1
|
Meger J, Kozioł C, Pałucka M, Burczyk J, Chybicki IJ. Genetic resources of common ash (Fraxinus excelsior L.) in Poland. BMC PLANT BIOLOGY 2024; 24:186. [PMID: 38481155 PMCID: PMC10935948 DOI: 10.1186/s12870-024-04886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Knowledge of genetic structure and the factors that shape it has an impact on forest management practices. European ash (Fraxinus excelsior L.) has declined dramatically throughout its range as a result of a disease caused by the fungus Hymenoscyphus fraxineus. Despite the need for conservation and restoration of the species, genetic data required to guide these efforts at the country level are scarce. Thereofore, we studied the chloroplast and nuclear genetic diversity of 26 natural common ash populations (1269 trees) in Poland. RESULTS Chloroplast polymorphisms grouped the populations into two geographically structured phylogenetic lineages ascribed to different glacial refugia (the Balkans and the Eastern Alps). However, the populations demonstrated high genetic diversity (mean AR = 12.35; mean Ho = 0.769; mean He = 0.542) but low differentiation based on nuclear microsatellites (FST = 0.045). Significant spatial genetic structure, consistent with models of isolation by distance, was detected in 14 out of 23 populations. Estimated effective population size was moderate-to-high, with a harmonic mean of 57.5 individuals per population. CONCLUSIONS Genetic diversity was not homogeneously distributed among populations within phylogenetic gene pools, indicating that ash populations are not equal as potential sources of reproductive material. Genetic differences among populations could be related to their histories, including founder effects or gene flow between evolutionary lineages (admixture). Our results suggest that ash stands across Poland could be treated as two main management units (seed zones). Therefore, despite the homogenizing effect of pollen gene flow known for this species, the genetic structure should be taken into account in the management of the genetic resources of the common ash. Although ash dieback poses an additional challenge for the management of genetic resources, efforts should be directed towards protecting populations with high genetic diversity within defined phylogenetic units, as they may be an important source of adaptive variation for future stands.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland.
| | - Czesław Kozioł
- Szklarska Poręba Forest District, Krasińskiego 6, Szklarska Poręba, 58-580, Poland
| | | | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland
| | - Igor J Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz, 85-064, Poland.
| |
Collapse
|
2
|
Guzman-Torres CR, Trybulec E, LeVasseur H, Akella H, Amee M, Strickland E, Pauloski N, Williams M, Romero-Severson J, Hoban S, Woeste K, Pike CC, Fetter KC, Webster CN, Neitzey ML, O’Neill RJ, Wegrzyn JL. Conserving a threatened North American walnut: a chromosome-scale reference genome for butternut (Juglans cinerea). G3 (BETHESDA, MD.) 2024; 14:jkad189. [PMID: 37703053 PMCID: PMC10849370 DOI: 10.1093/g3journal/jkad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023]
Abstract
With the advent of affordable and more accurate third-generation sequencing technologies, and the associated bioinformatic tools, it is now possible to sequence, assemble, and annotate more species of conservation concern than ever before. Juglans cinerea, commonly known as butternut or white walnut, is a member of the walnut family, native to the Eastern United States and Southeastern Canada. The species is currently listed as Endangered on the IUCN Red List due to decline from an invasive fungus known as Ophiognomonia clavigignenti-juglandacearum (Oc-j) that causes butternut canker. Oc-j creates visible sores on the trunks of the tree which essentially starves and slowly kills the tree. Natural resistance to this pathogen is rare. Conserving butternut is of utmost priority due to its critical ecosystem role and cultural significance. As part of an integrated undergraduate and graduate student training program in biodiversity and conservation genomics, the first reference genome for Juglans cinerea is described here. This chromosome-scale 539 Mb assembly was generated from over 100 × coverage of Oxford Nanopore long reads and scaffolded with the Juglans mandshurica genome. Scaffolding with a closely related species oriented and ordered the sequences in a manner more representative of the structure of the genome without altering the sequence. Comparisons with sequenced Juglandaceae revealed high levels of synteny and further supported J. cinerea's recent phylogenetic placement. Comparative assessment of gene family evolution revealed a significant number of contracting families, including several associated with biotic stress response.
Collapse
Affiliation(s)
- Cristopher R Guzman-Torres
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Trybulec
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Hannah LeVasseur
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Harshita Akella
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Maurice Amee
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Emily Strickland
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Martin Williams
- Atlantic Forestry Center, Canadian Forest Service, Natural Resources Canada, Fredericton, NB E3B 5P7, Canada
| | | | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA
| | - Keith Woeste
- USDA Forest Service, Northern Research Station, West Lafayette, IN 47906, USA
| | - Carolyn C Pike
- USDA Forest Service, Eastern Region State, Private and Tribal Forestry, West Lafayette, IN 47906, USA
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Neitzey
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel J O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Luo X, Zhou H, Cao D, Yan F, Chen P, Wang J, Woeste K, Chen X, Fei Z, An H, Malvolti M, Ma K, Liu C, Ebrahimi A, Qiao C, Ye H, Li M, Lu Z, Xu J, Cao S, Zhao P. Domestication and selection footprints in Persian walnuts (Juglans regia). PLoS Genet 2022; 18:e1010513. [PMID: 36477175 PMCID: PMC9728896 DOI: 10.1371/journal.pgen.1010513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Walnut (Juglans) species are economically important hardwood trees cultivated worldwide for both edible nuts and high-quality wood. Broad-scale assessments of species diversity, evolutionary history, and domestication are needed to improve walnut breeding. In this study, we sequenced 309 walnut accessions from around the world, including 55 Juglans relatives, 98 wild Persian walnuts (J. regia), 70 J. regia landraces, and 86 J. regia cultivars. The phylogenetic tree indicated that J. regia samples (section Dioscaryon) were monophyletic within Juglans. The core areas of genetic diversity of J. regia germplasm were southwestern China and southern Asia near the Qinghai-Tibet Plateau and the Himalayas, and the uplift of the Himalayas was speculated to be the main factor leading to the current population dynamics of Persian walnut. The pattern of genomic variation in terms of nucleotide diversity, linkage disequilibrium, single nucleotide polymorphisms, and insertions/deletions revealed the domestication and selection footprints in Persian walnut. Selective sweep analysis, GWAS, and expression analysis further identified two transcription factors, JrbHLH and JrMYB6, that influence the thickness of the nut diaphragm as loci under selection during domestication. Our results elucidate the domestication and selection footprints in Persian walnuts and provide a valuable resource for the genomics-assisted breeding of this important crop.
Collapse
Affiliation(s)
- Xiang Luo
- College of Agriculture, Henan University, Kaifeng, Henan, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- Xi’an Botanical Garden of Shaanxi Province, Xi’an, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Xin Chen
- Shandong Institute of Pomology, National Germplasm Repository of Walnut and Chestnut, Tai’an, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, United States of America
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, Missouri, United States of America
| | - Maria Malvolti
- Research Institute on Terrestrial Ecosystems, National Research Council, Porano, Terni, Italy
| | - Kai Ma
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chaobin Liu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Aziz Ebrahimi
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiabao Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- * E-mail: (JX); (SC); (PZ)
| | - Shangying Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (JX); (SC); (PZ)
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
- * E-mail: (JX); (SC); (PZ)
| |
Collapse
|
4
|
High genetic diversity in American chestnut (Castanea dentata) despite a century of decline. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Ony M, Klingeman WE, Zobel J, Trigiano RN, Ginzel M, Nowicki M, Boggess SL, Everhart S, Hadziabdic D. Genetic diversity in North American Cercis Canadensis reveals an ancient population bottleneck that originated after the last glacial maximum. Sci Rep 2021; 11:21803. [PMID: 34750401 PMCID: PMC8576035 DOI: 10.1038/s41598-021-01020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding of the present-day genetic diversity, population structure, and evolutionary history of tree species can inform resource management and conservation activities, including response to pressures presented by a changing climate. Cercis canadensis (Eastern Redbud) is an economically valuable understory tree species native to the United States (U.S.) that is also important for forest ecosystem and wildlife health. Here, we document and explain the population genetics and evolutionary history of this deciduous tree species across its distributed range. In this study, we used twelve microsatellite markers to investigate 691 wild-type trees sampled at 74 collection sites from 23 Eastern U.S. states. High genetic diversity and limited gene flow were revealed in wild, natural stands of C. canadensis with populations that are explained by two major genetic clusters. These findings indicate that an ancient population bottleneck occurred coinciding with the last glacial maximum (LGM) in North America. The structure in current populations likely originated from an ancient population in the eastern U.S. that survived LGM and then later diverged into two contemporary clusters. Data suggests that populations have expanded since the last glaciation event from one into several post-glacial refugia that now occupy this species’ current geographic range. Our enhanced understanding benchmarks the genetic variation preserved within this species and can direct future efforts in conservation, and resource utilization of adaptively resilient populations that present the greatest genetic and structural diversity.
Collapse
Affiliation(s)
- Meher Ony
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | | | - John Zobel
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Matthew Ginzel
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Marcin Nowicki
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Sarah L Boggess
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Sydney Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Denita Hadziabdic
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Huff M, Seaman J, Wu D, Zhebentyayeva T, Kelly LJ, Faridi N, Nelson CD, Cooper E, Best T, Steiner K, Koch J, Romero Severson J, Carlson JE, Buggs R, Staton M. A high quality reference genome for Fraxinus pennsylvanica for ash species restoration and research. Mol Ecol Resour 2021; 22:1284-1302. [PMID: 34748273 PMCID: PMC9299157 DOI: 10.1111/1755-0998.13545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
Green ash (Fraxinus pennsylvanica) is the most widely distributed ash tree in North America. Once common, it has experienced high mortality from the non‐native invasive emerald ash borer (EAB; Agrilus planipennis). A small percentage of native green ash trees that remain healthy in long‐infested areas, termed “lingering ash,” display partial resistance to the insect, indicating that breeding and propagating populations with higher resistance to EAB may be possible. To assist in ash breeding, ecology and evolution studies, we report the first chromosome‐level assembly from the genus Fraxinus for F. pennsylvanica with over 99% of bases anchored to 23 haploid chromosomes, spanning 757 Mb in total, composed of 49.43% repetitive DNA, and containing 35,470 high‐confidence gene models assigned to 22,976 Asterid orthogroups. We also present results of range‐wide genetic variation studies, the identification of candidate genes for important traits including potential EAB‐resistance genes, and an investigation of comparative genome organization among Asterids based on this reference genome platform. Residual duplicated regions within the genome probably resulting from a recent whole genome duplication event in Oleaceae were visualized in relation to wild olive (Olea europaea var. sylvestris). We used our F. pennsylvanica chromosome assembly to construct reference‐guided assemblies of 27 previously sequenced Fraxinus taxa, including F. excelsior. Thus, we present a significant step forward in genomic resources for research and protection of Fraxinus species.
Collapse
Affiliation(s)
- Matt Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Josiah Seaman
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Di Wu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Nurul Faridi
- USDA Forest Service, Southern Research Station, Saucier, Mississippi, USA.,Department of Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA
| | - Charles Dana Nelson
- USDA Forest Service, Southern Research Station, Saucier, Mississippi, USA.,Forest Health Research and Education Center, University of Kentucky, Lexington, Kentucky, USA
| | - Endymion Cooper
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Teodora Best
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kim Steiner
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer Koch
- United States Department of Agriculture, Forest Service, Northern Research Station, Delaware, Ohio, USA
| | - Jeanne Romero Severson
- Department of Biological Sciences, Notre Dame University, 46556, Notre Dame, Indiana, USA
| | - John E Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Richard Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
7
|
Spriggs EL, Fertakos ME. Evolution of Castanea in North America: restriction-site-associated DNA sequencing and ecological modeling reveal a history of radiation, range shifts, and disease. AMERICAN JOURNAL OF BOTANY 2021; 108:1692-1704. [PMID: 34519029 DOI: 10.1002/ajb2.1726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Although chestnuts and chinquapins are some of the best known and most widely loved of any plants in North America, relatively little genomic sequencing has been done, and much is still unknown about their evolution. METHODS We used double-digest restriction-site-associated DNA (ddRAD) sequencing data to infer the species-level phylogeny for Castanea and assess the phylogeography of the North American species using samples collected from populations that span the full extent of the species' ranges. We also constructed species distribution models using digitized herbarium specimens and observational data from field surveys. RESULTS We identified strong population structure within Castanea dentata (American chestnut) that reflects a stepwise northern migration since the last glacial maximum. Our species distribution models further confirmed this scenario and matched closely with the Castanea fossil pollen record. We also found significant structure within the Castanea pumila lineage, most notably a genetic cluster that corresponds to the frequently recognized Castanea pumila var. ozarkensis. CONCLUSIONS The two North American Castanea species have contrasting patterns of population structure, but each is typical of plant phylogeography in North America. Within the C. pumila complex, we found novel genetic structure that provides new insights about C. pumila taxonomy. Our results also identified a series of distinctive populations that will be valuable in ongoing efforts to conserve and restore chestnuts and chinquapins in North America.
Collapse
|
8
|
Abstract
Genetic diversity is a critical resource for species’ survival during times of environmental change. Conserving and sustainably managing genetic diversity requires understanding the distribution and amount of genetic diversity (in situ and ex situ) across multiple species. This paper focuses on three emblematic and IUCN Red List threatened oaks (Quercus, Fagaceae), a highly speciose tree genus that contains numerous rare species and poses challenges for ex situ conservation. We compare the genetic diversity of three rare oak species—Quercus georgiana, Q. oglethorpensis, and Q. boyntonii—to common oaks; investigate the correlation of range size, population size, and the abiotic environment with genetic diversity within and among populations in situ; and test how well genetic diversity preserved in botanic gardens correlates with geographic range size. Our main findings are: (1) these three rare species generally have lower genetic diversity than more abundant oaks; (2) in some cases, small population size and geographic range correlate with genetic diversity and differentiation; and (3) genetic diversity currently protected in botanic gardens is inadequately predicted by geographic range size and number of samples preserved, suggesting non-random sampling of populations for conservation collections. Our results highlight that most populations of these three rare oaks have managed to avoid severe genetic erosion, but their small size will likely necessitate genetic management going forward.
Collapse
|
9
|
Lander TA, Klein EK, Roig A, Oddou-Muratorio S. Weak founder effects but significant spatial genetic imprint of recent contraction and expansion of European beech populations. Heredity (Edinb) 2021; 126:491-504. [PMID: 33230286 PMCID: PMC8027192 DOI: 10.1038/s41437-020-00387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding the ecological and evolutionary processes occurring during species range shifts is important in the current context of global change. Here, we investigate the interplay between recent expansion, gene flow and genetic drift, and their consequences for genetic diversity and structure at landscape and local scales in European beech (Fagus sylvatica L.) On Mont Ventoux, South-Eastern France, we located beech forest refugia at the time of the most recent population minimum, ~150 years ago, and sampled 71 populations (2042 trees) in both refugia and expanding populations over an area of 15,000 ha. We inferred patterns of gene flow and genetic structure using 12 microsatellite markers. We identified six plots as originating from planting, rather than natural establishment, mostly from local genetic material. Comparing genetic diversity and structure in refugia versus recent populations did not support the existence of founder effects: heterozygosity (He = 0.667) and allelic richness (Ar = 4.298) were similar, and FST was low (0.031 overall). Still, significant spatial evidence of colonization was detected, with He increasing along the expansion front, while genetic differentiation from the entire pool (βWT) decreased. Isolation by distance was found in refugia but not in recently expanding populations. Our study indicates that beech capacities for colonization and gene flow were sufficient to preserve genetic diversity despite recent forest contraction and expansion. Because beech has long distance pollen and seed dispersal, these results illustrate a 'best case scenario' for the maintenance of high genetic diversity and adaptive potential under climate-change-related range change.
Collapse
Affiliation(s)
- Tonya A Lander
- URFM, INRAE, 84 000, Avignon, France
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Anne Roig
- URFM, INRAE, 84 000, Avignon, France
| | | |
Collapse
|
10
|
Capblancq T, Butnor JR, Deyoung S, Thibault E, Munson H, Nelson DM, Fitzpatrick MC, Keller SR. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce ( Picea rubens). Evol Appl 2020; 13:2190-2205. [PMID: 33005218 PMCID: PMC7513712 DOI: 10.1111/eva.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding the factors influencing the current distribution of genetic diversity across a species range is one of the main questions of evolutionary biology, especially given the increasing threat to biodiversity posed by climate change. Historical demographic processes such as population expansion or bottlenecks and decline are known to exert a predominant influence on past and current levels of genetic diversity, and revealing this demo-genetic history can have immediate conservation implications. We used a whole-exome capture sequencing approach to analyze polymorphism across the gene space of red spruce (Picea rubens Sarg.), an endemic and emblematic tree species of eastern North America high-elevation forests that are facing the combined threat of global warming and increasing human activities. We sampled a total of 340 individuals, including populations from the current core of the range in northeastern USA and southeastern Canada and from the southern portions of its range along the Appalachian Mountains, where populations occur as highly fragmented mountaintop "sky islands." Exome capture baits were designed from the closely relative white spruce (P. glauca Voss) transcriptome, and sequencing successfully captured most regions on or near our target genes, resulting in the generation of a new and expansive genomic resource for studying standing genetic variation in red spruce applicable to its conservation. Our results, based on over 2 million exome-derived variants, indicate that red spruce is structured into three distinct ancestry groups that occupy different geographic regions of its highly fragmented range. Moreover, these groups show small Ne , with a temporal history of sustained population decline that has been ongoing for thousands (or even hundreds of thousands) of years. These results demonstrate the broad potential of genomic studies for revealing details of the demographic history that can inform management and conservation efforts of nonmodel species with active restoration programs, such as red spruce.
Collapse
Affiliation(s)
| | - John R Butnor
- USDA Forest Service Southern Research Station University of Vermont Burlington VT USA
| | - Sonia Deyoung
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Ethan Thibault
- Department of Plant Biology University of Vermont Burlington VT USA
| | - Helena Munson
- Department of Plant Biology University of Vermont Burlington VT USA
| | - David M Nelson
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Matthew C Fitzpatrick
- Appalachian Laboratory University of Maryland Center for Environmental Science Frostburg MD USA
| | - Stephen R Keller
- Department of Plant Biology University of Vermont Burlington VT USA
| |
Collapse
|
11
|
Estravis-Barcala M, Mattera MG, Soliani C, Bellora N, Opgenoorth L, Heer K, Arana MV. Molecular bases of responses to abiotic stress in trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3765-3779. [PMID: 31768543 PMCID: PMC7316969 DOI: 10.1093/jxb/erz532] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 05/05/2023]
Abstract
Trees are constantly exposed to climate fluctuations, which vary with both time and geographic location. Environmental changes that are outside of the physiological favorable range usually negatively affect plant performance and trigger responses to abiotic stress. Long-living trees in particular have evolved a wide spectrum of molecular mechanisms to coordinate growth and development under stressful conditions, thus minimizing fitness costs. The ongoing development of techniques directed at quantifying abiotic stress has significantly increased our knowledge of physiological responses in woody plants. However, it is only within recent years that advances in next-generation sequencing and biochemical approaches have enabled us to begin to understand the complexity of the molecular systems that underlie these responses. Here, we review recent progress in our understanding of the molecular bases of drought and temperature stresses in trees, with a focus on functional, transcriptomic, epigenetic, and population genomic studies. In addition, we highlight topics that will contribute to progress in our understanding of the plastic and adaptive responses of woody plants to drought and temperature in a context of global climate change.
Collapse
Affiliation(s)
- Maximiliano Estravis-Barcala
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - María Gabriela Mattera
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Carolina Soliani
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| | - Nicolás Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, (Consejo Nacional de Investigaciones Científicas y Técnicas- Universidad Nacional del Comahue), San Carlos de Bariloche, Rio Negro, Argentina
| | - Lars Opgenoorth
- Department of Ecology, Philipps University Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, BirmensdorfSwitzerland
| | - Katrin Heer
- Department of Conservation Biology, Philipps University Marburg, Marburg Germany
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
- Correspondence:
| |
Collapse
|
12
|
Lujan NK, Weir JT, Noonan BP, Lovejoy NR, Mandrak NE. Is Niagara Falls a barrier to gene flow in riverine fishes? A test using genome-wide SNP data from seven native species. Mol Ecol 2020; 29:1235-1249. [PMID: 32202354 DOI: 10.1111/mec.15406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Since the early Holocene, fish population genetics in the Laurentian Great Lakes have been shaped by the dual influences of habitat structure and post-glacial dispersal. Riverscape genetics theory predicts that longitudinal habitat corridors and unidirectional downstream water-flow drive the downstream accumulation of genetic diversity, whereas post-glacial dispersal theory predicts that fish genetic diversity should decrease with increasing distance from glacial refugia. This study examines populations of seven native fish species codistributed above and below the 58 m high Niagara Falls - a hypothesized barrier to gene flow in aquatic species. A better understanding of Niagara Falls' role as a barrier to gene flow and dispersal is needed to identify drivers of Great Lakes genetic diversity and guide strategies to limit exotic species invasions. We used genome-wide SNPs and coalescent models to test whether populations are: (a) genetically distinct, consistent with the Niagara Falls barrier hypothesis; (b) more genetically diverse upstream, consistent with post-glacial expansion theory, or downstream, consistent with the riverscape habitat theory; and (c) have migrated either upstream or downstream past Niagara Falls. We found that genetic diversity is consistently greater below Niagara Falls and the falls are an effective barrier to migration, but two species have probably dispersed upstream past the falls after glacial retreat yet before opening of the Welland Canal. Models restricting migration to after opening of the Welland Canal were generally rejected. These results help explain how river habitat features affect aquatic species' genetic diversity and highlight the need to better understand post-glacial dispersal pathways.
Collapse
Affiliation(s)
- Nathan K Lujan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Biological Sciences, University of Mississippi, Oxford, MS, USA
| | - Jason T Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Brice P Noonan
- Department of Biological Sciences, University of Mississippi, Oxford, MS, USA
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nicholas E Mandrak
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
13
|
Williams M, Moise ERD, Forbes K, Williams C, DeMerchant I, Beardmore T. Ecological Status of Juglans cinerea in New Brunswick. PLANT DISEASE 2020; 104:860-867. [PMID: 31891550 DOI: 10.1094/pdis-06-19-1177-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Butternut (Juglans cinerea L.), an early successional riparian hardwood species native to Canada and the United States, is under serious threat from a nonnative fungal pathogen, Ophiognomonia clavigignenti-juglandacearum. Since it was first reported in Canada in 1990, this fungal pathogen has spread rapidly and established in New Brunswick in 1997. Apart from the first report in 1997 and another in 2004, no surveys have been conducted to assess the spread of the pathogen in the province. The purpose of this research was to survey butternut throughout its range in New Brunswick, evaluate disease occurrence as well as tree health, and investigate the impact of different topographic and tree health factors on canker incidence. Results showed that the disease has spread throughout the range of butternut in New Brunswick. The disease likely only recently (2007) spread to the northeastern-most populations, given that lower rates of canker occurrence and higher health ratings are found further away from the point of initial occurrence of the disease. Although canker incidence is high throughout the province, tree dieback is minimal, and trees still producing nuts could support opportunities for ex situ conservation. Because of the rate of pathogen spread in the province, implementing a tree improvement strategy might be the only means for maintaining the butternut genome on the landscape.
Collapse
Affiliation(s)
- Martin Williams
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick E3B 5P7, Canada
| | - Eric R D Moise
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Corner Brook, Newfoundland and Labrador A2H 5G4, Canada
| | - Kathleen Forbes
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick E3B 5P7, Canada
| | - Charlene Williams
- Vineland Research and Innovation Centre, Vineland Station, Ontario, L0R 2E0, Canada
| | - Ian DeMerchant
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick E3B 5P7, Canada
| | - Tannis Beardmore
- Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, Fredericton, New Brunswick E3B 5P7, Canada
| |
Collapse
|
14
|
Konrade L, Shaw J, Beck J. A rangewide herbarium-derived dataset indicates high levels of gene flow in black cherry ( Prunus serotina). Ecol Evol 2019; 9:975-985. [PMID: 30805134 PMCID: PMC6374653 DOI: 10.1002/ece3.4719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 10/24/2018] [Indexed: 12/05/2022] Open
Abstract
Isolation by Distance (IBD) is a genetic pattern in which populations geographically closer to one another are more genetically similar to each other than populations which are farther apart. Black cherry (Prunus serotina Ehrh.) (Rosaceae) is a forest tree species widespread in eastern North America, and found sporadically in the southwestern United States, Mexico, and Guatemala. IBD has been studied in relatively few North American plant taxa, and no study has rigorously sampled across the range of such a widespread species. In this study, IBD and overall genetic structure were assessed in eastern black cherry (P. serotina Ehrh. var. serotina), the widespread variety of eastern North America. Eastern North America. Prunus serotina Ehrh. var. serotina (Rosaceae). Dense sampling across the entire range of eastern black cherry was made possible by genotyping 15 microsatellite loci in 439 herbarium samples from all portions of the range. Mantel tests and STRUCTURE analyses were performed to evaluate the hypothesis of IBD and genetic structure. Mantel tests demonstrated significant but weak IBD, while STRUCTURE analyses revealed no clear geographic pattern of genetic groups. The modest geographic/genetic structure across the eastern black cherry range suggests widespread gene flow in this taxon. This is consistent with P. serotina's status as a disturbance-associated species. Further studies should similarly evaluate IBD in species characteristic of low-disturbance forests.
Collapse
Affiliation(s)
- Lauren Konrade
- Department of BiologyWichita State UniversityWichitaKansas
| | - Joey Shaw
- Department of Biology, Geology, and Environmental ScienceUniversity of TennesseeChattanooga, ChattanoogaTennessee
| | - James Beck
- Department of BiologyWichita State UniversityWichitaKansas
- Botanical Research Institute of TexasFort WorthTexas
| |
Collapse
|
15
|
Hunter ME, Hoban SM, Bruford MW, Segelbacher G, Bernatchez L. Next-generation conservation genetics and biodiversity monitoring. Evol Appl 2018; 11:1029-1034. [PMID: 30026795 PMCID: PMC6050179 DOI: 10.1111/eva.12661] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
This special issue of Evolutionary Applications consists of 10 publications investigating the use of next-generation tools and techniques in population genetic analyses and biodiversity assessment. The special issue stems from a 2016 Next Generation Genetic Monitoring Workshop, hosted by the National Institute for Mathematical and Biological Synthesis (NIMBioS) in Tennessee, USA. The improved accessibility of next-generation sequencing platforms has allowed molecular ecologists to rapidly produce large amounts of data. However, with the increased availability of new genomic markers and mathematical techniques, care is needed in selecting appropriate study designs, interpreting results in light of conservation concerns, and determining appropriate management actions. This special issue identifies key attributes of successful genetic data analyses in biodiversity evaluation and suggests ways to improve analyses and their application in current population and conservation genetics research.
Collapse
Affiliation(s)
- Margaret E. Hunter
- U.S. Geological SurveyWetland and Aquatic Research CenterGainesvilleFlorida
| | | | - Michael W. Bruford
- Cardiff School of Biosciences and Sustainable Places InstituteCardiff UniversityCardiffUK
| | | | - Louis Bernatchez
- GIROQDépartement de BiologieUniversité LavalSte‐Foy, QuébecQCCanada
| |
Collapse
|
16
|
Sambaraju KR, DesRochers P, Rioux D. Factors Influencing the Regional Dynamics of Butternut Canker. PLANT DISEASE 2018; 102:743-752. [PMID: 30673398 DOI: 10.1094/pdis-08-17-1149-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Butternut (Juglans cinerea) is an important component of native biodiversity in eastern North America. Of urgent concern is the survival of butternut, whose populations are declining rapidly, in large part due to an exotic pathogen, Ophiognomonia clavigignenti-juglandacearum, that causes butternut canker. The disease presently occurs throughout the range of butternut in North America, causing branch and stem cankers, dieback, and tree mortality. Despite the existential threat posed by O. clavigignenti-juglandacearum to butternut, a detailed understanding of the factors that drive cross-scale disease patterns is lacking. Therefore, we investigated the association of a range of factors, including tree attributes, topography, and weather, with butternut canker spatial dynamics at different scales using data collected in the province of Quebec, Canada. Trunk canker damage and dieback showed distinct geographic patterns. Bark phenotype was not significantly associated with trunk canker damage. Results suggest that open or dominant trees may show less dieback than intermediate or suppressed trees. Probability of the presence of trunk canker and percent dieback were proportional to the tree diameter at breast height. Temperature was positively associated with disease severity at a 1-km2 scale. Our results provide strong evidence that multiple factors, notably weather, influence butternut canker epidemiology.
Collapse
Affiliation(s)
- Kishan R Sambaraju
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Pierre DesRochers
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| | - Danny Rioux
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Stn. Sainte-Foy, Québec, QC G1V 4C7, Canada
| |
Collapse
|
17
|
Graignic N, Tremblay F, Bergeron Y. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple ( Acer saccharum Marshall). Ecol Evol 2018; 8:2766-2780. [PMID: 29531693 PMCID: PMC5838051 DOI: 10.1002/ece3.3906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/03/2022] Open
Abstract
Due to climate change, the ranges of many North American tree species are expected to shift northward. Sugar maple (Acer saccharum Marshall) reaches its northern continuous distributional limit in northeastern North America at the transition between boreal mixed-wood and temperate deciduous forests. We hypothesized that marginal fragmented northern populations from the boreal mixed wood would have a distinct pattern of genetic structure and diversity. We analyzed variation at 18 microsatellite loci from 23 populations distributed along three latitudinal transects (west, central, and east) that encompass the continuous-discontinuous species range. Each transect was divided into two zones, continuous (temperate deciduous) and discontinuous (boreal mixed wood), based on sugar maple stand abundance. Respective positive and negative relationships were found between the distance of each population to the northern limit (D_north), and allelic richness (AR) and population differentiation (FST). These relations were tested for each transect separately; the pattern (discontinuous-continuous) remained significant only for the western transect. structure analysis revealed the presence of four clusters. The most northern populations of each transect were assigned to a distinct group. Asymmetrical gene flow occurred from the southern into the four northernmost populations. Southern populations in Québec may have originated from two different postglacial migration routes. No evidence was found to validate the hypothesis that northern populations were remnants of a larger population that had migrated further north of the species range after the retreat of the ice sheet. The northernmost sugar maple populations possibly originated from long-distance dispersal.
Collapse
Affiliation(s)
- Noémie Graignic
- Institut de Recherche sur les ForêtsUniversité du Québec en Abitibi‐TémiscamingueRouyn‐NorandaQCCanada
| | - Francine Tremblay
- Institut de Recherche sur les ForêtsUniversité du Québec en Abitibi‐TémiscamingueRouyn‐NorandaQCCanada
| | - Yves Bergeron
- Institut de Recherche sur les ForêtsUniversité du Québec en Abitibi‐TémiscamingueRouyn‐NorandaQCCanada
| |
Collapse
|
18
|
Bai WN, Yan PC, Zhang BW, Woeste KE, Lin K, Zhang DY. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences. THE NEW PHYTOLOGIST 2018; 217:1726-1736. [PMID: 29178135 DOI: 10.1111/nph.14917] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 05/18/2023]
Abstract
Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable time periods. We applied the pairwise sequentially Markovian coalescent approach on the genomes of 11 temperate Juglans species to estimate trajectories of changes in effective population size (Ne ) and used a Bayesian-coalescent based approach that simultaneously considers multiple genomes (G-PhoCS) to estimate divergence times between lineages. Ne curves of all study species converged 1.0 million yr ago, probably reflecting the time when the walnut genus last shared a common ancestor. This estimate was confirmed by the G-PhoCS estimates of divergence times. But all species did not react similarly to the dramatic climatic oscillations following early Pleistocene cooling, so the timing and amplitude of changes in Ne differed among species and even among conspecific lineages. The population histories of temperate walnut species were not driven by extrinsic environmental changes alone, and a key role was probably played by species-specific factors such as coevolutionary interactions with specialized pathogens.
Collapse
Affiliation(s)
- Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Peng-Cheng Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Cloud Computing Key Technology and Application, Beijing Computing Center, Beijing, 100094, China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Keith E Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
19
|
Lumibao CY, Hoban SM, McLachlan J. Ice ages leave genetic diversity 'hotspots' in Europe but not in Eastern North America. Ecol Lett 2017; 20:1459-1468. [PMID: 28942617 DOI: 10.1111/ele.12853] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/01/2017] [Accepted: 08/27/2017] [Indexed: 12/01/2022]
Abstract
After the last glacial cycle, temperate European trees migrated northward, experiencing genetic bottlenecks and founder effects, which left high haplotype endemism in southern populations and clines in genetic diversity northward. These patterns are thought to be ubiquitous across temperate forests, and are therefore used to anticipate the potential genetic consequences of future warming. We compared existing and new phylogeographic data sets (chloroplast DNA) from 14 woody taxa in Eastern North America (ENA) to data sets from 21 ecologically similar European species to test for common impacts of Quaternary climate swings on genetic diversity across diverse taxa and between continents. Unlike their European counterparts, ENA taxa do not share common southern centres of haplotype endemism and they generally maintain high genetic diversity even at their northern range limits. Differences between the genetic impacts of Quaternary climate cycles across continents suggest refined lessons for managing genetic diversity in today's warming world.
Collapse
Affiliation(s)
- Candice Y Lumibao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sean M Hoban
- The Morton Arboretum, Lisle, IL, USA.,National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, TN, USA
| | - Jason McLachlan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
20
|
Merceron NR, Leroy T, Chancerel E, Romero-Severson J, Borkowski D, Ducousso A, Monty A, Porté AJ, Kremer A. Back to America: tracking the origin of European introduced populations of Quercus rubra L. Genome 2017; 60:778-790. [PMID: 28750176 PMCID: PMC6526120 DOI: 10.1139/gen-2016-0187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.
Collapse
Affiliation(s)
- Nastasia R. Merceron
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- University of Liège, Gembloux Agro-Bio Tech., Biodiversity and Landscape Unit, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | | | | | - Jeanne Romero-Severson
- University of Notre Dame, Department of Biological Sciences, 100 Galvin Life Sciences Center Notre Dame 46556. Indiana, USA
| | - Daniel Borkowski
- University of Notre Dame, Department of Biological Sciences, 100 Galvin Life Sciences Center Notre Dame 46556. Indiana, USA
| | | | - Arnaud Monty
- University of Liège, Gembloux Agro-Bio Tech., Biodiversity and Landscape Unit, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | | | | |
Collapse
|
21
|
Roor W, Konrad H, Mamadjanov D, Geburek T. Population Differentiation in Common Walnut (Juglans regia L.) across Major Parts of Its Native Range-Insights from Molecular and Morphometric Data. J Hered 2017; 108:391-404. [PMID: 28498991 DOI: 10.1093/jhered/esw122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/19/2016] [Indexed: 11/14/2022] Open
Abstract
Juglans regia is an economically highly important species for fruit and wood production in the warm temperate and subtropical zones of the Northern Hemisphere. Besides the natural influence of climatic and geomorphological barriers, its genetic structure has been strongly modified by humans and the population history is still unclear. For this reason, we investigated mainly natural walnut populations across the Eurasian continent on a molecular (44 populations, 581 trees) and morphometric level (23 populations, 1391 ripe nuts). Population genetic diversity and differentiation were examined by using 7 microsatellite loci. Morphometric characteristics of the nuts (mainly roundness index and nut density) were used to estimate trait variation and population differentiation. Highest allelic richness Rs12 = 7.05 was observed in a Pakistani and the lowest value Rs12 = 3.04 in a Kyrgyz population. The genetic differentiation among populations was high (FST = 0.217; RST = 0.530) indicating a strong phylogeographic pattern. While variation of the roundness index within single populations was high, this trait neither differentiated geographical regions nor was it associated to genetic clusters. Approximated QST based on this trait equalled FST, while approximated QST based on nut density considerably exceeded FST, indicating selection. Nut density was moderately correlated with altitude, latitude, and longitude, and differentiated populations according to their origin. Pakistani and Indian populations showed highest nut densities. These South Asian populations contain putatively ancestral nut forms, which probably have been lost in other populations as a consequence of human selection.
Collapse
Affiliation(s)
- Wladimir Roor
- From the Department of Forest Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Heino Konrad
- From the Department of Forest Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | | | - Thomas Geburek
- From the Department of Forest Genetics, Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| |
Collapse
|
22
|
Konar A, Choudhury O, Bullis R, Fiedler L, Kruser JM, Stephens MT, Gailing O, Schlarbaum S, Coggeshall MV, Staton ME, Carlson JE, Emrich S, Romero-Severson J. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 2017; 18:417. [PMID: 28558688 PMCID: PMC5450186 DOI: 10.1186/s12864-017-3765-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Restriction site associated DNA sequencing (RADseq) has the potential to be a broadly applicable, low-cost approach for high-quality genetic linkage mapping in forest trees lacking a reference genome. The statistical inference of linear order must be as accurate as possible for the correct ordering of sequence scaffolds and contigs to chromosomal locations. Accurate maps also facilitate the discovery of chromosome segments containing allelic variants conferring resistance to the biotic and abiotic stresses that threaten forest trees worldwide. We used ddRADseq for genetic mapping in the tree Quercus rubra, with an approach optimized to produce a high-quality map. Our study design also enabled us to model the results we would have obtained with less depth of coverage. Results Our sequencing design produced a high sequencing depth in the parents (248×) and a moderate sequencing depth (15×) in the progeny. The digital normalization method of generating a de novo reference and the SAMtools SNP variant caller yielded the most SNP calls (78,725). The major drivers of map inflation were multiple SNPs located within the same sequence (77% of SNPs called). The highest quality map was generated with a low level of missing data (5%) and a genome-wide threshold of 0.025 for deviation from Mendelian expectation. The final map included 849 SNP markers (1.8% of the 78,725 SNPs called). Downsampling the individual FASTQ files to model lower depth of coverage revealed that sequencing the progeny using 96 samples per lane would have yielded too few SNP markers to generate a map, even if we had sequenced the parents at depth 248×. Conclusions The ddRADseq technology produced enough high-quality SNP markers to make a moderately dense, high-quality map. The success of this project was due to high depth of coverage of the parents, moderate depth of coverage of the progeny, a good framework map, an optimized bioinformatics pipeline, and rigorous premapping filters. The ddRADseq approach is useful for the construction of high-quality genetic maps in organisms lacking a reference genome if the parents and progeny are sequenced at sufficient depth. Technical improvements in reduced representation sequencing (RRS) approaches are needed to reduce the amount of missing data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3765-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arpita Konar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Olivia Choudhury
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca Bullis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Fiedler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Melissa T Stephens
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Oliver Gailing
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Scott Schlarbaum
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mark V Coggeshall
- School of Natural Resources, University of Missouri-Columbia, Columbia, MO, 65211, USA.,Hardwood Tree Improvement and Regeneration Center, USDA Forest Service Northern Research Station, West Lafayette, IN, 47907, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John E Carlson
- Department of Ecosystem Science and Management, Penn State, University Park, State College, PA, 16802, USA
| | - Scott Emrich
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeanne Romero-Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
23
|
Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L. PLoS One 2016; 11:e0167104. [PMID: 27907032 PMCID: PMC5132317 DOI: 10.1371/journal.pone.0167104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022] Open
Abstract
During post glacial colonization, loss of genetic diversity due to leading edge effects may be attenuated in forest trees because of their prolonged juvenile phase, allowing many migrants to reach the colonizing front before populations become reproductive. The northern range margins of temperate tree taxa in Europe are particularly suitable to study the genetic processes that follow colonization because they have been little affected by northern refugia. Here we examined how post glacial range dynamics have shaped the genetic structure of common ash (Fraxinus excelsior L.) in its northern range compared to its central range in Europe. We used four chloroplast and six nuclear microsatellites to screen 42 populations (1099 trees), half of which corresponded to newly sampled populations in the northern range and half of which represented reference populations from the central range obtained from previously studies. We found that northern range populations of common ash have the same chloroplast haplotypes as south-eastern European populations, suggesting that colonization of the northern range took place along a single migration route, a result confirmed by the structure at the nuclear microsatellites. Along this route, diversity strongly decreased only in the northern range, concomitantly with increasing population differentiation and complex population substructures, a pattern consistent with a leading edge colonization model. Our study highlights that while diversity is maintained in the central range of common ash due to broad colonizing fronts and high levels of gene flow, it profoundly decreases in the northern range, where colonization was unidirectional and probably involved repeated founder events and population fluctuations. Currently, common ash is threatened by ash dieback, and our results on northern populations will be valuable for developing gene conservation strategies.
Collapse
|
24
|
Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev Camb Philos Soc 2016; 92:1877-1909. [DOI: 10.1111/brv.12313] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel Pironon
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - Guillaume Papuga
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
- Dipartimento di Scienze della Natura e del Territorio; Università degli Studi di Sassari; Box 21 Piazza Universitá 07100 Sassari Italy
| | - Jesús Villellas
- Department of Biology; Duke University; Box 90338 Durham NC 27708-0338 U.S.A
| | - Amy L. Angert
- Departments of Botany and Zoology; University of British Columbia; Box 4200-6270 University Boulevard, Vancouver V6T 1Z4 Canada
| | - María B. García
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - John D. Thompson
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
| |
Collapse
|
25
|
Thousand Cankers Disease Complex: A Forest Health Issue that Threatens Juglans Species across the U.S. FORESTS 2016. [DOI: 10.3390/f7110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading-edge populations. Mol Phylogenet Evol 2016; 102:255-64. [PMID: 27346642 DOI: 10.1016/j.ympev.2016.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
The past studies of postglacial recolonization patterns in high latitude regions have revealed a significant role of dispersal capacity in shaping the genetic diversity and population structure of temperate trees. However, most of these studies have focused on species with long-distance dispersal followed by exponential population growth and were therefore unable to reveal the patterns in the case of a gradual expansion. Here we studied the impacts of postglacial range expansions on the distribution of genetic diversity in the Manchurian walnut (Juglans mandshurica), a common tree of East Asian cool-temperate deciduous forests that apparently lacks long-distance seed dispersal ability. The genetic diversity and structure of 19 natural walnut populations in Northeast China and the Korean Peninsula were examined using 17 nuclear simple sequence repeat (SSR) loci. Potential habitats under current and past climatic conditions were predicted using the ecological niche modelling (ENM) method. Bayesian clustering analysis revealed three groups, which were inferred to have diverged through multiple glacial-interglacial cycles in multiple refugia during the Quaternary Period. ENM estimated a southward range shift at the LGM, but high suitability scores still occurred in the western parts of the Changbai Mountains (Northeast China), the Korean peninsula and the exposed seafloor of the Yellow Sea. In contrast to most other cool-temperate trees co-occurring in the same region, the Manchurian walnut did not show any evidence of a population bottleneck, loss of genetic diversity or isolation by distance during the postglacial expansion. Our study clearly indicates that current northern populations originated from one glacial lineage and recolonization via a gradually advancing front due to the lack of a long-distance seed dispersal mechanism led to no latitudinal decrease in genetic diversity.
Collapse
|
27
|
Brunet J, Zalapa J, Guries R. Conservation of genetic diversity in slippery elm (Ulmus rubra) in Wisconsin despite the devastating impact of Dutch elm disease. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0838-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Mol Genet Genomics 2015; 291:849-62. [DOI: 10.1007/s00438-015-1147-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023]
|
29
|
Hirsch H, Wagner V, Danihelka J, Ruprecht E, Sánchez-Gómez P, Seifert M, Hensen I. High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1233-1241. [PMID: 26122089 DOI: 10.1111/plb.12362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery - a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life-history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698-km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56-81%, He = 0.168-0.238) and low genetic differentiation across populations (Φ(ST) = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post-glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining A. vernalis populations is surprising given the species' life-history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East-West direction, in the past.
Collapse
Affiliation(s)
- H Hirsch
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - V Wagner
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Danihelka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Brno, Czech Republic
| | - E Ruprecht
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - P Sánchez-Gómez
- Department of Vegetal Biology, University of Murcia, Campus Universitario de Espinardo, Murcia, Spain
| | - M Seifert
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - I Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Vernesi C, Hoban SM, Pecchioli E, Crestanello B, Bertorelle G, Rosà R, Hauffe HC. Ecology, environment and evolutionary history influence genetic structure in five mammal species from the Italian Alps. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Cristiano Vernesi
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; 38010 S. Michele all'Adige (TN) Italy
| | - Sean M. Hoban
- National Institute for Mathematical and Biological Synthesis; University of Tennessee; 1122 Volunteer Blvd. Suite 106 Knoxville TN 37996-3410 USA
| | - Elena Pecchioli
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; 38010 S. Michele all'Adige (TN) Italy
| | - Barbara Crestanello
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; 38010 S. Michele all'Adige (TN) Italy
| | - Giorgio Bertorelle
- Department of Biology and Evolution; University of Ferrara; 44100 Ferrara Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; 38010 S. Michele all'Adige (TN) Italy
| | - Heidi C. Hauffe
- Department of Biodiversity and Molecular Ecology; Research and Innovation Centre; Fondazione Edmund Mach; 38010 S. Michele all'Adige (TN) Italy
| |
Collapse
|
31
|
Nadeau S, Godbout J, Lamothe M, Gros-Louis MC, Isabel N, Ritland K. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: a comparison between eastern and western North American postglacial colonization histories. AMERICAN JOURNAL OF BOTANY 2015; 102:1342-1355. [PMID: 26290557 DOI: 10.3732/ajb.1500160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED • Premises of the study: Understanding the influence of recent glacial and postglacial periods on species' distributions is key for predicting the effects of future environmental changes. We investigated the influence of two physiographic landscapes on population structure and postglacial colonization of two white pine species of contrasting habitats: P. monticola, which occurs in the highly mountainous region of western North America, and P. strobus, which occurs in a much less mountainous area in eastern North America.• METHODS To characterize the patterns of genetic diversity and population structure across the ranges of both species, 158 and 153 single nucleotide polymorphism (SNP) markers derived from expressed genes were genotyped on range-wide samples of 61 P. monticola and 133 P. strobus populations, respectively.• KEY RESULTS In P. monticola, a steep latitudinal decrease in genetic diversity likely resulted from postglacial colonization involving rare long-distance dispersal (LDD) events. In contrast, no geographic patterns of diversity were detected in P. strobus, suggesting recolonization via a gradually advancing front or frequent LDD events. For each species, structure analyses identified two distinct southern and northern genetic groups that likely originated from two different glacial lineages. At a finer scale, and for the two species, smaller subgroups were detected that could be remnants of cryptic refugia.• CONCLUSION During postglacial colonization, the western and eastern North American landscapes had different impacts on genetic signatures in P. monticola compared with P. strobus. We discuss the importance of our findings for conservation programs and predictions of species' response to climate change.
Collapse
Affiliation(s)
- Simon Nadeau
- The University of British Columbia, Department of Forest and Conservation Sciences, Forest Science Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Julie Godbout
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Marie-Claude Gros-Louis
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380 Stn., Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Kermit Ritland
- The University of British Columbia, Department of Forest and Conservation Sciences, Forest Science Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
32
|
Dang M, Liu ZX, Chen X, Zhang T, Zhou HJ, Hu YH, Zhao P. Identification, development, and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Harter DEV, Jentsch A, Durka W. Holocene re-colonisation, central-marginal distribution and habitat specialisation shape population genetic patterns within an Atlantic European grass species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:684-693. [PMID: 25266560 DOI: 10.1111/plb.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Corynephorus canescens (L.) P.Beauv. is an outbreeding, short-lived and wind-dispersed grass species, highly specialised on scattered and disturbance-dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post-glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance-driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation-by-distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re-colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re-)colonisation histories and range centre-margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre-periphery gradients.
Collapse
Affiliation(s)
- D E V Harter
- Department of Biogeography, BayCEER, University of Bayreuth, Bayreuth, Germany
| | | | | |
Collapse
|
34
|
Dillon S, McEvoy R, Baldwin DS, Southerton S, Campbell C, Parsons Y, Rees GN. Genetic diversity ofEucalyptus camaldulensis Dehnh. following population decline in response to drought and altered hydrological regime. AUSTRAL ECOL 2015. [DOI: 10.1111/aec.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shannon Dillon
- CSIRO Agriculture Flagship; Acton Australian Capital Territory 2600 Australia
| | - Rachel McEvoy
- Department of Genetics; La Trobe University; Bundoora Victoria Australia
| | - Darren S. Baldwin
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
- CSIRO Land and Water Flagship; Wodonga Victoria Australia
| | - Simon Southerton
- CSIRO Agriculture Flagship; Acton Australian Capital Territory 2600 Australia
| | - Cherie Campbell
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
- CSIRO Land and Water Flagship; Wodonga Victoria Australia
| | - Yvonne Parsons
- Department of Genetics; La Trobe University; Bundoora Victoria Australia
| | - Gavin N. Rees
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
| |
Collapse
|
35
|
Lumibao CY, McLachlan JS. Habitat Differences Influence Genetic Impacts of Human Land Use on the American Beech (Fagus grandifolia). J Hered 2014; 105:793-805. [DOI: 10.1093/jhered/esu047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Noakes AG, Best T, Staton ME, Koch J, Romero-Severson J. Cross amplification of 15 EST-SSR markers in the genus Fraxinus. CONSERV GENET RESOUR 2014. [DOI: 10.1007/s12686-014-0260-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Connectivity and gene flow among Eastern Tiger Salamander (Ambystoma tigrinum) populations in highly modified anthropogenic landscapes. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0629-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Latch EK, Reding DM, Heffelfinger JR, Alcalá-Galván CH, Rhodes OE. Range-wide analysis of genetic structure in a widespread, highly mobile species (Odocoileus hemionus) reveals the importance of historical biogeography. Mol Ecol 2014; 23:3171-90. [DOI: 10.1111/mec.12803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Emily K. Latch
- Department of Biological Sciences; Behavioral and Molecular Ecology Research Group; University of Wisconsin-Milwaukee; 3209 N. Maryland Ave. Milwaukee WI 53211 USA
| | - Dawn M. Reding
- Department of Biology; Luther College; 700 College Dr. Decorah IA 52101 USA
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; 251 Bessey Hall Ames IA 50011 USA
| | | | - Carlos H. Alcalá-Galván
- DICTUS-Universidad de Sonora; Blvd; Edif. 7H. Luis Donaldo Colosio s/n, Col. Centro Hermosillo Sonora 83100 México
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory; PO Drawer E Aiken SC 29802 USA
| |
Collapse
|
39
|
Yineger H, Schmidt DJ, Hughes JM. Genetic structuring of remnant forest patches in an endangered medicinal tree in North-western Ethiopia. BMC Genet 2014; 15:31. [PMID: 24602239 PMCID: PMC4021171 DOI: 10.1186/1471-2156-15-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions.
Collapse
Affiliation(s)
- Haile Yineger
- Australian Rivers Institute, Griffith School of Environment, Griffith University, 170 Kessels Road, Nathan QLD 4111, Australia.
| | | | | |
Collapse
|
40
|
Swaegers J, Mergeay J, Therry L, Bonte D, Larmuseau MHD, Stoks R. Unravelling the effects of contemporary and historical range expansion on the distribution of genetic diversity in the damselfly Coenagrion scitulum. J Evol Biol 2014; 27:748-59. [DOI: 10.1111/jeb.12347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Affiliation(s)
- J. Swaegers
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| | - J. Mergeay
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
- Research Institute for Nature and Forest; Geraardsbergen Belgium
| | - L. Therry
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| | - D. Bonte
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - M. H. D. Larmuseau
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Laboratory of Forensic Genetics and Molecular Archaeology; University of Leuven; Leuven Belgium
| | - R. Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| |
Collapse
|
41
|
Hoban SM, Gaggiotti OE, Bertorelle G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol 2014; 22:3444-50. [PMID: 23967455 DOI: 10.1111/mec.12258] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Detecting bottlenecks is a common task in molecular ecology. While several bottleneck detection method sexist, evaluations of their power have focused only on severe bottlenecks (e.g. to Ne ~10). As a component of a recent review, Peery et al. (2012) analysed the power of two approaches, the M-ratio and heterozygote excess tests, to detect moderate bottlenecks (e.g. to Ne ~100),which is realistic for many conservation situations. In this Comment, we address three important points relevant to but not considered in Peery et al. Under moderate bottleneck scenarios, we test the (i) relative advantage of sampling more markers vs. more individuals, (ii) potential power to detect the bottleneck when utilizing dozens of microsatellites (a realistic possibility for contemporary studies) and (iii) reduction in power when post bottle neck recovery has occurred. For the realistic situations examined,we show that (i) doubling the number of loci shows equal or better power than tripling the number of individuals,(ii) increasing the number of markers (up to 100) results in continued additive gains in power, and (iii)recovery after a moderate amount of time or gradual change in size reduces power, by up to one-half. Our results provide a practical supplement to Peery et al. and encourage the continued use of bottleneck detection methods in the genomic age, but also emphasize that the power under different sampling schemes should be estimated,using simulation modelling, as a routine component of molecular ecology studies.
Collapse
|
42
|
Pouget M, Youssef S, Migliore J, Juin M, Médail F, Baumel A. Phylogeography sheds light on the central-marginal hypothesis in a Mediterranean narrow endemic plant. ANNALS OF BOTANY 2013; 112:1409-1420. [PMID: 23962409 PMCID: PMC3806523 DOI: 10.1093/aob/mct183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS Understanding the factors that shape variation in genetic diversity across the geographic ranges of species is an important challenge in the effort to conserve evolutionary processes sustaining biodiversity. The historical influences leading to a central-marginal organization of genetic diversity have been explored for species whose range is known to have expanded from refugia after glacial events. However, this question has rarely been addressed for Mediterranean endemic plants of azonal habitats such as rocky slopes or screes. In this context, this comprehensive study examined molecular and field data from Arenaria provincialis (Caryophyllaceae), a narrow endemic plant of south-eastern France. METHODS Across the whole geographic range, an investigation was made of whether high levels of abundance and genetic diversity (estimated from amplified fragment length polymorphism markers) are centrally distributed, to evaluate the relevance of the central-marginal hypothesis. Phylogeographic patterns inferred from chloroplast DNA (cpDNA) were used, applying Bayesian methods to test the influence of past biogeographic events. Multivariate analysis combining phylogeographic and ecological data was used to reveal the historical and ecological distinctiveness of populations. KEY RESULTS Despite the narrow distribution of A. provincialis, a high level of nucleotide variation is found within cpDNA loci, supporting its persistence throughout the Pleistocene period. The area characterized by the highest genetic diversity is centrally located. Structured phylogeography and Bayesian factor analysis supported the hypothesis that the central area of the distribution was the source of both westward and eastward migrations, probably during arid periods of the Pleistocene, and more recently was a crossroads of backward migrations. By contrast, the two areas located today at the range limits are younger, have reduced genetic diversity and are marginal in the ecological gradients. CONCLUSIONS This study highlights a case of strong population distinctiveness within a narrow range. Phylogeography sheds light on the historical role of the areas centrally situated in the distribution. The current range size and abundance patterns are not sufficient to predict the organization of genetic diversity.
Collapse
Affiliation(s)
- Marine Pouget
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE, UMR CNRS 7263), Technopôle de l'Environnement Arbois-Méditerranée, BP 80, 13545 Aix-en-Provence cedex 04, France
| | - Sami Youssef
- Faculty of Agriculture and Forestry, University of Duhok, Kurdistan Region, Iraq
| | - Jérémy Migliore
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE, UMR CNRS 7263), Technopôle de l'Environnement Arbois-Méditerranée, BP 80, 13545 Aix-en-Provence cedex 04, France
| | - Marianick Juin
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE, UMR CNRS 7263), Technopôle de l'Environnement Arbois-Méditerranée, BP 80, 13545 Aix-en-Provence cedex 04, France
| | - Frédéric Médail
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE, UMR CNRS 7263), Technopôle de l'Environnement Arbois-Méditerranée, BP 80, 13545 Aix-en-Provence cedex 04, France
| | - Alex Baumel
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE, UMR CNRS 7263), Technopôle de l'Environnement Arbois-Méditerranée, BP 80, 13545 Aix-en-Provence cedex 04, France
| |
Collapse
|
43
|
Hoban SM, Mezzavilla M, Gaggiotti OE, Benazzo A, van Oosterhout C, Bertorelle G. High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study. BMC Bioinformatics 2013; 14:309. [PMID: 24131797 PMCID: PMC3852946 DOI: 10.1186/1471-2105-14-309] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/09/2013] [Indexed: 11/26/2022] Open
Abstract
Background Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species’ ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity. Results With large variance in reproductive success (Vk ≥ 40, corresponding to a ratio between effective and census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms (heterozygosity excess, M-ratio, and Tajima’s D test) tend to show erroneous signals of a bottleneck. Similarly, strong evidence of population decline is erroneously detected when ancestral and current population sizes are estimated with the model based method MSVAR. Conclusions Our results suggest caution when interpreting the results of bottleneck tests in species showing high variance in reproductive success. Particularly in species with high fecundity, computer simulations are recommended to confirm the occurrence of a population bottleneck.
Collapse
Affiliation(s)
| | | | | | | | | | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, via Borsari 46, Ferrara I-44121, Italy.
| |
Collapse
|
44
|
Sackett LC, Collinge SK, Martin AP. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs. Mol Ecol 2013; 22:2441-55. [PMID: 23452304 DOI: 10.1111/mec.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 02/02/2023]
Abstract
Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals.
Collapse
Affiliation(s)
- Loren C Sackett
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
45
|
Hoban SM, McCleary TS, Schlarbaum SE, Anagnostakis SL, Romero-Severson J. Human-impacted landscapes facilitate hybridization between a native and an introduced tree. Evol Appl 2012; 5:720-31. [PMID: 23144658 PMCID: PMC3492897 DOI: 10.1111/j.1752-4571.2012.00250.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/20/2011] [Indexed: 11/30/2022] Open
Abstract
Spatial and temporal dynamics of hybridization, in particular the influence of local environmental conditions, are well studied for sympatric species but less is known for native-introduced systems, especially for long-lived species. We used microsatellite and chloroplast DNA markers to characterize the influence of anthropogenic landscapes on the extent, direction, and spatial distribution of hybridization between a native North American tree Juglans cinerea (butternut) and an introduced tree Juglans ailantifolia (Japanese walnut) for 1363 trees at 48 locations across the native range of butternut. Remarkably, admixture in anthropogenic sites reached nearly 70%, while fragmented and continuous forests showed minimal admixture (<8%). Furthermore, more hybrids in anthropogenic sites had J. ailantifolia seed parents (95%) than hybrids in fragmented and continuous forests (69% and 59%, respectively). Our results show a strong influence of landscape type on rate and direction of realized gene flow. While hybrids are common in anthropogenic landscapes, our results suggest that even small forested landscapes serve as substantial barriers to hybrid establishment, a key consideration for butternut conservation planning, a species already exhibiting severe decline, and for other North American forest trees that hybridize with introduced congeners.
Collapse
Affiliation(s)
- Sean M Hoban
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
46
|
Broders KD, Boraks A, Sanchez AM, Boland GJ. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests. Ecol Evol 2012; 2:2114-27. [PMID: 23139872 PMCID: PMC3488664 DOI: 10.1002/ece3.332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 12/03/2022] Open
Abstract
The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti-juglandacearum (Oc-j), the butternut canker fungus, has caused range-wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc-j from across North America. Clustering analysis revealed that the Oc-j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc-j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non-existent role of sexual recombination in populations of Oc-j in North America.
Collapse
Affiliation(s)
- K D Broders
- Department of Biological Sciences, University of New Hampshire 46 College Rd, Durham, New Hampshire, 03824 ; School of Environmental Sciences, University of Guelph Guelph, Ontario, Canada, N1G 2W1
| | | | | | | |
Collapse
|
47
|
Xu H, Tremblay F, Bergeron Y, Paul V, Chen C. Genetic consequences of fragmentation in "arbor vitae," eastern white cedar (Thuja occidentalis L.), toward the northern limit of its distribution range. Ecol Evol 2012; 2:2506-20. [PMID: 23145335 PMCID: PMC3492776 DOI: 10.1002/ece3.371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/31/2012] [Accepted: 08/08/2012] [Indexed: 11/29/2022] Open
Abstract
We tested the hypothesis that marginal fragmented populations of eastern white cedar (EWC) are genetically isolated due to reduced pollen and gene flow. In accordance with the central-marginal model, we predicted a decrease in population genetic diversity and an increase in differentiation along the latitudinal gradient from the boreal mixed-wood to northern coniferous forest. A total of 24 eastern white cedar populations were sampled along the north-south latitudinal gradient for microsatellite genotyping analysis. Positive Fis values and heterozygote deficiency were observed in populations from the marginal (Fis = 0.244; PHW = 0.0042) and discontinuous zones (Fis = 0.166; PHW = 0.0042). However, populations from the continuous zone were in HW equilibrium (Fis = −0.007; PHW = 0.3625). There were no significant latitudinal effects on gene diversity (Hs), allelic richness (AR), or population differentiation (Fst). Bayesian and NJT (neighbor-joining tree) analyses demonstrated the presence of a population structure that was partly consistent with the geographic origins of the populations. The impact of population fragmentation on the genetic structure of EWC is to create a positive inbreeding coefficient, which was two to three times higher on average than that of a population from the continuous zone. This result indicated a higher occurrence of selfing within fragmented EWC populations coupled with a higher degree of gene exchange among near-neighbor relatives, thereby leading to significant inbreeding. Increased population isolation was apparently not correlated with a detectable effect on genetic diversity. Overall, the fragmented populations of EWC appear well-buffered against effects of inbreeding on genetic erosion.
Collapse
Affiliation(s)
- Huaitong Xu
- Northwest A&F University Shaanxi, 712100, China ; Chaire Industrielle CRSNG-UQAT-UQAM en Aménagement Forestier Durable, Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue Québec, J9X 5E4, Canada
| | | | | | | | | |
Collapse
|
48
|
Hoban SM, Schlarbaum SE, Brosi SL, Romero-Severson J. A rare case of natural regeneration in butternut, a threatened forest tree, is parent and space limited. CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0386-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Dudaniec RY, Spear SF, Richardson JS, Storfer A. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS One 2012; 7:e36769. [PMID: 22590604 PMCID: PMC3349670 DOI: 10.1371/journal.pone.0036769] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.
Collapse
Affiliation(s)
- Rachael Y Dudaniec
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
50
|
Arenas M, Ray N, Currat M, Excoffier L. Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 2011; 29:207-18. [PMID: 21778191 DOI: 10.1093/molbev/msr187] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to past and current climatic changes, range contractions and range shifts are essential stages in the history of a species. However, unlike range expansions, the molecular consequences of these processes have been little investigated. In order to fill this gap, we simulated patterns of molecular diversity within and between populations for various types of range contractions and range shifts. We show that range contractions tend to decrease genetic diversity as compared with population with stable ranges but quite counterintuitively fast range contractions preserve higher levels of diversity and induce lower levels of genetic differentiation among refuge areas than slow contractions. Contrastingly, fast range shifts lead to lower levels of diversity than slow range shifts. At odds with our expectations, we find that species actively migrating toward refuge areas can only preserve higher levels of diversity in refugia if the contraction is rapid. Under slow range contraction or slow range shift, active migration toward refugia lead to a larger loss of diversity as compared with scenarios with isotropic migration and may thus not be a good evolutionary strategy. These results suggest that the levels of diversity preserved after a climate change both within and between refuge areas will not only depend on the dispersal abilities of a species but also on the speed of the change. It also implies that a given episode of climatic change will impact differently species with different generation times.
Collapse
Affiliation(s)
- Miguel Arenas
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, Berne, Switzerland.
| | | | | | | |
Collapse
|