1
|
Stolsmo SP, Lindberg CL, Ween RE, Schat L, Preston JC, Humphreys AM, Fjellheim S. Evolution of drought and frost responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6405-6422. [PMID: 39066622 PMCID: PMC11522984 DOI: 10.1093/jxb/erae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.
Collapse
Affiliation(s)
- Sylvia Pal Stolsmo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Rebekka Eriksen Ween
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Laura Schat
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Aelys Muriel Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
2
|
López D, Sanhueza C, Salvo-Garrido H, Bascunan-Godoy L, Bravo LA. How Does Diurnal and Nocturnal Warming Affect the Freezing Resistance of Antarctic Vascular Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:806. [PMID: 36840154 PMCID: PMC9966323 DOI: 10.3390/plants12040806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The Antarctic Peninsula has rapidly warmed up in past decades, and global warming has exhibited an asymmetric trend; therefore, it is interesting to understand whether nocturnal or diurnal warming is the most relevant for plant cold deacclimation. This study aimed to evaluate the effect of diurnal and nocturnal warming on Antarctic vascular plant's freezing resistance under laboratory conditions. This was studied by measuring the lethal temperature for 50% of tissue (LT50), ice nucleation temperature (INT), and freezing point (FP) on Deschampsia antarctica and Colobanthus quitensis plants. Additionally, soluble carbohydrates content and dehydrin levels were analyzed during nocturnal and diurnal temperatures increase. Nocturnal warming led to a 7 °C increase in the LT50 of D. antarctica and reduced dehydrin-like peptide expression. Meanwhile, C. quitensis warmed plants reduce their LT50 to about 3.6 °C. Both species reduce their sucrose content by more than 28% in warming treatments. Therefore, nocturnal warming leads to cold deacclimation in both plant species, while C. quitensis plants are also cold-deacclimated upon warm days. This suggests that even when the remaining freezing resistance of both species allows them to tolerate summer freezing events, C. quitensis can reach its boundaries of freezing vulnerability in the near future if warming in the Antarctic Peninsula progress.
Collapse
Affiliation(s)
- Dariel López
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - Haroldo Salvo-Garrido
- Centro de Genómica Nutricional Agroacuícola, Ciencia en Plantas, Temuco 4781158, Chile
| | - Luisa Bascunan-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - León A. Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente and Center of Plant, Soil Interactions and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Paliocha M, Schubert M, Preston JC, Fjellheim S. Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering. Mol Phylogenet Evol 2023; 179:107678. [PMID: 36535518 DOI: 10.1016/j.ympev.2022.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization-induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.
Collapse
Affiliation(s)
- Martin Paliocha
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Marian Schubert
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Jill Christine Preston
- Department of Plant Biology, College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| |
Collapse
|
4
|
Association mapping of autumn-seeded rye (Secale cereale L.) reveals genetic linkages between genes controlling winter hardiness and plant development. Sci Rep 2022; 12:5793. [PMID: 35388069 PMCID: PMC8986816 DOI: 10.1038/s41598-022-09582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Winter field survival (WFS) in autumn-seeded winter cereals is a complex trait associated with low temperature tolerance (LTT), prostrate growth habit (PGH), and final leaf number (FLN). WFS and the three sub-traits were analyzed by a genome-wide association study of 96 rye (Secale cereal L.) genotypes of different origins and winter-hardiness levels. A total of 10,244 single nucleotide polymorphism (SNP) markers were identified by genotyping by sequencing and 259 marker-trait-associations (MTAs; p < 0.01) were revealed by association mapping. The ten most significant SNPs (p < 1.49e−04) associated with WFS corresponded to nine strong candidate genes: Inducer of CBF Expression 1 (ICE1), Cold-regulated 413-Plasma Membrane Protein 1 (COR413-PM1), Ice Recrystallization Inhibition Protein 1 (IRIP1), Jasmonate-resistant 1 (JAR1), BIPP2C1-like protein phosphatase, Chloroplast Unusual Positioning Protein-1 (CHUP1), FRIGIDA-like 4 (FRL4-like) protein, Chalcone Synthase 2 (CHS2), and Phenylalanine Ammonia-lyase 8 (PAL8). Seven of the candidate genes were also significant for one or several of the sub-traits supporting the hypothesis that WFS, LTT, FLN, and PGH are genetically interlinked. The winter-hardy rye genotypes generally carried additional allele variants for the strong candidate genes, which suggested allele diversity was a major contributor to cold acclimation efficiency and consistent high WFS under varying field conditions.
Collapse
|
5
|
Zhang L, Zhu X, Zhao Y, Guo J, Zhang T, Huang W, Huang J, Hu Y, Huang CH, Ma H. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution. Mol Biol Evol 2022; 39:6521033. [PMID: 35134207 PMCID: PMC8844509 DOI: 10.1093/molbev/msac026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adaptation to cool climates has occurred several times in different angiosperm groups. Among them, Pooideae, the largest grass subfamily with ∼3,900 species including wheat and barley, have successfully occupied many temperate regions and play a prominent role in temperate ecosystems. To investigate possible factors contributing to Pooideae adaptive evolution to cooling climates, we performed phylogenetic reconstruction using five gene sets (with 1,234 nuclear genes and their subsets) from 157 transcriptomes/genomes representing all 15 tribes and 24 of 26 subtribes. Our phylogeny supports the monophyly of all tribes (except Diarrheneae) and all subtribes with at least two species, with strongly supported resolution of their relationships. Molecular dating suggests that Pooideae originated in the late Cretaceous, with subsequent divergences under cooling conditions first among many tribes from the early middle to late Eocene and again among genera in the middle Miocene and later periods. We identified a cluster of gene duplications (CGD5) shared by the core Pooideae (with 80% Pooideae species) near the Eocene–Oligocene transition, coinciding with the transition from closed to open habitat and an upshift of diversification rate. Molecular evolutionary analyses homologs of CBF for cold resistance uncovered tandem duplications during the core Pooideae history, dramatically increasing their copy number and possibly promoting adaptation to cold habitats. Moreover, duplication of AP1/FUL-like genes before the Pooideae origin might have facilitated the regulation of the vernalization pathway under cold environments. These and other results provide new insights into factors that likely have contributed to the successful adaptation of Pooideae members to temperate regions.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinxin Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Weichen Huang
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Jie Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Wyka SA, Mondo SJ, Liu M, Dettman J, Nalam V, Broders KD. Whole-Genome Comparisons of Ergot Fungi Reveals the Divergence and Evolution of Species within the Genus Claviceps Are the Result of Varying Mechanisms Driving Genome Evolution and Host Range Expansion. Genome Biol Evol 2021; 13:evaa267. [PMID: 33512490 PMCID: PMC7883665 DOI: 10.1093/gbe/evaa267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The genus Claviceps has been known for centuries as an economically important fungal genus for pharmacology and agricultural research. Only recently have researchers begun to unravel the evolutionary history of the genus, with origins in South America and classification of four distinct sections through ecological, morphological, and metabolic features (Claviceps sects. Citrinae, Paspalorum, Pusillae, and Claviceps). The first three sections are additionally characterized by narrow host range, whereas section Claviceps is considered evolutionarily more successful and adaptable as it has the largest host range and biogeographical distribution. However, the reasons for this success and adaptability remain unclear. Our study elucidates factors influencing adaptability by sequencing and annotating 50 Claviceps genomes, representing 21 species, for a comprehensive comparison of genome architecture and plasticity in relation to host range potential. Our results show the trajectory from specialized genomes (sects. Citrinae and Paspalorum) toward adaptive genomes (sects. Pusillae and Claviceps) through colocalization of transposable elements around predicted effectors and a putative loss of repeat-induced point mutation resulting in unconstrained tandem gene duplication coinciding with increased host range potential and speciation. Alterations of genomic architecture and plasticity can substantially influence and shape the evolutionary trajectory of fungal pathogens and their adaptability. Furthermore, our study provides a large increase in available genomic resources to propel future studies of Claviceps in pharmacology and agricultural research, as well as, research into deeper understanding of the evolution of adaptable plant pathogens.
Collapse
Affiliation(s)
- Stephen A Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Stephen J Mondo
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Miao Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk D Broders
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| |
Collapse
|
7
|
Griffith DM, Osborne CP, Edwards EJ, Bachle S, Beerling DJ, Bond WJ, Gallaher TJ, Helliker BR, Lehmann CER, Leatherman L, Nippert JB, Pau S, Qiu F, Riley WJ, Smith MD, Strömberg CAE, Taylor L, Ungerer M, Still CJ. Lineage-based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. THE NEW PHYTOLOGIST 2020; 228:15-23. [PMID: 33448428 DOI: 10.1111/nph.16773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 06/12/2023]
Abstract
Process-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass-dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.
Collapse
Affiliation(s)
- Daniel M Griffith
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
- US Geological Survey Western Geographic Science Center, Moffett Field, CA, 94035, USA
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - William J Bond
- South African Environmental Observation Network, National Research Foundation, Claremont, 7735, South Africa
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Gallaher
- Department of Biology and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, 98915, USA
- Bishop Museum, Honolulu, HI, 96817, USA
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19401, USA
| | | | - Lila Leatherman
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Stephanie Pau
- Department of Geography, Florida State University, Tallahassee, FL, 32303, USA
| | - Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - William J Riley
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Caroline A E Strömberg
- Department of Biology and the Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, 98915, USA
| | - Lyla Taylor
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
8
|
Zhou C, Liu Y, Qiao L, Lan Y, Price M, Meng Y, Yang N, Yue B. Genome-Wide Analyses Provide Insights into the Scavenging Lifestyle of the Striped Hyena ( Hyaena hyaena). DNA Cell Biol 2020; 39:1872-1885. [PMID: 32936023 DOI: 10.1089/dna.2020.5537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hyenas (family Hyaenidae) occupy a variety of different niches, of which the striped hyena (Hyaena hyaena) scavenges mainly on the carcasses of animals. We compared its genome with the genomes of nine other mammals, focusing on similarities and differences in chemoreception, detoxification, digestive, and immune systems. The results showed that the striped hyena's immune and digestive system-related gene families have significantly expanded, which was likely to be an adaptive response to its scavenging lifestyle. In addition, 88 and 26 positive selected genes (PSGs) were identified in the immune system and digestive system, respectively, which may be the molecular basis for immune defense system to effectively resist pathogen invasion. Functional enrichment analysis of PSGs revealed that most of them were involved in the immune regulation process. Among them, eight specific missense mutations were found in two PSGs (MHC class II antigen DOA and MHC class II antigen DOB), suggesting important reorganization of the immune system in the striped hyena. Moreover, we identified one cathelicidin gene and four defensin genes in the striped hyenas by genome mining, which have high-efficiency and broad-spectrum antimicrobial activity. Of particular interest, a striped hyena-specific missense mutation was found in the cathelicidin gene. PolyPhen-2 classified the missense mutation as a harmful mutation, which may have aided in immune adaptation to carrion feeding. Our genomic analyses on the striped hyena provided insights into its success in the adaptation to the scavenging lifestyle.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yi Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Lu Qiao
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yue Lan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Yang Meng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, P.R. China
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
9
|
Park S, Shi A, Mou B. Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce. Sci Rep 2020; 10:5733. [PMID: 32235838 PMCID: PMC7109083 DOI: 10.1038/s41598-020-62458-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) proteins play a prominent role in freezing tolerance and are highly conserved in higher plants. Here we performed a genome-wide search of the CBF/DREB1 gene family in lettuce (Lactuca sativa L.) and identified 14 members of the family with one member gene containing a non-sense mutation within the AP2 DNA-binding domain. A comprehensive phylogenetic analysis of the CBF/DREB1 family members in 20 plant species from the Asterid or Rosid clade provided evidence that tandem duplication played an important role in the expansion of the CBF/DREB1 family. Expression analysis showed that twelve of the lettuce CBF genes were responsive to low temperature (4 °C), and that three and six of them could also be responsive to salt and heat stresses, respectively. Unlike Arabidopsis thaliana whose members of the CBF/DREB1 family respond only to a particular stress, lettuce CBFs provide wider protection from combinations of abiotic stresses. A global transcriptome analysis revealed distinctive temporal expression patterns among the cold-regulated genes in lettuce plants exposed to low temperature. Genes induced throughout the cold treatment are enriched in functions associated with protection from UV and high-light intensity and the genes suppressed after 7 days of cold exposure are enriched in photosynthesis-associated functions. These results provide insight into the molecular evolutionary properties of the CBF/DREB1 gene family in lettuce and a reference for genetic improvement of the lettuce response to cold acclimation.
Collapse
Affiliation(s)
- Sunchung Park
- U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA.
| |
Collapse
|
10
|
Zhou C, Zhang Y, Qiu S, Yu H, Tu H, Wen Q, George James J, Meng Y, Wu Y, Yang N, Yue B. Genomic evidence sheds light on the genetic mechanisms of musk secretion in muskrats. Int J Biol Macromol 2020; 145:1189-1198. [PMID: 31726118 DOI: 10.1016/j.ijbiomac.2019.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Adult male muskrat (Ondatra zibethicus) has a pair of scent glands which secret musk to attract females during the breeding stage. The goal of the present study was to investigate the genetic mechanisms of musk secretion of muskrats at the whole genome level. Comparative genomics illustrated obvious expansion in 809 gene families, of which nine gene families played pivotal roles in steroid biosynthesis, possibly related to muskrat musk secretion. We identified 1112 positively selected genes (PSGs) in the muskrat, including estrogen receptor 1 (ER1), an important influencing factor to the weight and size of the scented glands of muskrats. HSD17B3, HSD17B4, CYP7B1 and CYP17B1, crucial to steroid hormone biosynthesis, were under strong positive selection in the muskrat, and phylogenetic analysis of HSD and CYP450 classes revealed high gene diversity. Functional enrichment revealed many pathways associated with musk secretion and/or growth and degeneration of scented gland significantly, such as peroxisome, PI3K-Akt signaling pathway, apoptosis, and prostate cancer. Two muskrat-specific missense mutations (Pro237Thr and Ser297Ile) were detected in LIPC, which were reported to be involved cholesterol metabolic process. More importantly, the missense mutations discovered in LIPC were classified as deleterious by PolyPhen-2, possibly affecting the musk secretion of muskrats.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yifan Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Shi Qiu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Haoran Yu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Hongmei Tu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jake George James
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610064, PR China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
11
|
Contreras-Moreira B, Serrano-Notivoli R, Mohammed NE, Cantalapiedra CP, Beguería S, Casas AM, Igartua E. Genetic association with high-resolution climate data reveals selection footprints in the genomes of barley landraces across the Iberian Peninsula. Mol Ecol 2019; 28:1994-2012. [PMID: 30614595 PMCID: PMC6563438 DOI: 10.1111/mec.15009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
Landraces are local populations of crop plants adapted to a particular environment. Extant landraces are surviving genetic archives, keeping signatures of the selection processes experienced by them until settling in their current niches. This study intends to establish relationships between genetic diversity of barley (Hordeum vulgare L.) landraces collected in Spain and the climate of their collection sites. A high-resolution climatic data set (5 × 5 km spatial, 1-day temporal grid) was computed from over 2,000 temperature and 7,000 precipitation stations across peninsular Spain. This data set, spanning the period 1981-2010, was used to derive agroclimatic variables meaningful for cereal production at the collection sites of 135 barley landraces. Variables summarize temperature, precipitation, evapotranspiration, potential vernalization and frost probability at different times of the year and time scales (season and month). SNP genotyping of the landraces was carried out combining Illumina Infinium assays and genotyping-by-sequencing, yielding 9,920 biallelic markers (7,479 with position on the barley reference genome). The association of these SNPs with agroclimatic variables was analysed at two levels of genetic diversity, with and without taking into account population structure. The whole data sets and analysis pipelines are documented and available at https://eead-csic-compbio.github.io/barley-agroclimatic-association. We found differential adaptation of the germplasm groups identified to be dominated by reactions to cold temperature and late-season frost occurrence, as well as to water availability. Several significant associations pointing at specific adaptations to agroclimatic features related to temperature and water availability were observed, and candidate genes underlying some of the main regions are proposed.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain.,Fundación ARAID, Zaragoza, Spain
| | | | - Naheif E Mohammed
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain.,Faculty of Agriculture, Agronomy Department, Sohag University, Sohag, Egypt
| | | | | | - Ana M Casas
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| | - Ernesto Igartua
- Estación Experimental de Aula Dei (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
12
|
Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novák P, Flieger M, van der Linde E, Kolařík M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phylogenet Evol 2018; 123:73-87. [PMID: 29481949 DOI: 10.1016/j.ympev.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.
Collapse
Affiliation(s)
- Kamila Píchová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague, Czech Republic
| | - Sylvie Pažoutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Martin Kostovčík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Milada Chudíčková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Eva Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Miroslav Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Elna van der Linde
- Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0121, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
13
|
Watcharamongkol T, Christin PA, Osborne CP. C4photosynthesis evolved in warm climates but promoted migration to cooler ones. Ecol Lett 2018; 21:376-383. [DOI: 10.1111/ele.12905] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/01/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Teera Watcharamongkol
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | | | - Colin P. Osborne
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
14
|
Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions. VERTEBRATE PALEOBIOLOGY AND PALEOANTHROPOLOGY 2018. [DOI: 10.1007/978-3-319-94265-0_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Zhong J, Robbett M, Poire A, Preston JC. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions. THE NEW PHYTOLOGIST 2018; 217:925-938. [PMID: 29091285 DOI: 10.1111/nph.14868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Angiosperm adaptations to seasonally cold climates have occurred multiple times independently. However, the observation that less than half of all angiosperm families are represented in temperate latitudes suggests internal constraints on the evolution of cold tolerance/avoidance strategies. Similar to angiosperms as a whole, grasses are primarily tropical, but one major clade, subfamily Pooideae, radiated extensively within temperate regions. It is posited that this Pooideae niche transition was facilitated by an early origin of long-term cold responsiveness around the base of the subfamily, and that a set of more ancient pathways enabled evolution of seasonal cold tolerance. To test this, we compared transcriptome-level responses of disparate Pooideae to short-/long-term cold and with those previously known in the subtropical grass rice (Ehrhartoideae). Analyses identified several highly conserved cold-responsive 'orthogroups' within our focal Pooideae species that originated successively during the diversification of land plants, predominantly via gene duplication. The majority of conserved Pooideae cold-responsive genes appear to have ancient roles in stress responses, with most of the orthogroups also being sensitive to cold in rice. However, a subgroup of genes was likely co-opted de novo early in the Pooideae. These results highlight a plausible stepwise evolutionary trajectory for cold adaptations across Pooideae.
Collapse
Affiliation(s)
- Jinshun Zhong
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Meghan Robbett
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Alfonso Poire
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
16
|
Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev Camb Philos Soc 2017; 93:1125-1144. [PMID: 29230921 DOI: 10.1111/brv.12388] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Poaceae (the grasses) is arguably the most successful plant family, in terms of its global occurrence in (almost) all ecosystems with angiosperms, its ecological dominance in many ecosystems, and high species richness. We suggest that the success of grasses is best understood in context of their capacity to colonize, persist, and transform environments (the "Viking syndrome"). This results from combining effective long-distance dispersal, efficacious establishment biology, ecological flexibility, resilience to disturbance and the capacity to modify environments by changing the nature of fire and mammalian herbivory. We identify a diverse set of functional traits linked to dispersal, establishment and competitive abilities. Enhanced long-distance dispersal is determined by anemochory, epizoochory and endozoochory and is facilitated via the spikelet (and especially the awned lemma) which functions as the dispersal unit. Establishment success could be a consequence of the precocious embryo and large starch reserves, which may underpin the extremely short generation times in grasses. Post-establishment genetic bottlenecks may be mitigated by wind pollination and the widespread occurrence of polyploidy, in combination with gametic self-incompatibility. The ecological competitiveness of grasses is corroborated by their dominance across the range of environmental extremes tolerated by angiosperms, facilitated by both C3 and C4 photosynthesis, well-developed frost tolerance in several clades, and a sympodial growth form that enabled the evolution of both annual and long-lived life forms. Finally, absence of investment in wood (except in bamboos), and the presence of persistent buds at or below ground level, provides tolerance of repeated defoliation (whether by fire, frost, drought or herbivores). Biotic modification of environments via feedbacks with herbivory or fire reinforce grass dominance leading to open ecosystems. Grasses can be both palatable and productive, fostering high biomass and diversity of mammalian herbivores. Many grasses have a suite of architectural and functional traits that facilitate frequent fire, including a tufted growth form, and tannin-like substances in leaves which slow decomposition. We mapped these traits over the phylogeny of the Poales, spanning the grasses and their relatives, and demonstrated the accumulation of traits since monocots originated in the mid-Cretaceous. Although the sympodial growth form is a monocot trait, tillering resulting in the tufted growth form most likely evolved within the grasses. Similarly, although an ovary apparently constructed of a single carpel evolved in the most recent grass ancestor, spikelets and the awned lemma dispersal units evolved within the grasses. Frost tolerance and C4 photosynthesis evolved relatively late (late Palaeogene), and the last significant trait to evolve was probably the production of tannins, associated with pyrophytic savannas. This fits palaeobotanical data, suggesting several phases in the grass success story: from a late Cretaceous origin, to occasional tropical grassland patches in the later Palaeogene, to extensive C3 grassy woodlands in the early-middle Miocene, to the dramatic expansion of the tropical C4 grass savannas and grasslands in the Pliocene, and the C3 steppe grasslands during the Pleistocene glacial periods. Modern grasslands depend heavily on strongly seasonal climates, making them sensitive to climate change.
Collapse
Affiliation(s)
- H P Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, Switzerland
| | - Caroline E R Lehmann
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.,Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS, 2050, South Africa
| | - Sally Archibald
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, Private Bag X3, WITS, 2050, South Africa
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, U.K
| | - David M Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
17
|
Nguyen HC, Cao PB, San Clemente H, Ployet R, Mounet F, Ladouce N, Harvengt L, Marque C, Teulieres C. Special trends in CBF and DREB2 groups in Eucalyptus gunnii vs Eucalyptus grandis suggest that CBF are master players in the trade-off between growth and stress resistance. PHYSIOLOGIA PLANTARUM 2017; 159:445-467. [PMID: 27861954 DOI: 10.1111/ppl.12529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Annotation of the Eucalyptus grandis genome showed a large amplification of the dehydration-responsive element binding 1/C-repeat binding factor (DREB1/CBF) group without recent DREB2 gene duplication compared with other plant species. The present annotation of the CBF and DREB2 genes from a draft of the Eucalyptus gunnii genome sequence reveals at least one additional CBF copy in the E. gunnii genome compared with E. grandis, suggesting that this group is still evolving, unlike the DREB2 group. This study aims to investigate the redundancy/neo- or sub-functionalization of the duplicates and the relative involvement of the two groups in abiotic stress responses in both E. grandis and E. gunnii (lower growth but higher cold resistance). A comprehensive transcriptional analysis using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) was performed on leaves, stems and roots from the two Eucalyptus species after cold, heat or drought treatment. A large CBF cluster accounted for most of the cold response in all the organs, whereas heat and drought responses mainly involved a small CBF cluster and the DREB2 genes. In addition, CBF putative target genes, known to be involved in plant tolerance and development, were found to be cold-regulated. The higher transcript amounts of both the CBF and target genes in the cold tolerant E. gunnii contrasted with the higher CBF induction rates in the fast growing E. grandis. Altogether, the present results, in agreement with previous data about Eucalyptus transgenic lines over-expressing CBF, suggest that these factors, which promote both stress protection and growth limitation, participate in the trade-off between growth and resistance in this woody species.
Collapse
Affiliation(s)
- Hong C Nguyen
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Phi B Cao
- Hung Vuong University, Nong Trang Ward, Viettri City, Vietnam
| | - Hélène San Clemente
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Raphaël Ployet
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Fabien Mounet
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Nathalie Ladouce
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Luc Harvengt
- FCBA Biotechnology and Advanced Silviculture Dept, Genetics & Biotechnology Team, Cestas, France
| | - Christiane Marque
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| | - Chantal Teulieres
- Université de Toulouse, UPS, UMR 5546, Plant Research Laboratory (LRSV), Castanet-Tolosan, France
- CNRS, Castanet-Tolosan, France
| |
Collapse
|
18
|
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield DR, Duvall MR. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AOB PLANTS 2015; 7:plv046. [PMID: 25940204 PMCID: PMC4480051 DOI: 10.1093/aobpla/plv046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Collapse
Affiliation(s)
- Jeffery M Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, PO Box 3443 Stn. D, Ottawa, ON, Canada K1P 3P4
| | - William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Craig F Barrett
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA 90032-8201, USA
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jerrold I Davis
- Section of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Dustin R Mayfield
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|
19
|
Cao PB, Azar S, SanClemente H, Mounet F, Dunand C, Marque G, Marque C, Teulières C. Genome-wide analysis of the AP2/ERF family in Eucalyptus grandis: an intriguing over-representation of stress-responsive DREB1/CBF genes. PLoS One 2015; 10:e0121041. [PMID: 25849589 DOI: 10.1371/journal.pone.0121041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/11/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The AP2/ERF family includes a large number of developmentally and physiologically important transcription factors sharing an AP2 DNA-binding domain. Among them DREB1/CBF and DREB2 factors are known as master regulators respectively of cold and heat/osmotic stress responses. EXPERIMENTAL APPROACHES The manual annotation of AP2/ERF family from Eucalyptus grandis, Malus, Populus and Vitis genomes allowed a complete phylogenetic study for comparing the structure of this family in woody species and the model Arabidopsis thaliana. Expression profiles of the whole groups of EgrDREB1 and EgrDREB2 were investigated through RNAseq database survey and RT-qPCR analyses. RESULTS The structure and the size of the AP2/ERF family show a global conservation for the plant species under comparison. In addition to an expansion of the ERF subfamily, the tree genomes mainly differ with respect to the group representation within the subfamilies. With regard to the E. grandis DREB subfamily, an obvious feature is the presence of 17 DREB1/CBF genes, the maximum reported to date for dicotyledons. In contrast, only six DREB2 have been identified, which is similar to the other plants species under study, except for Malus. All the DREB1/CBF and DREB2 genes from E. grandis are expressed in at least one condition and all are heat-responsive. Regulation by cold and drought depends on the genes but is not specific of one group; DREB1/CBF group is more cold-inducible than DREB2 which is mainly drought responsive. CONCLUSION These features suggest that the dramatic expansion of the DREB1/CBF group might be related to the adaptation of this evergreen tree to climate changes when it expanded in Australia.
Collapse
Affiliation(s)
- P B Cao
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - S Azar
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - H SanClemente
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - F Mounet
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - C Dunand
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - G Marque
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - C Marque
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| | - C Teulières
- Université de Toulouse, UPS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France; CNRS, UMR 5546, LRSV, 24 Chemin de Borde Rouge, Auzeville, BP 42617 31326, Castanet-Tolosan, France
| |
Collapse
|
20
|
Zhu J, Pearce S, Burke A, See DR, Skinner DZ, Dubcovsky J, Campbell KG. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1183-97. [PMID: 24626953 PMCID: PMC4876961 DOI: 10.1007/s00122-014-2290-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/13/2014] [Indexed: 05/02/2023]
Abstract
The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.
Collapse
Affiliation(s)
- Jie Zhu
- Crop and Soil Sciences Department, Washington State University, Pullman, WA 99164, USA
| | - Stephen Pearce
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Adrienne Burke
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA 99164-6420, USA
| | - Deven Robert See
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA 99164-6420, USA
- Department of Plant Pathology, Washington State University, Pullman, WA99164, USA
| | - Daniel Z. Skinner
- Crop and Soil Sciences Department, Washington State University, Pullman, WA 99164, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA 99164-6420, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Howard Hughes Medical Institute and Gordon & Betty Moore Foundation Investigator
| | - Kimberly Garland Campbell
- Crop and Soil Sciences Department, Washington State University, Pullman, WA 99164, USA
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman, WA 99164-6420, USA
| |
Collapse
|
21
|
Pasquariello M, Barabaschi D, Himmelbach A, Steuernagel B, Ariyadasa R, Stein N, Gandolfi F, Tenedini E, Bernardis I, Tagliafico E, Pecchioni N, Francia E. The barley Frost resistance-H2 locus. Funct Integr Genomics 2014; 14:85-100. [PMID: 24442711 DOI: 10.1007/s10142-014-0360-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Frost resistance-H2 (Fr-H2) is a major QTL affecting freezing tolerance in barley, yet its molecular basis is still not clearly understood. To gain a better insight into the structural characterization of the locus, a high-resolution linkage map developed from the Nure × Tremois cross was initially implemented to map 13 loci which divided the 0.602 cM total genetic distance into ten recombination segments. A PCR-based screening was then applied to identify positive bacterial artificial chromosome (BAC) clones from two genomic libraries of the reference genotype Morex. Twenty-six overlapping BACs from the integrated physical-genetic map were 454 sequenced. Reads assembled in contigs were subsequently ordered, aligned and manually curated in 42 scaffolds. In a total of 1.47 Mbp, 58 protein-coding sequences were identified, 33 of which classified according to similarity with sequences in public databases. As three complete barley C-repeat Binding Factors (HvCBF) genes were newly identified, the locus contained13 full-length HvCBFs, four Related to AP2 Triticeae (RAPT) genes, and at least five CBF pseudogenes. The final overall assembly of Fr-H2 includes more than 90 % of target region: all genes were identified along the locus, and a general survey of Repetitive Elements obtained. We believe that this gold-standard sequence for the Morex Fr-H2 will be a useful genomic tool for structural and evolutionary comparisons with Fr-H2 in winter-hardy cultivars along with Fr-2 of other Triticeae crops.
Collapse
Affiliation(s)
- Marianna Pasquariello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, Pad. Besta, 42122, Reggio Emilia, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Christin PA, Spriggs E, Osborne CP, Stromberg CAE, Salamin N, Edwards EJ. Molecular Dating, Evolutionary Rates, and the Age of the Grasses. Syst Biol 2013; 63:153-65. [DOI: 10.1093/sysbio/syt072] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
Dhillon T, Stockinger EJ. Cbf14 copy number variation in the A, B, and D genomes of diploid and polyploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2777-89. [PMID: 23918064 DOI: 10.1007/s00122-013-2171-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 07/20/2013] [Indexed: 05/03/2023]
Abstract
Freezing tolerance and winter hardiness are complex traits. In the Triticeae, two loci on the group 5 chromosome homoeologs are repeatedly identified as having major effects on these traits. Recently, we found that segments of the genomic region at one of these loci, Frost resistance-2 (Fr-2) is copy number variable in barley. Freezing-tolerant winter-hardy genotypes have greater tandem copy numbers of the genomic region encompassing the C-repeat binding factor genes Cbf2A and Cbf4B at Fr-H2 than the less freezing-tolerant nonwinter-hardy genotypes. Here we report that in wheat the Cbf14 gene at Fr-2 is copy number variable. Using DNA blot hybridizations, we estimated copy numbers of Cbf14 across the different genomes of diploid and polyploid wheat. Copy numbers of Cbf14 are lower in the B genome than in the A and D genomes across all ploidy levels. Among hexaploid red wheats, winter genotypes harbor greater Cbf14 copy numbers than spring genotypes. Cbf14 copy numbers also vary across the red winter wheats such that hard wheats harbor greater copy numbers than soft wheats. Analysis of hexaploid wheat chromosome 5 substitution lines indicates that Cbf14 copy numbers in the introgressions are stable in the different backgrounds. Taken together our data suggest that higher copy number states existed in the diploid wild ancestors prior to the polyploidization events and that the loss of Cbf14 copies occurred in the cultivated germplasm.
Collapse
Affiliation(s)
- Taniya Dhillon
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, 44691, USA
| | | |
Collapse
|
24
|
Pearce S, Zhu J, Boldizsár Á, Vágújfalvi A, Burke A, Garland-Campbell K, Galiba G, Dubcovsky J. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2683-97. [PMID: 23884601 PMCID: PMC4779059 DOI: 10.1007/s00122-013-2165-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/12/2013] [Indexed: 05/18/2023]
Abstract
Wheat plants which are exposed to periods of low temperatures (cold acclimation) exhibit increased survival rates when they are subsequently exposed to freezing temperatures. This process is associated with large-scale changes in the transcriptome which are modulated by a set of tandemly duplicated C-repeat Binding Factor (CBF) transcription factors located at the Frost Resistance-2 (Fr-2) locus. While Arabidopsis has three tandemly duplicated CBF genes, the CBF family in wheat has undergone an expansion and at least 15 CBF genes have been identified, 11 of which are present at the Fr-2 loci on homeologous group 5 chromosomes. We report here the discovery of three large deletions which eliminate 6, 9, and all 11 CBF genes from the Fr-B2 locus in tetraploid and hexaploid wheat. In wild emmer wheat, the Fr-B2 deletions were found only among the accessions from the southern sub-populations. Among cultivated wheats, the Fr-B2 deletions were more common among varieties with a spring growth habit than among those with a winter growth habit. Replicated freezing tolerance experiments showed that both the deletion of nine CBF genes in tetraploid wheat and the complete Fr-B2 deletion in hexaploid wheat were associated with significant reductions in survival after exposure to freezing temperatures. Our results suggest that selection for the wild-type Fr-B2 allele may be beneficial for breeders selecting for varieties with improved frost tolerance.
Collapse
Affiliation(s)
- Stephen Pearce
- Department of Plant Sciences, University of California, Davis, CA 95616. USA
| | - Jie Zhu
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman WA 99164-6420, USA
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Attila Vágújfalvi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, Martonvásár, H-2462, Hungary
| | - Adrienne Burke
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman WA 99164-6420, USA
| | - Kimberley Garland-Campbell
- USDA-ARS Wheat Genetics, Quality, Physiology and Disease Research Unit, Washington State University, Pullman WA 99164-6420, USA
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, Martonvásár, H-2462, Hungary
- Doctoral School of Molecular and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, Veszprém, H-8200, Hungary
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA 95616. USA
- Howard Hughes Medical Institute and Gordon & Betty Moore Foundation Investigator, Washington State University, Pullman WA 99164-6420, USA
| |
Collapse
|
25
|
Vigeland MD, Spannagl M, Asp T, Paina C, Rudi H, Rognli OA, Fjellheim S, Sandve SR. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. THE NEW PHYTOLOGIST 2013; 199:1060-1068. [PMID: 23701123 PMCID: PMC3840698 DOI: 10.1111/nph.12337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/18/2013] [Indexed: 05/20/2023]
Abstract
Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P < 0.05). Genome-wide heterogeneity in substitution rates was also observed, reflecting divergent genome evolution processes within these grasses. Our results provide evidence for a link between adaptation to cold habitats and adaptive evolution of LTI stress responses in early Pooideae evolution and shed light on a poorly understood chapter in the evolutionary history of some of the world's most important temperate crops.
Collapse
Affiliation(s)
- Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of OsloOslo, Norway
| | - Manuel Spannagl
- Helmholtz Zentrum München, Institute of Bioinformatics and Systems BiologyIngolstädter Landstrasse 1, München, Germany
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus UniversityDK-4200, Slagelse, Denmark
| | - Cristiana Paina
- Department of Molecular Biology and Genetics, Aarhus UniversityDK-4200, Slagelse, Denmark
| | - Heidi Rudi
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesNO-1432, Ås, Norway
| | - Odd-Arne Rognli
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesNO-1432, Ås, Norway
| | - Siri Fjellheim
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesNO-1432, Ås, Norway
| | - Simen R Sandve
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesNO-1432, Ås, Norway
- Author for correspondence:, Simen Rød Sandve, Tel: +47 64965554,
| |
Collapse
|
26
|
Preston JC, Sandve SR. Adaptation to seasonality and the winter freeze. FRONTIERS IN PLANT SCIENCE 2013; 4:167. [PMID: 23761798 PMCID: PMC3669742 DOI: 10.3389/fpls.2013.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/13/2013] [Indexed: 05/20/2023]
Abstract
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve.
Collapse
Affiliation(s)
- Jill C. Preston
- Department of Plant Biology, University of VermontBurlington, VT, USA
| | | |
Collapse
|
27
|
Humphreys AM, Linder HP. Evidence for recent evolution of cold tolerance in grasses suggests current distribution is not limited by (low) temperature. THE NEW PHYTOLOGIST 2013; 198:1261-1273. [PMID: 23528107 DOI: 10.1111/nph.12244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/25/2013] [Indexed: 05/24/2023]
Abstract
· Temperature is considered an important determinant of biodiversity distribution patterns. Grasses (Poaceae) occupy among the warmest and coldest environments on earth but the role of cold tolerance evolution in generating this distribution is understudied. We studied cold tolerance of Danthonioideae (c. 280 species), a major constituent of the austral temperate grass flora. · We determined differences in cold tolerance among species from different continents grown in a common winter garden and assessed the relationship between measured cold tolerance and that predicted by species ranges. We then used temperatures in current ranges and a phylogeny of 81% of the species to study the timing and mode of cold tolerance evolution across the subfamily. · Species ranges generally underestimate cold tolerance but are still a meaningful representation of differences in cold tolerance among species. We infer cold tolerance evolution to have commenced at the onset of danthonioid diversification, subsequently increasing in both pace and extent in certain lineages. Interspecific variation in cold tolerance is better accounted for by spatial than phylogenetic distance. · Contrary to expectations, temperature - low temperature in particular - appears not to limit the distribution of this temperate clade. Competition, time or dispersal limitation could explain its relative absence from northern temperate regions.
Collapse
Affiliation(s)
- Aelys M Humphreys
- Institute of Systematic Botany, University of Zurich, Zurich, CH-8008, Switzerland
| | - H Peter Linder
- Institute of Systematic Botany, University of Zurich, Zurich, CH-8008, Switzerland
| |
Collapse
|
28
|
Pfeifer M, Martis M, Asp T, Mayer KF, Lübberstedt T, Byrne S, Frei U, Studer B. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. PLANT PHYSIOLOGY 2013; 161:571-82. [PMID: 23184232 PMCID: PMC3561004 DOI: 10.1104/pp.112.207282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Mihaela Martis
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Torben Asp
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Klaus F.X. Mayer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Thomas Lübberstedt
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Stephen Byrne
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Ursula Frei
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| | - Bruno Studer
- Institute of Bioinformatics and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany (M.P., M.M., K.F.X.M.); Department of Molecular Biology and Genetics, Faculty of Science and Technology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark (T.A., S.B.); Department of Agronomy, Iowa State University, Ames, Iowa 50011 (T.L., U.F.); and Institute of Agricultural Sciences, Forage Crop Genetics, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (B.S.)
| |
Collapse
|
29
|
Mohseni S, Che H, Djillali Z, Dumont E, Nankeu J, Danyluk J. Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence. Genome 2012; 55:865-81. [PMID: 23231605 DOI: 10.1139/gen-2012-0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.
Collapse
Affiliation(s)
- Sara Mohseni
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Li C, Rudi H, Stockinger EJ, Cheng H, Cao M, Fox SE, Mockler TC, Westereng B, Fjellheim S, Rognli OA, Sandve SR. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC PLANT BIOLOGY 2012; 12:65. [PMID: 22569006 PMCID: PMC3487962 DOI: 10.1186/1471-2229-12-65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/27/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. RESULTS Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. CONCLUSIONS We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.
Collapse
Affiliation(s)
- Chuan Li
- Maize Research Institute, Sichuan Agricultural University, Sichuan, China
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, ÅS, Norway
| | - Heidi Rudi
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, ÅS, Norway
| | - Eric J Stockinger
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, 44691, USA
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Sichuan, China
| | - Samuel E Fox
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, ÅS, Norway
| | - Odd Arne Rognli
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, ÅS, Norway
| | - Simen R Sandve
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, ÅS, Norway
| |
Collapse
|
31
|
Van den Ende W, Coopman M, Clerens S, Vergauwen R, Le Roy K, Lammens W, Van Laere A. Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. PLANT PHYSIOLOGY 2011; 155:603-14. [PMID: 21037113 PMCID: PMC3075768 DOI: 10.1104/pp.110.162222] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/29/2010] [Indexed: 05/04/2023]
Abstract
About 15% of flowering plants accumulate fructans. Inulin-type fructans with β(2,1) fructosyl linkages typically accumulate in the core eudicot families (e.g. Asteraceae), while levan-type fructans with β(2,6) linkages and branched, graminan-type fructans with mixed linkages predominate in monocot families. Here, we describe the unexpected finding that graminan- and levan-type fructans, as typically occurring in wheat (Triticum aestivum) and barley (Hordeum vulgare), also accumulate in Pachysandra terminalis, an evergreen, frost-hardy basal eudicot species. Part of the complex graminan- and levan-type fructans as accumulating in vivo can be produced in vitro by a sucrose:fructan 6-fructosyltransferase (6-SFT) enzyme with inherent sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan 6-exohydrolase side activities. This enzyme produces a series of cereal-like graminan- and levan-type fructans from sucrose as a single substrate. The 6-SST/6-SFT enzyme was fully purified by classic column chromatography. In-gel trypsin digestion led to reverse transcription-polymerase chain reaction-based cDNA cloning. The functionality of the 6-SST/6-SFT cDNA was demonstrated after heterologous expression in Pichia pastoris. Both the recombinant and native enzymes showed rather similar substrate specificity characteristics, including peculiar temperature-dependent inherent 1-SST and fructan 6-exohydrolase side activities. The finding that cereal-type fructans accumulate in a basal eudicot species further confirms the polyphyletic origin of fructan biosynthesis in nature. Our data suggest that the fructan syndrome in P. terminalis can be considered as a recent evolutionary event. Putative connections between abiotic stress and fructans are discussed.
Collapse
Affiliation(s)
- Wim Van den Ende
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:69-77. [PMID: 21421349 DOI: 10.1016/j.plantsci.2010.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/13/2010] [Accepted: 07/17/2010] [Indexed: 05/03/2023]
Abstract
We review recent progress in understanding cold and freezing stress responses in forage grass species, notably Lolium and Festuca species. The chromosomal positions of important frost tolerance and winter survival QTLs on Festuca and Lolium chromosomes 4 and 5 are most likely orthologs of QTLs on Triticeae chromosome 5 which correspond to a cluster of CBF-genes and the major vernalization gene. Gene expression and protein accumulation analyses after cold acclimation shed light on general responses to cold stress. These responses involve modulation of transcription levels of genes encoding proteins involved in cell signalling, cellular transport and proteins associated with the cell membrane. Also, abundance levels of proteins directly involved in photosynthesis were found to be different between genotypes of differing frost tolerance levels, stressing the importance of the link between the function of the photosynthetic apparatus under cold stress and frost tolerance levels. The significance of the ability to undergo photosynthetic acclimation and avoid photoinhibition is also evident from numerous studies in forage grasses. Other interesting candidate mechanisms for freezing tolerance in forage grasses are molecular responses to cold stress which have evolved after the divergence of temperate grasses. This includes metabolic machinery for synthesis of fructans and novel ice-binding proteins.
Collapse
Affiliation(s)
- Simen R Sandve
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
33
|
Compact genomes and complex evolution in the genus Brachypodium. Chromosoma 2010; 120:199-212. [DOI: 10.1007/s00412-010-0303-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
|