, respectively. The bioavailability of ENR for IP or PO routes was 78% and 86%, respectively. AUC(0-120)muscle/AUC(0-120)plasma ratios following the IV, IP, or PO administrations were 1.43, 1.49, and 1.07, respectively. CIP was detected after all routes, but the AUC0-last ratios of CIP to ENR were <1.0% for plasma and muscle. ENR was detected up to 120 h following the IV, IP, or PO administrations. The long residence time of ENR after single IV, IP, or PO administration ensured the plasma concentration was ≥1 × MIC for bacteria with threshold MIC values of 0.92, 0.72, and 0.80 μg/mL over the whole 120 h observed. However, further studies are necessary to determine the optimum pharmacokinetic/pharmacodynamics data of ENR for the treatment of infections caused by susceptible bacteria in tilapia.
Collapse
Affiliation(s)
- Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Ertugrul Terzi
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Yigit Tastan
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | - Ruby C Gonzales
- Department of Marine Biology and Environmental Science, Mindanao State University Naawan, College of Science and Environment, Naawan, Misamis Oriental, Philippines
| | | | - Dan M Arriesgado
- Department of Fisheries, Faculty of Fisheries, Mindanao State University Naawan, Naawan, Misamis Oriental, Philippines
| | - Victor R Navarro
- Department of Fisheries, Faculty of Fisheries, Mindanao State University Naawan, Naawan, Misamis Oriental, Philippines
| | - Soner Bilen
- Faculty of Fisheries, University of Kastamonu, Kastamonu, Turkey
| | | | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
5
|
Soh HY, Tan PXY, Ng TTM, Chng HT, Xie S. A Critical Review of the Pharmacokinetics, Pharmacodynamics, and Safety Data of Antibiotics in Avian Species. Antibiotics (Basel) 2022; 11:antibiotics11060741. [PMID: 35740148 PMCID: PMC9219738 DOI: 10.3390/antibiotics11060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
In avian medicine, the use of antibiotic dosing regimens based on species-specific pharmacological studies is ideal. However, due to a lack of such studies, dose extrapolation, which may cause inefficacy and toxicity, is common practice. Multiple searches were performed using the PubMed and Web of Science databases to extract relevant pharmacological studies performed in exotic avian species. The pharmacokinetics (PK), pharmacodynamics (PD), and safety data of the selected antibiotics (enrofloxacin, marbofloxacin, gentamicin, amikacin, ceftiofur, doxycycline, and amoxicillin/clavulanate) from these studies were reviewed. This review aimed to identify trends amenable for safe inter-species dose extrapolation and provide updated findings on dosing regimens that are safe and efficacious for various exotic avian species. We observed that the half-life of antibiotics appears to be shorter in the common ostrich and that amikacin may be amenable to inter-species dose extrapolation as it is safe and shows little inter-species PK and PD variation. Species-specific enrofloxacin dosing regimens that were not listed in the Exotic Animal Formulary (5th ed.) were found for Caribbean flamingos, African penguins, southern crested caracaras, common ostriches, and greater rheas. Specific dosing regimens recommended for psittacine birds (doxycycline 130 mg/kg medicated water) and ratites (PO doxycycline 2–3.5 mg/kg q12 h, PO enrofloxacin 1.5–2.5 mg/kg q12 h and IM enrofloxacin 5 mg/kg q12 h) in the formulary may not be effective in budgerigars and common ostriches, respectively. Apart from the lack of species-specific pharmacological studies, a lack of multiple dose studies was also noted.
Collapse
Affiliation(s)
- Hui Yun Soh
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (H.Y.S.); (P.X.Y.T.)
| | - Prisca Xin Yi Tan
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (H.Y.S.); (P.X.Y.T.)
| | - Tao Tao Magdeline Ng
- National University of Singapore Libraries, National University of Singapore, Singapore 119275, Singapore;
| | - Hui Ting Chng
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore; (H.Y.S.); (P.X.Y.T.)
- Correspondence: (H.T.C.); (S.X.); Tel.: +65-6601-1058 (H.T.C.)
| | - Shangzhe Xie
- Mandai Wildlife Group, Conservation, Research, and Veterinary Department, Singapore 259569, Singapore
- Correspondence: (H.T.C.); (S.X.); Tel.: +65-6601-1058 (H.T.C.)
| |
Collapse
|
6
|
Badawy S, Yang Y, Liu Y, Marawan MA, Ares I, Martinez MA, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez M. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism. Crit Rev Toxicol 2022; 51:754-787. [PMID: 35274591 DOI: 10.1080/10408444.2021.2024496] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ciprofloxacin (CIP) (human use) and enrofloxacin (ENR) (veterinary use) are synthetic anti-infectious medications that belong to the second generation of fluoroquinolones. They have a wide antimicrobial spectrum and strong bactericidal effects at very low concentrations via enzymatic inhibition of DNA gyrase and topoisomerase IV, which are required for DNA replication. They also have high bioavailability, rapid absorption with favorable pharmacokinetics and excellent tissue penetration, including cerebral spinal fluid. These features have made them the most applied antibiotics in both human and veterinary medicine. ENR is marketed exclusively for animal medicine and has been widely used as a therapeutic veterinary antibiotic, resulting in its residue in edible tissues and aquatic environments, as well as the development of resistance and toxicity. Estimation of the risks to humans due to antimicrobial resistance produced by CIP and ENR is important and of great interest. Moreover, in rare cases due to their overdose and/or prolonged administration, the development of CIP and ENR toxicity may occur. The toxicity of these fluoroquinolones antimicrobials is mainly related to reactive oxygen species (ROS) and oxidative stress (OS) generation, besides metabolism-related toxicity. Therefore, CIP is restricted in pregnant and lactating women, pediatrics and elderly similarly ENR do in the veterinary field. This review manuscript aims to identify the toxicity induced by ROS and OS as a common sequel of CIP and ENR. Furthermore, their metabolism and the role of metabolizing enzymes were reported.
Collapse
Affiliation(s)
- Sara Badawy
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,Pathology Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - YaQin Yang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanan Liu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Aránzazu Martinez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
7
|
Yang F, Zhang CS, Duan MH, Wang H, Song ZW, Shao HT, Ma KL, Yang F. Pharmacokinetics and Tissue Distribution of Enrofloxacin Following Single Oral Administration in Yellow River Carp (Cyprinus carpio haematoperus). Front Vet Sci 2022; 9:822032. [PMID: 35187147 PMCID: PMC8855120 DOI: 10.3389/fvets.2022.822032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
The pharmacokinetics and tissue distribution of enrofloxacin were determined in Yellow River carp (Cyprinus carpio haematopterus) reared at 20°C after single oral administration of enrofloxacin at 10 mg·kg−1 body weight (BW). Plasma, bile, and different tissue samples, including liver, kidney, gill, gut, and skin-muscle, were collected at predetermined times points. An HPLC method was developed to simultaneously determine the concentrations of enrofloxacin and its metabolite, ciprofloxacin. However, ciprofloxacin was only detectable in some liver samples with trace levels. Then the average enrofloxacin concentrations vs. time data were subjected to a non-compartmental analysis using WinNonLin 5.2 software. Multiple peaking profiles were observed in all enrofloxacin concentration-time curves. The peak concentration (Cmax) values were observed as 0.79, 1.01, 2.09, 2.85, 4.34, 10.78, and 13.07 μg·ml−1 (or g−1) in plasma, skin-muscle, gill, kidney, liver, bile, and gut, respectively, and the corresponding time to reach peak concentration (Tmax) was 8, 8, 1, 8, 1, 72, and 4 h, respectively. The values of elimination half-life (T1/2λZ) of enrofloxacin in different tissues was in the following order: gill (291.13 h) > liver (222.29 h) > kidney (157.22 h) > plasma (129.44 h) > gut (91.47 h) > skin-muscle (87.77 h) > bile (86.22 h). The present results showed that enrofloxacin had a wide distribution in different tissues, however slow absorption and elimination in Yellow River carp. Additionally, enrofloxacin exhibited large distribution in bile, indicating that bile excretion might be the primary elimination route of enrofloxacin in Yellow River carp. A withdrawal period was calculated as 379.2 °C-day for single oral dosing of enrofloxacin at 10 mg/kg BW. Based on the calculated PK/PD indices of AUC/MIC or Cmax/MIC, the current enrofloxacin dosing regimen might have a positive therapeutic effect on the infection of Flavobacterium columnare, Aeromonas sobria, or Aeromonas hydrophila. However, the depletion study following multiple oral doses should be carried out in Yellow River carp reared at lower temperatures, and the withdrawal period should also be further calculated.
Collapse
|
8
|
Xu X, Lu Q, Yang Y, Martínez MA, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A proposed "steric-like effect" for the slowdown of enrofloxacin antibiotic metabolism by ciprofloxacin, and its mechanism. CHEMOSPHERE 2021; 284:131347. [PMID: 34323809 DOI: 10.1016/j.chemosphere.2021.131347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The results of monitoring over the years have shown that the mixing and coexistence of various low-level antibiotic residual pollutants has increased significantly, among which, the problems of enrofloxacin (ENR) and ciprofloxacin (CIP) were more prominent. At present, research studies on the metabolism of ENR or CIP are focused on the individual drugs, and there is no relevant research reporting on the effect of the combination of the two antibiotics on the metabolism of ENR. This research study evaluated the effect of CIP on ENR metabolism in pigs and its mechanism in vivo and in vitro. The results showed that CIP changed the pharmacokinetics of ENR through the inhibition of CYP3A29 and the "steric-like effect" of ENR binding to CYP3A29, which increased the residual concentration of ENR in pigs, a result that requires an extension of the withdrawal period. In order to ensure human health, the combined use of these two drugs, CIP and ENR, must be avoided in veterinary medicine in food producing animals.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqin Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei, 430070, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
9
|
Su H, Sun J, Fang S, Wei Y, Zheng R, Jiang Y, Hu K. Effects of lactic acid on drug-metabolizing enzymes in Chinese mitten crab (Eriocheir sisnensis) after oral enrofloxacin. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:9-14. [PMID: 31048018 DOI: 10.1016/j.cbpc.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022]
Abstract
Enrofloxacin (ENR) is the most commonly used antibiotic in crustacean farming in China. Diet supplementation with lactic acid (LA) may, however, affect the efficacy and safety of ENR-based drugs. The aims of this study were to investigate the effects of LA on drug residues and elimination of oral ENR in Chinese mitten crab (Eriocheir sinensis) and to determine ENR and gene expression levels of drug-metabolizing enzymes in the hepatopancreas. To this end, ENR was orally administered to the crabs at a dose of 10.0 mg kg-1 body weight on the eighth day after feeding diets supplemented with 0.3%LA. The results showed that ENR levels in the hepatopancreas were significantly different at 1 and 12 h between the ENR and ENR + 0.3% LA groups (P < 0.05). Lactic acid did not significantly affect the expression of CYP2A (phase I). However, the expressions of CYP3 (phase I) and GST (phase II) were significantly up-regulated by LA during the elimination process of ENR (6-24 h). At Tmax (1 h), the expression of phosphoenolpyruvate carboxykinase (PEPCK) was induced and expression of succinate dehydrogenase (SDH) was inhibited by LA. Both of these enzymes were significantly inhibited during the elimination process of ENR. The results suggest that LA contributes to the elimination of ENR, and thus, enhances hepatopancreas biotransformation and anti-injury capacity in E. sinensis.
Collapse
Affiliation(s)
- Huibing Su
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China
| | - Jing Sun
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China
| | - Shuguang Fang
- Jiangsu Wecare Biotechnology Co., Ltd., Suzhou, Jiangsu, China
| | - Yujuan Wei
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China
| | - Ruizhou Zheng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China
| | - Yingying Jiang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
10
|
Alak G, Ucar A, Parlak V, Yeltekin AÇ, Taş IH, Ölmez D, Kocaman EM, Yılgın M, Atamanalp M, Yanık T. Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:51-58. [PMID: 29111472 DOI: 10.1016/j.cbpc.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
The goal of this study was to determinate toxicity mechanism of biopesticide with antioxidant enzymes parameters such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and malondialdehyde (MDA) levels, oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)), transcriptional changes of heat shock protein 70 (HSP70), and cytochromes P4501A (CYP1A), sod, cat, and gpx in liver and gill tissues of Oncorhynchus mykiss. For this aim, plant-based (natural pesticides, azadirachtin (AZA)) and synthetic pesticides (deltamethrin (DLM)) were exposed on the fish at different concentrations (0.0005 and 0.00025ppm of DLM; 0.24 and 0.12ppm of AZA) for 21 days. According to the results of the study, the activity of SOD, CAT and GPx decreased, but malondialdehyde (MDA) level and activity of 8-OHdG increased in the gill and liver of rainbow trout (p<0.05). Additionally sod, cat and gpx were down regulated; HSP70 and CYP1A were up regulated for transcriptional observation. The downwards regulation of antioxidant (sod, cat and gpx) and the upregulation of HSP70 and CYP1A was obvious with doses of AZA or DLM (p<0.05). The findings of this study suggest that biopesticide can cause biochemical and physiological effects in the fish gill and liver by causing enzyme inhibition, an increase in 8-OHdG levels and changes in both transcriptional parameters (sod, cat, gpx, HSP70 and CYP1A). We found that excessive doses of plant-based pesticide are nearly as toxic as chemical ones for aquatic organisms. Moreover, 8-OHdG, HSP70 and CYP1A used as a biomarker to determinate toxicity mechanism of biopesticide in aquatic environment.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080 Van, Turkey
| | | | - Doğukan Ölmez
- Graduate School of Natural and Applied Sciences, TR-25030 Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Mustafa Yılgın
- Graduate School of Natural and Applied Sciences, TR-07070 Antalya, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Telat Yanık
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
11
|
Alak G, Yeltekin AÇ, Tas IH, Ucar A, Parlak V, Topal A, Kocaman EM, Atamanalp M. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. FISH & SHELLFISH IMMUNOLOGY 2017; 65:136-144. [PMID: 28400213 DOI: 10.1016/j.fsi.2017.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Eprinomectin (EPM), a member of avermectin family, is a semi-synthetic antibiotic. It has been known that avermectin family enters the aquatic environments and adversely affects the aquatic organisms. Effects of EPM is fully unknown in aquatic organisms especially fish, thus the aim of the present study was to investigate transcriptional changes (sod, cat, gpx) and activities of some antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and malondialdehyde (MDA) levels, oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)) and transcriptional changes of heat shock protein 70 (HSP70), and cytochromes P4501A (CYP1A) in liver tissues of rainbow trout exposed to sublethal EPM concentration (0.001 μg/L, 0.002 μg/L, 0.01 μg/L, 0.05 μg/L) for 24 h, 48 h, 72 h and 96 h. The decrease in antioxidant enzyme (SOD, CAT and GPx) activity, transcriptional changes (sod, cat, gpx, HSP70 and CYP1A genes) and increase in MDA level and activity of 8-OHdG in a dose-time-dependent manner in the liver of rainbow trout were observed. The down-regulated of antioxidant (sod, cat and gpx), HSP70 and CYP1A obviously, the severity of which increased with the concentration of EPM and exposure time. The results imply that EPM could induce oxidative damage to the liver tissue of rainbow trout. The information presented in this study is helpful to understand the mechanism of veterinary pharmaceuticals-induced oxidative stress in fishes.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Ismail Hakkı Tas
- Department of Parasitology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
12
|
Liang X, Wang L, Ou R, Nie X, Yang Y, Wang F, Li K. Effects of norfloxacin on hepatic genes expression of P450 isoforms (CYP1A and CYP3A), GST and P-glycoprotein (P-gp) in Swordtail fish (Xiphophorus Helleri). ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1566-1573. [PMID: 25893329 DOI: 10.1007/s10646-015-1457-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
The presence of antibiotics including norfloxacin in the aquatic environment may cause adverse effects in non-target organisms. But the toxic mechanisms of fluoroquinolone to fish species are still not completely elucidated. Thus, it is essential to investigate the response of fish to the exposure of fluoroquinolone at molecular or cellular level for better and earlier prediction of these environmental pollutants toxicity. The sub-chronic toxic effects of norfloxacin (NOR) on swordtail fish (Xiphophoru s helleri) were investigated by measuring mRNA expression of cytochrome P450 1A (CYP1A), cytochrome P450 3A (CYP3A), glutathione S-transferase (GST) and P-glycoprotein (P-gp) and their corresponding enzyme activities (including ethoxyresorufin O-deethylase, erythromycin N-demethylase and GST. Results showed that NOR significantly affected the expression of CYP1A, CYP3A, GST and P-gp genes in swordtails. The gene expressions were more responsive to NOR exposure than their corresponding enzyme activities. Moreover, sexual differences were found in gene expression and enzyme activities of swordtails exposed to NOR. Females displayed more dramatic changes than males. The study further demonstrated that the combined biochemical and molecular parameters were considered as useful biomarkers to improve our understanding of potential ecotoxicological risks of NOR exposure to aquatic organisms.
Collapse
Affiliation(s)
- Ximei Liang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Lan Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Ruikang Ou
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
- Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Minister of Education, Guangzhou, 510632, China.
| | - YuFeng Yang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Fang Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Kaibin Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
13
|
Xu W, Liu W, Shao X, Jiang G, Li X. Effect of trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:185-194. [PMID: 22897202 PMCID: PMC3464453 DOI: 10.1080/08997659.2012.675937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
This study evaluated the toxic effects of the organophosphate pesticide trichlorfon on hepatic lipid accumulation in crucian carp Carassius auratus gibelio. Seventy-five fish were divided into five groups (each group in triplicate), and then exposed to 0, 0.5, 1.0, 2.0, and 4.0 mg/L of trichlorfon and fed with commercial feed for 30 d. At the end of the experiment, plasma and hepatic lipid metabolic biochemical status were analyzed. Triglyceride contents were significantly (P < 0.05) increased in liver but decreased in plasma after 1.0, 2.0, and 4.0 mg/L trichlorfon treatments. Plasma insulin contents were markedly (P < 0.05) increased when trichlorfon concentrations were 0.5, 1.0, and 4.0 mg/L. There were no significant differences in hepatic hormone-sensitive lipase contents between the trichlorfon-treated fish and the controls. Hepatic cyclic adenosine 3', 5'-monophosphate, very-low-density lipoprotein, and apolipoprotein B100 contents were decreased in the fish when trichlorfon concentration was 2.0 mg/L. Furthermore, electron microscope observations showed rough endoplasmic reticulum dilatation and mitochondrial vacuolization in hepatocytes with trichlorfon exposure. On the basis of morphological and physiological evidence, trichlorfon influenced crucian carp hepatic pathways of lipid metabolism and hepatocellular ultrastructure, which resulted in lipid accumulation in the liver.
Collapse
Affiliation(s)
- WeiNa Xu
- Key Laboratory of Aquatic Animal Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - WenBin Liu
- Key Laboratory of Aquatic Animal Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - XianPing Shao
- Key Laboratory of Aquatic Animal Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - GuangZhen Jiang
- Key Laboratory of Aquatic Animal Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - XianngFei Li
- Key Laboratory of Aquatic Animal Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|