1
|
Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate. Microbiol Spectr 2024; 12:e0044124. [PMID: 39162516 PMCID: PMC11448445 DOI: 10.1128/spectrum.00441-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Trichoderma reesei, the main filamentous fungus used for industrial cellulase production, was long considered to be asexual. The recent discovery of the mating type locus in the natural isolate QM6a and the possibility to cross this sterile female strain with a fertile natural female strain opened up a new avenue for strain optimization. We crossed the hyperproducer RutC30 with a compatible female ascospore-derived isolate of the wild-type strain CBS999.97 and analyzed about 300 offspring. A continuous distribution of secreted protein levels was observed in the progeny, confirming the involvement of several mutated loci in the hyperproductive phenotype. A bias toward MAT1-2 strains was identified for higher producers, but not directly linked to the Mating-type locus itself. Transgressive phenotypes were observed in terms of both productivity and secretome quality, with offspring that outperform their parents for three enzymatic activities. Genomic sequences of the 10 best producers highlighted the genetic diversity generated and the involvement of parental alleles in hyperproduction and fertility. IMPORTANCE The filamentous fungus Trichoderma reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars. The filamentous fungus T. reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars, which can in turn be fermented to produce second-generation biofuels and bioproducts. Production performance improvement, which is essential to reduce production cost, relies on classical mutagenesis and genetic engineering techniques. Although sexual reproduction is a powerful tool for improving domesticated species, it is often difficult to apply to industrial fungi since most of them are considered asexual. In this study, we demonstrated that outbreeding is an efficient strategy to optimize T. reesei. Crossing between a natural isolate and a mutagenized strain generated a biodiverse progeny with some offspring displaying transgressive phenotype for cellulase activities.
Collapse
Affiliation(s)
- Laetitia Chan Ho Tong
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Etienne Jourdier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fadhel Ben Chaabane
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Thiziri Aouam
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Gwladys Chartier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Itzel Castro González
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Antoine Margeot
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Frederique Bidard
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| |
Collapse
|
2
|
Matsuno Y, Endo N, Ueno K, Ishihara A. Isolation of aflatoxin biosynthetic inhibitor from Chondrostereum purpureum mushroom culture filtrate. J Biosci Bioeng 2024; 138:308-313. [PMID: 39068142 DOI: 10.1016/j.jbiosc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Aflatoxins (AFs) are highly toxic mycotoxins produced by the fungi, Aspergillus flavus and Aspergillus parasiticus. AFs pose severe health risks owing to their acute toxicity and carcinogenic properties. The control of AF contamination remains significantly challenging despite the extensive efforts toward controlling it. Here, we investigated the potential of mushroom extracts as a source of AF biosynthetic inhibitors. The A. parasiticus mutant strain, NFRI-95, that accumulates an AF biosynthesis intermediate, norsolorinic acid, was used in the bioassay to detect the inhibitory activity against AF biosynthesis. The screening of 195 mushroom extracts revealed that the culture filtrate extract of Chondrostereum purpureum exhibited strong inhibitory activity against AF biosynthesis. Next, large-scale culturing of C. purpureum was performed to isolate the compounds accounting for the inhibitory activity. The culture filtrate was extracted with ethyl acetate, after which the active compound was isolated by silica gel column chromatography and preparative high performance liquid chromatography (HPLC). The active compound was identified as cyclo(Val-Pro) by spectroscopic analyses. Further, four stereoisomers of cyclo(Val-Pro) were synthesized by the condensation of the N-Boc derivatives of d- and l-valine with the methyl esters of d- and l-proline. The naturally isolated compound was identified as cyclo(l-Val-l-Pro) by comparing its retention time with those of synthetic compounds by chiral HPLC analysis and CD spectra. The IC50 value of cyclo(L-Val-L-Pro) was 2.4 mM, whereas the LD, DL, and DD isomers exhibited weaker activities, with IC50 values of >5 mM.
Collapse
Affiliation(s)
- Yuya Matsuno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Naoki Endo
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| |
Collapse
|
3
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
4
|
Ouadhene MA, Callicott KA, Ortega‐Beltran A, Mehl HL, Cotty PJ, Battilani P. Structure of Aspergillus flavus populations associated with maize in Greece, Spain, and Serbia: Implications for aflatoxin biocontrol on a regional scale. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13249. [PMID: 38634243 PMCID: PMC11024511 DOI: 10.1111/1758-2229.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Aspergillus flavus is the most frequently identified producer of aflatoxins. Non-aflatoxigenic members of the A. flavus L strains are used in various continents as active ingredients of bioprotectants directed at preventing aflatoxin contamination by competitive displacement of aflatoxin producers. The current research examined the genetic diversity of A. flavus L strain across southern Europe to gain insights into the population structure and evolution of this species and to evaluate the prevalence of genotypes closely related to MUCL54911, the active ingredient of AF-X1. A total of 2173L strain isolates recovered from maize collected across Greece, Spain, and Serbia in 2020 and 2021 were subjected to simple sequence repeat (SSR) genotyping. The analysis revealed high diversity within and among countries and dozens of haplotypes shared. Linkage disequilibrium analysis indicated asexual reproduction and clonal evolution of A. flavus L strain resident in Europe. Moreover, haplotypes closely related to MUCL54911 were found to belong to the same vegetative compatibility group (VCG) IT006 and were relatively common in all three countries. The results indicate that IT006 is endemic to southern Europe and may be utilized as an aflatoxin mitigation tool for maize across the region without concern for potential adverse impacts associated with the introduction of an exotic microorganism.
Collapse
Affiliation(s)
- Mohamed Ali Ouadhene
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | | | | | - Peter J. Cotty
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Paola Battilani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| |
Collapse
|
5
|
Chang PK. Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B. Fungal Genet Biol 2024; 170:103863. [PMID: 38154756 DOI: 10.1016/j.fgb.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 1100 Allen Toussaint Boulevard, New Orleans, LA 70124, United States.
| |
Collapse
|
6
|
Moura-Mendes J, Cazal-Martínez CC, Rojas C, Ferreira F, Pérez-Estigarribia P, Dias N, Godoy P, Costa J, Santos C, Arrua A. Species Identification and Mycotoxigenic Potential of Aspergillus Section Flavi Isolated from Maize Marketed in the Metropolitan Region of Asunción, Paraguay. Microorganisms 2023; 11:1879. [PMID: 37630439 PMCID: PMC10458825 DOI: 10.3390/microorganisms11081879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Zea mays var. amylacea and Zea mays var. indurata are maize ecotypes from Paraguay. Aspergillus section Flavi is the main spoilage fungus of maize under storage conditions. Due to its large intraspecific genetic variability, the accurate identification of this fungal taxonomic group is difficult. In the present study, potential mycotoxigenic strains of Aspergillus section Flavi isolated from Z. mays var. indurata and Z. mays var. amylacea that are marketed in the metropolitan region of Asunción were identified by a polyphasic approach. Based on morphological characters, 211 isolates were confirmed to belong to Aspergillus section Flavi. A subset of 92 strains was identified as Aspergillus flavus by mass spectrometry MALDI-TOF and the strains were classified by MALDI-TOF MS into chemotypes based on their aflatoxins and cyclopiazonic acid production. According to the partial sequencing of ITS and CaM genes, a representative subset of 38 A. flavus strains was confirmed. Overall, 75 A. flavus strains (86%) were characterized as producers of aflatoxins. The co-occurrence of at least two mycotoxins (AF/ZEA, FUM/ZEA, and AF/ZEA/FUM) was detected for five of the Z. mays samples (63%). Considering the high mycological bioburden and mycotoxin contamination, maize marketed in the metropolitan region of Asunción constitutes a potential risk to food safety and public health and requires control measures.
Collapse
Affiliation(s)
- Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
| | - Cinthia C. Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Cinthia Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Francisco Ferreira
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| | - Pastor Pérez-Estigarribia
- Facultad Politécnica, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
- Facultad de Medicina, Universidad Sudamericana, Pedro Juan Caballero 130112, Paraguay
| | - Nathalia Dias
- BIOREN-UFRO Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patrício Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Jéssica Costa
- Departamento de Biologia, Instituto de Ciências Biológicas-ICB, Universidade Federal do Amazonas, Av. Rodrigo Otávio Jordão Ramos 3000, Bloco 01, Manaus 69077-000, Brazil;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrea Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (J.M.-M.)
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay
| |
Collapse
|
7
|
Chen W, Modi D, Picot A. Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2736. [PMID: 37514350 PMCID: PMC10384710 DOI: 10.3390/plants12142736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dixi Modi
- Ottawa Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
8
|
Atehnkeng J, Ojiambo PS, Ortega-Beltran A, Augusto J, Cotty PJ, Bandyopadhyay R. Impact of frequency of application on the long-term efficacy of the biocontrol product Aflasafe in reducing aflatoxin contamination in maize. Front Microbiol 2022; 13:1049013. [PMID: 36504767 PMCID: PMC9732863 DOI: 10.3389/fmicb.2022.1049013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers' fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of active ingredients in grain, which in turn was also significantly correlated (r = -0.621, p = 0.02) with aflatoxin concentration. Although there were carry-over effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost-benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
- Joseph Atehnkeng
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter S. Ojiambo
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Alejandro Ortega-Beltran
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Joao Augusto
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter J. Cotty
- College of Food Science and Engineering, Ocean University of China, Qingdao, China,Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Ranajit Bandyopadhyay
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,*Correspondence: Ranajit Bandyopadhyay,
| |
Collapse
|
9
|
Molo MS, White JB, Cornish V, Gell RM, Baars O, Singh R, Carbone MA, Isakeit T, Wise KA, Woloshuk CP, Bluhm BH, Horn BW, Heiniger RW, Carbone I. Asymmetrical lineage introgression and recombination in populations of Aspergillus flavus: Implications for biological control. PLoS One 2022; 17:e0276556. [PMID: 36301851 PMCID: PMC9620740 DOI: 10.1371/journal.pone.0276556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.
Collapse
Affiliation(s)
- Megan S. Molo
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - James B. White
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Vicki Cornish
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Richard M. Gell
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
- Program of Genetics, North Carolina State University, Raleigh, North
Carolina, United States of America
| | - Oliver Baars
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Rakhi Singh
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
| | - Mary Anna Carbone
- Center for Integrated Fungal Research and Department of Plant and
Microbial Biology, North Carolina State University, Raleigh, NC, United States
of America
| | - Thomas Isakeit
- Department of Plant Pathology and Microbiology, Texas AgriLife Extension
Service, Texas A&M University, College Station, TX, United States of
America
| | - Kiersten A. Wise
- Department of Plant Pathology, University of Kentucky, Princeton, KY,
United States of America
| | - Charles P. Woloshuk
- Department of Plant Pathology and Botany, Purdue University, West
Lafayette, IN, United States of America
| | - Burton H. Bluhm
- University of Arkansas Division of Agriculture, Department of Entomology
and Plant Pathology, Fayetteville, AR, United States of
America
| | - Bruce W. Horn
- United States Department of Agriculture, Agriculture Research Service,
Dawson, GA, United States of America
| | - Ron W. Heiniger
- Department of Crop and Soil Sciences, North Carolina State University,
Raleigh, NC, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, Center for Integrated
Fungal Research, North Carolina State University, Raleigh, NC, United States of
America
- Program of Genetics, North Carolina State University, Raleigh, North
Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Seekles SJ, Punt M, Savelkoel N, Houbraken J, Wösten HAB, Ohm RA, Ram AFJ. Genome sequences of 24 Aspergillus niger sensu stricto strains to study strain diversity, heterokaryon compatibility, and sexual reproduction. G3 (BETHESDA, MD.) 2022; 12:jkac124. [PMID: 35608315 PMCID: PMC9258588 DOI: 10.1093/g3journal/jkac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022]
Abstract
Mating-type distribution within a phylogenetic tree, heterokaryon compatibility, and subsequent diploid formation were studied in 24 Aspergillus niger sensu stricto strains. The genomes of the 24 strains were sequenced and analyzed revealing an average of 6.1 ± 2.0 variants/kb between Aspergillus niger sensu stricto strains. The genome sequences were used together with available genome data to generate a phylogenetic tree revealing 3 distinct clades within Aspergillus niger sensu stricto. The phylogenetic tree revealed that both MAT1-1 and MAT1-2 mating types were present in each of the 3 clades. The phylogenetic differences were used to select for strains to analyze heterokaryon compatibility. Conidial color markers (fwnA and brnA) and auxotrophic markers (pyrG and nicB) were introduced via CRISPR/Cas9-based genome editing in a selection of strains. Twenty-three parasexual crosses using 11 different strains were performed. Only a single parasexual cross between genetically highly similar strains resulted in a successful formation of heterokaryotic mycelium and subsequent diploid formation, indicating widespread heterokaryon incompatibility as well as multiple active heterokaryon incompatibility systems between Aspergillus niger sensu stricto strains. The 2 vegetatively compatible strains were of 2 different mating types and a stable diploid was isolated from this heterokaryon. Sclerotium formation was induced on agar media containing Triton X-100; however, the sclerotia remained sterile and no ascospores were observed. Nevertheless, this is the first report of a diploid Aspergillus niger sensu stricto strain with 2 different mating types, which offers the unique possibility to screen for conditions that might lead to ascospore formation in A. niger.
Collapse
Affiliation(s)
- Sjoerd J Seekles
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Maarten Punt
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Niki Savelkoel
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| | - Jos Houbraken
- TIFN, 6708 PW, Wageningen, the Netherlands
- Applied & Industrial Mycology, Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht, the Netherlands
| | - Han A B Wösten
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Robin A Ohm
- TIFN, 6708 PW, Wageningen, the Netherlands
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Arthur F J Ram
- TIFN, 6708 PW, Wageningen, the Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
11
|
Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus. Fungal Biol 2022; 126:187-200. [DOI: 10.1016/j.funbio.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
|
12
|
Lai Y, Sun M, He Y, Lei J, Han Y, Wu Y, Bai D, Guo Y, Zhang B. Mycotoxins binder supplementation alleviates aflatoxin B 1 toxic effects on the immune response and intestinal barrier function in broilers. Poult Sci 2021; 101:101683. [PMID: 35121530 PMCID: PMC8883060 DOI: 10.1016/j.psj.2021.101683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
This experiment was conducted to evaluate whether a commercial mycotoxins-binder, XL, could effectively attenuate the negative effects of Aflatoxin B1 (AFB1) on growth performance, immunological function, and intestinal health in birds. Two hundred forty 1-day-old Arbor Acres broiler chickens were randomly divided into 4 treatments using a 2 × 2 factorial randomized design with 2 levels of dietary mycotoxins binder (0 or 2g /kg) and 2 AFB1 supplemented levels (0 or 200 μg/kg) from 0 to 42 d. Results showed that AFB1 exposure impaired growth performance by decreasing BWG in 1–21 d and 1–42 d, decreasing FI in 1–21 d, increasing FCR in 1–21 d and 1–42 d (P < 0.05). Broilers fed AFB1- contaminated diet impaired the immune function, as evident by decreasing IgA contents, Newcastle disease antibody titers in serum, and sIgA contents of jejunal mucosa at 21 d (P < 0.05). On the other hand, AFB1 challenge significantly increased the gene expression of proinflammatory factors in spleen at 21 d and liver at 42 d, and significantly decreased claudin-1 expression at 42 d and occludin expression at 21 d, and increased claudin-2 at 21 d in jejunum of broiler chickens (P < 0.05) compared to the basal diet group. Dietary XL supplementation significantly decreased the gene expression of IL-6 in spleen at 21 d and IL-1β in liver at 42 d, cytochrome P450 3A4 (CYP3A4) expression in liver at 21 d of broilers (P < 0.05) compared with the nonsupplemented birds, regardless of AFB1 challenged or not. Inclusion of 2 g/kg XL increased serum ALB at 42 d, IgM and IgA at 42 d, Newcastle disease antibody titer level at 35 d (P < 0.05). Dietary XL addition enhanced intestinal barrier function by increasing the expression of claudin-1 at 21 d and Occludin at 42 d (P < 0.05) in jejunum. Conclusively, 2 g/kg mycotoxins-binder can relieve the toxic effect of AFB1 on broilers.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanming Han
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Yuanyuan Wu
- Trouw Nutrition Amersfoort 773811, The Netherlands
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Arias RS, Orner VA, Martinez-Castillo J, Sobolev VS. Aspergillus Section Flavi, Need for a Robust Taxonomy. Microbiol Resour Announc 2021; 10:e0078421. [PMID: 34854700 PMCID: PMC8638576 DOI: 10.1128/mra.00784-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Renee S. Arias
- USDA Agricultural Research Service, National Peanut Research Laboratory, Dawson, Georgia, USA
| | - Valerie A. Orner
- USDA Agricultural Research Service, National Peanut Research Laboratory, Dawson, Georgia, USA
| | - Jaime Martinez-Castillo
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A. C., Mérida, Yucatán, Mexico
| | - Victor S. Sobolev
- USDA Agricultural Research Service, National Peanut Research Laboratory, Dawson, Georgia, USA
| |
Collapse
|
14
|
Mamo FT, Abate BA, Zheng Y, Nie C, He M, Liu Y. Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China. Toxins (Basel) 2021; 13:678. [PMID: 34678973 PMCID: PMC8541519 DOI: 10.3390/toxins13100678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are secondary metabolites that represent serious threats to human and animal health. They are mainly produced by strains of the saprophytic fungus Aspergillus flavus, which are abundantly distributed across agricultural commodities. AF contamination is receiving increasing attention by researchers, food producers, and policy makers in China, and several interesting review papers have been published, that mainly focused on occurrences of AFs in agricultural commodities in China. The goal of this review is to provide a wider scale and up-to-date overview of AF occurrences in different agricultural products and of the distribution of A. flavus across different food and feed categories and in Chinese traditional herbal medicines in China, for the period 2000-2020. We also highlight the health impacts of chronic dietary AF exposure, the recent advances in biological AF mitigation strategies in China, and recent Chinese AF standards.
Collapse
Affiliation(s)
- Firew Tafesse Mamo
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
- Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia;
| | | | - Yougquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Chengrong Nie
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Mingjun He
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| | - Yang Liu
- School of Food Science and Engineering, Food Safety Research Centre, Foshan University, Foshan 528231, China; (C.N.); (M.H.)
| |
Collapse
|
15
|
Ament-Velásquez SL, Tuovinen V, Bergström L, Spribille T, Vanderpool D, Nascimbene J, Yamamoto Y, Thor G, Johannesson H. The Plot Thickens: Haploid and Triploid-Like Thalli, Hybridization, and Biased Mating Type Ratios in Letharia. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:656386. [PMID: 37744149 PMCID: PMC10512270 DOI: 10.3389/ffunb.2021.656386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 09/26/2023]
Abstract
The study of the reproductive biology of lichen fungal symbionts has been traditionally challenging due to their complex lifestyles. Against the common belief of haploidy, a recent genomic study found a triploid-like signal in Letharia. Here, we infer the genome organization and reproduction in Letharia by analyzing genomic data from a pure culture and from thalli, and performing a PCR survey of the MAT locus in natural populations. We found that the read count variation in the four Letharia specimens, including the pure culture derived from a single sexual spore of L. lupina, is consistent with haploidy. By contrast, the L. lupina read counts from a thallus' metagenome are triploid-like. Characterization of the mating-type locus revealed a conserved heterothallic configuration across the genus, along with auxiliary genes that we identified. We found that the mating-type distributions are balanced in North America for L. vulpina and L. lupina, suggesting widespread sexual reproduction, but highly skewed in Europe for L. vulpina, consistent with predominant asexuality. Taken together, we propose that Letharia fungi are heterothallic and typically haploid, and provide evidence that triploid-like individuals are hybrids between L. lupina and an unknown Letharia lineage, reconciling classic systematic and genetic studies with recent genomic observations.
Collapse
Affiliation(s)
| | - Veera Tuovinen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linnea Bergström
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Toby Spribille
- Biological Sciences CW 405, University of Alberta, Edmonton, AB, Canada
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Juri Nascimbene
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Yoshikazu Yamamoto
- Department of Bioproduction Science, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Göran Thor
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
17
|
Abstract
We report here a chromosome-level genome assembly of the aflatoxigenic fungus Aspergillus flavus strain CA14. This strain is the basis for numerous studies in fungal physiology and secondary metabolism. This full-length assembly will aid in subsequent genomics research. We report here a chromosome-level genome assembly of the aflatoxigenic fungus Aspergillus flavus strain CA14. This strain is the basis for numerous studies in fungal physiology and secondary metabolism. This full-length assembly will aid in subsequent genomics research.
Collapse
|
18
|
Gell RM, Horn BW, Carbone I. Genetic map and heritability of Aspergillus flavus. Fungal Genet Biol 2020; 144:103478. [PMID: 33059038 DOI: 10.1016/j.fgb.2020.103478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
The carcinogenic aflatoxins are a human health concern as well as an economic burden to corn, peanut and other crops grown within the United States and globally. Aflatoxins are produced by fungi species in Aspergillus section Flavi, primarily Aspergillus flavus. Though previously thought of as only asexual, A. flavus has recently been found to undergo sexual reproduction both in laboratory crosses and in the field. To elucidate the consequences of genetic exchange through a single generation of the sexual cycle within A. flavus, we constructed genetic maps based on three mapping populations, each composed of the parental strains and approximately 70 F1 progeny. Genome-wide data using double digest Restriction Associated DNA sequencing identified 496, 811, and 576 significant polymorphisms differentiating parents across eight linkage groups; these polymorphisms served as markers. Average spacing between marker loci was 3.1, 2.1, and 3.5 map units and overall map length was 1504.4, 1669.2, and 2001.3 cM. Recombination was non-randomly distributed across chromosomes with an average rate of recombination of about 46.81 cM per Mbp. We showed inheritance of mitochondrial loci from the sclerotial (female) parent in crosses, whereas nuclear loci showed a 1:1 segregation ratio from both parents. The linkage map will be useful in QTL analyses to identify traits that increase sexual fertility in A. flavus and modulate aflatoxin production, both of which have significant implications for sustainable reduction of aflatoxin contamination using biological control agents.
Collapse
Affiliation(s)
- Richard M Gell
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Bruce W Horn
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, GA, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
19
|
Luis JM, Carbone I, Payne GA, Bhatnagar D, Cary JW, Moore GG, Lebar MD, Wei Q, Mack B, Ojiambo PS. Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus. Mycologia 2020; 112:908-920. [PMID: 32821029 DOI: 10.1080/00275514.2020.1800361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aspergillus flavus contaminates agricultural products worldwide with carcinogenic aflatoxins that pose a serious health risk to humans and animals. The fungus survives adverse environmental conditions through production of sclerotia. When fertilized by a compatible conidium of an opposite mating type, a sclerotium transforms into a stroma within which ascocarps, asci, and ascospores are formed. However, the transition from a sclerotium to a stroma during sexual reproduction in A. flavus is not well understood. Early events during the interaction between sexually compatible strains of A. flavus were visualized using conidia of a green fluorescent protein (GFP)-labeled MAT1-1 strain and sclerotia of an mCherry-labeled MAT1-2 strain. Both conidia and sclerotia of transformed strains germinated to produce hyphae within 24 h of incubation. Hyphal growth of these two strains produced what appeared to be a network of interlocking hyphal strands that were observed at the base of the mCherry-labeled sclerotia (i.e., region in contact with agar surface) after 72 h of incubation. At 5 wk following incubation, intracellular green-fluorescent hyphal strands were observed within the stromatal matrix of the mCherry-labeled strain. Scanning electron microscopy of stromata from a high- and low-fertility cross and unmated sclerotia was used to visualize the formation and development of sexual structures within the stromatal and sclerotial matrices, starting at the time of crossing and thereafter every 2 wk until 8 wk of incubation. Morphological differences between sclerotia and stromata became apparent at 4 wk of incubation. Internal hyphae and croziers were detected inside multiple ascocarps that developed within the stromatal matrix of the high-fertility cross but were not detected in the matrix of the low-fertility cross or the unmated sclerotia. At 6 to 8 wk of incubation, hyphal tips produced numerous asci, each containing one to eight ascospores that emerged out of an ascus following the breakdown of the ascus wall. These observations broaden our knowledge of early events during sexual reproduction and suggest that hyphae from the conidium-producing strain may be involved in the early stages of sexual reproduction in A. flavus. When combined with omics data, these findings could be useful in further exploration of the molecular and biochemical mechanisms underlying sexual reproduction in A. flavus.
Collapse
Affiliation(s)
- Jane Marian Luis
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Gary A Payne
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| | - Deepak Bhatnagar
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Jeffrey W Cary
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Matthew D Lebar
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Qijian Wei
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Brian Mack
- Southern Regional Research Center, Agricultural Research Service , United States Department of Agriculture, New Orleans, Louisiana 70124
| | - Peter S Ojiambo
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University , Raleigh, NC 27695
| |
Collapse
|
20
|
Ortega‐Beltran A, Callicott KA, Cotty PJ. Founder events influence structures of Aspergillus flavus populations. Environ Microbiol 2020; 22:3522-3534. [PMID: 32515100 PMCID: PMC7496522 DOI: 10.1111/1462-2920.15122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.
Collapse
Affiliation(s)
- Alejandro Ortega‐Beltran
- School of Plant SciencesUniversity of ArizonaTucsonAZ85721USA
- International Institute of Tropical AgriculturePMB 5320 Oyo Road, IbadanNigeria
| | | | - Peter J. Cotty
- USDA‐ARSTucsonAZ85721USA
- School of Food Science and EngineeringOcean University of ChinaQingdaoShandong266003China
| |
Collapse
|
21
|
Ortega-Beltran A, Callicott KA, Cotty PJ. Founder events influence structures of Aspergillus flavus populations. Environ Microbiol 2020; 22:3522-3534. [PMID: 32515100 DOI: 10.1111/emi.15122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 05/25/2023]
Abstract
In warm regions, agricultural fields are occupied by complex Aspergillus flavus communities composed of isolates in many vegetative compatibility groups (VCGs) with varying abilities to produce highly toxic, carcinogenic aflatoxins. Aflatoxin contamination is reduced with biocontrol products that enable atoxigenic isolates from atoxigenic VCGs to dominate the population. Shifts in VCG frequencies similar to those caused by the introduction of biocontrol isolates were detected in Sonora, Mexico, where biocontrol is not currently practiced. The shifts were attributed to founder events. Although VCGs reproduce clonally, significant diversity exists within VCGs. Simple sequence repeat (SSR) fingerprinting revealed that increased frequencies of VCG YV150 involved a single haplotype. This is consistent with a founder event. Additionally, great diversity was detected among 82 YV150 isolates collected over 20 years across Mexico and the United States. Thirty-six YV150 haplotypes were separated into two populations by Structure and SplitsTree analyses. Sixty-five percent of isolates had MAT1-1 and belonged to one population. The remaining had MAT1-2 and belonged to the second population. SSR alleles varied within populations, but recombination between populations was not detected despite co-occurrence at some locations. Results suggest that YV150 isolates with opposite mating-type have either strongly restrained or lost sexual reproduction among themselves.
Collapse
Affiliation(s)
- Alejandro Ortega-Beltran
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- International Institute of Tropical Agriculture, PMB 5320 Oyo Road, Ibadan, Nigeria
| | | | - Peter J Cotty
- USDA-ARS, Tucson, AZ, 85721, USA
- School of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
22
|
Del Palacio A, Pan D. Occurrence and toxigenic potential of Aspergillus section Flavi on wheat and sorghum silages in Uruguay. Mycology 2020; 11:147-157. [PMID: 32923022 PMCID: PMC7448941 DOI: 10.1080/21501203.2020.1752321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Species belonging to Aspergillus section Flavi occur naturally in crops and can cause food spoilage and/or toxin production. The aim of this study was to determine the occurrence and diversity of the species of Aspergillus section Flavi found in wheat and sorghum at harvest time and during silage storage, and to evaluate the toxigenic potential of the isolates to determine the contamination risk of mycotoxins in grains. Strains from Aspergillus flavus and Aspergillus parasiticus were found based on multi-gene phylogenetic analyses. This is the first report on the presence of A. parasiticus in wheat from Uruguay. Of the 80 isolates Aspergillus section Flavi, 30% produced aflatoxins (AFs), mainly type B1, and 25% produced cyclopiazonic acid (CPA). Within the isolates from wheat samples, 35% were AFs producers and 27.5% were CPA producers. Among the Aspergillus section Flavi isolates from sorghum, 25% were AFs producers while 22.5% were CPA producers. This work contributes to the knowledge of the species in crops and helps define appropriate strategies for the prevention and control of contamination with AFs and CPA by Aspergillus section Flavi fungi.
Collapse
Affiliation(s)
- Agustina Del Palacio
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| | - Dinorah Pan
- Laboratorio de Micología, Facultad de Ciencias, Facultad de Ingeniería, UdelaR, Montevideo, Uruguay
| |
Collapse
|
23
|
Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins (Basel) 2020; 12:toxins12030150. [PMID: 32121226 PMCID: PMC7150809 DOI: 10.3390/toxins12030150] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Collapse
|
24
|
Senghor LA, Ortega-Beltran A, Atehnkeng J, Callicott KA, Cotty PJ, Bandyopadhyay R. The Atoxigenic Biocontrol Product Aflasafe SN01 Is a Valuable Tool to Mitigate Aflatoxin Contamination of Both Maize and Groundnut Cultivated in Senegal. PLANT DISEASE 2020; 104:510-520. [PMID: 31790640 DOI: 10.1094/pdis-03-19-0575-re] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aflatoxin contamination of groundnut and maize infected by Aspergillus section Flavi fungi is common throughout Senegal. The use of biocontrol products containing atoxigenic Aspergillus flavus strains to reduce crop aflatoxin content has been successful in several regions, but no such products are available in Senegal. The biocontrol product Aflasafe SN01 was developed for use in Senegal. The four active ingredients of Aflasafe SN01 are atoxigenic A. flavus genotypes native to Senegal and distinct from active ingredients used in other biocontrol products. Efficacy tests on groundnut and maize in farmers' fields were carried out in Senegal during the course of 5 years. Active ingredients were monitored with vegetative compatibility analyses. Significant (P < 0.05) displacement of aflatoxin producers occurred in all years, districts, and crops. In addition, crops from Aflasafe SN01-treated fields contained significantly (P < 0.05) fewer aflatoxins both at harvest and after storage. Most crops from treated fields contained aflatoxin concentrations permissible in both local and international markets. Results suggest that Aflasafe SN01 is an effective tool for aflatoxin mitigation in groundnut and maize. Large-scale use of Aflasafe SN01 should provide health, trade, and economic benefits for Senegal.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- L A Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - J Atehnkeng
- Chitedze Research Station, International Institute of Tropical Agriculture, Lilongwe, Malawi
| | - K A Callicott
- U.S. Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - P J Cotty
- U.S. Department of Agriculture-Agricultural Research Service, School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
25
|
Xian HQ, Liu L, Li YH, Yang YN, Yang S. Molecular tagging of biocontrol fungus Trichoderma asperellum and its colonization in soil. J Appl Microbiol 2019; 128:255-264. [PMID: 31541488 DOI: 10.1111/jam.14457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Abstract
AIMS To conduct molecular tagging of the biocontrol fungus Trichoderma asperellum strain T4 and elucidate its colonization patterns in soil. METHODS AND RESULTS We constructed an expression vector harbouring a hygromycin B-resistant gene (hph) and an efficient green fluorescent protein (egfp) gene. By applying Agrobacterium AGL-1-mediated genetic transformation technology, we conducted molecular tagging of T. asperellum and monitored the colonization dynamics of T. asperellum in soil. The results of tracking five independent transformants of T. asperellum indicated that its expansion rates ranged from 4·7 to 6·8 cm week-1 . After inoculation in soil, the quantities of T. asperellum could be maintained at over 10 × 104 CFU per gram soil in the first year. In the third year after inoculation, the quantities of T. asperellum in soil were still higher than 1 × 103 CFU per gram soil. In addition, molecularly tagged T. asperellum in soil in the second year (i.e. 12 months) after inoculation could still reach the biocontrol effect on cucumber Rhizoctonia rot by more than 74%. CONCLUSION Trichoderma asperellum strain T4 is capable of effectively colonizing in soil and surviving for more than 1 year. SIGNIFICANCE AND IMPACT OF THE STUDY This study has provided the scientific basis for applying T. asperellum as the biocontrol fungus for prevention and control of plant diseases.
Collapse
Affiliation(s)
- H-Q Xian
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China
| | - L Liu
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-H Li
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - Y-N Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China
| | - S Yang
- School of Life Sciences, Qingdao Agricultural University, Shandong Province, China.,Shandong Province Key Laboratory of Applied Mycology, Shandong Province, China.,Qingdao International Center on Microbes Utilizing Biogas, Qingdao, Shandong Province, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 2019; 16:731-744. [PMID: 30194403 DOI: 10.1038/s41579-018-0075-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fungi contain a remarkable diversity of both primary and secondary metabolic pathways involved in ecologically specialized or accessory functions. Genes in these pathways are frequently physically linked on fungal chromosomes, forming metabolic gene clusters (MGCs). In this Review, we describe the diversity in the structure and content of fungal MGCs, their population-level and species-level variation, the evolutionary mechanisms that underlie their formation, maintenance and decay, and their ecological and evolutionary impact on fungal populations. We also discuss MGCs from other eukaryotes and the reasons for their preponderance in fungi. Improved knowledge of the evolutionary life cycle of MGCs will advance our understanding of the ecology of specialized metabolism and of the interplay between the lifestyle of an organism and genome architecture.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Abigail L Lind
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.,Gladstone Institutes, San Francisco, CA, USA
| |
Collapse
|
27
|
Lewis MH, Carbone I, Luis JM, Payne GA, Bowen KL, Hagan AK, Kemerait R, Heiniger R, Ojiambo PS. Biocontrol Strains Differentially Shift the Genetic Structure of Indigenous Soil Populations of Aspergillus flavus. Front Microbiol 2019; 10:1738. [PMID: 31417528 PMCID: PMC6685141 DOI: 10.3389/fmicb.2019.01738] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/22/2023] Open
Abstract
Biocontrol using non-aflatoxigenic strains of Aspergillus flavus has the greatest potential to mitigate aflatoxin contamination in agricultural produce. However, factors that influence the efficacy of biocontrol agents in reducing aflatoxin accumulation under field conditions are not well-understood. Shifts in the genetic structure of indigenous soil populations of A. flavus following application of biocontrol products Afla-Guard and AF36 were investigated to determine how these changes can influence the efficacy of biocontrol strains in reducing aflatoxin contamination. Soil samples were collected from maize fields in Alabama, Georgia, and North Carolina in 2012 and 2013 to determine changes in the population genetic structure of A. flavus in the soil following application of the biocontrol strains. A. flavus L was the most dominant species of Aspergillus section Flavi with a frequency ranging from 61 to 100%, followed by Aspergillus parasiticus that had a frequency of <35%. The frequency of A. flavus L increased, while that of A. parasiticus decreased after application of biocontrol strains. A total of 112 multilocus haplotypes (MLHs) were inferred from 1,282 isolates of A. flavus L using multilocus sequence typing of the trpC, mfs, and AF17 loci. A. flavus individuals belonging to the Afla-Guard MLH in the IB lineage were the most dominant before and after application of biocontrol strains, while individuals of the AF36 MLH in the IC lineage were either recovered in very low frequencies or not recovered at harvest. There were no significant (P > 0.05) differences in the frequency of individuals with MAT1-1 and MAT1-2 for clone-corrected MLH data, an indication of a recombining population resulting from sexual reproduction. Population mean mutation rates were not different across temporal and spatial scales indicating that mutation alone is not a driving force in observed multilocus sequence diversity. Clustering based on principal component analysis identified two distinct evolutionary lineages (IB and IC) across all three states. Additionally, patristic distance analysis revealed phylogenetic incongruency among single locus phylogenies which suggests ongoing genetic exchange and recombination. Levels of aflatoxin accumulation were very low except in North Carolina in 2012, where aflatoxin levels were significantly (P < 0.05) lower in grain from treated compared to untreated plots. Phylogenetic analysis showed that Afla-Guard was more effective than AF36 in shifting the indigenous soil populations of A. flavus toward the non-toxigenic or low aflatoxin producing IB lineage. These results suggest that Afla-Guard, which matches the genetic and ecological structure of indigenous soil populations of A. flavus in Alabama, Georgia, and North Carolina, is likely to be more effective in reducing aflatoxin accumulation and will also persist longer in the soil than AF36 in the southeastern United States.
Collapse
Affiliation(s)
- Mary H Lewis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Jane M Luis
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Gary A Payne
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Kira L Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Austin K Hagan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Robert Kemerait
- Department of Plant Pathology, University of Georgia, Coastal Plain Experiment Station, Tifton, GA, United States
| | - Ron Heiniger
- Department of Crop Science, North Carolina State University, Raleigh, NC, United States
| | - Peter S Ojiambo
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
28
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
29
|
Drott MT, Fessler LM, Milgroom MG. Population Subdivision and the Frequency of Aflatoxigenic Isolates in Aspergillus flavus in the United States. PHYTOPATHOLOGY 2019; 109:878-886. [PMID: 30480472 DOI: 10.1094/phyto-07-18-0263-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Consumption of food contaminated with aflatoxin, from crops infected by Aspergillus flavus, is associated with acute toxicosis, cancer, and stunted growth. Although such contamination is more common in the lower latitudes of the United States, it is unclear whether this pattern is associated with differences in the relative frequencies of aflatoxigenic individuals of A. flavus. To determine whether the frequency of the aflatoxin-producing ability of A. flavus increases as latitude decreases, we sampled 281 isolates from field soils in two north-south transects in the United States and tested them for aflatoxin production. We also genotyped 161 isolates using 10 microsatellite markers to assess population structure. Although the population density of A. flavus was highest at lower latitudes, there was no difference in the frequency of aflatoxigenic A. flavus isolates in relation to latitude. We found that the U.S. population of A. flavus is subdivided into two genetically differentiated subpopulations that are not associated with the chemotype or geographic origin of the isolates. The two populations differ markedly in allelic and genotypic diversity. The less diverse population is more abundant and may represent a clonal lineage derived from the more diverse population. Overall, increased aflatoxin contamination in lower latitudes may be explained partially by differences in the population density of A. flavus, not genetic population structure.
Collapse
Affiliation(s)
- Milton T Drott
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Lauren M Fessler
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Michael G Milgroom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
30
|
Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger S, Diana Di Mavungu J. Secondary Metabolite Dereplication and Phylogenetic Analysis Identify Various Emerging Mycotoxins and Reveal the High Intra-Species Diversity in Aspergillus flavus. Front Microbiol 2019; 10:667. [PMID: 31024476 PMCID: PMC6461017 DOI: 10.3389/fmicb.2019.00667] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is one of the most important mycotoxigenic species from the genus Aspergillus, due to its ability to synthesize the potent hepatocarcinogen, aflatoxin B1. Moreover, this fungus is capable of producing several other toxic metabolites from the class of indole-tetramates, non-ribosomal peptides, and indole-diterpenoids. Populations of A. flavus are characterized by considerable diversity in terms of morphological, functional and genetic features. Although for many years A. flavus was considered an asexual fungus, researchers have shown evidence that at best these fungi can exhibit a predominantly asexual existence. We now know that A. flavus contains functional genes for mating, uncovering sexuality as potential contributor for its diversification. Based on our results, we reconfirm that A. flavus is a predominant producer of B-type aflatoxins. Moreover, this fungus can decisively produce AFM1 and AFM2. We did not observe any clear relationship between mating-type genes and particular class of metabolites, probably other parameters such as sexual/asexual ratio should be investigated. A dynamic secondary metabolism was found also in strains intended to be used as biocontrol agents. In addition we succeeded to provide mass spectrometry fragmentation spectra for the most important classes of A. flavus metabolites, which will serve as identification cards for future studies. Both, metabolic and phylogenetic analysis proved a high intra-species diversity for A. flavus. These findings contribute to our understanding about the diversity of Aspergillus section Flavi species, raising the necessity for polyphasic approaches (morphological, metabolic, genetic, etc.) when dealing with this type of complex group of species.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo†
| | - Geromy G Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA, United States
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, Murcia, Spain
| | - Dashnor Nebija
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo†
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Pitt J. The pros and cons of using biocontrol by competitive exclusion as a means for reducing aflatoxin in maize in Africa. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin in maize remains a major problem in Africa. Biocontrol by competitive exclusion is one approach for reducing preharvest aflatoxin. This paper describes the methods used for preparing and disseminating biocontrol substrate in maize fields, followed by a discussion of the merits of, and problems associated with, the practical use of biocontrol for reducing aflatoxin in maize in Africa. The weight of evidence indicates that biocontrol is an effective process for reducing aflatoxin, but proof of claimed efficacy for smallholder farms in Africa is lacking. Indeed, an examination of sampling methodology in use in Africa indicates that proof of efficacy may be difficult or indeed impossible to obtain.
Collapse
Affiliation(s)
- J.I. Pitt
- CSIRO Food and Agriculture, North Ryde, P.O. Box 52, NSW 2113, Australia
| |
Collapse
|
32
|
Cullen M, Jacob ME, Cornish V, VanderSchel IQ, Cotter HVT, Cubeta MA, Carbone I, Gilger BC. Multi-locus DNA sequence analysis, antifungal agent susceptibility, and fungal keratitis outcome in horses from Southeastern United States. PLoS One 2019; 14:e0214214. [PMID: 30921394 PMCID: PMC6438541 DOI: 10.1371/journal.pone.0214214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/09/2019] [Indexed: 11/21/2022] Open
Abstract
Morphological characterization and multi-locus DNA sequence analysis of fungal isolates obtained from 32 clinical cases of equine fungal keratitis (FK) was performed to identify species and determine associations with antifungal susceptibility, response to therapy and clinical outcome. Two species of Aspergillus (A. flavus and A. fumigatus) and three species of Fusarium (F. falciforme, F. keratoplasticum, and F. proliferatum) were the most common fungi isolated and identified from FK horses. Most (91%) equine FK Fusarium nested within the Fusarium solani species complex (FSSC) with nine genetically diverse strains/lineages, while 83% of equine FK Aspergillus nested within the A. flavus clade with three genetically diverse lineages. Fungal species and evolutionary lineage were not associated with clinical outcome. However, species of equine FK Fusarium were more likely (p = 0.045) to be associated with stromal keratitis. Species of Aspergillus were more susceptible to voriconazole and terbinafine than species of Fusarium, while species of Fusarium were more susceptible to thiabendazole than species of Aspergillus. At the species level, A. fumigatus and A. flavus were more susceptible to voriconazole and terbinafine than F. falciforme. Natamycin susceptibility was higher for F. falciforme and A. fumigatus compared to A. flavus. Furthermore, F. falciforme was more susceptible to thiabendazole than A. flavus and A. fumigatus. These observed associations of antifungal sensitivity to natamycin, terbinafine, and thiabendazole demonstrate the importance of fungal identification to the species rather than genus level. The results of this study suggest that treatment of equine FK with antifungal agents requires accurate fungal species identification.
Collapse
Affiliation(s)
- Megan Cullen
- Department of Clinical Sciences, NC State University, Raleigh, NC, United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, NC State University, Raleigh, NC, United States of America
| | - Vicki Cornish
- Center for Integrated Fungal Research, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Ian Q. VanderSchel
- Center for Integrated Fungal Research, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Henry Van T. Cotter
- Center for Integrated Fungal Research, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Marc A. Cubeta
- Center for Integrated Fungal Research, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Ignazio Carbone
- Center for Integrated Fungal Research, College of Agriculture and Life Sciences, NC State University, Raleigh, NC, United States of America
| | - Brian C. Gilger
- Department of Clinical Sciences, NC State University, Raleigh, NC, United States of America
| |
Collapse
|
33
|
Olarte RA, Menke J, Zhang Y, Sullivan S, Slot JC, Huang Y, Badalamenti JP, Quandt AC, Spatafora JW, Bushley KE. Chromosome rearrangements shape the diversification of secondary metabolism in the cyclosporin producing fungus Tolypocladium inflatum. BMC Genomics 2019; 20:120. [PMID: 30732559 PMCID: PMC6367777 DOI: 10.1186/s12864-018-5399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genes involved in production of secondary metabolites (SMs) in fungi are exceptionally diverse. Even strains of the same species may exhibit differences in metabolite production, a finding that has important implications for drug discovery. Unlike in other eukaryotes, genes producing SMs are often clustered and co-expressed in fungal genomes, but the genetic mechanisms involved in the creation and maintenance of these secondary metabolite biosynthetic gene clusters (SMBGCs) remains poorly understood. RESULTS In order to address the role of genome architecture and chromosome scale structural variation in generating diversity of SMBGCs, we generated chromosome scale assemblies of six geographically diverse isolates of the insect pathogenic fungus Tolypocladium inflatum, producer of the multi-billion dollar lifesaving immunosuppressant drug cyclosporin, and utilized a Hi-C chromosome conformation capture approach to address the role of genome architecture and structural variation in generating intraspecific diversity in SMBGCs. Our results demonstrate that the exchange of DNA between heterologous chromosomes plays an important role in generating novelty in SMBGCs in fungi. In particular, we demonstrate movement of a polyketide synthase (PKS) and several adjacent genes by translocation to a new chromosome and genomic context, potentially generating a novel PKS cluster. We also provide evidence for inter-chromosomal recombination between nonribosomal peptide synthetases located within subtelomeres and uncover a polymorphic cluster present in only two strains that is closely related to the cluster responsible for biosynthesis of the mycotoxin aflatoxin (AF), a highly carcinogenic compound that is a major public health concern worldwide. In contrast, the cyclosporin cluster, located internally on chromosomes, was conserved across strains, suggesting selective maintenance of this important virulence factor for infection of insects. CONCLUSIONS This research places the evolution of SMBGCs within the context of whole genome evolution and suggests a role for recombination between chromosomes in generating novel SMBGCs in the medicinal fungus Tolypocladium inflatum.
Collapse
Affiliation(s)
- Rodrigo A. Olarte
- 0000000419368657grid.17635.36Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN USA
| | - Jon Menke
- 0000 0001 0703 5300grid.450240.7Cargill Inc., Wayzata, MN USA
| | - Ying Zhang
- 0000000419368657grid.17635.36Minnesota Supercomputing Institute, Minneapolis, MN USA
| | | | - Jason C. Slot
- 0000 0001 2285 7943grid.261331.4Department of Plant Pathology, Ohio State University, Columbus, OH USA
| | - Yinyin Huang
- 0000000419368657grid.17635.36Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN USA
| | - Jonathan P. Badalamenti
- 0000000419368657grid.17635.36University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN USA
| | - Alisha C. Quandt
- 0000000096214564grid.266190.aDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO USA
| | - Joseph W. Spatafora
- 0000 0001 2112 1969grid.4391.fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR USA
| | - Kathryn E. Bushley
- 0000000419368657grid.17635.36Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN USA
| |
Collapse
|
34
|
Gell RM, Carbone I. HPLC quantitation of aflatoxin B 1 from fungal mycelium culture. J Microbiol Methods 2019; 158:14-17. [PMID: 30677453 DOI: 10.1016/j.mimet.2019.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
Abstract
Aflatoxins are mycotoxins that contaminate agricultural products when infected by toxigenic Aspergillus flavus. Methods for quantifying aflatoxin from culture using chromatography are available but are not optimized for population studies. We provide details of a method for preparation and quantitation of aflatoxin B1 from fungal cultures that satisfy those needs.
Collapse
Affiliation(s)
- Richard M Gell
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Program of Genetics, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
35
|
Caceres I, Snini SP, Puel O, Mathieu F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B₁ Producer. Toxins (Basel) 2018; 10:toxins10110442. [PMID: 30380704 PMCID: PMC6267218 DOI: 10.3390/toxins10110442] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Crop contamination by aflatoxin B1 is a current problem in tropical and subtropical regions. In the future, this contamination risk may be expanded to European countries due to climate change. The development of alternative strategies to prevent mycotoxin contamination that further contribute to the substitution of phytopharmaceutical products are thus needed. For this, a promising method resides in the use of biocontrol agents. Several actinobacteria strains have demonstrated to effectively reduce the aflatoxin B1 concentration. Nevertheless, the molecular mechanism of action by which these biological agents reduce the mycotoxin concentration has not been determined. The aim of the present study was to test the potential use of Streptomyces roseolus as a biocontrol agent against aflatoxin B1 contamination. Co-cultures with Aspergillus flavus were conducted, and the molecular fungal response was investigated through analyzing the q-PCR expression of 65 genes encoding relevant fungal functions. Moreover, kojic and cyclopiazonic acid concentrations, as well as morphological fungal changes were also analyzed. The results demonstrated that reduced concentrations of aflatoxin B1 and kojic acid were respectively correlated with the down-regulation of the aflatoxin B1 gene cluster and kojR gene expression. Moreover, a fungal hypersporulated phenotype and a general over-expression of genes involved in fungal development were observed in the co-culture condition.
Collapse
Affiliation(s)
- Isaura Caceres
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, 31300 Toulouse, France.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France.
| |
Collapse
|
36
|
Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. Int J Food Microbiol 2018; 282:9-15. [PMID: 29885975 DOI: 10.1016/j.ijfoodmicro.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/24/2022]
Abstract
Peanuts are widely consumed as the main ingredient in many local dishes in Malaysia. However, the tropical climate in Malaysia (high temperature and humidity) favours the growth of fungi from Aspergillus section Flavi, especially during storage. Most of the species from this section, such as A. flavus, A. parasiticus and A. nomius, are natural producers of aflatoxins. Precise identification of local isolates and information regarding their ability to produce aflatoxins are very important to evaluate the safety of food marketed in Malaysia. Therefore, this study aimed to identify and characterize the aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi in peanuts and peanut-based products. A polyphasic approach, consisting of morphological and chemical characterizations was applied to 128 isolates originating from raw peanuts and peanut-based products. On the basis of morphological characters, 127 positively identified as Aspergillus flavus, and the other as A. nomius. Chemical characterization revealed six chemotype profiles which indicates diversity of toxigenic potential. About 58.6%, 68.5%, and 100% of the isolates are positive for aflatoxins, cyclopiazonic acid and aspergillic acid productions respectively. The majority of the isolates originating from raw peanut samples (64.8%) were aflatoxigenic, while those from peanut-based products were less toxigenic (39.1%). The precise identification of these species may help in developing control strategies for aflatoxigenic fungi and aflatoxin contamination in peanuts, especially during storage. These findings also highlight the possibility of the co-occurrence of other toxins, which could increase the potential toxic effects of peanuts.
Collapse
|
37
|
Islam MS, Callicott KA, Mutegi C, Bandyopadhyay R, Cotty PJ. Aspergillus flavus resident in Kenya: High genetic diversity in an ancient population primarily shaped by clonal reproduction and mutation-driven evolution. FUNGAL ECOL 2018; 35:20-33. [PMID: 30283498 PMCID: PMC6131765 DOI: 10.1016/j.funeco.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
Abstract
Aspergillus flavus has long been considered to be an asexual species. Although a sexual stage was recently reported for this species from in vitro studies, the amount of recombination ongoing in natural populations and the genetic distance across which meiosis occurs is largely unknown. In the current study, genetic diversity, reproduction and evolution of natural A. flavus populations endemic to Kenya were examined. A total of 2744 isolates recovered from 629 maize-field soils across southern Kenya in two consecutive seasons were characterized at 17 SSR loci, revealing high genetic diversity (9-72 alleles/locus and 2140 haplotypes). Clonal reproduction and persistence of clonal lineages predominated, with many identical haplotypes occurring in multiple soil samples and both seasons. Genetic analyses predicted three distinct lineages with linkage disequilibrium and evolutionary relationships among haplotypes within each lineage suggesting mutation-driven evolution followed by clonal reproduction. Low genetic differentiation among adjacent communities reflected frequent short distance dispersal.
Collapse
Affiliation(s)
- Md-Sajedul Islam
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Kenneth A. Callicott
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Charity Mutegi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
39
|
Pennerman KK, Gonzalez J, Chenoweth LR, Bennett JW, Yin G, Hua SST. Biocontrol strain Aspergillus flavus WRRL 1519 has differences in chromosomal organization and an increased number of transposon-like elements compared to other strains. Mol Genet Genomics 2018; 293:1507-1522. [DOI: 10.1007/s00438-018-1474-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
40
|
Camiletti BX, Moral J, Asensio CM, Torrico AK, Lucini EI, Giménez-Pecci MDLP, Michailides TJ. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. PHYTOPATHOLOGY 2018; 108:818-828. [PMID: 29384448 DOI: 10.1094/phyto-07-17-0255-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.
Collapse
Affiliation(s)
- Boris X Camiletti
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Juan Moral
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Claudia M Asensio
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Ada Karina Torrico
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Enrique I Lucini
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - María de la Paz Giménez-Pecci
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| | - Themis J Michailides
- First author: Microbiología Agrícola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (FCA-UNC), CONICET, 5009 Córdoba, Argentina and Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-INTA), 5020 Córdoba, Argentina; second author: Departamento de Agronomía, University of Córdoba, Campus de Rabanales, Edif. C4, 14071 Cordoba, Spain and Kearney Agricultural Research and Extension Center, University of California, Davis (UC-Davis) 93648; third author: Química Biológica, FCA-UNC, CONICET; fourth and sixth authors: IPAVE-INTA; fifth author: Microbiología Agrícola, FCA-UNC; and seventh author: Kearney Agricultural Research and Extension Center, UC-Davis
| |
Collapse
|
41
|
Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Int J Food Microbiol 2018; 277:58-63. [PMID: 29684766 DOI: 10.1016/j.ijfoodmicro.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
Aspergillus flavus is an opportunistic pathogen and may produce aflatoxins in maize, one of the most important crops in Argentina. A promising strategy to reduce aflatoxin accumulation is the biological control based on competitive exclusion. In order to select potential biocontrol agents among isolates from the maize growing region in Argentina, a total of 512 A. flavus strains were isolated from maize kernels and soil samples. Thirty-six per cent of the isolates from maize kernels did not produce detectable levels of aflatoxins, while 73% of the isolates from soil were characterized as non-aflatoxin producers. Forty percent and 49% of the isolates from maize kernels and soil samples, respectively, were not producers of cyclopiazonic acid (CPA). Sclerotia morphology was evaluated using Czapek Dox media. Eighty-six per cent of the isolates from maize kernels and 85% of the isolates from soil samples were L sclerotia morphotype (average diameter > 400 μm). The remaining isolates did not produce sclerotia. All isolates had MAT 1-1 idiomorph. The competitive ability of 9 non aflatoxigenic strains, 4 CPA(+) and 5 CPA(-), was evaluated in co-inoculations of maize kernels with an aflatoxigenic strain. All evaluated strains significantly (p < 0.05) reduced aflatoxin contamination in maize kernels. The aflatoxin B1 (AFB1) reduction ranged from 6 to 60%. The strain A. flavus ARG5/30 isolated from maize kernels would be a good candidate as a potential biocontrol agent to be used in maize, since it was characterized as neither aflatoxin nor CPA producer, morphotype L, MAT 1-1 idiomorph, and reduced AFB1 content in maize kernels by 59%. This study showed the competitive ability of potential aflatoxin biocontrol agents to be evaluated under field trials in a maize agro-ecosystem in Argentina.
Collapse
|
42
|
Okoth S, De Boevre M, Vidal A, Diana Di Mavungu J, Landschoot S, Kyallo M, Njuguna J, Harvey J, De Saeger S. Genetic and Toxigenic Variability within Aspergillus flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Front Microbiol 2018; 9:57. [PMID: 29434580 PMCID: PMC5790802 DOI: 10.3389/fmicb.2018.00057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 12/18/2022] Open
Abstract
Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial β-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.
Collapse
Affiliation(s)
- Sheila Okoth
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Marthe De Boevre
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Arnau Vidal
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Applied Bioscience Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Martina Kyallo
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Jagger Harvey
- Feed the Future Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Sarah De Saeger
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Mauro A, Garcia-Cela E, Pietri A, Cotty PJ, Battilani P. Biological Control Products for Aflatoxin Prevention in Italy: Commercial Field Evaluation of Atoxigenic Aspergillus flavus Active Ingredients. Toxins (Basel) 2018; 10:E30. [PMID: 29304008 PMCID: PMC5793117 DOI: 10.3390/toxins10010030] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Since 2003, non-compliant aflatoxin concentrations have been detected in maize produced in Italy. The most successful worldwide experiments in aflatoxin prevention resulted from distribution of atoxigenic strains of Aspergillusflavus to displace aflatoxin-producers during crop development. The displacement results in lower aflatoxin concentrations in harvested grain. The current study evaluated in field performances of two atoxigenic strains of A. flavus endemic to Italy in artificially inoculated maize ears and in naturally contaminated maize. Co-inoculation of atoxigenic strains with aflatoxin producers resulted in highly significant reductions in aflatoxin concentrations (>90%) in both years only with atoxigenic strain A2085. The average percent reduction in aflatoxin B₁ concentration in naturally contaminated maize fields was 92.3%, without significant differences in fumonisins between treated and control maize. The vegetative compatibility group of A2085 was the most frequently recovered A. flavus in both treated and control plots (average 61.9% and 53.5% of the A. flavus, respectively). A2085 was therefore selected as an active ingredient for biocontrol products and deposited under provisions of the Budapest Treaty in the Belgian Co-Ordinated Collections of Micro-Organisms (BCCM/MUCL) collection (accession MUCL54911). Further work on development of A2085 as a tool for preventing aflatoxin contamination in maize produced in Italy is ongoing with the commercial product named AF-X1™.
Collapse
Affiliation(s)
- Antonio Mauro
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaam, Tanzania.
| | - Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford MK43 0AL, UK.
| | - Amedeo Pietri
- Institute of Food Science and Nutrition, Università Cattolica del Sacro Cuore, 29100 Piacenza, Italy.
| | - Peter J Cotty
- United States Department of Agriculture, Agricultural Research Service, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Paola Battilani
- Department Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29100 Piacenza, Italy.
| |
Collapse
|
44
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
|
45
|
Moore GG, Olarte RA, Horn BW, Elliott JL, Singh R, O'Neal CJ, Carbone I. Global population structure and adaptive evolution of aflatoxin-producing fungi. Ecol Evol 2017; 7:9179-9191. [PMID: 29152206 PMCID: PMC5677503 DOI: 10.1002/ece3.3464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi, a total of 1,304 isolates were sampled across six species (A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus) from single fields in major peanut‐growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum‐likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions (aflM/alfN and aflW/aflX) and four noncluster regions (amdS, trpC, mfs and MAT), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans‐speciation within two noncluster regions, whereby A. flavus SBG strains from Australia share haplotypes with either A. flavus or A. parasiticus, was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi, other region‐specific environmental and genetic parameters must also be considered.
Collapse
Affiliation(s)
- Geromy G Moore
- Southern Regional Research Center Agricultural Research Service U.S. Department of Agriculture New Orleans LA USA
| | - Rodrigo A Olarte
- Department of Plant Biology University of Minnesota St. Paul MN USA
| | - Bruce W Horn
- Department of Agriculture Agricultural Research Service National Peanut Research Laboratory Dawson GA USA
| | - Jacalyn L Elliott
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Rakhi Singh
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Carolyn J O'Neal
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology Center for Integrated Fungal Research North Carolina State University Raleigh NC USA
| |
Collapse
|
46
|
Baranyi N, Kocsubé S, Jakšić Despot D, Šegvić Klarić M, Szekeres A, Bencsik O, Kecskeméti A, Manikandan P, Tóth B, Kredics L, Khaled JM, Alharbi NS, Vágvölgyi C, Varga J. Combined genotyping strategy reveals structural differences between Aspergillus flavus lineages from different habitats impacting human health. J Basic Microbiol 2017; 57:899-909. [PMID: 28902962 DOI: 10.1002/jobm.201700243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/17/2017] [Indexed: 11/07/2022]
Abstract
Aspergillus flavus is a filamentous fungus which is widespread on agricultural products and also able to cause various human diseases. This species is frequently isolated from indoor air as well, furthermore, it is known as a common causal agent of keratomycosis, particularly in subtropical and tropical areas. It is also able to produce aflatoxins, one of the most carcinogenic mycotoxins which are harmful to animals and humans. In this study, 59 A. flavus isolates from four different habitats and 1 A. minisclerotigenes isolate were investigated. The isolates were identified and confirmed at the species level by the sequence analysis of a part of their calmodulin gene. Applying a combined analysis of UP-PCR, microsatellite, and calmodulin sequence data, the four group of isolates formed separate clusters on the phylogenetic tree. Examining the distribution of mating type genes MAT1-1 and MAT1-2, a ratio of approximately 3:1 was determined, and no correlation was found between the carried mating type gene and the aflatoxin production capability. HPLC analysis revealed that none of the examined isolates collected from indoor air or maize in Central Europe were able to produce aflatoxins, while about half of the isolates from India produced these mycotoxins under the test conditions.
Collapse
Affiliation(s)
- Nikolett Baranyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Daniela Jakšić Despot
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - Maja Šegvić Klarić
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - András Szekeres
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Ottó Bencsik
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Anita Kecskeméti
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Palanisamy Manikandan
- Greenlink Analytical and Research Laboratory India Private Ltd, Coimbatore, Tamilnadu, India
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Beáta Tóth
- National Agricultural Research and Innovation Center, NÖKO, Szeged, Hungary
| | - László Kredics
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Csaba Vágvölgyi
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - János Varga
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
47
|
Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS. Toxins (Basel) 2017; 9:toxins9010035. [PMID: 28098779 PMCID: PMC5308267 DOI: 10.3390/toxins9010035] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem.
Collapse
|
48
|
Bandyopadhyay R, Ortega-Beltran A, Akande A, Mutegi C, Atehnkeng J, Kaptoge L, Senghor A, Adhikari B, Cotty P. Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2130] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and finally consumers. Diverse fungi within Aspergillus section Flavi contaminate crops with aflatoxins. Within these Aspergillus communities, several genotypes are not capable of producing aflatoxins (atoxigenic). Carefully selected atoxigenic genotypes in biological control (biocontrol) formulations efficiently reduce aflatoxin contamination of crops when applied prior to flowering in the field. This safe and environmentally friendly, effective technology was pioneered in the US, where well over a million acres of susceptible crops are treated annually. The technology has been improved for use in sub-Saharan Africa, where efforts are under way to develop biocontrol products, under the trade name Aflasafe, for 11 African nations. The number of participating nations is expected to increase. In parallel, state of the art technology has been developed for large-scale inexpensive manufacture of Aflasafe products under the conditions present in many African nations. Results to date indicate that all Aflasafe products, registered and under experimental use, reduce aflatoxin concentrations in treated crops by >80% in comparison to untreated crops in both field and storage conditions. Benefits of aflatoxin biocontrol technologies are discussed along with potential challenges, including climate change, likely to be faced during the scaling-up of Aflasafe products. Lastly, we respond to several apprehensions expressed in the literature about the use of atoxigenic genotypes in biocontrol formulations. These responses relate to the following apprehensions: sorghum as carrier, distribution costs, aflatoxin-conscious markets, efficacy during drought, post-harvest benefits, risk of allergies and/or aspergillosis, influence of Aflasafe on other mycotoxins and on soil microenvironment, dynamics of Aspergillus genotypes, and recombination between atoxigenic and toxigenic genotypes in natural conditions.
Collapse
Affiliation(s)
- R. Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A. Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A. Akande
- IITA, PMB 82, Garki GPO, Kubwa, Abuja, Nigeria
| | - C. Mutegi
- IITA, ILRI campus, P.O. Box 30772-00100, Nairobi, Kenya
| | - J. Atehnkeng
- IITA, Chitedze Research Station, Off Mchinji Road, P.O. Box 30258, Lilongwe 3, Malawi
| | - L. Kaptoge
- International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, 200001 Ibadan, Nigeria
| | - A.L. Senghor
- La Direction de la Protection des Végétaux (DPV), Km 15, Route de Rufisque, en face Forail, BP 20054, Thiaroye-Dakar, Senegal
| | - B.N. Adhikari
- USDA-ARS, School of Plant Sciences, University of Arizona, P.O. Box 210036, Tucson, AZ 85721-0036, USA
| | - P.J. Cotty
- USDA-ARS, School of Plant Sciences, University of Arizona, P.O. Box 210036, Tucson, AZ 85721-0036, USA
| |
Collapse
|
49
|
Wambui J, Karuri E, Ojiambo J, Njage P. Adaptation and mitigation options to manage aflatoxin contamination in food with a climate change perspective. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2016.2109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the impact of climate change remains vital for food safety and public health. Of particular importance is the influence of climatic conditions on the growth of Aspergillus flavus and production of their toxins. Nevertheless, little is known about the actual impact of climate change on the issue. Setting up of relevant measures to manage the impact has therefore become a daunting task especially in developing nations. Therefore, this study aimed at providing adaptation and mitigation options to manage this risk with a special focus on Kenya where cases of aflatoxicosis have been recurrent. We used a systematic literature review of review and research articles, with limited searching but systematic screening to explore available qualitative and quantitative data. Projections from the data, showed that on average, a 58.9% increase of aflatoxin contamination in the Central and Western parts and a decrease of 44.6% in the Eastern and Southern parts is expected but with several possible scenarios. This makes the impact of climate change on aflatoxin contamination in Kenya complex. To protect the public and environment from the negative impact, a regulatory framework that allows for an integrated management of aflatoxins in a changing climate was proposed. The management practices in the framework are divided into agronomic, post-harvest and institutional levels. Given the multiple points of application, coordination amongst stakeholders along the chain is fundamental. We therefore proposed a complimentary framework that allows the food safety issues to be addressed in an integrated manner while allowing for transparent synergies and trade-offs (in implementing the measures). A policy-oriented foresight should be carried out to provide policy based evidence for the applicability of the proposed adaptation and mitigation measures.
Collapse
Affiliation(s)
- J.M. Wambui
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
- Kenya Nutritionists and Dieticians Institute, P.O. Box 20436, 00100 Nairobi, Kenya
| | - E.G. Karuri
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
| | - J.A. Ojiambo
- Kenya Nutritionists and Dieticians Institute, P.O. Box 20436, 00100 Nairobi, Kenya
| | - P.M.K. Njage
- Department of Food Science, Nutrition and Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya
- Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
50
|
Horn BW, Gell RM, Singh R, Sorensen RB, Carbone I. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance. PLoS One 2016; 11:e0146169. [PMID: 26731416 PMCID: PMC4701395 DOI: 10.1371/journal.pone.0146169] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023] Open
Abstract
Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.
Collapse
Affiliation(s)
- Bruce W. Horn
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia, United States of America
| | - Richard M. Gell
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rakhi Singh
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ronald B. Sorensen
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia, United States of America
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|