1
|
Chan JM, Ramos-Sevillano E, Betts M, Wilson HU, Weight CM, Houhou-Ousalah A, Pollara G, Brown JS, Heyderman RS. Bacterial surface lipoproteins mediate epithelial microinvasion by Streptococcus pneumoniae. Infect Immun 2024; 92:e0044723. [PMID: 38629841 DOI: 10.1128/iai.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.
Collapse
Affiliation(s)
- Jia Mun Chan
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Modupeh Betts
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Holly U Wilson
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Caroline M Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ambrine Houhou-Ousalah
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Gabriele Pollara
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
2
|
Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol 2019; 14:207-222. [DOI: 10.2217/fmb-2018-0279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a markerless gene deletion strategy in Streptococcus suis to solve the problem that several serotypes against electrotransformation of foreign DNA. Materials & methods: Bioinformatics retrieval was performed to identified ComRS systems functioning for natural transformation. A sacB-spc cassette with the upper and lower homologous fragments was amplification by fusion-PCR for spectinomycin-positive and sucrose-negative selection during gene deletion. Results & conclusion: Three phylogenetic clusters of ComR were identified to function for natural transformation by specific recognition to competence pheromone in S. suis. Thus, they were employed to establish gene deletion method. Its efficiency for genetic replacement was dependent on the length of homologs fragment and the concentration of donor DNA. This rapid gene-editing technique may greatly facilitate molecular studies on S. suis.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
3
|
Nasher F, Heller M, Hathaway LJ. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species. Front Microbiol 2018; 8:2688. [PMID: 29379482 PMCID: PMC5775242 DOI: 10.3389/fmicb.2017.02688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus). Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami-AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.
Collapse
Affiliation(s)
- Fauzy Nasher
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species. PLoS Pathog 2016; 12:e1005979. [PMID: 27907154 PMCID: PMC5131902 DOI: 10.1371/journal.ppat.1005979] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Collapse
Affiliation(s)
- Erin Shanker
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
5
|
Lee LF, Mariappan V, Vellasamy KM, Lee VS, Vadivelu J. Antimicrobial activity of Tachyplesin 1 against Burkholderia pseudomallei: an in vitro and in silico approach. PeerJ 2016; 4:e2468. [PMID: 27812400 PMCID: PMC5088614 DOI: 10.7717/peerj.2468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/21/2016] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many conventional antibiotics. Therefore, alternative antimicrobial agents such as antimicrobial peptides (AMPs) are extensively studied to combat this issue. Our study aims to identify and understand the mode of action of the potential AMP(s) that are effective against B. pseudomallei in both planktonic and biofilm state as well as to predict the possible binding targets on using in vitro and in silico approaches. In the in vitro study, 11 AMPs were tested against 100 B. pseudomallei isolates for planktonic cell susceptibility, where LL-37, and PG1, demonstrated 100.0% susceptibility and TP1 demonstrated 83% susceptibility. Since the B. pseudomallei activity was reported on LL-37 and PG1, TP1 was selected for further investigation. TP1 inhibited B. pseudomallei cells at 61.69 μM, and membrane blebbing was observed using scanning electron microscopy. Moreover, TP1 inhibited B. pseudomallei cell growth, reaching bactericidal endpoint within 2 h post exposure as compared to ceftazidime (CAZ) (8 h). Furthermore, TP1 was shown to suppress the growth of B. pseudomallei cells in biofilm state at concentrations above 221 μM. However, TP1 was cytotoxic to the mammalian cell lines tested. In the in silico study, molecular docking revealed that TP1 demonstrated a strong interaction to the common peptide or inhibitor binding targets for lipopolysaccharide of Escherichia coli, as well as autolysin, pneumolysin, and pneumococcal surface protein A (PspA) of Streptococcus pneumoniae. Homology modelled B. pseudomallei PspA protein (YDP) also showed a favourable binding with a strong electrostatic contribution and nine hydrogen bonds. In conclusion, TP1 demonstrated a good potential as an anti-B. pseudomallei agent.
Collapse
Affiliation(s)
- Lyn-Fay Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Vanitha Mariappan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur , Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
6
|
Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H, Wells JM. Control of competence for DNA transformation in streptococcus suis by genetically transferable pherotypes. PLoS One 2014; 9:e99394. [PMID: 24968201 PMCID: PMC4072589 DOI: 10.1371/journal.pone.0099394] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Here we show that S. suis, a major bacterial pathogen of pigs and emerging pathogen in humans responds to a peptide pheromone by developing competence for DNA transformation. This species does not fall within any of the phylogenetic clusters of streptococci previously shown to regulate competence via peptide pheromones suggesting that more species of streptococci may be naturally competent. Induction of competence was dependent on ComX, a sigma factor that controls the streptococcal late competence regulon, extracellular addition of a comX-inducing peptide (XIP), and ComR, a regulator of comX. XIP was identified as an N-terminally truncated variant of ComS. Different comS alleles are present among strains of S. suis. These comS alleles are not functionally equivalent and appear to operate in conjuction with a cognate ComR to regulate comX through a conserved comR-box promoter. We demonstrate that these ‘pherotypes’ can be genetically transferred between strains, suggesting that similar approaches might be used to control competence induction in other lactic acid bacteria that lack ComR/ComS homologues but possess comX and the late competence regulon. The approaches described in this paper to identify and optimize peptide-induced competence may also assist other researchers wishing to identify natural competence in other bacteria. Harnessing natural competence is expected to accelerate genetic research on this and other important streptococcal pathogens and to allow high-throughput mutation approaches to be implemented, opening up new avenues for research.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Astrid de Greeff
- Central Veterinary Institute, Animal Sciences, Wageningen University, Lelystad, The Netherlands
| | - Donald A. Morrison
- Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hilde Smith
- Central Veterinary Institute, Animal Sciences, Wageningen University, Lelystad, The Netherlands
| | - Jerry M. Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol 2012; 27:221-45. [PMID: 22759309 DOI: 10.1111/j.2041-1014.2012.00655.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Surface-exposed proteins of pathogenic bacteria are considered as potential virulence factors through their direct contribution to host-pathogen interactions. Four families of surface proteins decorate the cell surface of the human pathogen Streptococcus pneumoniae. Besides lipoproteins and LPXTG proteins, also present in other gram-positive bacteria, the pneumococcus presents the choline-binding protein (CBP) family and the non-classical surface proteins (NCSPs). The CBPs present specific structural features that allow their anchorage to the cell envelope through non-covalent interaction with choline residues of lipoteichoic acid and teichoic acid. NCSP is an umbrella term for less characterized proteins displaying moonlighting functions on the pneumococcal surface that lack a leader peptide and membrane-anchor motif. Considering the unceasing evolution of microbial species under the selective pressure of antibiotic use, detailed understanding of the interaction between pathogen and the host cells is required for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the three-dimensional structures of surface-exposed pneumococcal proteins. The modular nature of some of them produces a great versatility and sophistication of the virulence functions that, in most cases, cannot be deduced by the structural analysis of the isolated modules.
Collapse
Affiliation(s)
- I Pérez-Dorado
- Department of Crystallography and Structural Biology, Instituto de Química-Física Rocasolano, CSIC, Madrid, Spain
| | | | | |
Collapse
|
8
|
Mashburn-Warren L, Morrison DA, Federle MJ. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 2010; 78:589-606. [PMID: 20969646 DOI: 10.1111/j.1365-2958.2010.07361.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All streptococcal genomes encode the alternative sigma factor SigX and 21 SigX-dependent proteins required for genetic transformation, yet no pyogenic streptococci are known to develop competence. Resolving this paradox may depend on understanding the regulation of sigX. We report the identification of a regulatory circuit linked to the sigX genes of mutans, pyogenic, and bovis streptococci that uses a novel small, double-tryptophan-containing sigX-inducing peptide (XIP) pheromone. In all three groups, the XIP gene (comS), and sigX have identical, non-canonical promoters consisting of 9 bp inverted repeats separated from a -10 hexamer by 19 bp. comS is adjacent to a gene encoding a putative transcription factor of the Rgg family and is regulated by its product, which we designate ComR. Deletion of comR or comS in Streptococcus mutans abolished transformability, as did deletion of the oligopeptide permease subunit oppD, suggesting that XIP is imported. Providing S. mutans with synthetic fragments of ComS revealed that seven C-terminal residues, including the WW motif, cause robust induction of both sigX and the competent state. We propose that this circuit is the proximal regulator of sigX in S. mutans, and we infer that it controls competence in a parallel way in all pyogenic and bovis streptococci.
Collapse
Affiliation(s)
- Lauren Mashburn-Warren
- Center for Pharmaceutical Biotechnology, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
9
|
Yang Q, Yi G, Zhang F, Thon MR, Sze SH. Identifying gene clusters within localized regions in multiple genomes. J Comput Biol 2010; 17:657-68. [PMID: 20500020 DOI: 10.1089/cmb.2009.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An important strategy to study genome evolution is to investigate the clustering of orthologous genes among multiple genomes, in which the most popular approaches require that the distance between adjacent genes in a cluster be small. We investigate a different formulation based on constraining the overall size of a cluster and develop statistical significance estimates that allow direct comparison of clusters of different sizes. We first consider a restricted version which requires that orthologous genes are strictly ordered within each cluster and show that it can be solved in polynomial time. We then develop practical exact algorithms for the unrestricted problem that allows paralogous genes within a genome and clusters that may not appear in every genome while considering a general model in which a gene is allowed to appear in more than one orthologous group. We show that our algorithm can identify biologically relevant gene clusters on four bacterial genomes Bacillus subtilis, Streptococcus pyogenes, Streptococcus pneumoniae, and Clostridium acetobutylicum. We also show that our algorithm can identify significantly more functionally enriched gene clusters on four yeast genomes Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, and Saccharomyces bayanus than previous algorithms. A software program (GCFinder) and a list of gene clusters found on the bacterial and the yeast genomes are available at http://faculty.cse.tamu.edu/shsze/gcfinder .
Collapse
Affiliation(s)
- Qingwu Yang
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843-3112, USA
| | | | | | | | | |
Collapse
|
10
|
Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 2006; 189:38-51. [PMID: 17041037 PMCID: PMC1797212 DOI: 10.1128/jb.01148-06] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading human respiratory pathogen that causes a variety of serious mucosal and invasive diseases. D39 is an historically important serotype 2 strain that was used in experiments by Avery and coworkers to demonstrate that DNA is the genetic material. Although isolated nearly a century ago, D39 remains extremely virulent in murine infection models and is perhaps the strain used most frequently in current studies of pneumococcal pathogenesis. To date, the complete genome sequences have been reported for only two S. pneumoniae strains: TIGR4, a recent serotype 4 clinical isolate, and laboratory strain R6, an avirulent, unencapsulated derivative of strain D39. We report here the genome sequences and new annotation of two different isolates of strain D39 and the corrected sequence of strain R6. Comparisons of these three related sequences allowed deduction of the likely sequence of the D39 progenitor and mutations that arose in each isolate. Despite its numerous repeated sequences and IS elements, the serotype 2 genome has remained remarkably stable during cultivation, and one of the D39 isolates contains only five relatively minor mutations compared to the deduced D39 progenitor. In contrast, laboratory strain R6 contains 71 single-base-pair changes, six deletions, and four insertions and has lost the cryptic pDP1 plasmid compared to the D39 progenitor strain. Many of these mutations are in or affect the expression of genes that play important roles in regulation, metabolism, and virulence. The nature of the mutations that arose spontaneously in these three strains, the relative global transcription patterns determined by microarray analyses, and the implications of the D39 genome sequences to studies of pneumococcal physiology and pathogenesis are presented and discussed.
Collapse
Affiliation(s)
- Joel A Lanie
- Department of Biology, Indiana University Bloomington, Jordan Hall 142, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guiral S, Hénard V, Laaberki MH, Granadel C, Prudhomme M, Martin B, Claverys JP. Construction and evaluation of a chromosomal expression platform (CEP) for ectopic, maltose-driven gene expression in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2006; 152:343-349. [PMID: 16436422 DOI: 10.1099/mic.0.28433-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the construction and evaluation of a chromosomal expression platform (CEP), which allows controlled gene expression following ectopic integration into the chromosome of Streptococcus pneumoniae, is described. CEP is based on the well-studied maltosaccharide-inducible system. To facilitate integration at CEP, a plasmid, pCEP, capable of replication in Escherichia coli, but not in S. pneumoniae, was assembled. This plasmid contains an expression/selection cassette flanked on each side by more than 2 kb of pneumococcal DNA. The cassette comprises a maltose-inducible promoter, P(M), separated from a kanamycin-resistance gene by NcoI and BamHI cloning sites. Clones harbouring the gene of interest integrated at CEP under the control of P(M) can be obtained through direct transformation of an S. pneumoniae recipient with ligation products between that gene and NcoI/BamHI-digested pCEP DNA, followed by selection for kanamycin-resistant transformants.
Collapse
Affiliation(s)
- Sébastien Guiral
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Vincent Hénard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Maria-Halima Laaberki
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Chantal Granadel
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Bernard Martin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jean-Pierre Claverys
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
12
|
Daly MM, Doktor S, Flamm R, Shortridge D. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 2004; 42:3570-4. [PMID: 15297499 PMCID: PMC497602 DOI: 10.1128/jcm.42.8.3570-3574.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has shown that the efflux genes in Streptococcus pneumoniae that are responsible for acquired macrolide resistance can be distinguished as either mef(E) or mef(A). The genetic elements on which mef(A) and mef(E) are found also carry an open reading frame (ORF) that is 56% homologous to msr(A) in Staphylococcus. The prevalence of mef(A/E) and of the msr-like ORF [msr(D)] was evaluated in 153 mef(+) S. pneumoniae clinical isolates collected in North America, Europe, Africa, and Asia from 1997 to 2002. Clinical isolates were screened with PCR primers specific for either mef(A) or mef(E) and for msr(D). mef(A), mef(E), and msr(D) were cloned from mef(+) strains and transformed into a susceptible, competent strain of S. pneumoniae. The transformants were tested for antimicrobial susceptibilities and efflux pump induction. The results of this work demonstrated that mef(A) is more often isolated in parts of Europe, with some incidence in Canada, and that the msr-like gene alone can confer the efflux phenotype.
Collapse
Affiliation(s)
- Melissa M Daly
- Infectious Disease Research, Abbott Laboratories, Bldg. AP52, 200 Abbott Park Rd., Abbott Park, IL 60064, USA
| | | | | | | |
Collapse
|
13
|
Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ. Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol 2004; 186:5258-66. [PMID: 15292127 PMCID: PMC490881 DOI: 10.1128/jb.186.16.5258-5266.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CiaR/H two-component system is involved in regulating virulence and competence in Streptococcus pneumoniae. The system is known to regulate many genes, including that for high-temperature requirement A (HtrA). This gene has been implicated in the ability of the pneumococcus to colonize the nasopharynx of infant rats. We reported previously that deletion of the gene for HtrA made the pneumococcal strains much less virulent in mouse models, less able to grow at higher temperatures, and more sensitive to oxidative stress. In this report, we show that the growth phenotype as well as sensitivity to oxidative stress of Delta ciaR mutant was very similar to that of a Delta htrA mutant and that the expression of the HtrA protein was reduced in a ciaR-null mutant. Both the in vitro phenotype and the reduced virulence of Delta ciaR mutant could be restored by increasing the expression of HtrA.
Collapse
Affiliation(s)
- Yasser Musa Ibrahim
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, G12-8QQ, United Kingdom
| | | | | | | |
Collapse
|
14
|
Bergé M, Mortier-Barrière I, Martin B, Claverys JP. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 2004; 50:527-36. [PMID: 14617176 DOI: 10.1046/j.1365-2958.2003.03702.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seventy-five years after the discovery of transformation with Streptococcus pneumoniae, it is remarkable how little we know of the proteins that interact with incoming single strands in the early processing of transforming DNA. In this work, we used as donor DNA in transformation a radioactively labelled homologous fragment to examine the fate of the single-stranded (ssDNA) products of uptake in cells mutant for DprA or RecA, two proteins essential for transformation. Fifteen minutes after uptake, the labelling of specific chromosomal restriction fragments that demonstrated homologous integration in the wild type was not detected in dprA or recA cells, indicating that in the mutants incoming ssDNA could not be processed into recombinants. Investigation of the fate of donor label 1 min after uptake revealed that incoming ssDNA was immediately degraded in the absence of DprA or RecA. Our results demonstrate that incoming ssDNA requires active protection prior to the RecA-driven search for homology and that both DprA and RecA are needed for this protection.
Collapse
Affiliation(s)
- Mathieu Bergé
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
15
|
Kerr AR, Adrian PV, Estevão S, de Groot R, Alloing G, Claverys JP, Mitchell TJ, Hermans PWM. The Ami-AliA/AliB permease of Streptococcus pneumoniae is involved in nasopharyngeal colonization but not in invasive disease. Infect Immun 2004; 72:3902-6. [PMID: 15213133 PMCID: PMC427416 DOI: 10.1128/iai.72.7.3902-3906.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ami-AliA/AliB oligopeptide permease is an ATP-binding cassette transporter which is found in Streptococcus pneumoniae and which is involved in nutrient uptake. We investigated the role of the three paralogous oligopeptide-binding lipoproteins AmiA, AliA, and AliB by using murine models of pneumococcal colonization and invasive disease. A series of mutants lacking aliA, aliB, and amiA either alone or in combination as double or triple mutations were used. Inoculation of the nasopharynx with a mixture of the obl (oligopeptide-binding lipoprotein-negative) triple-mutant and wild-type (D39) bacteria resulted in significantly smaller numbers of obl bacteria colonizing the nasopharynx. The use of a mixture of individual mutants and wild-type pneumococci revealed that AmiA, AliA, and AliB were all required for successful colonization of the nasopharynx. The obl mutant was more attenuated than the aliB mutant but not the aliA or amiA mutant. Therefore, there is some redundancy in the Ami-AliA/AliB complex in terms of nasopharyngeal colonization, with AliA and AmiA being able to compensate for the removal of AliB. Animals with invasive disease caused by these mutants had survival times, bacterial loads, and inflammatory cytokine production levels similar to those of animals infected with wild-type pneumococci. Our results show that although the Ami-AliA/AliB complex is not required for virulence during pneumococcal pneumonia, it does play a role in colonization of the nasopharynx.
Collapse
Affiliation(s)
- A R Kerr
- Division of Infection and Immunity, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ. Role of HtrA in the virulence and competence of Streptococcus pneumoniae. Infect Immun 2004; 72:3584-91. [PMID: 15155668 PMCID: PMC415679 DOI: 10.1128/iai.72.6.3584-3591.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HtrA is a major virulence factor of Streptococcus pneumoniae (the pneumococcus). Deletion of the gene for HtrA from strain D39 of the pneumococcus completely abolished its virulence in mouse models of pneumonia and bacteremia, while the virulence of a second strain (TIGR4) was dramatically reduced. HtrA-negative mutants induced much less inflammation in the lungs during pneumonia than the wild type. HtrA is involved in the ability of the pneumococcus to grow at high temperatures, to resist oxidative stress, and to undergo genetic transformation. The expression and cellular location of several known virulence factors of the pneumococcus were not affected by the lack of HtrA.
Collapse
Affiliation(s)
- Yasser Musa Ibrahim
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
17
|
Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 2003; 185:5967-75. [PMID: 14526007 PMCID: PMC225050 DOI: 10.1128/jb.185.20.5967-5975.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/29/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans belongs to the viridans group of oral streptococci, which is the leading cause of endocarditis in humans. The LraI family of lipoproteins in viridans group streptococci and other bacteria have been shown to function as virulence factors, adhesins, or ABC-type metal transporters. We previously reported the identification of the S. mutans LraI operon, sloABCR, which encodes components of a putative metal uptake system composed of SloA, an ATP-binding protein, SloB, an integral membrane protein, and SloC, a solute-binding lipoprotein, as well as a metal-dependent regulator, SloR. We report here the functional analysis of this operon. By Western blotting, addition of Mn to the growth medium repressed SloC expression in a wild-type strain but not in a sloR mutant. Other metals tested had little effect. Cells were also tested for aerobic growth in media stripped of metals then reconstituted with Mg and either Mn or Fe. Fe at 10 micro M supported growth of the wild-type strain but not of a sloA or sloC mutant. Mn at 0.1 micro M supported growth of the wild-type strain and sloR mutant but not of sloA or sloC mutants. The combined results suggest that the SloABC proteins transport both metals, although the SloR protein represses this system only in response to Mn. These conclusions are supported by (55)Fe uptake studies with Mn as a competitor. Finally, a sloA mutant demonstrated loss of virulence in a rat model of endocarditis, suggesting that metal transport is required for endocarditis pathogenesis.
Collapse
Affiliation(s)
- Sehmi Paik
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
18
|
Taylor DL, Ward PN, Rapier CD, Leigh JA, Bowler LD. Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA. J Bacteriol 2003; 185:5210-9. [PMID: 12923094 PMCID: PMC181005 DOI: 10.1128/jb.185.17.5210-5219.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus uberis is an increasingly significant cause of intramammary infection in the dairy cow, presently responsible for approximately 33% of all cases of bovine mastitis in the United Kingdom. Following experimentally induced infection of the lactating mammary gland, S. uberis is found predominantly in the luminal areas of secretory alveoli and ductular tissue, indicating that much of the bacterial growth occurs in residual and newly synthesized milk. With the objective of identifying potential virulence determinants in a clinical isolate of S. uberis, we have used representational difference analysis of cDNA to identify genes that show modified expression in milk. We have identified a number of differentially expressed genes that may contribute to the overall pathogenicity of the organism. Of these, a transcript encoding a putative oligopeptide binding protein (OppA) was further characterized. We have found that S. uberis possesses two oppA-like open reading frames, oppA1 and oppA2, which are up-regulated to different degrees following growth in milk. Mutants lacking either oppA1 or oppA2 are viable and have an increased resistance to the toxic peptide derivative aminopterin; however, only mutants lacking oppA1 display a lower rate of growth in milk. In addition, expression of the oppA genes appears to be coordinated by different mechanisms. We conclude that the oppA genes encode oligopeptide binding proteins, possibly displaying different specificities, required for the efficient growth of S. uberis in milk.
Collapse
Affiliation(s)
- D L Taylor
- Trafford Centre for Graduate Medical Education and Research, University of Sussex, Falmer, Brighton BN1 9RY, UK.
| | | | | | | | | |
Collapse
|
19
|
Smith AJ, Kitt AJ, Ward PN, Leigh JA. Isolation and characterization of a mutant strain of Streptococcus uberis, which fails to utilize a plasmin derived beta-casein peptide for the acquisition of methionine. J Appl Microbiol 2002; 93:631-9. [PMID: 12234346 DOI: 10.1046/j.1365-2672.2002.01723.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To isolate and characterize a mutant of Streptococcus uberis strain 0140J which fails to utilize a plasmin derived beta-casein peptide for the acquisition of methionine. METHODS AND RESULTS Random insertional mutagenesis was used to isolate a mutant strain of Strep. uberis 0140J which was unable to utilize methionine from within a casein-derived peptide. The altered gene in the mutant strain showed homology to an oligopeptide permease gene of Streptococcus pyogenes (oppF). The mutant was unable to obtain specific amino acids from defined peptides of various lengths and its growth yield in skimmed milk was between 1 and 10% that of the wild-type strain, but was restored following the inclusion of these amino acids. CONCLUSIONS The oligopeptide permease homologue of Strep. uberis 0140J is necessary for the utilization of amino acids from within specific peptides. Efficient acquisition of essential amino acids by Strep. uberis 0140J is required for the bacterium to achieve an optimum yield in milk. SIGNIFICANCE AND IMPACT OF THE STUDY Streptococcus uberis is a major agent of bovine mastitis with a corresponding high economic loss. By targeting metabolic pathways essential to the growth of Strep. uberis it may be possible to prevent the establishment of growth of the bacterium in milk. This study has identified the acquisition of essential amino acids as playing a role in the growth of Strep. uberis in milk.
Collapse
Affiliation(s)
- A J Smith
- The Institute for Animal Health, Compton, Berkshire, UK
| | | | | | | |
Collapse
|
20
|
Abstract
Viridans streptococci, including Streptococcus anginosus, are a common cause of infective endocarditis in humans. Adherence mechanisms involved in colonization of non-diseased native valves (present in 40% of native valve endocarditis) are unknown. We have previously shown that an endocarditis isolate of S. anginosus adheres to exposed basement membrane of human and porcine valve tissue in a laminin dependent manner. We now describe the partial purification of an 80 kDa putative laminin binding protein (PLBP) by biochemical methods. Amino acid sequence of PLBP peptides is similar to substrate binding proteins of ABC transporters in other Gram-positive cocci.
Collapse
Affiliation(s)
- Bradley L Allen
- Indianapolis VA Medical Center and Department of Internal Medicine, Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | |
Collapse
|
21
|
Prudhomme M, Libante V, Claverys JP. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2002; 99:2100-5. [PMID: 11854505 PMCID: PMC122325 DOI: 10.1073/pnas.032262999] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2001] [Indexed: 11/18/2022] Open
Abstract
Integration of foreign DNA was observed in the Gram-positive human pathogen Streptococcus pneumoniae (pneumococcus) after transformation with DNA from a recombinant Escherichia coli bacteriophage lamda carrying a pneumococcal insert. Segments of lamda DNA replaced chromosomal sequences adjacent to the region homologous with the pneumococcal insert, whence the name insertion-deletion. Here we report that a pneumococcal insert was absolutely required for insertion-deletion formation, but could be as short as 153 bp; that the sizes of foreign DNA insertions (289-2,474 bp) and concomitant chromosomal deletions (45-1,485 bp) were not obviously correlated; that novel joints clustered preferentially within segments of high GC content; and that the crossovers in 29 independent novel joints were located 1 bp from the border or within short (3-10 nt long) stretches of identity (microhomology) between resident and foreign DNA. The data are consistent with a model in which the insert serving as a homologous recombination anchor favors interaction and subsequent illegitimate recombination events at microhomologies between foreign and resident sequences. The potential of homology- directed illegitimate recombination for genome evolution was illustrated by the trapping of functional heterologous genes.
Collapse
Affiliation(s)
- Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaire, Unité Mixte de Recherche 5100, Centre National de la Recherche Scientifique-Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | | | | |
Collapse
|
22
|
Beard SJ, Salisbury V, Lewis RJ, Sharpe JA, MacGowan AP. Expression of lux genes in a clinical isolate of Streptococcus pneumoniae: using bioluminescence to monitor gemifloxacin activity. Antimicrob Agents Chemother 2002; 46:538-42. [PMID: 11796373 PMCID: PMC127039 DOI: 10.1128/aac.46.2.538-542.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A clinical isolate of Streptococcus pneumoniae was transformed with a plasmid containing the lux operon of Photorhabdus luminescens that had been modified to function in gram-positive bacteria. Cells containing this plasmid produced light stably and constitutively, without compromising the growth rate. Light output was correlated with measurements of optical density and viable counts during exponential growth and provided a sensitive, real-time measure of the pharmacodynamics of the fluoroquinolone gemifloxacin.
Collapse
Affiliation(s)
- S J Beard
- Faculty of Applied Sciences, University of the West of England, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Kitten T, Munro CL, Michalek SM, Macrina FL. Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 2000; 68:4441-51. [PMID: 10899841 PMCID: PMC98344 DOI: 10.1128/iai.68.8.4441-4451.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Accepted: 04/27/2000] [Indexed: 11/20/2022] Open
Abstract
Proteins belonging to the LraI (for "lipoprotein receptor antigen") family function as adhesins in several streptococci, as a virulence factor for endocarditis in at least one of these species, and potentially as metal transporters in many bacteria. We have identified and characterized the chromosomal locus containing the LraI family gene (designated sloC) from Streptococcus mutans, an agent of dental caries and endocarditis in humans. Northern blot analysis indicated that sloC is cotranscribed with three other genes. As with other LraI operons, the sloA and sloB genes apparently encode components of an ATP-binding cassette transport system. The product of the fourth gene, sloR, has homology to the metal-dependent regulator from Corynebacterium diphtheriae, DtxR. A potential binding site for SloR was identified upstream from the sloABCR operon and was conserved upstream from LraI operons in several other streptococci. Potential SloR homologs were identified in the unfinished genomic sequences from two of these, S. pneumoniae and S. pyogenes. Mutagenesis of sloC in S. mutans resulted in apparent loss of expression of the entire operon as assessed by Northern blot analysis. The sloC mutant was indistinguishable from its wild-type parent in a gnotobiotic rat model of caries but was significantly less virulent in a rat model of endocarditis. Virulence for endocarditis was restored by correction of the sloC mutation but not by provision of the sloC gene in trans, suggesting that virulence requires the expression of other genes in the sloC operon.
Collapse
Affiliation(s)
- T Kitten
- Philips Institute of Oral & Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | |
Collapse
|
24
|
Claverys JP, Grossiord B, Alloing G. Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental conditions? Res Microbiol 2000; 151:457-63. [PMID: 10961459 DOI: 10.1016/s0923-2508(00)00169-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Streptococcus pneumoniae is a fastidious obligate parasite requiring several amino acids for growth. Oligopeptide uptake mediated by the Ami ABC permease is therefore important for nutrition but this could not account for the highly pleiotropic phenotype exhibited by Ami mutants. The hypothesis that peptide transport plays a pivotal role in sensing environmental conditions and indirectly modulates the expression of several genes is discussed.
Collapse
Affiliation(s)
- J P Claverys
- Laboratoire de microbiologie et génétique moléculaire, UMR5100, CNRS-Université Paul Sabatier, Toulouse, France.
| | | | | |
Collapse
|
25
|
Overweg K, Kerr A, Sluijter M, Jackson MH, Mitchell TJ, de Jong AP, de Groot R, Hermans PW. The putative proteinase maturation protein A of Streptococcus pneumoniae is a conserved surface protein with potential to elicit protective immune responses. Infect Immun 2000; 68:4180-8. [PMID: 10858235 PMCID: PMC101721 DOI: 10.1128/iai.68.7.4180-4188.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface-exposed proteins often play an important role in the interaction between pathogenic bacteria and their host. We isolated a pool of hydrophobic, surface-associated proteins of Streptococcus pneumoniae. The opsonophagocytic activity of hyperimmune serum raised against this protein fraction was high and species specific. Moreover, the opsonophagocytic activity was independent of the capsular type and chromosomal genotype of the pneumococcus. Since the opsonophagocytic activity is presumed to correlate with in vivo protection, these data indicate that the protein fraction has the potential to elicit species-specific immune protection with cross-protection against various pneumococcal strains. Individual proteins in the extract were purified by two-dimensional gel electrophoresis. Antibodies raised against three distinct proteins contributed to the opsonophagocytic activity of the serum. The proteins were identified by mass spectrometry and N-terminal amino acid sequencing. Two proteins were the previously characterized pneumococcal surface protein A and oligopeptide-binding lipoprotein AmiA. The third protein was the recently identified putative proteinase maturation protein A (PpmA), which showed homology to members of the family of peptidyl-prolyl cis/trans isomerases. Immunoelectron microscopy demonstrated that PpmA was associated with the pneumococcal surface. In addition, PpmA was shown to elicit species-specific opsonophagocytic antibodies that were cross-reactive with various pneumococcal strains. This antibody cross-reactivity was in line with the limited sequence variation of ppmA. The importance of PpmA in pneumococcal pathogenesis was demonstrated in a mouse pneumonia model. Pneumococcal ppmA-deficient mutants showed reduced virulence. The properties of PpmA reported here indicate its potential for inclusion in multicomponent protein vaccines.
Collapse
Affiliation(s)
- K Overweg
- Department of Pediatrics, Sophia Children's Hospital, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Merrell DS, Camilli A. Detection and analysis of gene expression during infection by in vivo expression technology. Philos Trans R Soc Lond B Biol Sci 2000; 355:587-99. [PMID: 10874732 PMCID: PMC1692773 DOI: 10.1098/rstb.2000.0600] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many limitations associated with the use of in vitro models for study of bacterial pathogenesis can be overcome by the use of technologies that detect pathogen gene expression during the course of infection within an intact animal. In vivo expression technology (IVET) accomplishes this with versatility: it has been developed with a variety of reporter systems which allow for either in vivo selection or ex vivo screening. Selectable gene fusion systems generally allow for the complementation of a bacterial metabolic defect that is lethal in vivo, or for antibiotic resistance during the course of in vivo antibiotic challenge. In contrast, the screenable gene fusion system uses a site-specific DNA recombinase that, when expressed in vivo, excises a selectable gene cassette from the bacterial chromosome. Loss of this cassette can then be either screened or selected for ex vivo. The recombinase-based IVET can be used to detect genes that are transcriptionally induced during infection, including those expressed transiently or at low levels and, in addition, can be used to monitor the spatial and temporal expression of specific genes during the course of infection.
Collapse
Affiliation(s)
- D S Merrell
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | |
Collapse
|
27
|
Gasc AM, Giammarinaro P, Ton-Hoang B, Geslin P, van der Giezen M, Sicard M. Structural organization of the Streptococcus pneumoniae chromosome and relatedness of penicillin-sensitive and -resistant strains in type 9V. Microb Drug Resist 2000; 3:65-72. [PMID: 9109097 DOI: 10.1089/mdr.1997.3.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fragmentation of Streptococcus pneumoniae genomic DNA with low-frequency-cleavage restriction endonucleases and separation of the fragments by field-inversion gel electrophoresis (FIGE) provides a DNA-fingerprint of a strain. This method enables us to construct a physical and genetic map of the R6 laboratory strain what will be presented. The origin of replication containing several Dna boxes was located in the dnaA region. It was of interest to compare the profiles of subclones. Two clones of strain R36A (R6 and C13) were cultivated separately for more than 15,000 generations in two laboratories. FIGE profiles differed by only one band. Another R36A descendant, isolated in 1958 by Ravin, strain Rx was of interest since it was deficient in Dpn restriction enzymes and methylases and in the hex B function. Its origin was questionable; its profile is identical to others R6 descendants, demonstrating that Rx is derived from R36A. FIGE analysis was carried out on several penicillin-resistant strains of type 9V because penicillin-resistance in this type increased recently. The profiles of a collection of a number of these resistant isolates were very similar, showing that they result from a clone. The profiles of penicillin sensitive isolates of the same type are very similar to the resistant isolates. This suggests that the 9V type has spread recently from a clone, and the resistance genes have mutated and were selected when penicillin was extensively used.
Collapse
Affiliation(s)
- A M Gasc
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The intestinal peptide transport system has broad substrate specificities. In addition to its physiological function of absorbing di- and tripeptides resulting from the digestion of dietary proteins, this transport system also absorbs some orally administered peptidomimetic drugs, including beta-lactam antibiotics, angiotensin converting enzyme inhibitors, renin inhibitors, bestatin, thrombin inhibitors, and thyrotropin-releasing hormone and its analogues. There have been several studies on the mechanism and substrate structure-affinity relationship for this transport system. Rapid progress has been made recently in studies on the molecular basis of the intestinal peptide transport system. A protein apparently involved in peptide transport has been isolated from rabbit small intestines, and genes for human intestinal peptide transporters have been cloned, sequenced and functionally expressed. This review summarizes these studies and addresses the pharmaceutical potential of the intestinal peptide transport system.
Collapse
Affiliation(s)
- C Y Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy, Purdue University, West Lafayette Indiana 47907, USA
| | | | | |
Collapse
|
29
|
Lee MS, Morrison DA. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 1999; 181:5004-16. [PMID: 10438773 PMCID: PMC93990 DOI: 10.1128/jb.181.16.5004-5016.1999] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Competence for genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system encoded by two genetic loci, comCDE and comAB. Additional competence-specific operons, cilA, cilB, cilC, cilD, cilE, cinA-recA, coiA, and cfl, involved in the DNA uptake process and recombination, share an unusual consensus sequence at -10 and -25 in the promoter, which is absent from the promoters of comAB and comCDE. This pattern suggests that a factor regulating transcription of these transformation machinery genes but not involved with comCDE and comAB expression might be an alternative sigma factor. A search for such a global transcriptional regulator was begun by purifying pneumococcal RNA polymerase holoenzyme. In preparations from competent pneumococcal cultures a protein which seemed to be responsible for cilA transcription in vitro was identified. The corresponding gene was identified and found to be present in two copies, designated comX1 and comX2, located adjacent to two of the repeated rRNA operons. Expression of transformation machinery operons, such as cilA, cilD, cilE, and cfl, but not that of the quorum-sensing operons comAB and comCDE, was shown to depend on comX, while comX expression depended on ComE but not on ComX itself. We conclude that the factor is a competence-specific global transcription modulator which links quorum-sensing information transduced to ComE to competence and propose that it acts as an alternate sigma factor. We also report that comAB and comCDE are not sufficient for shutoff of competence-stimulating peptide-induced gene expression nor for the subsequent refractory period, suggesting that these phenomena depend on one or more ComX-dependent genes.
Collapse
Affiliation(s)
- M S Lee
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | |
Collapse
|
30
|
Pasta F, Sicard MA. Polarity of recombination in transformation of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 1999; 96:2943-8. [PMID: 10077616 PMCID: PMC15874 DOI: 10.1073/pnas.96.6.2943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In transformation of Streptococcus pneumoniae DNA enters the cell as single-strand fragments and integrates into the chromosome by homologous recombination. Deletions and insertions of a few hundred base pairs frequently stop the recombination process of a donor strand. In this work we took advantage of such interruptions of recombination to compare the transformation efficiencies of the segments 5'- and 3'-ward from a deletion. The deletion was created in the center of a fragment of the ami locus, and sites around the deletion were labeled by a frameshift generating a restriction site. Heteroduplexes were constructed containing two restriction sites on one strand and two different ones on the complementary strand. ami+ bacteria were transformed with such heteroduplexes. ami- transformants were isolated and individually underwent amplification of the transformed ami region. We have obtained two kinds of amplification products: short when the deletion was integrated, long when recombination stops at the deletion. Each long fragment was tested by the four restriction enzymes to detect which strand and which side of the deletion had recombined. We found that 80% of the cuts were located 5' to the deletion, showing that, in vivo, the 5' side is strongly favored by recombination. Further results suggest that exchanges occurring from 5' to 3' relative to the donor strand are more efficient than in the opposite direction, thus accounting for the 5' preference.
Collapse
Affiliation(s)
- F Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires du Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France.
| | | |
Collapse
|
31
|
Gage DJ, Long SR. alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 1998; 180:5739-48. [PMID: 9791127 PMCID: PMC107636 DOI: 10.1128/jb.180.21.5739-5748.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Accepted: 08/28/1998] [Indexed: 11/20/2022] Open
Abstract
Rhizobium meliloti can occupy at least two distinct ecological niches; it is found in the soil as a free-living saprophyte, and it also lives as a nitrogen-fixing intracellular symbiont in root nodules of alfalfa and related legumes. One approach to understanding how R. meliloti alters its physiology in order to become an integral part of a developing nodule is to identify and characterize genes that are differentially expressed by bacteria living inside nodules. We used a screen to identify genes under the control of the R. meliloti regulatory protein NodD3, SyrM, or SyrA. These regulatory proteins are expressed by bacteria growing inside the root nodule. One gene isolated in this screen was mapped to pSymB and displayed complex regulation. The gene was downregulated by the syrA gene product and also by glucose and succinate. This gene, referred to as agpA, encodes a periplasmic binding protein that is most similar to proteins from the periplasmic oligopeptide binding protein family. It is likely that AgpA binds alpha-galactosides, because alpha-galactosides induce the expression of agpA, and agpA mutants cannot utilize or transport these sugars. Activity of an agpA::TnphoA fusion was downregulated by SyrA. Because syrA is known to be expressed at high levels in intracellular symbiotic R. meliloti and at low levels in the free-living bacteria, we propose that AgpA may belong to the class of gene products whose expression decreases when R. meliloti becomes an intracellular symbiont.
Collapse
Affiliation(s)
- D J Gage
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
32
|
Kornacki JA, Oliver DB. Lyme disease-causing Borrelia species encode multiple lipoproteins homologous to peptide-binding proteins of ABC-type transporters. Infect Immun 1998; 66:4115-22. [PMID: 9712756 PMCID: PMC108494 DOI: 10.1128/iai.66.9.4115-4122.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cell envelope proteins of Borrelia burgdorferi, the causative agent of Lyme disease, we constructed a library of B. burgdorferi genes fused to the Escherichia coli phoA gene, which expresses enzymatically active alkaline phosphatase. One such gene, oppA-1, encodes a predicted polypeptide with significant similarities to various peptide-binding proteins of ABC-type transporters. Immediately downstream of oppA-1 are two genes, oppA-2 and oppA-3, whose predicted polypeptide products show strong similarities in their amino acid sequences to OppA-1, including a sequence that resembles the most highly conserved region in peptide-binding proteins. By labeling with [3H]palmitate, OppA-1, OppA-2, and OppA-3 were shown to be lipoproteins. DNA hybridization analysis showed that the oppA-1 oppA-2 oppA-3 region is located on the linear chromosome of B. burgdorferi, and the genes are conserved among different Borrelia species that cause Lyme disease (B. burgdorferi, B. garinii, and B. afzelli), suggesting that all three homologous genes are important to the maintenance of Lyme disease spirochetes in one or more of their hosts.
Collapse
Affiliation(s)
- J A Kornacki
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
33
|
Abstract
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available.
Collapse
Affiliation(s)
- J Mahillon
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
34
|
Novak R, Braun JS, Charpentier E, Tuomanen E. Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa. Mol Microbiol 1998; 29:1285-96. [PMID: 9767595 DOI: 10.1046/j.1365-2958.1998.01016.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Downregulation of the major autolysin in Streptococcus pneumoniae leads to penicillin tolerance, a feature that is characterized by the ability to survive but not grow in the presence of antibiotic. Screening a library of mutants in pneumococcal surface proteins for the ability to survive 10x minimum inhibitory concentration (MIC) of penicillin revealed over 10 candidate tolerance genes. One such mutant contained an insertion in the known gene psaA, which is part of the psa locus. This locus encodes an ABC-type Mn permease complex. Sequence analysis of adjacent DNA extended the known genetic organization of the locus to include two new open reading frames (ORFs), psaB, which encodes an ATP-binding protein, and psaC, which encodes a hydrophobic transmembrane protein. Mutagenesis of psaB, psaC, psaA and downstream psaD resulted in penicillin tolerance. Defective adhesion and reduced transformation efficiency, as reported previously for a psaA- mutant, were phenotypes shared by psaB-, psaC- and psaD- knockout mutants. Western blot analysis demonstrated that the set of mutants expressed RecA, but none of them showed translation of the autolysin gene, which is located downstream of recA. The addition of manganese (Mn) failed to correct the abnormal physiology. These results suggest that this ABC-type Mn permease complex has a pleiotropic effect on pneumococcal physiology including adherence and autolysis. These are the first genes suggested as being involved in triggering autolysin. The results raise the possibility that loss of function of PsaA, by vaccine-induced antibody for instance, may promote penicillin tolerance.
Collapse
Affiliation(s)
- R Novak
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
35
|
Podbielski A, Leonard BA. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol Microbiol 1998; 28:1323-34. [PMID: 9680220 DOI: 10.1046/j.1365-2958.1998.00898.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The majority of characterized bacterial dipeptide permeases (Dpp) are membrane-associated complexes of five proteins belonging to the ABC-transporter family. They have been found to be involved in the uptake of essential amino acids, haem production, chemotaxis and sporulation. A 5.8 kb genomic DNA fragment of the serotype M49 group A streptococcal (GAS) strain CS101 was sequenced and found to contain five putative GAS Dpp genes (dppA to dppE). Deduced amino acid sequences exhibited 17-54% similarity to corresponding ABC-transporter sequences. The operon organization of the five genes was confirmed by transcriptional analysis, and a shorter, more abundant, dppA-only transcript was detected similar to that found in the GAS oligopeptide permease (Opp) system. Insertional inactivation was used to create serotype M2 and M49 strains that did not express the dppD and dppEATPase genes or nearly the entire operon. In feeding experiments with di- to hexapeptides, the wild-type strain grew with each peptide tested. The dpp mutants were unable to grow on dipeptides, whereas hexapeptides did not sustain the growth of opp mutants. Expression of the dpp operon was induced approximately fourfold in late exponential growth phase. In addition, a striking increase in the dppA to dppA-E ratio from 5:1 to more than 20:1 occurred during late exponential growth phase in complex medium. Growth in chemically defined medium (CDM) supplemented with various dipeptides specifically induced the expression of dpp and reduced both the dppA to dppA-E and oppA to oppA-F mRNA ratios. Expression of the virulence factor SpeB (major cysteine protease) was reduced eightfold in dpp mutants, whereas dpp expression was decreased about fourfold in a Mga virulence regulator mutant. Taken together, these data indicate a correlation between levels of intracellular essential amino acids and the regulation of virulence factor expression.
Collapse
Affiliation(s)
- A Podbielski
- Department of Medical Microbiology and Hygiene, University Hospital Ulm, Germany.
| | | |
Collapse
|
36
|
Mortier-Barrière I, de Saizieu A, Claverys JP, Martin B. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 1998; 27:159-70. [PMID: 9466264 DOI: 10.1046/j.1365-2958.1998.00668.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transcriptional activation of the recA gene of Streptococcus pneumoniae was previously shown to occur at competence. A 5.7 kb recA-specific transcript that contained at least two additional genes, cinA and dinF, was identified. We now report the complete characterization of the recA operon and investigation of the role of the competence-specific induction of recA. The 5.7 kb competence-specific recA transcript is shown to include lytA, which encodes the pneumococcal autolysin, a protein previously shown to contribute to virulence of S. pneumoniae. Uncoupling (denoted Ind-) of recA and/or the downstream genes was achieved through the placement of transcription terminators within the operon, either upstream or downstream of recA. Prevention of the competence-specific induction of recA severely affected spontaneous transformation. Transformation efficiencies of recA+ (Ind-) and of wild-type cells were compared under various conditions and with different donor DNA. Chromosomal transformation was reduced 17-(chromosomal donor) to 45-fold (recombinant plasmid donor), depending on the donor DNA, and plasmid establishment was reduced 129-fold. Measurement of uptake of radioactively labelled donor DNA in transformed cells in parallel with scoring for transformants (chromosomal donor) revealed normal uptake, but a 21-fold reduction in recombination in a recA+ (Ind-) strain, indicating that the transformation defect was primarily in recombination. Strikingly enough, a much larger (460-fold) reduction in recombination was observed for the shortest homologous donor fragment used (878 nucleotides long). Possible interpretations of the observation that basal RecA appears unable to promote efficient recombination whatever the number and the length of donor fragments taken up are proposed. The role of recA induction is discussed in view of the potential contribution of transformation to genome plasticity in this pathogen.
Collapse
Affiliation(s)
- I Mortier-Barrière
- Microbiologie et Génétique Moléculaire CNRS-UPR 9007, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
37
|
Kumari K, Weigel PH. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis. J Biol Chem 1997; 272:32539-46. [PMID: 9405467 DOI: 10.1074/jbc.272.51.32539] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously reported the first cloning of a functional glycosaminoglycan synthase, the hyaluronan synthase (HAS) from Group A Streptococcus pyogenes (spHAS) (DeAngelis, P. L., Papaconstantinou, J., and Weigel, P. H. (1993) J. Biol. Chem. 268, 19181-19184). Group A spHAS was unrelated to a putative Group C HA synthase reported by others (Lansing, M., Lellig, S., Mausolf, A., Martini, I. , Crescenzi, F., Oregon, M., and Prehm, P. (1993) Biochem. J. 289, 179-184). Here we report the isolation of a bona fide HA synthase gene from a highly encapsulated strain of Group C Streptococcus equisimilis. The encoded protein, designated seHAS, is 417 amino acids long (calculated molecular weight, 47,778; calculated pI, 9.1) and is the smallest member of the HAS family identified thus far. The enzyme migrates anomalously fast in SDS-polyacrylamide gel electrophoresis (approximately 42,000 Da). The seHAS protein shows no similarity (<2% identity) to the previously reported Group C gene, which is not an HA synthase. The seHAS and spHAS protein and coding sequences are 72 and 70% identical, respectively. seHAS is also similar to eukaryotic HAS1 (approximately 31% identical), HAS2 (approximately 28% identical), and HAS3 (28% identical). The deduced protein sequence of seHAS was confirmed by reactivity with a synthetic peptide antibody. Recombinant seHAS expressed in Escherichia coli was recovered in membranes as a major protein (approximately 10% of the total protein) and synthesized very large HA (Mr >7 x 10(6)) in the presence of UDP-GlcNAc and UDP-GlcA. The product contained equimolar amounts of both sugars and was degraded by the specific Streptomyces hyaluronidase. Comparison of the two recombinant streptococcal enzymes in isolated membranes showed that seHAS and spHAS are essentially identical in the steady-state size distribution of HA chains they synthesize, but seHAS has an intrinsic 2-fold faster rate of chain elongation (Vmax) than spHAS. seHAS is the most active HA synthase identified thus far; it polymerizes HA at an average rate of 160 monosaccharides/s. The two bacterial HA synthase genes may have arisen from a common ancient gene shared with the early evolving vertebrates.
Collapse
Affiliation(s)
- K Kumari
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | |
Collapse
|
38
|
Kempf B, Gade J, Bremer E. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 1997; 179:6213-20. [PMID: 9335265 PMCID: PMC179532 DOI: 10.1128/jb.179.20.6213-6220.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The OpuA transport system of Bacillus subtilis functions as a high-affinity uptake system for the osmoprotectant glycine betaine. It is a member of the ABC transporter superfamily and consists of an ATPase (OpuAA), an integral membrane protein (OpuAB), and a hydrophilic polypeptide (OpuAC) that shows the signature sequence of lipoproteins (B. Kempf and E. Bremer, J. Biol. Chem. 270:16701-16713, 1995). The OpuAC protein might thus serve as an extracellular substrate binding protein anchored in the cytoplasmic membrane via a lipid modification at an amino-terminal cysteine residue. A malE-opuAC hybrid gene was constructed and used to purify a lipidless OpuAC protein. The purified protein bound radiolabeled glycine betaine avidly and exhibited a KD of 6 microM for this ligand, demonstrating that OpuAC indeed functions as the substrate binding protein for the B. subtilis OpuA system. We have selectively expressed the opuAC gene under T7 phi10 control in Escherichia coli and have demonstrated through its metabolic labeling with [3H]palmitic acid that OpuAC is a lipoprotein. A mutant expressing an OpuAC protein in which the amino-terminal cysteine residue was changed to an alanine (OpuAC-3) was constructed by oligonucleotide site-directed mutagenesis. The OpuAC-3 protein was not acylated by [3H]palmitic acid, and part of it was secreted into the periplasmic space of E. coli, where it could be released from the cells by cold osmotic shock. The opuAC-3 mutation was recombined into an otherwise wild-type opuA operon in the chromosome of B. subtilis. Unexpectedly, this mutant OpuAC system still functioned efficiently for glycine betaine acquisition in vivo under high-osmolarity growth conditions. In addition, the mutant OpuA transporter exhibited kinetic parameters similar to that of the wild-type system. Our data suggest that the lipidless OpuAC-3 protein is held in the cytoplasmic membrane of B. subtilis via its uncleaved hydrophobic signal peptide.
Collapse
Affiliation(s)
- B Kempf
- Department of Biology, Philipps University Marburg, Germany
| | | | | |
Collapse
|
39
|
Zeller V, Janoir C, Kitzis MD, Gutmann L, Moreau NJ. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41:1973-8. [PMID: 9303396 PMCID: PMC164047 DOI: 10.1128/aac.41.9.1973] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The accumulation of fluoroquinolones (FQs) was studied in a FQ-susceptible laboratory strain of Streptococcus pneumoniae (strain R6). Uptake of FQs was not saturable, was rapidly reversible, and appeared to occur by passive diffusion. In the presence of glucose, which energizes bacteria, the uptake of FQs decreased. Inhibitors of the proton motive force and ATP synthesis increased the uptake of FQs in previously energized bacteria. Similar results were observed with the various FQs tested and may be explained to be a consequence simply of the pH gradient that exists across the cytoplasmic membrane. From a clinical susceptible strain (strain SPn5907) we isolated in vitro on ciprofloxacin an FQ-resistant mutant (strain SPn5929) for which the MICs of hydrophilic molecules were greater than those of hydrophobic molecules, and the mutant was resistant to acriflavine, cetrimide, and ethidium bromide. Strain SPn5929 showed a significantly decreased uptake of ciprofloxacin, and its determinant of resistance to ciprofloxacin was transferred by transformation to susceptible laboratory strain R6 (strain R6tr5929). No mutations in the quinolone resistance-determining regions of the gyrA and parC genes were found. In the presence of arsenate or carbonyl cyanide m-chlorophenylhydrazone, the levels of uptake of ciprofloxacin by the two resistant strains, SPn5929 and R6tr5929, reached the levels of uptake of their susceptible parents. These results suggest an active efflux of ciprofloxacin in strain SPn5929.
Collapse
Affiliation(s)
- V Zeller
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, France
| | | | | | | | | |
Collapse
|
40
|
Hendricks JK, Mobley HL. Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J Bacteriol 1997; 179:5892-902. [PMID: 9294450 PMCID: PMC179482 DOI: 10.1128/jb.179.18.5892-5902.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori urease requires nickel ions in the enzyme active site for catalytic activity. Nickel ions must, therefore, be actively acquired by the bacterium. NixA (high-affinity nickel transport protein)-deficient mutants of H. pylori retain significant urease activity, suggesting the presence of alternate nickel transporters. Analysis of the nucleotide sequence of the H. pylori genome revealed a homolog of NikD, a component of an ATP-dependent nickel transport system in Escherichia coli. Based on this sequence, a 378-bp DNA fragment was PCR amplified from H. pylori genomic DNA and used as a probe to identify an H. pylori lambda ZAPII genomic library clone that carried these sequences. Four open reading frames of 621, 273, 984, and 642 bp (abcABCD) were revealed by sequencing and predicted polypeptides of 22.7, 9.9, 36.6, and 22.8 kDa, respectively. The 36.6-kDa polypeptide (AbcC) has significant homology (56% amino acid sequence identity) to an E. coli ATP-binding protein component of an ABC transport system, while none of the other putative proteins are significantly homologous to polypeptides in the available databases. To determine the possible contribution of these genes to urease activity, abcC and abcD were each insertionally inactivated with a kanamycin resistance (aphA) cassette and allelic exchange mutants of each gene were constructed in H. pylori UMAB41. Mutation of abcD resulted in an 88% decrease in urease activity to 27 +/- 31 mumol of NH3/min/mg of protein (P < 0.0001), and a double mutant of nixA and abcC resulted in the near abolishment of urease activity (1.1 +/- 1.4 mumol of NH3/min/mg of protein in the double mutant versus 228 +/- 92 mumol of NH3/min/mg of protein in the parent [P < 0.0001]). Synthesis of urease apoenzyme, however, was unaffected by mutations in any of the abc genes. We conclude that the abc gene cluster, in addition to nixA, is involved in production of a catalytically active urease.
Collapse
Affiliation(s)
- J K Hendricks
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|
41
|
Yeung MK, Ragsdale PA. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect Immun 1997; 65:2629-39. [PMID: 9199430 PMCID: PMC175372 DOI: 10.1128/iai.65.7.2629-2639.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence of the chromosomal DNA flanking the Actinomyces naeslundii (formerly A. viscosus) T14V type 1 fimbrial structural subunit gene (fimP) was determined. Six open reading frames (ORFs), in the order 5' ORF3, ORF2, ORF1,fimP, ORF4, ORF5, ORF6 3', were identified. ORF1 encoded a protein of 408 amino acid residues (Mr = 39,270) and had significant sequence homology with the A. naeslundii T14V type 1 and A. naeslundii WVU45 type 2 fimbrial structural subunits. An in-frame fusion of ORF1 to the malE gene of the expression vector, pMAL-c2, yielded a protein that was immunostained with antibodies raised against the maltose binding protein and A. naeslundii T14V whole bacteria. Digestion of the fusion protein with factor Xa released a protein (apparent molecular mass of 34 kDa) that was immunostained only with the antibody directed against A. naeslundii T14V whole bacterial cells. Integration plasmids carrying a kanamycin resistance gene (kan) that was used to substitute for ORF1 or for DNA fragments internal to the coding region of the other five ORFs were used to transform A. naeslundii T14V. Neither type 1 fimbriae nor the 65-kDa fimbrial structural subunit was detected in mutants obtained by allelic replacement of ORF1 or ORF2. Mutants obtained by allelic replacement of ORF3 or ORF4 expressed only the 65-kDa fimbrial structural subunit. These mutants did not bind, in vitro, to proline-rich proteins that serve as the receptors for Actinomyces type 1 fimbriae. In contrast, a mutant in which the integration plasmid DNA had been inserted at a site close to the carboxyl terminus of ORF6 expressed type 1 fimbriae and had adherence properties similar to those observed in the wild-type strain. These results demonstrate the existence of additional genes near fimP that are likely to be involved in the synthesis and function of cell surface fimbriae of A. naeslundii T14V.
Collapse
Affiliation(s)
- M K Yeung
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 78284, USA.
| | | |
Collapse
|
42
|
Theiss P, Wise KS. Localized frameshift mutation generates selective, high-frequency phase variation of a surface lipoprotein encoded by a mycoplasma ABC transporter operon. J Bacteriol 1997; 179:4013-22. [PMID: 9190819 PMCID: PMC179212 DOI: 10.1128/jb.179.12.4013-4022.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The wall-less mycoplasmas have revealed unusual microbial strategies for adaptive variation of antigenic membrane proteins exposed during their surface colonization of host cells. In particular, high-frequency mutations affecting the expression of selected surface lipoproteins have been increasingly documented for this group of organisms. A novel manifestation of mutational phase variation is shown here to occur in Mycoplasma fermentans, a chronic human infectious agent and possible AIDS-associated pathogen. A putative ABC type transport operon encoding four gene products is identified. The 3' distal gene encoding P78, a known surface-exposed antigen and the proposed substrate-binding lipoprotein of the transporter, is subject to localized hypermutation in a short homopolymeric tract of adenine residues located in the N-terminal coding region of the mature product. High-frequency, reversible insertion/deletion frameshift mutations lead to selective phase variation in P78 expression, whereas the putative nucleotide-binding protein, P63, encoded by the most 5' gene of the operon, is continually expressed. Mutation-based phase variation in specific surface-exposed microbial transporter components may provide an adaptive advantage for immune evasion, while continued expression of other elements of the same transporter may preserve essential metabolic functions and confer alternative substrate specificity. These features could be critical in mycoplasmas, where limitations in both transcriptional regulators and transport systems may prevail. This study also documents that P63 contains an uncharacteristic hydrophobic sequence between predicted nucleotide binding motifs and displays an amphiphilic character in detergent fractionation. Both features are consistent with an evolutionary adaptation favoring integral association of this putative energy-transducing component with the single mycoplasma membrane.
Collapse
Affiliation(s)
- P Theiss
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, 65212, USA
| | | |
Collapse
|
43
|
Dintilhac A, Claverys JP. The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol 1997; 148:119-31. [PMID: 9765793 DOI: 10.1016/s0923-2508(97)87643-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
To identify new components involved in the phenomenon of transformation in Streptococcus pneumoniae, a library of potential mutants has been generated by random insertion of an erythromycin resistance gene. Transformation-deficient mutants were screened using an in situ colony transformation test. The adc locus, which was identified in this search, was cloned and sequenced. Sequence analysis revealed a putative operon of three ORFs (adcC, adcB and adcA) with homology to ATP-binding cassette (ABC) transport operons encoding streptococcal adhesins such as ScaA of S. gordonii and FimA of S. parasanguis. adcA can encode a lipoprotein of 313 amino acid residues containing a putative metal-binding site. The polypeptide shows about 30% sequence identity with ScaA and FimA. We discuss evidence which leads us to propose that AdcA, together with a set of 14 proteins including ScaA, FimA and homologous adhesins, defines a new family of external solute-binding proteins, cluster 9, specific for metals.
Collapse
Affiliation(s)
- A Dintilhac
- Laboratoire de Microbiologie et Génétique moléculaire CNRS-UPR 9007, Université Paul Sabatier, Toulouse, France
| | | |
Collapse
|
44
|
Wadkins RM, Roepe PD. Biophysical aspects of P-glycoprotein-mediated multidrug resistance. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 171:121-65. [PMID: 9066127 DOI: 10.1016/s0074-7696(08)62587-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the 45 years since Burchenal's observation of chemotherapeutic drug resistance in tumor cells, many investigators have studied the molecular basis of tumor drug resistance and the phenomenon of tumor multidrug resistance (tumor MDR). Examples of MDR in microorganisms have also become topics of intensive study (e.g., Plasmodium falciparum MDR and various types of bacterial MDR) and these emerging fields have, in some cases, borrowed language, techniques, and theories from the tumor MDR field. Serendipitously, the cloning of MDR genes overexpressed in MDR tumor cells has led to elucidation of a large family of membrane proteins [the ATP-binding cassette (ABC) proteins], an important subset of which confer drug resistance in many different cells and microorganisms. In trying to decipher how ABC proteins confer various forms of drug resistance, studies on the structure and function of both murine and human MDR1 protein (also called P-glycoprotein or P-gp) have often led the way. Although various theories of P-gp function have become popular, there is still no precise molecular-level description for how P-gp overexpression lowers intracellular accumulation of chemotherapeutic drugs. In recent years, controversy has developed over whether the protein protects cells by translocating drugs directly (as some type of drug pump) or indirectly (through modulating biophysical parameters of the cell). In this ongoing debate over P-gp function, detailed consideration of biophysical issues is critical but has often been neglected in considering cell biological and pharmacological issues. In particular, P-gp overexpression also changes plasma membrane electrical potential (delta psi zero) and intracellular pH (pHi), and these changes will greatly affect the cellular flux of a large number of compounds to which P-gp overexpression confers resistance. In this chapter, we highlight these biophysical issues and describe how delta psi zero and pHi may in fact be responsible for many MDR-related phenomena that have often been hypothesized to be due to direct drug translocation (e.g., drug pumping) by P-gp.
Collapse
Affiliation(s)
- R M Wadkins
- Raymond & Beverly Sackler Foundation Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
45
|
Abstract
Adherence to a surface is a key element for colonization of the human oral cavity by the more than 500 bacterial taxa recorded from oral samples. Three surfaces are available: teeth, epithelial mucosa, and the nascent surface created as each new bacterial cell binds to existing dental plaque. Oral bacteria exhibit specificity for their respective colonization sites. Such specificity is directed by adhesin-receptor cognate pairs on genetically distinct cells. Colonization is successful when adherent cells grow and metabolically participate in the oral bacterial community. The potential roles of adherence-relevant molecules are discussed in the context of the dynamic nature of the oral econiche.
Collapse
Affiliation(s)
- C J Whittaker
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
46
|
Hsing W, Canale-Parola E. A methyl-accepting protein involved in multiple-sugar chemotaxis by Cellulomonas gelida. J Bacteriol 1996; 178:5153-8. [PMID: 8752332 PMCID: PMC178311 DOI: 10.1128/jb.178.17.5153-5158.1996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tethered-cell and capillary assays indicated that L-methionine is required by Cellulomonas gelida for its normal cell motility pattern and chemotaxis and that S-adenosylmethionine is involved in sugar chemotaxis by this cellulolytic bacterium. In addition, in vivo methylation assays showed that several proteins were methylated in the absence of protein synthesis. The incorporated methyl groups were alkali sensitive. Of special interest was the observation that the methylation level of a 51,000-Mr protein increased two- to fivefold upon addition of various sugar attractants and decreased after the removal of the attractants. The increase was less pronounced in mutants defective in sugar chemotaxis and appeared to be specifically involved with sugar chemotaxis. Furthermore, cell fractionation and in vitro methylation assays demonstrated that the 51,000-Mr protein is located in the cytoplasmic membrane. These results suggest that a specific methyl-accepting chemotaxis protein is involved in multiple-sugar chemotaxis by C gelida. During chemotaxis, the changes of methylesterase activity in C gelida cells were similar to those in Escherichia coli RP437 cells, as determined by a continuous-flow assay for methanol evolution. Thus, the mechanism of methyl-accepting chemotaxis protein-mediated chemotaxis of the gram-positive C. gelida appears to be similar to that of the gram-negative E. coli rather than to that of other gram-positive bacteria, such as Bacillus subtilis.
Collapse
Affiliation(s)
- W Hsing
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
47
|
Alloing G, Granadel C, Morrison DA, Claverys JP. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol Microbiol 1996; 21:471-8. [PMID: 8866471 DOI: 10.1111/j.1365-2958.1996.tb02556.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An unmodified heptadecapeptide pheromone capable of eliciting competence for genetic transformation in Streptococcus pneumoniae has recently been identified and characterized. In considering possible signal-transduction mechanisms for the peptide, the previously characterized Ami oligopeptide permease and the three highly homologous oligopeptide-binding lipo-proteins. AmiA, AliA, and AliB, appeared to be good candidates for receptors. We therefore compared the spontaneous transformability of Ami, AliA and AliB mutants to that of an isogenic wild-type strain and we investigated the response of the various mutants to treatment with synthetic competence-stimulating peptide (CSP). Our results clearly demonstrate that neither Ami nor any of the three highly homologous oligopeptide-binding lipoproteins identified so far in S. pneumoniae are required for competence induction following treatment with synthetic CSP. Although the existence of a fourth unidentified oligopeptide-binding lipoprotein and/or a second oligopeptide permease operon could not be completely ruled out, we favour the hypothesis that CSP signal transmission rather involves a two-component regulatory system. Although none of the single or double Ami and All mutants tested appeared severely affected for competence, an exceptional aliB plasmid-insertion mutation abolished competence completely. In addition, the triple AmiA-AliA-AliB mutant differed from wild type in showing no sharp peak of competence but exhibiting transformability throughout the exponential phase of growth. These and previous observations are discussed and a general hypothesis is proposed to account for the modulation of competence by peptide permease mutants in S. pneumoniae.
Collapse
Affiliation(s)
- G Alloing
- Microbiologie et Génétique Moléculaire CNRS-UPR, Université Paul Sabatler, Toulouse, France
| | | | | | | |
Collapse
|
48
|
Pasta F, Sicard MA. Exclusion of long heterologous insertions and deletions from the pairing synapsis in pneumococcal transformation. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 3):695-705. [PMID: 8868445 DOI: 10.1099/13500872-142-3-695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have studied the mode of recombination of six insertions during genetic transformation of Streptococcus pneumoniae. The six heterologous insertions are located at the same site in the ami locus of the pneumococcal chromosome; insertion sizes range from 4 to 1374 bp. With respect to single-point markers we found that the number of transformants in one-point crosses is reduced, while the number of wild-type transformants in two-point crosses is drastically increased, what we call hyper-recombination. The magnitude of the shift is correlated with the size of the insert. This effect could result either from a special repair pathway of multibase heteroduplexes or from the exclusion of multibase heterologous insertions out of the pairing synapsis. To test these hypotheses we have used insertions in two kinds of three-point crosses. The repair model predicts that the excess of wild-type transformants remains in one set of crosses but is suppressed in the second set. The results we obtained are reversed, ruling out the hypothesis of a repair process, but in agreement with predictions based on the exclusion model. Moreover, we have re-examined the situation of deletions, our previous results suggesting that deletions were likely to be converted at the heteroduplex step. Genetic evidence we obtained in this work no longer supports this hypothesis. Thus, long heterologous insertions are partly excluded at the pairing step.
Collapse
Affiliation(s)
- Franck Pasta
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| | - Michel A Sicard
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France
| |
Collapse
|
49
|
Leonard BA, Podbielski A, Hedberg PJ, Dunny GM. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc Natl Acad Sci U S A 1996; 93:260-4. [PMID: 8552617 PMCID: PMC40218 DOI: 10.1073/pnas.93.1.260] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conjugative transfer of the plasmid pCF10 by Enterococcus faecalis donor cells occurs in response to a peptide sex pheromone, cCF10, secreted by recipients. The plasmid-encoded cCF10 binding protein, PrgZ, is similar in sequence to binding proteins (OppAs) encoded by oligopeptide permease (opp) operons. Mutation of prgZ decreased the sensitivity of donor cells to pheromone, whereas inactivation of the chromosomal E. faecalis opp operon abolished response at physiological concentrations of pheromone. Affinity chromatography experiments demonstrated the interaction of the pheromone with several putative intracellular regulatory molecules, including an RNA molecule required for positive regulation of conjugation functions. These data suggest that processing of the pheromone signal involves recruitment of a chromosomal Opp system by PrgZ and that signaling occurs by direct interaction of internalized pheromone with intracellular effectors.
Collapse
Affiliation(s)
- B A Leonard
- Institute for Advanced Studies in Biological Process Technology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
50
|
Jenkinson HF, Baker RA, Tannock GW. A binding-lipoprotein-dependent oligopeptide transport system in Streptococcus gordonii essential for uptake of hexa- and heptapeptides. J Bacteriol 1996; 178:68-77. [PMID: 8550445 PMCID: PMC177622 DOI: 10.1128/jb.178.1.68-77.1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cells of the oral bacterium Streptococcus gordonii express three cytoplasmic membrane-bound lipoproteins with apparent molecular masses of 76 to 78 kDa that are the products of three genes (designated hppA, hppG, and hppH). The lipoproteins are immunologically cross-reactive, contain 60% or more identical amino acid residues, and are highly similar to the AmiA, AliA (PlpA), and AliB substrate-binding protein components of an oligopeptide permease in Streptococcus pneumoniae. Insertional inactivation of the hppA or hppH gene resulted in loss of the ability of S. gordonii cells to utilize specific peptides of five to seven amino acid residues for growth. An insertion within the COOH-terminal coding region of hppG that caused apparent truncation of the HppG polypeptide had a similar effect; however, S. gordonii mutants in which HppG polypeptide production was abolished were still able to grow on all oligopeptides tested. Inactivation of hppA gene (but not inactivation of the hppG or hppH gene) caused reduced growth rate of cells in complex medium, slowed the rate of development of competence for transformation, reduced the efficiency of transformation, and increased the resistance of cells to aminopterin. These results suggest that the formation of a solute-binding-protein complex consisting of at least the HppA and the HppH lipopolypeptides is necessary for binding and subsequent uptake of primarily hexa- or heptapeptides by a Hpp (Hexa-heptapeptide permease) system in S. gordonii. In addition, Hpp may play a role in the control of metabolic functions associated with the growth of streptococcal cells on complex nitrogen sources and with the development of competence.
Collapse
Affiliation(s)
- H F Jenkinson
- Department of Oral Biology and Oral Pathology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|