1
|
McGreevy TJ, Crawford NG, Legreneur P, Schneider CJ. Influence of geographic isolation and the environment on gene flow among phenotypically diverse lizards. Heredity (Edinb) 2024; 133:317-330. [PMID: 39266673 DOI: 10.1038/s41437-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Lizards in the genus Anolis comprise hundreds of species that display a wide range of phenotypic variation closely related to their environment. One example is the Guadeloupean anole (Anolis marmoratus ssp.) that display extreme phenotypic variation, primarily in adult male color and pattern, with twelve described subspecies on the archipelago. Here we examine the relationship between phenotypic and genetic divergence among five subspecies on the two main islands and test the role of geographic isolation and the environment in reducing gene flow. We also examined two offshore island populations to assess the impact of complete geographic isolation on gene flow. We analyzed color phenotypes by measuring spectral reflectance and genomic diversity using SNPs. Genetic divergence was correlated with dorsolateral head and body color phenotypes, and slope and geographic distance were nearly equivalent at explaining this divergence. There was minimal genome-wide divergence at neutral loci among phenotypically disparate subspecies on the two main islands and their differentiation is consistent with a model of divergence with gene flow. Our spatial visualization of gene flow showed an impact of environmental features consistent with a hypothesis of ecologically driven divergence. Nonetheless, subspecies on the two main islands remain interconnected by substantial gene flow and their phenotypic variation is likely maintained at selection-gene flow equilibrium by divergent selection at loci associated with their color phenotypes. Greater isolation, such as inhabiting a remote island, may be required for reducing gene flow. Our findings highlight the role of the environment, adaptation, and geographic isolation on gene flow.
Collapse
Affiliation(s)
- Thomas J McGreevy
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Nicholas G Crawford
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | | | | |
Collapse
|
2
|
Guan B, Liu Q, Liu X, Gong X. Environment influences the genetic structure and genetic differentiation of Sassafras tzumu (Lauraceae). BMC Ecol Evol 2024; 24:80. [PMID: 38872114 PMCID: PMC11170782 DOI: 10.1186/s12862-024-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Sassafras tzumu, an elegant deciduous arboreal species, belongs to the esteemed genus Sassafras within the distinguished family Lauraceae. With its immense commercial value, escalating market demands and unforeseen human activities within its natural habitat have emerged as new threats to S. tzumu in recent decades, so it is necessary to study its genetic diversity and influencing factors, to propose correlative conservation strategies. RESULTS By utilizing genotyping-by-sequence (GBS) technology, we acquired a comprehensive database of single nucleotide polymorphisms (SNPs) from a cohort of 106 individuals sourced from 13 diverse Sassafras tzumu natural populations, scattered across various Chinese mountainous regions. Through our meticulous analysis, we aimed to unravel the intricate genetic diversity and structure within these S. tzumu populations, while simultaneously investigating the various factors that potentially shape genetic distance. Our preliminary findings unveiled a moderate level of genetic differentiation (FST = 0.103, p < 0.01), accompanied by a reasonably high genetic diversity among the S. tzumu populations. Encouragingly, our principal component analysis painted a vivid picture of two distinct genetic and geographical regions across China, where gene flow appeared to be somewhat restricted. Furthermore, employing the sophisticated multiple matrix regression with randomization (MMRR) analysis method, we successfully ascertained that environmental distance exerted a more pronounced impact on genetic distance when compared to geographical distance (βE = 0.46, p < 0.01; βD = 0.16, p < 0.01). This intriguing discovery underscores the potential significance of environmental factors in shaping the genetic landscape of S. tzumu populations. CONCLUSIONS The genetic variance among populations of S. tzumu in our investigation exhibited a moderate degree of differentiation, alongside a heightened level of genetic diversity. The environmental distance of S. tzumu had a greater impact on its genetic diversity than geographical distance. It is of utmost significance to formulate and implement meticulous management and conservation strategies to safeguard the invaluable genetic resources of S. tzumu.
Collapse
Affiliation(s)
- Bicai Guan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Qian Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiang Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xi Gong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Medeiros LADE, Gentil E, Kaefer IL, Cohn-Haft M. Distribution and diversification of Adelphobates, emblematic poison frogs from Brazilian Amazonia. AN ACAD BRAS CIENC 2024; 96:e20230659. [PMID: 38655924 DOI: 10.1590/0001-3765202320230659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/16/2023] [Indexed: 04/26/2024] Open
Abstract
Adelphobates contains three species, and the inaccurate identification of A. quinquevittatus and the scarcity of records of A. castaneoticus complicate inference of their distributions; the latter species occurs in sympatry with A. galactonotus. Our objective was to revise the distributions of Adelphobates by compiling data and modeling habitat suitability, as range limits may be shaped by landscape features and biotic interactions. We initially analyzed the existence of operational taxonomic units within the nominal species and subsequently inferred the observed and potential distributions, taking into account the possible independent lineages for the three species, and we also generated a molecular timetree to understand the chronology of interspecific diversification events. Adelphobates quinquevittatus was found to have a more easterly distribution than previously described, and specimens with phenotypic variation were found to occur in areas inconsistent with the modeling, and A. castaneoticus was concentrated in the Tapajós-Xingu interfluve, surrounded by A. galactonotus. Models indicated that the right bank of the Xingu River is suitable for both species, indeed, both were found there. Despite Adelphobates species having their distributions delimited by major Amazonian rivers, estimated divergence times predate the formation of the modern river network, suggesting that other mechanisms were involved in their diversification.
Collapse
Affiliation(s)
- Larissa A DE Medeiros
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ecologia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| | - Eduardo Gentil
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ecologia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| | - Igor L Kaefer
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ecologia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Av. Rodrigo Otávio, 6200, Coroado I, 69077-000 Manaus, AM, Brazil
| | - Mario Cohn-Haft
- Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ecologia, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
- Instituto Nacional de Pesquisas da Amazônia, Coleção de Aves, Coordenação de Pesquisas em Biodiversidade, Av. André Araújo, 2936, Petrópolis, 69067-375 Manaus, AM, Brazil
| |
Collapse
|
4
|
Verly T, Pita S, Carbajal-de-la-Fuente AL, Burgueño-Rodríguez G, Piccinali RV, Fiad FG, Ríos N, Panzera F, Lobbia P, Sánchez-Casaccia P, Rojas de Arias A, Cavallo MJ, Gigena GV, Rodríguez CS, Nattero J. Relationship between genetic diversity and morpho-functional characteristics of flight-related traits in Triatoma garciabesi (Hemiptera: Reduviidae). Parasit Vectors 2024; 17:145. [PMID: 38500121 PMCID: PMC10949591 DOI: 10.1186/s13071-024-06211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Triatoma garciabesi, a potential vector of the parasitic protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease, is common in peridomestic and wild environments and found throughout northwestern and central Argentina, western Paraguay and the Bolivian Chaco. Genetic differentiation of a species across its range can help to understand dispersal patterns and connectivity between habitats. Dispersal by flight is considered to be the main active dispersal strategy used by triatomines. In particular, the morphological structure of the hemelytra is associated with their function. The aim of this study was to understand how genetic diversity is structured, how morphological variation of dispersal-related traits varies with genetic diversity and how the morphological characteristics of dispersal-related traits may explain the current distribution of genetic lineages in this species. METHODS Males from 24 populations of T. garciabesi across its distribution range were examined. The cytochrome c oxidase I gene (coI) was used for genetic diversity analyses. A geometric morphometric method based on landmarks was used for morpho-functional analysis of the hemelytra. Centroid size (CS) and shape of the forewing, and contour of both parts of the forewing, the head and the pronotum were characterised. Length and area of the forewing were measured to estimate the aspect ratio. RESULTS The morphometric and phylogenetic analysis identified two distinct lineages, namely the Eastern and Western lineages, which coincide with different ecological regions. The Eastern lineage is found exclusively in the eastern region of Argentina (Chaco and Formosa provinces), whereas the Western lineage is prevalent in the rest of the geographical range of the species. CS, shape and aspect ratio of the hemelytra differed between lineages. The stiff portion of the forewing was more developed in the Eastern lineage. The shape of both portions of the hemelytra were significantly different between lineages, and the shape of the head and pronotum differed between lineages. CONCLUSIONS The results provide preliminary insights into the evolution and diversification of T. garciabesi. Variation in the forewing, pronotum and head is congruent with genetic divergence. Consistent with genetic divergence, morphometry variation was clustered according to lineages, with congruent variation in the size and shape of the forewing, pronotum and head.
Collapse
Affiliation(s)
- Thaiane Verly
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Ana Laura Carbajal-de-la-Fuente
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Romina V Piccinali
- Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET/Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico G Fiad
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Francisco Panzera
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lobbia
- Unidad Operativa de Vectores y Ambiente (UnOVE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán", Centro Nacional de Diagnostico e Investigación en Endemo-Epidemias (CeNDIE), Córdoba, Argentina
| | - Paz Sánchez-Casaccia
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | | | - María José Cavallo
- Centro Regional de Energía y Ambiente Para el Desarrollo Sustentable (CREAS-CONICET), Universidad Nacional de Catamarca (UNCA), San Fernando del Valle de Catamarca, Catamarca, Argentina
| | - Gisel V Gigena
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia S Rodríguez
- Cátedras de Introducción a la Biología y Morfología Animal, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Facultad de Ciencias Exactas Físicas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julieta Nattero
- Departamento de Ecología Genética y Evolución, Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET/Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Polic D, Yıldırım Y, Merilaita S, Franzén M, Forsman A. Genetic structure, UV-vision, wing coloration and size coincide with colour polymorphism in Fabriciana adippe butterflies. Mol Ecol 2024; 33:e17272. [PMID: 38240162 DOI: 10.1111/mec.17272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Colour polymorphisms have long served as model systems in evolutionary studies and continue to inform about processes involved in the origin and dynamics of biodiversity. Modern sequencing tools allow for evaluating whether phenotypic differences between morphs reflect genetic differentiation rather than developmental plasticity, and for investigating whether polymorphisms represent intermediate stages of diversification towards speciation. We investigated phenotypic and genetic differentiation between two colour morphs of the butterfly Fabriciana adippe using a combination of ddRAD-sequencing and comparisons of body size, colour patterns and optical properties of bright wing spots. The silvery-spotted adippe form had larger and darker wings and reflected UV light, while the yellow cleodoxa form displayed more green scales and reflected very little UV, showcasing that they constitute distinct and alternative integrated phenotypes. Genomic analyses revealed genetic structuring according to source population, and to colour morph, suggesting that the phenotypic differentiation reflects evolutionary modifications. We report 17 outlier loci associated with colour morph, including ultraviolet-sensitive visual pigment (UVRh1), which is associated with intraspecific communication and mate choice in butterflies. Together with the demonstration that the wings of the adippe (but essentially not the cleodoxa) morph reflect UV light, that UV reflectance is higher in females than males and that morphs differ in wing size, this suggests that these colour morphs might represent genetically integrated phenotypes, possibly adapted to different microhabitats. We propose that non-random mating might contribute to the differentiation and maintenance of the polymorphism.
Collapse
Affiliation(s)
- Daniela Polic
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Sami Merilaita
- Department of Biology, University of Turku, Turku, Finland
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Jiao X, Wu L, Zhang D, Wang H, Dong F, Yang L, Wang S, Amano HE, Zhang W, Jia C, Rheindt FE, Lei F, Song G. Landscape Heterogeneity Explains the Genetic Differentiation of a Forest Bird across the Sino-Himalayan Mountains. Mol Biol Evol 2024; 41:msae027. [PMID: 38318973 PMCID: PMC10919924 DOI: 10.1093/molbev/msae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
Mountains are the world's most important centers of biodiversity. The Sino-Himalayan Mountains are global biodiversity hotspot due to their extremely high species richness and endemicity. Ample research investigated the impact of the Qinghai-Tibet Plateau uplift and Quaternary glaciations in driving species diversification in plants and animals across the Sino-Himalayan Mountains. However, little is known about the role of landscape heterogeneity and other environmental features in driving diversification in this region. We utilized whole genomes and phenotypic data in combination with landscape genetic approaches to investigate population structure, demography, and genetic diversity in a forest songbird species native to the Sino-Himalayan Mountains, the red-billed leiothrix (Leiothrix lutea). We identified 5 phylogeographic clades, including 1 in the East of China, 1 in Yunnan, and 3 in Tibet, roughly consistent with differences in song and plumage coloration but incongruent with traditional subspecies boundaries. Isolation-by-resistance model best explained population differentiation within L. lutea, with extensive secondary contact after allopatric isolation leading to admixture among clades. Ecological niche modeling indicated relative stability in the extent of suitable distribution areas of the species across Quaternary glacial cycles. Our results underscore the importance of mountains in the diversification of this species, given that most of the distinct genetic clades are concentrated in a relatively small area in the Sino-Himalayan Mountain region, while a single shallow clade populates vast lower-lying areas to the east. This study highlights the crucial role of landscape heterogeneity in promoting differentiation and provides a deep genomic perspective on the mechanisms through which diversity hotspots form.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Le Yang
- Tibet Plateau Institute of Biology, Lhasa 850000, China
| | - Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Weiwei Zhang
- Center for Wildlife Resources Conservation Research, Jiangxi Agricultural University, Nanchang, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Medina I, Dong C, Marquez R, Perez DM, Wang IJ, Stuart-Fox D. Anti-predator defences are linked with high levels of genetic differentiation in frogs. Proc Biol Sci 2024; 291:20232292. [PMID: 38264783 PMCID: PMC10806439 DOI: 10.1098/rspb.2023.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Predator-prey interactions have been suggested as drivers of diversity in different lineages, and the presence of anti-predator defences in some clades is linked to higher rates of diversification. Warning signals are some of the most widespread defences in the animal world, and there is evidence of higher diversification rates in aposematic lineages. The mechanisms behind such species richness, however, are still unclear. Here, we test whether lineages that use aposematism as anti-predator defence exhibit higher levels of genetic differentiation between populations, leading to increased opportunities for divergence. We collated from the literature more than 3000 pairwise genetic differentiation values across more than 700 populations from over 60 amphibian species. We find evidence that over short geographical distances, populations of species of aposematic lineages exhibit greater genetic divergence relative to species that are not aposematic. Our results support a scenario where the use of warning signals could restrict gene flow, and suggest that anti-predator defences could impact divergence between populations and potentially have effects at a macro-evolutionary scale.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| | - Caroline Dong
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70115, USA
| | - Roberto Marquez
- Department of Ecology and Evolutionary Biology and Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniela M. Perez
- Max Plank Institute of Animal Behaviour, 78464 Konstanz, Germany
| | - Ian J. Wang
- Department of Environmental Science, Policy, and Management, Rausser College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Devi Stuart-Fox
- School of BioSciences, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
8
|
Awais M, Zhao J, Cheng X, Ghaffar Khoso A, Ju M, Ur Rehman Z, Iqbal A, Rameez Khan M, Chen W, Liu M, Ma X, Wang L, Liu W, Du Z, Sun M, Zhang G, Kang Z, Ali S. Himalayan mountains imposing a barrier on gene flow of wheat yellow rust pathogen in the bordering regions of Pakistan and China. Fungal Genet Biol 2023; 164:103753. [PMID: 36574524 DOI: 10.1016/j.fgb.2022.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The wheat yellow rust pathogen has been shown to be diverse and potentially originated in the Himalayan region. Although Himalayan populations of Pakistan, Nepal and Bhutan have been previously compared, little is known about the relative divergence and diversity in Puccinia striiformis populations in the bordering regions of Pakistan and China. To assess the relative diversity and divergence in these regions of Pakistan (Gilgit-Baltistan, Hazara and Azad Jammu Kashmir) and China (Xinjiang, Qinghai, Tibet, Sichuan, Guizhou and Yunnan), a total of 1245 samples were genotyped using 17 microsatellite SSR markers. A clear divergence was observed between the bordering regions of Pakistan and China (FST = 0.28) without any resampling of genetic groups and multilocus genotypes across two sides of the Himalayan mountains. The closest subpopulations across the two countries were Xinjiang and Gilgit-Baltistan (Nei's distance = 0.147), which were close geographically. A very high diversity and recombinant population structure was observed in both populations, though slightly higher in China (Genotypic diversity = 0.970; r¯d = 0.000) than in Pakistan (Genotypic diversity = 0.902; r¯d = 0.065). The distribution of genetic groups and resampling of MLGs revealed more gene flow across Yunnan, Guizhou and Sichuan regions in China, while between Hazara and Azad-Jammu Kashmir in Pakistan. The lack of gene flow between Pakistan and China populations is due to geographical barriers and a large patch of land without wheat. The information on the relative diversity and divergence in different geographical zones of the pathogen center of diversity and neighboring region should be considered in resistant wheat deployment while considering the invasion potential of the pathogen at regional and global contexts.
Collapse
Affiliation(s)
- Muhammad Awais
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Xiangrui Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Abdul Ghaffar Khoso
- College of Plant Protection, Dept. Agriculture Entomology & pest control. Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zia Ur Rehman
- Dept. of Agriculture, Hazara University Mansehra, Pakistan
| | - Aamir Iqbal
- Dept. of Agriculture, Hazara University Mansehra, Pakistan
| | | | - Wen Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Guizhou Academy of Agricultural Sciences, Institute of Plant Protection, Guiyang, PR China
| | - Maxinzhi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinyao Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhimin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mudi Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Gensheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Sajid Ali
- Dept. of Agriculture, Hazara University Mansehra, Pakistan.
| |
Collapse
|
9
|
Sepúlveda‐Espinoza F, Bertin‐Benavides A, Hasbún R, Toro‐Núñez Ó, Varas‐Myrik A, Alarcón D, Guillemin M. The impact of Pleistocene glaciations and environmental gradients on the genetic structure of Embothrium coccineum. Ecol Evol 2022; 12:e9474. [PMID: 36381388 PMCID: PMC9646505 DOI: 10.1002/ece3.9474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022] Open
Abstract
The South American temperate forests were subjected to drastic topographic and climatic changes during the Pliocene-Pleistocene as a consequence of the Andean orogeny and glacial cycles. Such changes are common drivers of genetic structure and adaptation. Embothrium coccineum (Proteaceae) is an emblematic tree of the South American temperate forest (around 20°S of latitude) that has strongly been affected by topographic and climatic events. Previous studies have shown a marked genetic structure in this species, and distinct ecotypes have been described. Yet, little is known about their adaptive genetic responses. The main goal of this study was to investigate the effects of historical and contemporary landscape features affecting the genetic diversity and connectivity of E. coccineum throughout its current natural distribution. Using over 2000 single nucleotide polymorphisms (SNPs), we identified two genetic groups (a Northern and a Central-Southern group) that diverged around 2.8 million years ago. The level of genetic structure was higher among populations within the Northern genetic group than within the Central-Southern group. We propose that these differences in genetic structure may be due to differences in the assemblages of pollinators and in the evolutionary histories of the two genetic groups. Moreover, the data displayed a strong pattern of isolation by the environment in E. coccineum, suggesting that selection could have led to adaptive divergence among localities. We propose that in the Chilean temperate forest, the patterns of genetic variation in E. coccineum reflect both a Quaternary phylogenetic imprint and signatures of selection as a consequence of a strong environmental gradient.
Collapse
Affiliation(s)
- Francisco Sepúlveda‐Espinoza
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Facultad de Ciencias, Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Ariana Bertin‐Benavides
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- ONG Conciencia SurConcepciónChile
- Laboratorio de Genómica Forestal, Centro de BiotecnologíaUniversidad de ConcepciónConcepciónChile
| | - Rodrigo Hasbún
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
| | - Óscar Toro‐Núñez
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Antonio Varas‐Myrik
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
| | - Diego Alarcón
- Departamento de Ciencias Ecológicas, Instituto de Ecología y BiodiversidadUniversidad de ChileÑuñoaChile
| | - Marie‐Laure Guillemin
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRSSorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de ChileRoscoffFrance
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
| |
Collapse
|
10
|
MacDonald ZG, Snape KL, Roe AD, Sperling F. Host association, environment, and geography underlie genomic differentiation in a major forest pest. Evol Appl 2022; 15:1749-1765. [PMID: 36426133 PMCID: PMC9679251 DOI: 10.1111/eva.13466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diverse geographic, environmental, and ecological factors affect gene flow and adaptive genomic variation within species. With recent advances in landscape ecological modelling and high-throughput DNA sequencing, it is now possible to effectively quantify and partition their relative contributions. Here, we use landscape genomics to identify determinants of genomic differentiation in the forest tent caterpillar, Malacosoma disstria, a widespread and irruptive pest of numerous deciduous tree species in North America. We collected larvae from multiple populations across Eastern Canada, where the species experiences a diversity of environmental gradients and feeds on a number of different host tree species, including trembling aspen (Populus tremuloides), sugar maple (Acer saccharum), red oak (Quercus rubra), and white birch (Betula papyrifera). Using a combination of reciprocal causal modelling (RCM) and distance-based redundancy analyses (dbRDA), we show that differentiation of thousands of genome-wide single nucleotide polymorphisms (SNPs) among individuals is best explained by a combination of isolation by distance, isolation by environment (spatial variation in summer temperatures and length of the growing season), and differences in host association. Configuration of suitable habitat inferred from ecological niche models was not significantly related to genomic differentiation, suggesting that M. disstria dispersal is agnostic with respect to habitat quality. Although population structure was not discretely related to host association, our modelling framework provides the first molecular evidence of host-associated differentiation in M. disstria, congruent with previous documentation of reduced growth and survival of larvae moved between natal host species. We conclude that ecologically mediated selection is contributing to variation within M. disstria, and that divergent adaptation related to both environmental conditions and host association should be considered in ongoing research and management of this important forest pest.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- UCLA La Kretz Center for California Conservation ScienceUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Institute of the Environmental and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Kyle L. Snape
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Amanda D. Roe
- Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaSault Ste. MarieOntarioCanada
| | | |
Collapse
|
11
|
Lyam PT, Duque-Lazo J, Hauenschild F, Schnitzler J, Muellner-Riehl AN, Greve M, Ndangalasi H, Myburgh A, Durka W. Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species. Sci Rep 2022; 12:7035. [PMID: 35488120 PMCID: PMC9054768 DOI: 10.1038/s41598-022-11182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Global climate change is proceeding at an alarming rate with major ecological and genetic consequences for biodiversity, particularly in drylands. The response of species to climate change may differ between intraspecific genetic groups, with major implications for conservation. We used molecular data from 10 nuclear and two chloroplast genomes to identify phylogeographic groups within 746 individuals from 29 populations of Senegalia senegal, a savannah tree species in sub-Saharan Africa. Three phylogroups are identified corresponding to Sudano-Sahelian, Zambezian and Southern African biogeographic regions in West, East and Southern Africa. Genetic diversity was highest in Southern and Zambesian and lowest in the Sudano-Sahelian phylogroups. Using species distribution modeling, we infer highly divergent future distributions of the phylogroups under three climate change scenarios. Climate change will lead to severe reductions of distribution area of the genetically diverse Zambezian (- 41-- 54%) and Southern (- 63-- 82%) phylogroups, but to an increase for the genetically depauperate Sudano-Sahelian (+ 7- + 26%) phylogroups. This study improves our understanding of the impact of climate change on the future distribution of this species. This knowledge is particularly useful for biodiversity management as the conservation of genetic resources needs to be considered in complementary strategies of in-situ conservation and assisted migration.
Collapse
Affiliation(s)
- Paul T Lyam
- Department of Molecular Evolution and Plant Systematics and Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- National Centre for Genetic Resources and Biotechnology, NCRI complex, Moor Plantation, P.M.B 5282, Ibadan, Nigeria.
| | | | - Frank Hauenschild
- Department of Molecular Evolution and Plant Systematics and Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jan Schnitzler
- Department of Molecular Evolution and Plant Systematics and Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Alexandra N Muellner-Riehl
- Department of Molecular Evolution and Plant Systematics and Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Michelle Greve
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Henry Ndangalasi
- Department of Botany, University of Dar Es Salaam, P.O. Box 35060, Dar es Salaam, Tanzania
| | - Annerine Myburgh
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research-UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| |
Collapse
|
12
|
Wang Z, Pierce NE. Fine-scale genome-wide signature of Pleistocene glaciation in Thitarodes moths (Lepidoptera: Hepialidae), host of Ophiocordyceps fungus in the Hengduan Mountains. Mol Ecol 2022; 32:2695-2714. [PMID: 35377501 DOI: 10.1111/mec.16457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of inter-species divergence, the accumulation of intra-species (i.e. population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 meters apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.
Collapse
Affiliation(s)
- Zhengyang Wang
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Naomi E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
13
|
Clark MI, Bradburd GS, Akopyan M, Vega A, Rosenblum EB, Robertson JM. Genetic isolation by distance underlies colour pattern divergence in red-eyed treefrogs (Agalychnis callidryas). Mol Ecol 2022; 31:1666-1681. [PMID: 35034406 PMCID: PMC8923152 DOI: 10.1111/mec.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Investigating the spatial distribution of genetic and phenotypic variation can provide insights into the evolutionary processes that shape diversity in natural systems. We characterized patterns of genetic and phenotypic diversity to learn about drivers of colour-pattern diversification in red-eyed treefrogs (Agalychnis callidryas) in Costa Rica. Along the Pacific coast, red-eyed treefrogs have conspicuous leg colour patterning that transitions from orange in the north to purple in the south. We measured phenotypic variation of frogs, with increased sampling at sites where the orange-to-purple transition occurs. At the transition zone, we discovered the co-occurrence of multiple colour-pattern morphs. To explore possible causes of this variation, we generated a single nucleotide polymorphism data set to analyse population genetic structure, measure genetic diversity and infer the processes that mediate genotype-phenotype dynamics. We investigated how patterns of genetic relatedness correspond to individual measures of colour pattern along the coast, including testing for the role of hybridization in geographic regions where orange and purple phenotypic groups co-occur. We found no evidence that colour-pattern polymorphism in the transition zone arose through recent hybridization. Instead, a strong pattern of genetic isolation by distance indicates that colour-pattern variation was either retained through other processes such as ancestral colour polymorphisms or ancient secondary contact, or else it was generated by novel mutations. We found that phenotype changes along the Pacific coast more than would be expected based on genetic divergence and geographic distance alone. Combined, our results suggest the possibility of selective pressures acting on colour pattern at a small geographic scale.
Collapse
Affiliation(s)
- Meaghan I. Clark
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Gideon S. Bradburd
- Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Maria Akopyan
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Jeanne M. Robertson
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| |
Collapse
|
14
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
15
|
Lindstedt C, Bagley R, Calhim S, Jones M, Linnen C. The impact of life stage and pigment source on the evolution of novel warning signal traits. Evolution 2022; 76:554-572. [PMID: 35103303 PMCID: PMC9304160 DOI: 10.1111/evo.14443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of how novel warning color traits evolve in natural populations is largely based on studies of reproductive stages and organisms with endogenously produced pigmentation. In these systems, genetic drift is often required for novel alleles to overcome strong purifying selection stemming from frequency‐dependent predation and positive assortative mating. Here, we integrate data from field surveys, predation experiments, population genomics, and phenotypic correlations to explain the origin and maintenance of geographic variation in a diet‐based larval pigmentation trait in the redheaded pine sawfly (Neodiprion lecontei), a pine‐feeding hymenopteran. Although our experiments confirm that N. lecontei larvae are indeed aposematic—and therefore likely to experience frequency‐dependent predation—our genomic data do not support a historical demographic scenario that would have facilitated the spread of an initially deleterious allele via drift. Additionally, significantly elevated differentiation at a known color locus suggests that geographic variation in larval color is currently maintained by selection. Together, these data suggest that the novel white morph likely spread via selection. However, white body color does not enhance aposematic displays, nor is it correlated with enhanced chemical defense or immune function. Instead, the derived white‐bodied morph is disproportionately abundant on a pine species with a reduced carotenoid content relative to other pine hosts, suggesting that bottom‐up selection via host plants may have driven divergence among populations. Overall, our results suggest that life stage and pigment source can have a substantial impact on the evolution of novel warning signals, highlighting the need to investigate diverse aposematic taxa to develop a comprehensive understanding of color variation in nature.
Collapse
Affiliation(s)
- Carita Lindstedt
- Department of Biological and Environmental Sciences, University of Jyväskylä, Finland
| | - Robin Bagley
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA.,Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Lima, Lima, OH, 45804, USA
| | - Sara Calhim
- Department of Biological and Environmental Sciences, University of Jyväskylä, Finland
| | - Mackenzie Jones
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Catherine Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky, 40506, USA
| |
Collapse
|
16
|
Otolith Microchemistry and Demographic History Provide New Insight into the Migratory Behavior and Heterogeneous Genetic Divergence of Coilia grayii in the Pearl River. FISHES 2022. [DOI: 10.3390/fishes7010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coilia grayii is the anadromous form of anchovy that is distributed in the East and South China Seas. It is a common fish species in the estuarine area of the Pearl River. Nevertheless, freshwater populations appear upstream in the Pearl River, but the migratory pathway has been mostly impeded by dam construction. Behavioral differences and constrained habitat within tributaries are suspected of promoting genetic divergence in these populations. In this study, we investigated the migratory behavior and genetic divergence of six populations of C. grayii fragmented by dams based on the otolith strontium/calcium (Sr/Ca) ratio, mitochondrial DNA, and microsatellite genotyping. All populations were in freshwater with low Sr/Ca ratios, except the estuarine population (Humen population) hatched in brackish water. Reduced nucleotide diversity corresponding to distance was observed. Populations from distant hydrological regions exhibited a decline in genetic diversity and a significant difference with the remaining populations after fitting the isolation by distance model. Pairwise fixation indices confirmed these results and moderate and significant differentiation was found between Hengxian site and downstream sites. Furthermore, STRUCTURE analyses revealed that all separated populations exhibited an admixed phylogenetic pattern except for individuals from the Hengxian locality. The upstream sites showed significantly increased resistance to gene flow from the estuarine population because of isolation by the dam. The results of the neutrality test and Bayesian skyline plots demonstrated complex demography—individuals’ experienced historical expansion and partial upper-dam populations had recently undergone a colonization, forming a new genetic structure. Accordingly, this study demonstrates differences in the migration pattern and genetic differentiation of C. grayii as a consequence of demographic history and current processes (habitat fragmentation and colonization).
Collapse
|
17
|
Magalhães FDM, Camurugi F, Lyra ML, Baldo D, Gehara M, Haddad CFB, Garda AA. Ecological divergence and synchronous Pleistocene diversification in the widespread South American butter frog complex. Mol Phylogenet Evol 2022; 169:107398. [PMID: 35031468 DOI: 10.1016/j.ympev.2022.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Phylogeographic studies primarily focus on the major role of landscape topography in driving lineage diversification. However, populational phylogeographic breaks may also occur as a result of either niche conservatism or divergence, in the absence of geographic barriers to gene flow. Furthermore, these two factors are not mutually exclusive and can act in concert, making it challenging to evaluate their relative importance on explaining genetic variation in nature. Herein, we use sequences of two mitochondrial and four nuclear genes to investigate the timing and diversification patterns of species pertaining to the Leptodactylus latrans complex, which harbors four morphologically cryptic species with broad distributions across environmental gradients in eastern South America. The origin of this species complex dates back to the late Miocene (ca. 5.5 Mya), but most diversification events occurred synchronically during the late Pleistocene likely as the result of ecological divergence driven by Quaternary climatic oscillations. Further, significant patterns of environmental niche divergences among species in the L. latrans complex imply that ecological isolation is the primary mode of genetic diversification, mostly because phylogenetic breaks are associated with environmental transitions rather than topographic barriers at both species and populational scale. We provided new insights about diversification patterns and processes within a species complex of broadly and continuously distributed group of frogs along South America.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba-UFPB, Centro de Ciências Exatas e da Natureza, Cidade Universitária, 58000-000 João Pessoa, Paraiba, Brazil; Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark 195 University Ave, Newark, NJ 07102, USA.
| | - Felipe Camurugi
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana L Lyra
- Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Cx. Postal 199, 13506-900 Rio Claro, São Paulo, Brazil
| | - Diego Baldo
- Instituto de Biología Subtropical (IBS, CONICET-UNaM), Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF Posadas, Misiones, Argentina
| | - Marcelo Gehara
- Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark 195 University Ave, Newark, NJ 07102, USA
| | - Célio F B Haddad
- Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Cx. Postal 199, 13506-900 Rio Claro, São Paulo, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Campus Universitário. Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
18
|
Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity (Edinb) 2022; 128:33-44. [PMID: 34718332 PMCID: PMC8733028 DOI: 10.1038/s41437-021-00481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Phenotypic and genetic divergence are shaped by the homogenizing effects of gene flow and the differentiating processes of genetic drift and local adaptation. Herein, we examined the mechanisms that underlie phenotypic (size and color) and genetic divergence in 35 populations (535 individuals) of the poison frog Epipedobates anthonyi along four elevational gradients (0-1800 m asl) in the Ecuadorian Andes. We found phenotypic divergence in size and color despite relatively low genetic divergence at neutral microsatellite loci. Genetic and phenotypic divergence were both explained by landscape resistance between sites (isolation-by-resistance, IBR), likely due to a cold and dry mountain ridge between the northern and southern elevational transects that limits dispersal and separates two color morphs. Moreover, environmental differences among sites also explained genetic and phenotypic divergence, suggesting isolation-by-environment (IBE). When northern and southern transects were analyzed separately, genetic divergence was predicted either by distance (isolation-by-distance, IBD; northern) or environmental resistance between sites (IBR; southern). In contrast, phenotypic divergence was primarily explained by environmental differences among sites, supporting the IBE hypothesis. These results indicate that although distance and geographic barriers are important drivers of population divergence, environmental variation has a two-fold effect on population divergence. On the one hand, landscape resistance between sites reduces gene flow (IBR), while on the other hand, environmental differences among sites exert divergent selective pressures on phenotypic traits (IBE). Our work highlights the importance of studying both genetic and phenotypic divergence to better understand the processes of population divergence and speciation along ecological gradients.
Collapse
|
19
|
Oboudi R, Malekian M, Khosravi R, Fadakar D, Adibi MA. Genetic structure and ecological niche segregation of Indian gray mongoose ( Urva edwardsii) in Iran. Ecol Evol 2021; 11:14813-14827. [PMID: 34765143 PMCID: PMC8571580 DOI: 10.1002/ece3.8168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 01/01/2023] Open
Abstract
Combining genetic data with ecological niche models is an effective approach for exploring climatic and nonclimatic environmental variables affecting spatial patterns of intraspecific genetic variation. Here, we adopted this combined approach to evaluate genetic structure and ecological niche of the Indian gray mongoose (Urva edwardsii) in Iran, as the most western part of the species range. Using mtDNA, we confirmed the presence of two highly differentiated clades. Then, we incorporated ensemble of small models (ESMs) using climatic and nonclimatic variables with genetic data to assess whether genetic differentiation among clades was coupled with their ecological niche. Climate niche divergence was also examined based on a principal component analysis on climatic factors only. The relative habitat suitability values predicted by the ESMs for both clades revealed their niche separation. Between-clade climate only niche comparison revealed that climate space occupied by clades is similar to some extent, but the niches that they utilize differ between the distribution ranges of clades. We found that in the absence of evidence for recent genetic exchanges, distribution models suggest the species occurs in different niches and that there are apparent areas of disconnection across the species range. The estimated divergence time between the two Iranian clades (4.9 Mya) coincides with the uplifting of the Zagros Mountains during the Early Pliocene. The Zagros mountain-building event seems to have prevented the distribution of U. edwardsii populations between the western and eastern parts of the mountains as a result of vicariance events. Our findings indicated that the two U. edwardsii genetic clades in Iran can be considered as two conservation units and can be utilized to develop habitat-specific and climate change-integrated management strategies.
Collapse
Affiliation(s)
- Razie Oboudi
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | - Mansoureh Malekian
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | - Rasoul Khosravi
- Department of Natural ResourcesSchool of AgricultureShiraz UniversityShirazIran
| | - Davoud Fadakar
- Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
| | | |
Collapse
|
20
|
Nakajima S, Sueyoshi M, Hirota SK, Ishiyama N, Matsuo A, Suyama Y, Nakamura F. A strategic sampling design revealed the local genetic structure of cold-water fluvial sculpin: a focus on groundwater-dependent water temperature heterogeneity. Heredity (Edinb) 2021; 127:413-422. [PMID: 34417564 PMCID: PMC8478981 DOI: 10.1038/s41437-021-00468-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
A key piece of information for ecosystem management is the relationship between the environment and population genetic structure. However, it is difficult to clearly quantify the effects of environmental factors on genetic differentiation because of spatial autocorrelation and analytical problems. In this study, we focused on stream ecosystems and the environmental heterogeneity caused by groundwater and constructed a sampling design in which geographic distance and environmental differences are not correlated. Using multiplexed ISSR genotyping by sequencing (MIG-seq) method, a fine-scale population genetics study was conducted in fluvial sculpin Cottus nozawae, for which summer water temperature is the determinant factor in distribution and survival. There was a clear genetic structure in the watershed. Although a significant isolation-by-distance pattern was detected in the watershed, there was no association between genetic differentiation and water temperature. Instead, asymmetric gene flow from relatively low-temperature streams to high-temperature streams was detected, indicating the importance of low-temperature streams and continuous habitats. The groundwater-focused sampling strategy yielded insightful results for conservation.
Collapse
Affiliation(s)
- Souta Nakajima
- grid.39158.360000 0001 2173 7691Laboratory of Ecosystem Management, Graduate School of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, Hokkaido Japan
| | - Masanao Sueyoshi
- grid.472015.50000 0000 9513 8387Aqua Restoration Research Center, Public Works Research Institute, KawashimaKasada-machi, Kakamigahara, Gifu Japan
| | - Shun K. Hirota
- grid.69566.3a0000 0001 2248 6943Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi Japan
| | - Nobuo Ishiyama
- grid.452441.2Forest Research Institute, Hokkaido Research Organization, Koshunai, Bibai, Hokkaido Japan
| | - Ayumi Matsuo
- grid.69566.3a0000 0001 2248 6943Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi Japan
| | - Yoshihisa Suyama
- grid.69566.3a0000 0001 2248 6943Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi Japan
| | - Futoshi Nakamura
- grid.39158.360000 0001 2173 7691Laboratory of Ecosystem Management, Graduate School of Agriculture, Hokkaido University, Kita-ku Kita 9 Nishi 9, Sapporo, Hokkaido Japan
| |
Collapse
|
21
|
Garrick RC, Arantes ÍC, Stubbs MB, Havill NP. Weak spatial-genetic structure in a native invasive, the southern pine beetle ( Dendroctonus frontalis), across the eastern United States. PeerJ 2021; 9:e11947. [PMID: 34557344 PMCID: PMC8418799 DOI: 10.7717/peerj.11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
The southern pine beetle, Dendroctonus frontalis, is a native pest of pine trees that has recently expanded its range into the northeastern United States. Understanding its colonization, dispersal, and connectivity will be critical for mitigating negative economic and ecological impacts in the newly invaded areas. Characterization of spatial-genetic structure can contribute to this; however, previous studies have reached different conclusions about regional population genetic structure, with one study reporting a weak east-west pattern, and the most recent reporting an absence of structure. Here we systematically assessed several explanations for the absence of spatial-genetic structure. To do this, we developed nine new microsatellite markers and combined them with an existing 24-locus data matrix for the same individuals. We then reanalyzed this full dataset alongside datasets in which certain loci were omitted with the goal of creating more favorable signal to noise ratios. We also partitioned the data based on the sex of D. frontalis individuals, and then employed a broad suite of genotypic clustering and isolation-by-distance (IBD) analyses. We found that neither inadequate information content in the molecular marker set, nor unfavorable signal-to-noise ratio, nor insensitivity of the analytical approaches could explain the absence of structure. Regardless of dataset composition, there was little evidence for clusters (i.e., distinct geo-genetic groups) or clines (i.e., gradients of increasing allele frequency differences over larger geographic distances), with one exception: significant IBD was repeatedly detected using an individual-based measure of relatedness whenever datasets included males (but not for female-only datasets). This is strongly indicative of broad-scale female-biased dispersal, which has not previously been reported for D. frontalis, in part owing to logistical limitations of direct approaches (e.g., capture-mark-recapture). Weak spatial-genetic structure suggests long-distance connectivity and that gene flow is high, but additional research is needed to understand range expansion and outbreak dynamics in this species using alternate approaches.
Collapse
Affiliation(s)
- Ryan C Garrick
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Ísis C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Megan B Stubbs
- Department of Biology, University of Mississippi, Oxford, MS, United States of America
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, United States of America
| |
Collapse
|
22
|
Blackburn DC, Nielsen SV, Ghose SL, Burger M, Gonwouo LN, Greenbaum E, Gvoždík V, Hirschfeld M, Kouete MT, Kusamba C, Lawson D, McLaughlin PJ, Zassi-Boulou AG, Rödel MO. Phylogeny of African Long-Fingered Frogs (Arthroleptidae: Cardioglossa) Reveals Recent Allopatric Divergences in Coloration. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Freudiger A, Josi D, Thünken T, Herder F, Flury JM, Marques DA, Taborsky M, Frommen JG. Ecological variation drives morphological differentiation in a highly social vertebrate. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annika Freudiger
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Conservation Ecology Evolution and Behaviour Research Group Ecology and Environment Research Centre Department for Natural Sciences Manchester Metropolitan University Manchester UK
| | - Dario Josi
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Conservation Ecology Evolution and Behaviour Research Group Ecology and Environment Research Centre Department for Natural Sciences Manchester Metropolitan University Manchester UK
| | - Timo Thünken
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Institute of Evolutionary Biology and Ecology University of Bonn Bonn Germany
| | - Fabian Herder
- Sektion Ichthyologie Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Jana M. Flury
- Sektion Ichthyologie Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - David A. Marques
- Division of Aquatic Ecology and Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland
- Department of Fish Ecology and Evolution Centre for Ecology and Evolution, and Biochemistry Swiss Federal Institute of Aquatic Science and Technology (EAWAG) Kastanienbaum Switzerland
| | - Michael Taborsky
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
| | - Joachim G. Frommen
- Division of Behavioural Ecology Institute of Ecology and Evolution University of Bern Hinterkappelen Switzerland
- Conservation Ecology Evolution and Behaviour Research Group Ecology and Environment Research Centre Department for Natural Sciences Manchester Metropolitan University Manchester UK
| |
Collapse
|
24
|
Medina R, Wogan GOU, Bi K, Termignoni-García F, Bernal MH, Jaramillo-Correa JP, Wang IJ, Vázquez-Domínguez E. Phenotypic and genomic diversification with isolation by environment along elevational gradients in a neotropical treefrog. Mol Ecol 2021; 30:4062-4076. [PMID: 34160853 DOI: 10.1111/mec.16035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023]
Abstract
Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.
Collapse
Affiliation(s)
- Ricardo Medina
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México.,Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Guinevere O U Wogan
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA.,Department of Integrative Biology, Oklahoma State University, Oklahoma, USA
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA.,Computational Genomics Resource Laboratory (CGRL, California Institute for Quantitative Biosciences (QB3, University of California, Berkeley, California, USA
| | - Flavia Termignoni-García
- Department of Organismic and Evolutionary Biology (OEB, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Hernando Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Departamento de Biología, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia
| | - Juan P Jaramillo-Correa
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, California, USA
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
25
|
Cancellare IA, Kierepka EM, Janecka J, Weckworth B, Kazmaier RT, Ward R. Multiscale patterns of isolation by ecology and fine-scale population structure in Texas bobcats. PeerJ 2021; 9:e11498. [PMID: 34141475 PMCID: PMC8180196 DOI: 10.7717/peerj.11498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/01/2021] [Indexed: 12/03/2022] Open
Abstract
Patterns of spatial genetic variation can be generated by a variety of ecological processes, including individual preferences based on habitat. These ecological processes act at multiple spatial and temporal scales, generating scale-dependent effects on gene flow. In this study, we focused on bobcats (Lynx rufus), a highly mobile, generalist felid that exhibits ecological and behavioral plasticity, high abundance, and broad connectivity across much of their range. However, bobcats also show genetic differentiation along habitat breaks, a pattern typically observed in cases of isolation-by-ecology (IBE). The IBE observed in bobcats is hypothesized to occur due to habitat-biased dispersal, but it is unknown if this occurs at other habitat breaks across their range or at what spatial scale IBE becomes most apparent. Thus, we used a multiscale approach to examine isolation by ecology (IBE) patterns in bobcats (Lynx rufus) at both fine and broad spatial scales in western Texas. We genotyped 102 individuals at nine microsatellite loci and used partial redundancy analysis (pRDA) to test if a suite of landscape variables influenced genetic variation in bobcats. Bobcats exhibited a latitudinal cline in population structure with a spatial signature of male-biased dispersal, and no clear barriers to gene flow. Our pRDA tests revealed high genetic similarity in similar habitats, and results differed by spatial scale. At the fine spatial scale, herbaceous rangeland was an important influence on gene flow whereas mixed rangeland and agriculture were significant at the broad spatial scale. Taken together, our results suggests that complex interactions between spatial-use behavior and landscape heterogeneity can create non-random gene flow in highly mobile species like bobcats. Furthermore, our results add to the growing body of data highlighting the importance of multiscale study designs when assessing spatial genetic structure.
Collapse
Affiliation(s)
- Imogene A Cancellare
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA.,Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | - Elizabeth M Kierepka
- Department of Forestry and Environmental Resources, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
| | - Jan Janecka
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | - Richard T Kazmaier
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Rocky Ward
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| |
Collapse
|
26
|
Ecological adaptation drives wood frog population divergence in life history traits. Heredity (Edinb) 2021; 126:790-804. [PMID: 33536638 PMCID: PMC8102587 DOI: 10.1038/s41437-021-00409-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
Phenotypic variation among populations is thought to be generated from spatial heterogeneity in environments that exert selection pressures that overcome the effects of gene flow and genetic drift. Here, we tested for evidence of isolation by distance or by ecology (i.e., ecological adaptation) to generate variation in early life history traits and phenotypic plasticity among 13 wood frog populations spanning 1200 km and 7° latitude. We conducted a common garden experiment and related trait variation to an ecological gradient derived from an ecological niche model (ENM) validated to account for population density variation. Shorter larval periods, smaller body weight, and relative leg lengths were exhibited by populations with colder mean annual temperatures, greater precipitation, and less seasonality in precipitation and higher population density (high-suitability ENM values). After accounting for neutral genetic variation, the QST-FST analysis supported ecological selection as the key process generating population divergence. Further, the relationship between ecology and traits was dependent upon larval density. Specifically, high-suitability/high-density populations in the northern part of the range were better at coping with greater conspecific competition, evidenced by greater postmetamorphic survival and no difference in body weight when reared under stressful conditions of high larval density. Our results support that both climate and competition selection pressures drive clinal variation in larval and metamorphic traits in this species. Range-wide studies like this one are essential for accurate predictions of population's responses to ongoing ecological change.
Collapse
|
27
|
Genetic Distinctiveness but Low Diversity Characterizes Rear-Edge Thuja standishii (Gordon) Carr. (Cupressaceae) Populations in Southwest Japan. DIVERSITY 2021. [DOI: 10.3390/d13050185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rear-edge populations are of significant scientific interest because they can contain allelic variation not found in core-range populations. However, such populations can differ in their level of genetic diversity and divergence reflecting variation in life-history traits, demographic histories and human impacts. Using 13 EST-microsatellites, we investigated the genetic diversity and differentiation of rear-edge populations of the Japanese endemic conifer Thuja standishii (Gordon) Carr. in southwest Japan from the core-range in northeast Japan. Range-wide genetic differentiation was moderate (Fst = 0.087), with northeast populations weakly differentiated (Fst = 0.047), but harboring high genetic diversity (average population-level Ar = 4.76 and Ho = 0.59). In contrast, rear-edge populations were genetically diverged (Fst = 0.168), but contained few unique alleles with lower genetic diversity (Ar = 3.73, Ho = 0.49). The divergence between rear-edge populations exceeding levels observed in the core-range and results from ABC analysis and species distribution modelling suggest that these populations are most likely relicts of the Last Glacial Maximum. However, despite long term persistence, low effective population size, low migration between populations and genetic drift have worked to promote the genetic differentiation of southwest Japan populations of T. standishii without the accumulation of unique alleles.
Collapse
|
28
|
N Di Santo L, Hamilton JA. Using environmental and geographic data to optimize ex situ collections and preserve evolutionary potential. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:733-744. [PMID: 32519757 DOI: 10.1111/cobi.13568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 05/26/2023]
Abstract
Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species' genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10-16%; IBE, 1-5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.
Collapse
Affiliation(s)
- Lionel N Di Santo
- Department of Biological Sciences, North Dakota State University, Fargo, ND, U.S.A
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, ND, U.S.A
| |
Collapse
|
29
|
Emel SL, Wang S, Metz RP, Spigler RB. Type and intensity of surrounding human land use, not local environment, shape genetic structure of a native grassland plant. Mol Ecol 2021; 30:639-655. [PMID: 33245827 DOI: 10.1111/mec.15753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of "isolation by resistance" (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of "isolation by environment" (IBE). Here, we evaluate IBR and IBE in the insect-pollinated, biennial plant Sabatia angularis (L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure of S. angularis populations in the study region. Based on Circuitscape and least cost path approaches, we find that both low- and high-intensity urbanization resist gene flow by orders of magnitude greater than "natural" habitats, although resistance to low-intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within-population genetic diversity and inbreeding in S. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.
Collapse
Affiliation(s)
- Sarah L Emel
- Department of Biology, Temple University, Philadelphia, PA, USA.,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Shichen Wang
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | | |
Collapse
|
30
|
Martin GK, Beisner BE, Chain FJJ, Cristescu ME, Del Giorgio PA, Derry AM. Freshwater zooplankton metapopulations and metacommunities respond differently to environmental and spatial variation. Ecology 2020; 102:e03224. [PMID: 33067865 DOI: 10.1002/ecy.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
Theory predicts that population genetic structure and metacommunity structure are linked by the common processes of drift and migration, but how population genetic structure and metacommunity structure are related in nature is still unknown. Deeper understanding of the processes influencing both genetic and community diversity is vital for better predicting how environmental change will impact biodiversity patterns. We examined how crustacean zooplankton and rotifer species' metapopulation genetic structure and metacommunities respond to environmental and spatial variation both within and across four regions of boreal Canada. Metapopulation and metacommunity variation partitioning results were compared within and across the four regions. Metapopulations and metacommunities responded differently to environmental variation and spatial structure both within and across regions, as metapopulations were influenced by different environmental variables compared to metacommunities. At larger spatial scales both metapopulations and metacommunities exhibited greater spatial and environmental structuring, again responding to a different subset of environmental variables. Our findings suggest that even though both genetic and species diversity are linked by the same processes, regional variation in environmental characteristics and spatial structure influence resulting biodiversity patterns differently. To date, no other empirical research has explored relationships between entire metapopulation and metacommunity assemblages at large regional spatial scales.
Collapse
Affiliation(s)
- Gillian K Martin
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), University of Québec at Montreal, Québec, H2X 3Y7, Canada
| | - Beatrix E Beisner
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), University of Québec at Montreal, Québec, H2X 3Y7, Canada
| | - Frédéric J J Chain
- Department of Biological Science, University of Massachusetts Lowell, Massachusetts, 01854, USA
| | - Melania E Cristescu
- Department of Biology, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), McGill University, Québec, H3A 1B1, Canada
| | - Paul A Del Giorgio
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), University of Québec at Montreal, Québec, H2X 3Y7, Canada
| | - Alison M Derry
- Department of Biological Sciences, Groupe de Recherche Interuniversitaire en Limnologie (GRIL), University of Québec at Montreal, Québec, H2X 3Y7, Canada
| |
Collapse
|
31
|
Liu T, Zhang K, Dai W, Jin L, Sun K, Feng J. Evolutionary insights into
Rhinolophus episcopus
(Chiroptera, Rhinolophidae) in China: Isolation by distance, environment, or sensory system? J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Kangkang Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- Key Laboratory of Vegetation Ecology Ministry of Education Changchun China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun China
- College of Life Science Jilin Agricultural University Changchun China
| |
Collapse
|
32
|
Gutiérrez-Ortega JS, Salinas-Rodríguez MM, Ito T, Pérez-Farrera MA, Vovides AP, Martínez JF, Molina-Freaner F, Hernández-López A, Kawaguchi L, Nagano AJ, Kajita T, Watano Y, Tsuchimatsu T, Takahashi Y, Murakami M. Niche conservatism promotes speciation in cycads: the case of Dioon merolae (Zamiaceae) in Mexico. THE NEW PHYTOLOGIST 2020; 227:1872-1884. [PMID: 32392621 DOI: 10.1111/nph.16647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.
Collapse
Affiliation(s)
| | | | - Takuro Ito
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Miguel Angel Pérez-Farrera
- Laboratorio de Ecología Evolutiva, Herbario Eizi Matuda, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, 29039, Mexico
| | - Andrew P Vovides
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, 91070, Mexico
| | - José F Martínez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Francisco Molina-Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Hermosillo, 83250, Mexico
| | - Antonio Hernández-López
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, 37684, Mexico
| | - Lina Kawaguchi
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Okinawa, 907-1541, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuma Takahashi
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| | - Masashi Murakami
- Department of Biology, Faculty of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|
33
|
MacDonald ZG, Dupuis JR, Davis CS, Acorn JH, Nielsen SE, Sperling FAH. Gene flow and climate-associated genetic variation in a vagile habitat specialist. Mol Ecol 2020; 29:3889-3906. [PMID: 32810893 DOI: 10.1111/mec.15604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
Previous work in landscape genetics suggests that geographic isolation is of greater importance to genetic divergence than variation in environmental conditions. This is intuitive when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, but has not been thoroughly examined for habitat specialists with strong dispersal capability. Here, we evaluate the effects of geographic and environmental isolation on genetic divergence for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's Old World swallowtail butterfly, Papilio machaon dodi. In Canada, P. m. dodi are generally restricted to eroding habitat along major river valleys where their larval host plant occurs. A series of causal and linear mixed effects models indicate that divergence of genome-wide single nucleotide polymorphisms is best explained by a combination of environmental isolation (variation in summer temperatures) and geographic isolation (Euclidean distance). Interestingly, least-cost path and circuit distances through a resistance surface parameterized as the inverse of habitat suitability were not supported. This suggests that, although habitat associations of many butterflies are specific due to reproductive requirements, habitat suitability and landscape permeability are not equivalent concepts due to considerable adult vagility. We infer that divergent selection related to variation in summer temperatures has produced two genetic clusters within P. m. dodi, differing in voltinism and diapause propensity. Within the next century, temperatures are predicted to rise by amounts greater than the present-day difference between regions of the genetic clusters, potentially affecting the persistence of the northern cluster under continued climate change.
Collapse
Affiliation(s)
- Zachary G MacDonald
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Julian R Dupuis
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Corey S Davis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John H Acorn
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Scott E Nielsen
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
34
|
García J, Morán‐Ordóñez A, García JT, Calero‐Riestra M, Alda F, Sanz J, Suárez‐Seoane S. Current landscape attributes and landscape stability in breeding grounds explain genetic differentiation in a long‐distance migratory bird. Anim Conserv 2020. [DOI: 10.1111/acv.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. García
- Department of Biodiversity and Environmental Management University of León León Spain
| | | | - J. T. García
- Instituto de Investigación en Recursos Cinegéticos (CSIC‐UCLM‐JCCM) Ciudad Real Spain
| | - M. Calero‐Riestra
- Instituto de Investigación en Recursos Cinegéticos (CSIC‐UCLM‐JCCM) Ciudad Real Spain
| | - F. Alda
- Department of Biology, Geology, and Environmental Science University of Tennessee at Chattanooga Chattanooga TN USA
| | - J. Sanz
- Laboratorio de Teledetección de la Universidad de Valladolid (LATUV) Valladolid Spain
| | - S. Suárez‐Seoane
- Department of Organisms and Systems Biology (BOS: Ecology Unit) Research Unit of Biodiversity (UMIBUO‐CSIC‐PA)University of Oviedo Oviedo Spain
| |
Collapse
|
35
|
Moreira LR, Hernandez-Baños BE, Smith BT. Spatial predictors of genomic and phenotypic variation differ in a lowland Middle American bird (Icterus gularis). Mol Ecol 2020; 29:3085-3102. [PMID: 32621770 DOI: 10.1111/mec.15536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome-wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north-south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.
Collapse
Affiliation(s)
- Lucas R Moreira
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | | | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
36
|
Castilla AR, Méndez-Vigo B, Marcer A, Martínez-Minaya J, Conesa D, Picó FX, Alonso-Blanco C. Ecological, genetic and evolutionary drivers of regional genetic differentiation in Arabidopsis thaliana. BMC Evol Biol 2020; 20:71. [PMID: 32571210 PMCID: PMC7310121 DOI: 10.1186/s12862-020-01635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation-isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)-in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula. RESULTS IBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana. In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana. CONCLUSIONS Overall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana.
Collapse
Affiliation(s)
- Antonio R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves", InBIO, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arnald Marcer
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
| | | | - David Conesa
- Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
37
|
Twomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 2020; 29:2004-2015. [PMID: 32402099 DOI: 10.1111/mec.15466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023]
Abstract
The accumulation of red ketocarotenoids is an important component of coloration in many organisms, but the underlying mechanisms are poorly understood. In some organisms, ketocarotenoids are sequestered from the diet and can accumulate when enzymes responsible for carotenoid breakdown are disrupted. In other organisms, ketocarotenoids are formed endogenously from dietary precursors via oxidation reactions carried out by carotenoid ketolase enzymes. Here, we study the genetic basis of carotenoid coloration in an amphibian. We demonstrate that a red/yellow polymorphism in the dendrobatid poison frog Ranitomeya sirensis is due to the presence/absence of ketocarotenoids. Using whole-transcriptome sequencing of skins and livers, we found that a transcript encoding a cytochrome P450 enzyme (CYP3A80) is expressed 3.4-fold higher in livers of red frogs versus yellow. As CYP3A enzymes are known carotenoid ketolases in other organisms, our results point to CYP3A80 as a strong candidate for a carotenoid ketolase in amphibians. Furthermore, in red frogs, the transcript encoding the carotenoid cleavage enzyme BCO2 is expressed at a low level or as a splice variant lacking key catalytic amino acids. This suggests that BCO2 function may be disrupted in red frogs, providing a mechanism whereby the accumulation of ketocarotenoids and their dietary precursors may be enhanced.
Collapse
Affiliation(s)
- Evan Twomey
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - James D Johnson
- Department of Chemistry, Florida State University, Tallahassee, FL, USA
| | - Santiago Castroviejo-Fisher
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Ines Van Bocxlaer
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
38
|
Miras K, Ferrante E, Eiben AE. Environmental influences on evolvable robots. PLoS One 2020; 15:e0233848. [PMID: 32470076 PMCID: PMC7259730 DOI: 10.1371/journal.pone.0233848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
The field of Evolutionary Robotics addresses the challenge of automatically designing robotic systems. Furthermore, the field can also support biological investigations related to evolution. In this paper, we evolve (simulated) modular robots under diverse environmental conditions and analyze the influences that these conditions have on the evolved morphologies, controllers, and behavior. To this end, we introduce a set of morphological, controller, and behavioral descriptors that together span a multi-dimensional trait space. Using these descriptors, we demonstrate how changes in environmental conditions induce different levels of differentiation in this trait space. Our main goal is to gain deeper insights into the effect of the environment on a robotic evolutionary process.
Collapse
Affiliation(s)
- Karine Miras
- Computer Science Department/Computational Intelligence Group Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eliseo Ferrante
- Computer Science Department/Computational Intelligence Group Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A. E. Eiben
- Computer Science Department/Computational Intelligence Group Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Twomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Van Bocxlaer I. Mechanisms for Color Convergence in a Mimetic Radiation of Poison Frogs. Am Nat 2020; 195:E132-E149. [PMID: 32364784 DOI: 10.1086/708157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In animals, bright colors often evolve to mimic other species when a resemblance is selectively favored. Understanding the proximate mechanisms underlying such color mimicry can give insights into how mimicry evolves-for example, whether color convergence evolves from a shared set of mechanisms or through the evolution of novel color production mechanisms. We studied color production mechanisms in poison frogs (Dendrobatidae), focusing on the mimicry complex of Ranitomeya imitator. Using reflectance spectrometry, skin pigment analysis, electron microscopy, and color modeling, we found that the bright colors of these frogs, both within and outside the mimicry complex, are largely structural and produced by iridophores but that color production depends crucially on interactions with pigments. Color variation and mimicry are regulated predominantly by iridophore platelet thickness and, to a lesser extent, concentration of the red pteridine pigment drosopterin. Compared with each of the four morphs of model species that it resembles, R. imitator displays greater variation in both structural and pigmentary mechanisms, which may have facilitated phenotypic divergence in this species. Analyses of nonmimetic dendrobatids in other genera demonstrate that these mechanisms are widespread within the family and that poison frogs share a complex physiological "color palette" that can produce diverse and highly reflective colors.
Collapse
|
40
|
Rojas D, Lima AP, Momigliano P, Simões PI, Dudaniec RY, de Avila-Pires TCS, Hoogmoed MS, da Cunha Bitar YO, Kaefer IL, Amézquita A, Stow A. The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity (Edinb) 2020; 124:439-456. [PMID: 31712747 PMCID: PMC7028985 DOI: 10.1038/s41437-019-0281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
While intraspecific variation in aposematic signals can be selected for by different predatory responses, their evolution is also contingent on other processes shaping genetic variation. We evaluate the relative contributions of selection, geographic isolation, and random genetic drift to the evolution of aposematic color polymorphism in the poison frog Adelphobates galactonotus, distributed throughout eastern Brazilian Amazonia. Dorsal coloration was measured for 111 individuals and genetic data were obtained from 220 individuals at two mitochondrial genes (mtDNA) and 7963 Single Nucleotide Polymorphisms (SNPs). Four color categories were described (brown, blue, yellow, orange) and our models of frog and bird visual systems indicated that each color was distinguishable for these taxa. Using outlier and correlative analyses we found no compelling genetic evidence for color being under divergent selection. A time-calibrated mtDNA tree suggests that the present distribution of dorsal coloration resulted from processes occurring during the Pleistocene. Separate phylogenies based on SNPs and mtDNA resolved the same well supported clades, each containing different colored populations. Ancestral character state analysis provided some evidence for evolutionary transitions in color type. Genetic structure was more strongly associated with geographic features, than color category, suggesting that the distribution of color is explained by localized processes. Evidence for geographic isolation together with estimates of low effective population size implicates drift as playing a key role in color diversification. Our results highlight the relevance of considering the neutral processes involved with the evolution of traits with important fitness consequences.
Collapse
Affiliation(s)
- Diana Rojas
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, P.O. Box 2223, Manaus, AM, 69011-970, Brazil
- Universidade Federal do Amazonas, Instituto de Natureza e Cultura, Rua 1º de Maio 05, Benjamin Constant, AM, 69630-000, Brazil
| | - Albertina P Lima
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, 69011-970, Brazil
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Pedro Ivo Simões
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Manaus, AM, 69011-970, Brazil
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof Moraes 1235, Recife, 50670-901, Brazil
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW, 2109, Australia
| | | | - Marinus S Hoogmoed
- Museu Paraense Emilío Goeldi, Caixa Postal 399, Belém, PA, 66017-970, Brazil
| | - Youszef Oliveira da Cunha Bitar
- Programa de Pós-Graduação em Zoologia UFPA/Museu Paraense Emilio Goeldi, Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, PA, Brazil
| | - Igor L Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Av. Rodrigo Octávio 6200, Manaus, AM, 69077-000, Brazil
| | - Adolfo Amézquita
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW, 2109, Australia.
| |
Collapse
|
41
|
Rivera D, Prates I, Rodrigues MT, Carnaval AC. Effects of climate and geography on spatial patterns of genetic structure in tropical skinks. Mol Phylogenet Evol 2020; 143:106661. [DOI: 10.1016/j.ympev.2019.106661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
|
42
|
DeSilva R, Dodd RS. Fragmented and isolated: limited gene flow coupled with weak isolation by environment in the paleoendemic giant sequoia (Sequoiadendron giganteum). AMERICAN JOURNAL OF BOTANY 2020; 107:45-55. [PMID: 31883111 DOI: 10.1002/ajb2.1406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Patterns of genetic structure across a species' range reflect the long-term interplay between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing the loss of diversity through genetic drift among spatially isolated populations, understanding the dynamics of gene flow and the factors that influence connectivity across a species' range is a major goal for conservation of genetic diversity. Here we present a detailed look at gene flow dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face numerous threats due to climate change. METHODS We used microsatellite markers to examine nineteen populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to elucidate landscape factors that shape genetic differentiation among populations. RESULTS We found minimal gene flow between adjacent groves in the northern disjunct range. In most of the southern portion of the range, groves showed a signal of connectivity which degrades to isolation in the extreme south. Geographic distance was the most important predictor of genetic dissimilarity across the range, with environmental conditions related to precipitation and temperature explaining a small, but significant, portion of the genetic variance. CONCLUSIONS Due to their isolation and unique genetic composition, northern populations of S. giganteum should be considered a high conservation priority. In this region, we suggest germplasm conservation as well as restoration planting to enhance genetic diversity.
Collapse
Affiliation(s)
- Rainbow DeSilva
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| | - Richard S Dodd
- Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
43
|
Qiao Z, Xiao D, Keovongkod C, Wei KH, He LF. Assessment of the genetic diversity and population structure of Sophora tonkinensis in South China by AFLP markers. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1812430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Zhu Qiao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, PR China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, PR China
| | - Chanthaphoone Keovongkod
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, PR China
| | - Kun-Hua Wei
- Department of Conservation Center of Medicinal Plants, Guangxi Key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, PR China
| | - Long-Fei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, PR China
| |
Collapse
|
44
|
Wu Z, Xu X, Zhang J, Wiegleb G, Hou H. Influence of environmental factors on the genetic variation of the aquatic macrophyte Ranunculus subrigidus on the Qinghai-Tibetan Plateau. BMC Evol Biol 2019; 19:228. [PMID: 31856717 PMCID: PMC6921560 DOI: 10.1186/s12862-019-1559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/12/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. RESULTS A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. CONCLUSIONS Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.
Collapse
Affiliation(s)
- Zhigang Wu
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China
| | - Xinwei Xu
- College of Life Science, Wuhan University, Wuhan, China
| | - Juan Zhang
- College of Life Science, Wuhan University, Wuhan, China
| | - Gerhard Wiegleb
- Department of Ecology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Hongwei Hou
- Institute of Hydrobiology, Chinese Academy of Science, Wuhan, China.
| |
Collapse
|
45
|
Wang IJ. Topographic path analysis for modelling dispersal and functional connectivity: Calculating topographic distances using the
topoDistance r
package. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ian J. Wang
- Department of Environmental Science, Policy, and Management College of Natural Resources University of California Berkeley CA USA
| |
Collapse
|
46
|
Ramírez‐Barrera SM, Velasco JA, Orozco‐Téllez TM, Vázquez‐López AM, Hernández‐Baños BE. What drives genetic and phenotypic divergence in the Red-crowned Ant tanager ( Habia rubica, Aves: Cardinalidae), a polytypic species? Ecol Evol 2019; 9:12339-12352. [PMID: 31832165 PMCID: PMC6854386 DOI: 10.1002/ece3.5742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 09/15/2019] [Indexed: 01/28/2023] Open
Abstract
AIM The effects of geographic and environmental variables on patterns of genetic and phenotypic differentiation have been thoroughly studied. Ecological speciation involves reproductive isolation due to divergent natural selection that can result in a positive correlation between genetic divergence and adaptive phenotypic divergence (isolation by adaptation, IBA). If the phenotypic target of selection is unknown or not easily measured, environmental variation can be used as a proxy, expecting positive correlation between genetic and environmental distances, independent of geographic distances (isolation by environment, IBE). The null model is that the amount of gene flow between populations decreases as the geographic distance between them increases, and genetic divergence is due simply to the neutral effects of genetic drift (isolation by distance, IBD). However, since phenotypic differentiation in natural populations may be autocorrelated with geographic distance, it is often difficult to distinguish IBA from the neutral expectation of IBD. In this work, we test hypotheses of IBA, IBE, and IBD in the Red-crowned Ant tanager (Habia rubica). LOCATION Mesoamerica (Mexico-Central America) and South America. TAXON Habia rubica (Aves: Cardinalidae). METHODS We compiled genetic data, coloration, and morphometric data from specimens from collections in Mexico and the United States. We used the Multiple Matrix Regression with Randomization (MMRR) approach to evaluate the influence of geographic and environmental distances on genetic and phenotypic differentiation of H. rubica at both phylogroup and population levels. RESULTS Our results provide strong evidence that geographic distance is the main driver of genetic variation in H. rubica. We did not find evidence that climate variation is driving population differentiation in this species across a widespread geographic region. MAIN CONCLUSIONS Our data point to geographic isolation as the main factor structuring genetic variation within populations of H. rubica and suggest that climate is not playing a major role in genetic differentiation within this species.
Collapse
Affiliation(s)
- Sandra M. Ramírez‐Barrera
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de Biología EvolutivaFacultad de CienciasMuseo de ZoologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Julián A. Velasco
- Centro de Ciencias de la AtmósferaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Tania M. Orozco‐Téllez
- Departamento de Biología EvolutivaFacultad de CienciasMuseo de ZoologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Alma M. Vázquez‐López
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de Biología EvolutivaFacultad de CienciasMuseo de ZoologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Blanca E. Hernández‐Baños
- Departamento de Biología EvolutivaFacultad de CienciasMuseo de ZoologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
47
|
Tóth EG, Tremblay F, Housset JM, Bergeron Y, Carcaillet C. Geographic isolation and climatic variability contribute to genetic differentiation in fragmented populations of the long-lived subalpine conifer Pinus cembra L. in the western Alps. BMC Evol Biol 2019; 19:190. [PMID: 31623551 PMCID: PMC6798344 DOI: 10.1186/s12862-019-1510-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background Genetic processes shape the modern-day distribution of genetic variation within and between populations and can provide important insights into the underlying mechanisms of evolution. The resulting genetic variation is often unequally partitioned within species’ distribution range and especially large differences can manifest at the range limit, where population fragmentation and isolation play a crucial role in species survival. Despite several molecular studies investigating the genetic diversity and differentiation of European Alpine mountain forests, the climatic and demographic constrains which influence the genetic processes are often unknown. Here, we apply non-coding microsatellite markers to evaluate the sporadic peripheral and continuous populations of cembra pine (Pinus cembra L.), a long-lived conifer species that inhabits the subalpine treeline ecotone in the western Alps to investigate how the genetic processes contribute to the modern-day spatial distribution. Moreover, we corroborate our findings with paleoecological records, micro and macro-remains, to infer the species’ possible glacial refugia and expansion scenarios. Results Four genetically distinct groups were identified, with Bayesian and FST based approaches, across the range of the species, situated in the northern, inner and south-western Alps. We found that genetic differentiation is substantially higher in marginal populations than at the center of the range, and marginal stands are characterized by geographic and genetic isolation due to spatial segregation and restricted gene flow. Moreover, multiple matrix regression approaches revealed effects of climatic heterogeneity in species’ spatial genetic pattern. Also, population stability tests indicated that all populations had experienced a severe historical bottleneck, no heterozygosity excess was detected, suggesting that more recently population sizes have remained relatively stable. Conclusions Our study demonstrated that cembra pine might have survived in multiple glacial refugia and subsequently recolonized the Alps by different routes. Modern-day marginal populations, at the edge of the species’ range, could maintain stable sizes over long periods without inbreeding depression and preserve high amounts of genetic variation. Moreover, our analyses indicate that climatic variability has played a major role in shaping differentiation, in addition to past historical events such as migration and demographic changes.
Collapse
Affiliation(s)
- Endre Gy Tóth
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada. .,National Agricultural Research and Innovation Center (NARIC), Forest Research Institute (FRI), Várkerület u. 30/A, Sárvár, 9600, Hungary.
| | - Francine Tremblay
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Johann M Housset
- Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Alcina, 10 rue des Amaryllis, 34070, Montpellier, France
| | - Yves Bergeron
- Forest Research Institute (IRF), University of Quebec in Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada.,Centre for Forest Research (CEF), University of Québec in Montréal (UQAM), C.P. 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Christopher Carcaillet
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences & Lettres University (PSL), Paris, France.,Laboratory for Ecology of Natural and Anthropised Hydrosystems (UMR 5023 CNRS UCBL ENTPE), Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
48
|
Berger-Tal O, Saltz D. Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180049. [PMID: 31352896 PMCID: PMC6710564 DOI: 10.1098/rstb.2018.0049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anthropogenically induced fragmentation constitutes a major threat to biodiversity. Presently, conservation research and actions focus predominantly on fragmentation caused directly by physical transformation of the landscape (e.g. deforestation, agriculture, urbanization, roads, etc.). While there is no doubt that landscape features play a key role in fragmenting populations or enhancing connectivity, fragmentation may also come about by processes other than the transformation of the landscape and which may not be readily visible. Such landscape-independent fragmentation (LIF) usually comes about when anthropogenic disturbance alters the inter- and intra-specific interactions among and within species. LIF and its drivers have received little attention in the scientific literature and in the management of wildlife populations. We discuss three major classes of LIF processes and their relevance for the conservation and management of species and habitats: (i) interspecific dispersal dependency, in which populations of species that rely on other species for transport and propagation become fragmented as the transporting species declines; (ii) interspecific avoidance induction, where species are excluded from habitats and corridors owing to interspecific interactions resulting from anthropogenically induced changes in community structure (e.g. exclusions by increased predation pressure); and (iii) intraspecific behavioural divergence, where populations become segregated owing to anthropogenically induced behavioural differentiation among them. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Oded Berger-Tal
- Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - David Saltz
- Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| |
Collapse
|
49
|
Feijó A, Wen Z, Cheng J, Ge D, Xia L, Yang Q. Divergent selection along elevational gradients promotes genetic and phenotypic disparities among small mammal populations. Ecol Evol 2019; 9:7080-7095. [PMID: 31380035 PMCID: PMC6662404 DOI: 10.1002/ece3.5273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 05/04/2019] [Indexed: 01/15/2023] Open
Abstract
Species distributed along mountain slopes, facing contrasting habitats in short geographic scale, are of particular interest to test how ecologically based divergent selection promotes phenotypic and genetic disparities as well as to assess isolation-by-environment mechanisms. Here, we conduct the first broad comparative study of phenotypic variation along elevational gradients, integrating a large array of ecological predictors and disentangling population genetic driver processes. The skull form of nine ecologically distinct species distributed over a large altitudinal range (100-4200 m) was compared to assess whether phenotypic divergence is a common phenomenon in small mammals and whether it shows parallel patterns. We also investigated the relative contribution of biotic (competition and predation) and abiotic parameters on phenotypic divergence via mixed models. Finally, we assessed the population genetic structure of a rodent species (Niviventer confucianus) via analysis of molecular variance and FST along three mountain slopes and tested the isolation-by-environment hypothesis using Mantel test and redundancy analysis. We found a consistent phenotypic divergence and marked genetic structure along elevational gradients; however, the species showed mixed patterns of size and skull shape trends across mountain zones. Individuals living at lower altitudes differed greatly in both phenotype and genotype from those living at high elevations, while middle-elevation individuals showed more intermediate forms. The ecological parameters associated with phenotypic divergence along elevation gradients are partly related to species' ecological and evolutionary constraints. Fossorial and solitary animals are mainly affected by climatic factors, while terrestrial and more gregarious species are influenced by biotic and abiotic parameters. A novel finding of our study is that predator richness emerged as an important factor associated with the intraspecific diversification of the mammalian skull along elevational gradients, a previously overlooked parameter. Population genetic structure was mainly driven by environmental heterogeneity along mountain slopes, with no or a week spatial effect, fitting the isolation-by-environment scenario. Our study highlights the strong and multifaceted effects of heterogeneous steep habitats and ecologically based divergent selective forces in small mammal populations.
Collapse
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
50
|
Toczydlowski RH, Waller DM. Drift happens: Molecular genetic diversity and differentiation among populations of jewelweed (
Impatiens capensis
Meerb.) reflect fragmentation of floodplain forests. Mol Ecol 2019; 28:2459-2475. [DOI: 10.1111/mec.15072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 01/05/2023]
Affiliation(s)
| | - Donald M. Waller
- Department of Botany University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|