1
|
Orr SE, Hedrick NA, Murray KA, Pasupuleti AK, Kovacs JL, Goodisman MAD. Genetic and environmental effects on morphological traits of social phenotypes in wasps. Heredity (Edinb) 2024; 133:126-136. [PMID: 38918612 PMCID: PMC11286790 DOI: 10.1038/s41437-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Many species exhibit distinct phenotypic classes, such as sexes in dioecious species or castes in social species. The evolution of these classes is affected by the genetic architecture governing traits shared between phenotypes. However, estimates of the genetic and environmental factors contributing to phenotypic variation in distinct classes have rarely been examined. We studied the genetic architecture underlying morphological traits in phenotypic classes in the social wasp Vespula maculifrons. Our data revealed patriline effects on a few traits, indicating weak genetic influences on caste phenotypic variation. Interestingly, traits exhibited higher heritability in queens than workers. This result suggests that genetic variation has a stronger influence on trait variation in the queen caste than the worker caste, which is unexpected because queens typically experience direct selection. Moreover, estimates of heritability for traits were correlated between the castes, indicating that variability in trait size was governed by similar genetic architecture in the two castes. However, we failed to find evidence for a significant relationship between caste dimorphism and caste correlation, as would be expected if trait evolution was constrained by intralocus genetic conflict. Our analyses also uncovered variation in the allometric relationships for traits. These analyses suggested that worker traits were proportionally smaller than queen traits for most traits examined. Overall, our data provide evidence for a strong environmental and moderate genetic basis of trait variation among castes. Moreover, our results suggest that selection previously operated on caste phenotype in this species, and phenotypic variation is now governed primarily by environmental differences.
Collapse
Affiliation(s)
- Sarah E Orr
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Nicole A Hedrick
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Kayla A Murray
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Abhinav K Pasupuleti
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
| | - Jennifer L Kovacs
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia
- Agnes Scott College, Department of Biology, 141 East College Avenue, Decatur, 30030, Georgia
| | - Michael A D Goodisman
- Georgia Institute of Technology, School of Biological Sciences, 310 Ferst Drive, Atlanta, 30318, Georgia.
| |
Collapse
|
2
|
Brülhart J, Süß A, Oettler J, Heinze J, Schultner E. Sex- and caste-specific developmental responses to juvenile hormone in an ant with maternal caste determination. J Exp Biol 2024; 227:jeb247396. [PMID: 38779857 PMCID: PMC11418025 DOI: 10.1242/jeb.247396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Juvenile hormone is considered to be a master regulator of polyphenism in social insects. In the ant Cardiocondyla obscurior, whether a female egg develops into a queen or a worker is determined maternally and caste-specific differentiation occurs in embryos, so that queens and workers can be distinguished in a non-invasive manner from late embryogenesis onwards. This ant also exhibits two male morphs - winged and wingless males. Here, we used topical treatment with juvenile hormone III and its synthetic analogue methoprene, a method that influences caste determination and differentiation in some ant species, to investigate whether hormone manipulation affects the development and growth of male, queen- and worker-destined embryos and larvae. We found no effect of hormone treatment on female caste ratios or body sizes in any of the treated stages, even though individuals reacted to heightened hormone availability with increased expression of krüppel-homolog 1, a conserved JH first-response gene. In contrast, hormone treatment resulted in the emergence of significantly larger males, although male morph fate was not affected. These results show that in C. obscurior, maternal caste determination leads to irreversible and highly canalized caste-specific development and growth.
Collapse
Affiliation(s)
- Jeanne Brülhart
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Anja Süß
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| | - Eva Schultner
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Carmona-Aldana F, Yong LW, Reinberg D, Desplan C. Phenomenon of reproductive plasticity in ants. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101197. [PMID: 38583769 PMCID: PMC11139587 DOI: 10.1016/j.cois.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Ant colonies are organized in castes with distinct behaviors that together allow the colony to strive. Reproduction relies on one or a few queens that stay in the nest producing eggs, while females of the worker caste do not reproduce and instead engage in colony maintenance and brood caretaking. Yet, in spite of this clear separation of functions, workers can become reproductive under defined circumstances. Here, we review the context in which workers become reproductive, exhibiting asexual or sexual reproduction depending on the species. Remarkably, the activation of reproduction in these workers can be quite stable, with changes that include behavior and a dramatic extension of lifespan. We compare these changes between species that do or do not have a queen caste. We discuss how the mechanisms underlying reproductive plasticity include changes in hormonal functions and in epigenetic configurations. Further studies are warranted to elucidate not only how reproductive functions have been gradually restricted to the queen caste during evolution but also how reproductive plasticity remains possible in workers of some species.
Collapse
Affiliation(s)
| | - Luok Wen Yong
- Department of Biology, New York University, NY 10003, USA
| | - Danny Reinberg
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Coral Gables, FL 33124, USA.
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA; Center for Genomics and Systems Biology, New York University, Abu Dhabi 51133, United Arab Emirates.
| |
Collapse
|
4
|
Tsvetkov N, Bahia S, Calla B, Berenbaum MR, Zayed A. Genetics of tolerance in honeybees to the neonicotinoid clothianidin. iScience 2023; 26:106084. [PMID: 36843853 PMCID: PMC9947305 DOI: 10.1016/j.isci.2023.106084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The effects of neonicotinoid insecticides (NNIs) on honeybee health are intensely debated, with numerous studies showing negative effects of exposure, while others report no such effects. We carried out experiments to study the genetic and molecular basis of NNI tolerance in honeybees, which may underlie the discrepancies observed in the literature. We discovered that worker survival post-exposure to an acute oral dose of clothianidin is heritable (H 2 = 37.8%). Tolerance to clothianidin was not associated with differences in the expression of detoxification enzymes in our experiments. Instead, mutations in the primary neonicotinoid detoxification genes CYP9Q1 and CYP9Q3 were strongly associated with worker survival post-clothianidin exposure. In some instances, the strong association between CYP9Q haplotypes and worker survival was associated with the protein's predicted binding affinity for clothianidin. Our findings have implications regarding future toxicological studies utilizing honeybees as a model pollinator.
Collapse
Affiliation(s)
- Nadejda Tsvetkov
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Simran Bahia
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Bernarda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - May R. Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
5
|
Jourdan‐Pineau H, Antoine G, Galataud J, Delatte H, Simiand C, Clémencet J. Estimating heritability in honeybees: Comparison of three major methods based on empirical and simulated datasets. Ecol Evol 2021. [DOI: 10.1002/ece3.7389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hélène Jourdan‐Pineau
- CIRAD UMR PVBMT Saint‐Pierre France
- ASTRE CIRAD, INRAE Univ Montpellier Montpellier France
- CIRAD UMR ASTRE Montpellier France
- UMR PVBMT Université de La Réunion St Denis France
| | - Gaëlle Antoine
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Julien Galataud
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Hélène Delatte
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Christophe Simiand
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| | - Johanna Clémencet
- CIRAD UMR PVBMT Saint‐Pierre France
- UMR PVBMT Université de La Réunion St Denis France
| |
Collapse
|
6
|
Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger. INSECTS 2020; 11:insects11070433. [PMID: 32664435 PMCID: PMC7411844 DOI: 10.3390/insects11070433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022]
Abstract
The association between the division of labour and worker body size of ants is typical for species that maintain physical castes. Some studies showed that this phenomenon can be also observed in the absence of distinct morphological subcastes among workers. However, the general and consistent patterns in the size-based division of labour in monomorphic ants are largely unidentified. In this study, we performed a field experiment to investigate the link between worker body size and the division of labour of the ant Lasius niger (Linnaeus, 1758), which displays limited worker size variation. We demonstrated that the body size of workers exploring tuna baits is slightly but significantly smaller than the size of workers located in the upper parts of the nest. Comparing the present results with existing studies, large workers do not seem to be dedicated to work outside the nest. We suggest that monomorphic workers of certain body sizes are flexible in the choice of task they perform, and food type may be the important determinant of this choice.
Collapse
|
7
|
Grześ IM, Okrutniak M, Gorzałczany M, Piszczek P. Body size variation of the ant Lasius niger along a metal pollution gradient. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17858-17864. [PMID: 31065978 PMCID: PMC6546855 DOI: 10.1007/s11356-019-04811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The phenotypic diversity of ant workers plays a fundamental role in their biology. In this study, we asked if the body size variation of monomorphic workers of the ant Lasius niger (Formicidae) responds adaptively to metal pollution in a post-mining metal-polluted area. Nest samples of workers were collected along a pollution gradient to calculate the within-colony variance in body size (expressed as maximum head width, HW). The results showed that the body size variation of L. niger was unrelated to the pollution index but demonstrated considerable variation between colonies even within the same study site. We suggest that the differences in morphological diversity between the colonies of L. niger could be shaped by colony personality traits, i.e., by colony-specific foraging and/or the feeding efficiency of nursing workers. The study supports previous findings, showing that morphological traits in Lasius ants are weakly related to environmental metal pollution.
Collapse
Affiliation(s)
- Irena M Grześ
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - Mateusz Okrutniak
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Monika Gorzałczany
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Piotr Piszczek
- Institute of Botany, Faculty of Biology and Earth Sciences, Jagiellonian University, Kopernika 27, 31-501, Kraków, Poland
| |
Collapse
|
8
|
Schultner E, Oettler J, Helanterä H. The Role of Brood in Eusocial Hymenoptera. QUARTERLY REVIEW OF BIOLOGY 2018; 92:39-78. [PMID: 29558609 DOI: 10.1086/690840] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Study of social traits in offspring traditionally reflects on interactions in simple family groups, with famous examples including parent-offspring conflict and sibling rivalry in birds and mammals. In contrast, studies of complex social groups such as the societies of ants, bees, and wasps focus mainly on adults and, in particular, on traits and interests of queens and workers. The social role of developing individuals in complex societies remains poorly understood. We attempt to fill this gap by illustrating that development in social Hymenoptera constitutes a crucial life stage with important consequences for the individual as well as the colony. We begin by describing the complex social regulatory network that modulates development in Hymenoptera societies. By highlighting the inclusive fitness interests of developing individuals, we show that they may differ from those of other colony members. We then demonstrate that offspring have evolved specialized traits that allow them to play a functional, cooperative role within colonies and give them the potential power to act toward increasing their inclusive fitness. We conclude by providing testable predictions for investigating the role of brood in colony interactions and giving a general outlook on what can be learned from studying offspring traits in hymenopteran societies.
Collapse
|
9
|
Abstract
A fundamental decision that an organism must make is how to allocate resources to offspring, with respect to both size and number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources and tested three hypotheses derived from our model, using data from 3 years of food supplementation bracketed by 6 years without food addition. All major results were predicted by our model: food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness.
Collapse
|
10
|
Bordoni A, Miroddi MA, Dapporto L, Turillazzi S. Long-term assessment reveals the hidden and hiding effects of experimental stress on ant colonies. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Grześ IM, Okrutniak M, Sternalski J, Banasiak M, Piszczek P. Body Size in Males of the Ant Lasius niger (Hymenoptera: Formicidae) Along a Metal Pollution Gradient. ENVIRONMENTAL ENTOMOLOGY 2016; 45:1574-1578. [PMID: 28028107 DOI: 10.1093/ee/nvw129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Environmental stress can lead to a decrease in the body size of insects. As social insects, ants have a complex caste system; each caste has its own morphological traits and functions in the colony, hence the effects of stress may manifest differentially among different ant castes. Here we investigated the body size of males of the common garden ant, Lasius niger L., 1758, living in a postmining area polluted mainly by Zn, Cd, and Pb. We examined if individual body size decreases with the pollution gradient. The ants were sampled from 39 wild colonies originating from 17 sites located along the metal pollution gradient; head width was used as the estimator of body size. We failed to show a significant correlation between pollution and male body size, indicating no direct effect of pollution on the body size of males of the investigated ant. However, we found a significant dependence with the colony of origin, which is in line with a previous study performed on this species in unpolluted sites. These results further strengthen a general conclusion that morphological traits in ants, such as body size or fluctuating asymmetry, are relatively invariable and stable across gradients of metal pollution.
Collapse
Affiliation(s)
- Irena M Grześ
- Department of Environmental Zoology, Institute of Animal Sciences, Agricultural University, Al. Mickiewicza 24/28, PL-30-059 Kraków, Poland (; ; ; )
| | - Mateusz Okrutniak
- Department of Environmental Zoology, Institute of Animal Sciences, Agricultural University, Al. Mickiewicza 24/28, PL-30-059 Kraków, Poland (; ; ; )
| | - Jakub Sternalski
- Department of Environmental Zoology, Institute of Animal Sciences, Agricultural University, Al. Mickiewicza 24/28, PL-30-059 Kraków, Poland (; ; ; )
| | - Marek Banasiak
- Department of Environmental Zoology, Institute of Animal Sciences, Agricultural University, Al. Mickiewicza 24/28, PL-30-059 Kraków, Poland (; ; ; )
| | - Piotr Piszczek
- Institute of Botany, Faculty of Biology and Earth Sciences, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| |
Collapse
|
12
|
|
13
|
Grześ IM, Okrutniak M. No effect of Zn-pollution on the energy content in the black garden ant. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:623-632. [PMID: 26850622 DOI: 10.1007/s10646-016-1621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Social insects may display a response to environmental pollution at the colony level. The key trait of an ant colony is to share energy between castes in order to maintain the existing adult population and to feed the brood. In the present study we calorimetrically measured the energy content per body mass (J/mg) of adults and pupae of workers, males and females of the black garden ant Lasius niger. The ants were sampled from 37 wild colonies originating from 19 sites located along the metal pollution gradient established in a post-mining area in Poland. The cost of metal detoxification seen as a possible reduction in energy content with increasing pollution was found neither for pupae nor adults. However, a considerable part of variance in energy content is explained by belonging to the same colony. These findings stress the importance of colony-specific factors and/or the interaction of these factors with specific site in shaping the response of ants to metal-pollution stress. Colony-related factors may constrain possible selfish decisions of workers over energy allocation in workers and sexual castes.
Collapse
Affiliation(s)
- Irena M Grześ
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - Mateusz Okrutniak
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
14
|
Cueva del Castillo R, Sanabria‐Urbán S, Serrano‐Meneses MA. Trade-offs in the evolution of bumblebee colony and body size: a comparative analysis. Ecol Evol 2015; 5:3914-26. [PMID: 26445652 PMCID: PMC4588658 DOI: 10.1002/ece3.1659] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022] Open
Abstract
Trade-offs between life-history traits - such as fecundity and survival - have been demonstrated in several studies. In eusocial insects, the number of organisms and their body sizes can affect the fitness of the colony. Large-than-average body sizes as well as more individuals can improve a colony's thermoregulation, foraging efficiency, and fecundity. However, in bumblebees, large colonies and large body sizes depend largely on high temperatures and a large amount of food resources. Bumblebee taxa can be found in temperate and tropical regions of the world and differ markedly in their colony sizes and body sizes. Variation in colony size and body size may be explained by the costs and benefits associated with the evolutionary history of each species in a particular environment. In this study, we explored the effect of temperature and precipitation (the latter was used as an indirect indicator of food availability) on the colony and body size of twenty-one bumblebee taxa. A comparative analysis controlling for phylogenetic effects as well as for the body size of queens, workers, and males in bumblebee taxa from temperate and tropical regions indicated that both temperature and precipitation affect colony and body size. We found a negative association between colony size and the rainiest trimester, and a positive association between the colony size and the warmest month of the year. In addition, male bumblebees tend to evolve larger body sizes in places where the rain occurs mostly in the summer and the overall temperature is warmer. Moreover, we found a negative relationship between colony size and body sizes of queens, workers, and males, suggesting potential trade-offs in the evolution of bumblebee colony and body size.
Collapse
Affiliation(s)
- Raúl Cueva del Castillo
- Lab. de Ecología; UBIPROUniversidad Nacional Autónoma de MéxicoFES Iztacala. A. P. 31454090Edo. MéxicoMéxico
| | - Salomón Sanabria‐Urbán
- Lab. de Ecología; UBIPROUniversidad Nacional Autónoma de MéxicoFES Iztacala. A. P. 31454090Edo. MéxicoMéxico
| | - Martín Alejandro Serrano‐Meneses
- Laboratorio de Biología EvolutivaCentro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaCarretera Tlaxcala‐Puebla Km. 1.590062TlaxcalaMéxico
| |
Collapse
|
15
|
Bockoven AA, Wilder SM, Eubanks MD. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior. PLoS One 2015; 10:e0133868. [PMID: 26197456 PMCID: PMC4510567 DOI: 10.1371/journal.pone.0133868] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.
Collapse
Affiliation(s)
- Alison A. Bockoven
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Shawn M. Wilder
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Micky D. Eubanks
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Perrard A, Loope KJ. Patriline Differences Reveal Genetic Influence on Forewing Size and Shape in a Yellowjacket Wasp (Hymenoptera: Vespidae: Vespula flavopilosa Jacobson, 1978). PLoS One 2015; 10:e0130064. [PMID: 26131549 PMCID: PMC4488467 DOI: 10.1371/journal.pone.0130064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
The wing venation is frequently used as a morphological marker to distinguish biological groups among insects. With geometric morphometrics, minute shape differences can be detected between closely related species or populations, making this technique useful for taxonomy. However, the direct influence of genetic differences on wing morphology has not been explored within colonies of social insects. Here, we show that the father's genotype has a direct effect on wing morphology in colonies of social wasps. Using geometric morphometrics on the venation pattern, we found significant differences in wing size and shape between patrilines of yellowjackets, taking allometry and measurement error into account. The genetic influence on wing size accounted for a small part of the overall size variation, but venation shape was highly structured by the differences between patrilines. Overall, our results showed a strong genetic influence on wing morphology likely acting at multiple levels of venation pattern development. This confirmed the pertinence of this marker for taxonomic purposes and suggests this phenotype as a potentially useful marker for phylogenies. This also raises doubts about the strength of selective pressures on this phenotype, which highlights the need to understand better the role of wing venation shape in insect flight.
Collapse
Affiliation(s)
- Adrien Perrard
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Kevin J. Loope
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Grześ IM, Okrutniak M, Woch MW. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6126-6134. [PMID: 25395324 DOI: 10.1007/s11356-014-3808-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
In ants, intra and inter-colony variation in body size can be considerable, even in monomorphic species. It has been previously shown that size-related parameters can be environmentally sensitive. The shape of the body size distribution curve is, however, rarely investigated. In this study, we measured head widthes of the black garden ant Lasius niger workers using digital methods. The ants were sampled from 51 colonies originating from 19 sites located along a metal pollution gradient, established in a former mining area in Poland. Total zinc concentrations in random samples of small invertebrates were used as a measure of site pollution levels. We found that the skewness of head size distribution grows significantly in line with the pollution level of the site, ranging from values slightly below zero (about -0.5) in the least polluted site up to a positive value (about 1.5) in the most polluted site. This result indicates that the frequency of small ants grows as pollution levels increase. The coefficient of variation, as well as the measures of central tendency, was not related to the pollution level. Four hypotheses explaining the obtained results are proposed. The bias towards the higher frequency of small workers may result from energy limitation and/or metal toxicity, but may also have an adaptive function.
Collapse
Affiliation(s)
- Irena M Grześ
- Department of Environmental Zoology, University of Agriculture in Cracow, Mickiewicza 24/28, 30-056, Kraków, Poland,
| | | | | |
Collapse
|
18
|
Harpur BA, Chernyshova A, Soltani A, Tsvetkov N, Mahjoorighasrodashti M, Xu Z, Zayed A. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera. PLoS One 2014; 9:e104214. [PMID: 25162411 PMCID: PMC4146461 DOI: 10.1371/journal.pone.0104214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/11/2014] [Indexed: 12/05/2022] Open
Abstract
Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects – a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker’s hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker’s hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.
Collapse
Affiliation(s)
- Brock A. Harpur
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Anna Chernyshova
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Arash Soltani
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Nadejda Tsvetkov
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Zhixing Xu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Madjdzadeh SM, Dawah HA, Bruford M. Morphometric differentiation ofTetramesa leucospaeZerova & Madjdzadeh, 2005, populations associated with two geographically isolated grass species in Iran. ZOOLOGY IN THE MIDDLE EAST 2013. [DOI: 10.1080/09397140.2011.10638482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Seyed Massoud Madjdzadeh
- a Department of Biology , Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman , Iran
| | - Hassan Ali Dawah
- b Jazan University, Research Centre and Ecological Studies , P.O. Box 2095 , Kingdom of Saudi Arabia
| | - Mike Bruford
- c Cardiff School of Biosciences, Biomedical Sciences Building, Museum Avenue, Cardiff University , Cardiff CF10 3AX , Unuted Kingdom
| |
Collapse
|
20
|
Haatanen MK, Sorvari J. Similarity of body size in queens of the wood ant Formica aquilonia from optimal and sub-optimal habitats indicates a strong heritable component. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:115. [PMID: 24735372 PMCID: PMC4011369 DOI: 10.1673/031.013.11501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 10/10/2012] [Indexed: 06/03/2023]
Abstract
Body size in animals is affected by both genes and the environment (e.g., the amount of food resources). In ants, body size is related to several traits in an individual's physiology and life history. For example, a large queen may increase offspring production, thus increasing her overall fitness. In this study, whether sub-optimal environmental conditions affect the body size of queens of the red wood ant, Formica aquilonia Yarrow (Hymenoptera: Formicidae). The sizes (head width in mm) of virgin queens, i.e., gynes, originating from forest interiors (resource rich) and from commercial forest clear-cuts (resource poor) were measured. No differences in the body size of the queens from the two habitats were found. In addition, the within-nest variation in queen size was similar between habitat types. The results indicate that the body size variation of F. aquilonia queens is not sensitive to environmental variation, unlike F. aquilonia workers. The lack of environmental variation in queen size in F. aquilonia may be due to a strong selection in the past to monomorphic size in this obligately polygynous (multi-queened) species.
Collapse
Affiliation(s)
| | - Jouni Sorvari
- Department of Biology, Section of Ecology, FI-20014 University of Turku, Finland
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
21
|
Mitchell RE, Frost CL, Hughes WOH. Size and asymmetry: are there costs to winning the royalty race? J Evol Biol 2012; 25:522-31. [PMID: 22239486 DOI: 10.1111/j.1420-9101.2011.02444.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Body size and morphology are key fitness-determining traits that can vary genotypically. They are likely to be important in social insect queens, which mate in swarms and found colonies independently, but genetic influences on queen morphology have been little investigated. Here, we show that the body size and morphology of queens are influenced by their genotype in the leaf-cutting ant Acromyrmex echinatior, a species in which certain lineages (patrilines) bias their development towards reproductive queens rather than sterile workers. We found no relationship between the queen-worker skew of patrilines and the size or morphology of queens, but there was a significant relationship with fluctuating asymmetry, which was greater in more queen-biased patrilines. Our results suggest that queen-biased patrilines do not incur a fitness cost in terms of body size, but may face more subtle costs in developmental stability. Such costs may constrain the evolution of royal cheating in social insects.
Collapse
Affiliation(s)
- R E Mitchell
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
22
|
|
23
|
Vitikainen E, Haag-Liautard C, Sundström L. INBREEDING AND REPRODUCTIVE INVESTMENT IN THE ANT FORMICA EXSECTA. Evolution 2011; 65:2026-37. [DOI: 10.1111/j.1558-5646.2011.01273.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
KOVACS JENNIFERL, HOFFMAN ERICA, MARRINER SARAHM, GOODISMAN MICHAELAD. Detecting selection on morphological traits in social insect castes: the case of the social wasp Vespula maculifrons. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01495.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Affiliation(s)
- J Meunier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
26
|
Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV. Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am Nat 2008; 172:497-507. [PMID: 18707530 DOI: 10.1086/590961] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We examined how dietary, social, and genetic factors affect individual size and caste in the Florida harvester ant Pogonomyrmex badius, which has three discrete female castes. The diet that a larva consumed, as indicated by delta(13)C, delta(15)N, and C:N, varied with caste. Both N content and estimated trophic position of dietary input was higher for major than for minor workers and was highest for gynes (reproductive females). The size and resources of a colony affected the size of only minor workers, not that of gynes and major workers. Approximately 19% of patrilines showed a bias in which female caste they produced. There were significant genetic effects on female size, and the average sizes of a major worker and a gyne produced by a patriline were correlated, but neither was correlated with minor worker size. Thus, genetic factors influence both caste and size within caste. We conclude that environmental, social, and genetic variation interact to create morphological and physiological variation among females in P. badius. However, the relative importance of each type of factor affecting caste determination is caste specific.
Collapse
Affiliation(s)
- C R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | |
Collapse
|
27
|
Smith CR, Toth AL, Suarez AV, Robinson GE. Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 2008; 9:735-48. [PMID: 18802413 DOI: 10.1038/nrg2429] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Division of labour--individuals specializing in different activities--features prominently in the spectacular success of the social insects. Until recently, genetic and genomic analyses of division of labour were limited to just a few species. However, research on an ever-increasing number of species has provided new insight, from which we highlight two results. First, heritable influences on division of labour are more pervasive than previously imagined. Second, different forms of division of labour, in lineages in which eusociality has arisen independently, have evolved through changes in the regulation of highly conserved molecular pathways associated with several basic life-history traits, including nutrition, metabolism and reproduction.
Collapse
Affiliation(s)
- Chris R Smith
- Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Kovacs JL, Hoffman EA, Goodisman MAD. Mating Success in the Polyandrous Social Wasp Vespula maculifrons. Ethology 2008. [DOI: 10.1111/j.1439-0310.2008.01487.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|