1
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
2
|
Herrero OM, Alvarez HM. Whey as a renewable source for lipid production byRhodococcusstrains: Physiology and genomics of lactose and galactose utilization. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- O. Marisa Herrero
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia; San Juan Bosco, Comodoro Rivadavia Chubut Argentina
- Oil m&s; Comodoro Rivadavia Chubut Argentina
| | - Héctor M. Alvarez
- Centro Regional de Investigación y Desarrollo Científico Tecnológico, Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia; San Juan Bosco, Comodoro Rivadavia Chubut Argentina
| |
Collapse
|
3
|
Shyntum DY, Venter SN, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014; 15:163. [PMID: 24571088 PMCID: PMC3942780 DOI: 10.1186/1471-2164-15-163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/18/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The Type VI secretion system (T6SS) has been identified in several different bacteria, including the plant pathogenPantoea ananatis. Previous in silico analyses described three different T6SS loci present in the pathogenic strain of P. ananatis LMG 20103. This initial investigation has been extended to include an additional seven sequenced strains of P. ananatis together with 39 strains from different ecological niches. Comparative and phylogenetic analyses were used to investigate the distribution, evolution, intra-strain variability and operon structure of the T6SS in the sequenced strains. RESULTS Three different T6SS loci were identified in P. ananatis strain LMG 20103 and designated PA T6SS 1-3. PA T6SS-1 was present in all sequenced strains of P. ananatis and in all 39 additional strains examined in this study. In addition, PA T6SS-1 included all 13 core T6SS genes required for synthesis of a functional T6SS. The plasmid-borne PA T6SS-2 also included all 13 core T6SS genes but was restricted to only 33% (15/46) of the strains examined. In addition, PA T6SS-2 was restricted to strains of P. ananatis isolated from symptomatic plant material. This finding raises the possibility of an association between PA T6SS-2 and either pathogenicity or host specificity. The third cluster PA T6SS-3 was present in all strains analyzed in this study but lacked 11 of the 13 core T6SS genes suggesting it may not encoded a functional T6SS. Inter-strain variability was also associated with hcp and vgrG islands, which are associated with the T6SS and encode a variable number of proteins usually of unknown function. These proteins may play a role in the fitness of different strains in a variety of ecological niches or as candidate T6SS effectors. Phylogenetic analysis indicated that PA T6SS-1 and PA T6SS-2 are evolutionarily distinct. CONCLUSION Our analysis indicates that the three T6SSs of P. ananatis appear to have been independently acquired and may play different roles relating to pathogenicity, host range determination and/or niche adaptation. Future work will be directed toward understanding the roles that these T6SSs play in the biology of P. ananatis.
Collapse
Affiliation(s)
- Divine Yufetar Shyntum
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Stephanus Nicolaas Venter
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Ian Toth
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- James Hutton Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Teresa Ann Coutinho
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci U S A 2006; 103:17933-8. [PMID: 17101990 PMCID: PMC1635973 DOI: 10.1073/pnas.0606673103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximately 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.
Collapse
Affiliation(s)
- T. H. Mauchline
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - J. E. Fowler
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. K. East
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - A. L. Sartor
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - R. Zaheer
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - A. H. F. Hosie
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
| | - P. S. Poole
- *School of Biological Sciences, University of Reading, Reading RG6 6AJ, United Kingdom; and
- To whom correspondence may be addressed. E-mail:
or
| | - T. M. Finan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
5
|
Aleksandrzak-Piekarczyk T, Kok J, Renault P, Bardowski J. Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Appl Environ Microbiol 2005; 71:6060-9. [PMID: 16204522 PMCID: PMC1265982 DOI: 10.1128/aem.71.10.6060-6069.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside), and we identify several genes essential for lactose assimilation. Among these are ccpA (encoding catabolite control protein A), bglS (encoding phospho-beta-glucosidase), and several genes from the Leloir pathway gene cluster encoding proteins presumably essential for lactose metabolism. The functions of these genes were demonstrated by their disruption and testing of the growth of resultant mutants in lactose-containing media. By examining the ccpA and bglS mutants for phospho-beta-galactosidase activity, we showed that expression of bglS is not under strong control of CcpA. Moreover, this analysis revealed that although BglS is homologous to a putative phospho-beta-glucosidase, it also exhibits phospho-beta-galactosidase activity and is the major enzyme in L. lactis IL1403 involved in lactose hydrolysis.
Collapse
|
6
|
Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH, Titgemeyer F. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 2004; 186:1362-73. [PMID: 14973030 PMCID: PMC344420 DOI: 10.1128/jb.186.5.1362-1373.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptomyces coelicolor is the prototype for the investigation of antibiotic-producing and differentiating actinomycetes. As soil bacteria, streptomycetes can metabolize a wide variety of carbon sources and are hence vested with various specific permeases. Their activity and regulation substantially determine the nutritional state of the cell and, therefore, influence morphogenesis and antibiotic production. We have surveyed the genome of S. coelicolor A3(2) to provide a thorough description of the carbohydrate uptake systems. Among 81 ATP-binding cassette (ABC) permeases that are present in the genome, we found 45 to encode a putative solute binding protein, an essential feature for carbohydrate permease function. Similarity analysis allowed the prediction of putative ABC systems for transport of cellobiose and cellotriose, alpha-glucosides, lactose, maltose, maltodextrins, ribose, sugar alcohols, xylose, and beta-xylosides. A novel putative bifunctional protein composed of a substrate binding and a membrane-spanning moiety is likely to account for ribose or ribonucleoside uptake. Glucose may be incorporated by a proton-driven symporter of the major facilitator superfamily while a putative sodium-dependent permease of the solute-sodium symporter family may mediate uptake of galactose and a facilitator protein of the major intrinsic protein family may internalize glycerol. Of the predicted gene clusters, reverse transcriptase PCRs showed active gene expression in 8 of 11 systems. Together with the previously surveyed permeases of the phosphotransferase system that accounts for the uptake of fructose and N-acetylglucosamine, the genome of S. coelicolor encodes at least 53 potential carbohydrate uptake systems.
Collapse
Affiliation(s)
- Ralph Bertram
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Hugouvieux-Cotte-Pattat N, Blot N, Reverchon S. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol Microbiol 2001; 41:1113-23. [PMID: 11555291 DOI: 10.1046/j.1365-2958.2001.02564.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterium Erwinia chrysanthemi, which causes soft rot disease on various plants, is able to use pectin as a carbon source for growth. Knowledge of the critical step in pectin catabolism which allows the entry of pectic oligomers into the cells is scarce. We report here the first example of a transport system involved in the uptake of pectic oligomers. The TogMNAB transporter of E. chrysanthemi is a member of the ATP-binding cassette (ABC) superfamily. TogM and TogN are homologous to the inner membrane components, TogA exhibits the signature of ABC ATPases and TogB shows similarity with periplasmic ligand-binding proteins. The TogMNAB transporter is a new member of the carbohydrate uptake transporter-1 family (CUT1, TC no. 3.1.1), which is specialized in the transport of complex sugars. The four genes, togM, togN, togA and togB, are apparently co-transcribed in a large operon which also includes the pectate lyase gene pelW. The transcription of the tog operon is induced in the presence of pectic derivatives and is affected by catabolite repression. It is controlled by the KdgR repressor and the CRP activator. The TogMNAB system is able to provide Escherichia coli with the ability to transport oligogalacturonides. In E. chrysanthemi, the TogMNAB system seems to play a major role in switching on the induction of pectin catabolism. TogB also acts as a specific receptor for chemotaxis towards oligogalacturonides. The decreased capacity of maceration of a togM mutant indicates the importance of transport and/or attraction of oligogalacturonides for E. chrysanthemi pathogenicity.
Collapse
Affiliation(s)
- N Hugouvieux-Cotte-Pattat
- Unité Microbiologie et Génétique--composante INSA, UMR UCB-INSA-CNRS 5122, Bat Louis Pasteur, INSA, 11 Avenue Jean Capelle, F-69621 Villeurbanne Cedex, France.
| | | | | |
Collapse
|
8
|
Lambert A, Østerås M, Mandon K, Poggi MC, Le Rudulier D. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J Bacteriol 2001; 183:4709-17. [PMID: 11466273 PMCID: PMC99524 DOI: 10.1128/jb.183.16.4709-4717.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By transposon mutagenesis, we have isolated a mutant of Sinorhizobium meliloti which is totally unable to grow on fructose as sole carbon source as a consequence of its inability to transport this sugar. The cloning and sequencing analysis of the chromosomal DNA region flanking the TnphoA insertion revealed the presence of six open reading frames (ORFs) organized in two loci, frcRS and frcBCAK, transcribed divergently. The frcBCA genes encode the characteristic components of an ATP-binding cassette transporter (FrcB, a periplasmic substrate binding protein, FrcC, an integral membrane permease, and FrcA, an ATP-binding cytoplasmic protein), which is the unique high-affinity (K(m) of 6 microM) fructose uptake system in S. meliloti. The FrcK protein shows homology with some kinases, while FrcR is probably a transcriptional regulator of the repressor-ORF-kinase family. The expression of S. meliloti frcBCAK in Escherichia coli, which transports fructose only via the phosphotransferase system, resulted in the detection of a periplasmic fructose binding activity, demonstrating that FrcB is the binding protein of the Frc transporter. The analysis of substrate specificities revealed that the Frc system is also a high-affinity transporter for ribose and mannose, which are both fructose competitors for the binding to the periplasmic FrcB protein. However, the Frc mutant was still able to grow on these sugars as sole carbon source, demonstrating the presence of at least one other uptake system for mannose and ribose in S. meliloti. The expression of the frcBC genes as determined by measurements of alkaline phosphatase activity was shown to be induced by mannitol and fructose, but not by mannose, ribose, glucose, or succinate, suggesting that the Frc system is primarily targeted towards fructose. Neither Nod nor Fix phenotypes were impared in the TnphoA mutant, demonstrating that fructose uptake is not essential for nodulation and nitrogen fixation, although FrcB protein is expressed in bacteroids isolated from alfalfa nodulated by S. meliloti wild-type strains.
Collapse
Affiliation(s)
- A Lambert
- Laboratoire de Biologie Végétale et Microbiologie, CNRS FRE 2294, Faculté des Sciences, Université de Nice-Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex, France
| | | | | | | | | |
Collapse
|
9
|
Rodionov DA, Mironov AA, Rakhmaninova AB, Gelfand MS. Transcriptional regulation of transport and utilization systems for hexuronides, hexuronates and hexonates in gamma purple bacteria. Mol Microbiol 2000; 38:673-83. [PMID: 11115104 DOI: 10.1046/j.1365-2958.2000.02115.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The comparative approach is a powerful tool for the analysis of gene regulation in bacterial genomes. It can be applied to the analysis of regulons that have been studied experimentally as well as that of regulons for which no known regulatory sites are available. It is assumed that the set of co-regulated genes and the regulatory signal itself are conserved in related genomes. Here, we use genomic comparisons to study the regulation of transport and utilization systems for sugar acids in gamma purple bacteria Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, Yersinia pestis, Erwinia chrysanthemi, Haemophilus influenzae and Vibrio cholerae. The variability of the operon structure and the location of the operator sites for the main transcription factors are demonstrated. The common metabolic map is combined with known and predicted regulatory interactions. It includes all known and predicted members of the GntR, UxuR/ExuR, KdgR, UidR and IdnR regulons. Moreover, most members of these regulons seem to be under catabolite repression mediated by CRP. The candidate UxuR/ExuR signal is proposed, the KdgR consensus is extended, and new operators for all transcription factors are identified in all studied genomes. Two new members of the KdgR regulon, a hypothetical ATP-dependent transport system OgtABCD and YjgK protein with unknown function, are detected. The former is likely to be the transport system for the products of pectin degradation, oligogalacturonides.
Collapse
Affiliation(s)
- D A Rodionov
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia.
| | | | | | | |
Collapse
|
10
|
Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev 2000; 24:449-67. [PMID: 10978546 DOI: 10.1111/j.1574-6976.2000.tb00550.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have undertaken the inventory and assembly of the typical subunits of the ABC transporters encoded by the complete genome of Mycobacterium tuberculosis. These subunits, i.e. the nucleotide binding domains (NBDs), the membrane-spanning domains (MSDs) and the substrate binding proteins (SBPs), were identified on the basis of their characteristic stretches of amino acids and/or conserved structure. A total of 45 NBDs present in 38 proteins, of 47 MSDs present in 44 proteins and of 15 SBPs were found to be encoded by M. tuberculosis. Analysis of transcriptional clusters and searches of homology between the identified subunits of the transporters and proteins characterized in other organisms allowed the reconstitution of at least 26 complete (including at least one NBD and one MSD) and 11 incomplete ABC transporters. Sixteen of them were unambiguously classified as importers whereas 21 were presumed to be exporters. By searches of homology with already known transporters from other organisms, potential substrates (peptides, macrolides, carbohydrates, multidrugs, antibiotics, iron, anions) could be attributed to 30 of the ABC transporters identified in M. tuberculosis. The ABC transporters have been further classified in nine different sub-families according to a tree obtained from the clustering of their NBDs. Contrary to Escherichia coli and similarly to Bacillus subtilis, there is an equal representation of extruders and importers. Many exporters were found to be potentially implicated in the transport of drugs, probably contributing to the resistance of M. tuberculosis to many antibiotics. Interestingly, a transporter (absent in E. coli and in B. subtilis) potentially implicated in the export of a factor required for the bacterial attachment to the eukaryotic host cells was also identified. In comparison to E. coli and B. subtilis, there is an under-representation of the importers (with the exception of the phosphate importers) in M. tuberculosis. This may reflect the capacity of this bacterium to synthesize many essential compounds and to grow in the presence of few external nutrients. The genes encoding the ABC transporters occupy about 2.5% of the genome of M. tuberculosis.
Collapse
Affiliation(s)
- M Braibant
- Pasteur Institute, Department of Virology, Engelandstraat 642, B-1180, Brussels, Belgium.
| | | | | |
Collapse
|
11
|
Adewoye LO, Worobec EA. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa. Gene 2000; 253:323-30. [PMID: 10940570 DOI: 10.1016/s0378-1119(00)00285-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.
Collapse
Affiliation(s)
- L O Adewoye
- Department of Microbiology, University of Manitoba, Man. R3T 2N2, Winnipeg, Canada
| | | |
Collapse
|
12
|
Mai V, Wiegel J, Lorenz WW. Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile thermoanaerobacter ethanolicus. Gene 2000; 247:137-43. [PMID: 10773453 DOI: 10.1016/s0378-1119(00)00106-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The gene for the bifunctional xylosidase-arabinosidase (xarB) from the thermophilic anaerobe Thermoanaerobacter ethanolicus JW200 was cloned, sequenced, and expressed in Escherichia coli (Genebank Accession No. AF135015). Analysis of the recombinant enzyme revealed activity against multiple substrates with the highest affinity towards p-nitrophenyl beta-D-xylopyranoside (pNPX) and highest activity against p-nitrophenyl alpha-L-arabinopyranoside (pNPAP), respectively. Thus, we classify this enzyme as a bifunctional xylosidase-arabinosidase. Even though both sequences are 96% identical on the amino acid level, excluding the amino-terminal end, a frame-shift mutation in the 5' region of the gene in T. brockii ATCC 33075 and a deletion in a downstream open reading frame in T. ethanolicus seem to have occurred through evolutionary divergence of these two species. This represents an interesting phenomenon of molecular evolution of bacterial species, as PCR analysis of the region around the deletion indicates that the deletion is not present in T. brockii ssp. finnii and T. brockii ssp. brockii type strain HTD4.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/genetics
- Bacterial Proteins
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Recombinant/genetics
- DNA, Recombinant/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial/genetics
- Glycoside Hydrolases/genetics
- Gram-Positive Asporogenous Rods, Irregular/enzymology
- Gram-Positive Asporogenous Rods, Irregular/genetics
- Molecular Sequence Data
- Open Reading Frames
- Plasmids
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Xylosidases/genetics
Collapse
Affiliation(s)
- V Mai
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
13
|
Willis LB, Walker GC. A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport system for alpha-glucosides. J Bacteriol 1999; 181:4176-84. [PMID: 10400573 PMCID: PMC93917 DOI: 10.1128/jb.181.14.4176-4184.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The most abundant carbon source transported into legume root nodules is photosynthetically produced sucrose, yet the importance of its metabolism by rhizobia in planta is not yet known. To identify genes involved in sucrose uptake and hydrolysis, we screened a Sinorhizobium meliloti genomic library and discovered a segment of S. meliloti DNA which allows Ralstonia eutropha to grow on the alpha-glucosides sucrose, maltose, and trehalose. Tn5 mutagenesis localized the required genes to a 6.8-kb region containing five open reading frames which were named agl, for alpha-glucoside utilization. Four of these (aglE, aglF, aglG, and aglK) appear to encode a periplasmic-binding-protein-dependent sugar transport system, and one (aglA) appears to encode an alpha-glucosidase with homology to family 13 of glycosyl hydrolases. Cosmid-borne agl genes permit uptake of radiolabeled sucrose into R. eutropha cells. Analysis of the properties of agl mutants suggests that S. meliloti possesses at least one additional alpha-glucosidase as well as a lower-affinity transport system for alpha-glucosides. It is possible that the Fix+ phenotype of agl mutants on alfalfa is due to these additional functions. Loci found by DNA sequencing to be adjacent to aglEFGAK include a probable regulatory gene (aglR), zwf and edd, which encode the first two enzymes of the Entner-Doudoroff pathway, pgl, which shows homology to a gene encoding a putative phosphogluconolactonase, and a novel Rhizobium-specific repeat element.
Collapse
Affiliation(s)
- L B Willis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
14
|
Schmees G, Schneider E. Domain structure of the ATP-binding-cassette protein MalK of salmonella typhimurium as assessed by coexpressed half molecules and LacK'-'MalK chimeras. J Bacteriol 1998; 180:5299-305. [PMID: 9765559 PMCID: PMC107576 DOI: 10.1128/jb.180.20.5299-5305.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-binding-cassette (ABC) subunit MalK of the binding protein-dependent transport system for maltose of Salmonella typhimurium and Escherichia coli is crucial to the transport process but also exhibits a repressing activity on other genes of the maltose regulon. The latter function has been attributed to a carboxy-terminal extension by which MalK differs in length from a prototype ABC protein. In order to define the boundaries of putative functional domains of MalK, we have analyzed pairs of N- and C-terminally truncated MalK proteins of S. typhimurium. Coexpressed half molecules of about equal lengths (MalKN1: residues 1 to 179; MalKC1: residues 179 to 369) restored the transport activity of a malK strain and displayed substantial regulatory activity. The same regulatory activity was obtained when malKC1 was expressed separately. These results indicate that a covalent linkage is not absolutely essential for function and that the protein might be composed of two structurally distinct entities. To elucidate further the minimal structural requirements for the regulatory function of MalK, we have studied chimeric proteins that have C-terminal portions of MalK fused to the corresponding amino-terminal fragments of its close homolog LacK. Functional analyses revealed that a fusion containing only the C-terminal extension of MalK (Q263 to V369) is sufficient to display half-maximal regulatory activity. This activity increased with the lengths of the MalK portions present in the chimeras. Furthermore, the failure of two chimeras to support maltose transport suggests a structurally critical region between residues 243 and 264. In the absence of a crystal structure, this work contributes to the understanding of the multiple functions of MalK.
Collapse
Affiliation(s)
- G Schmees
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | | |
Collapse
|
15
|
Shaw GC, Kao HS, Chiou CY. Cloning, expression, and catabolite repression of a gene encoding beta-galactosidase of Bacillus megaterium ATCC 14581. J Bacteriol 1998; 180:4734-8. [PMID: 9721318 PMCID: PMC107490 DOI: 10.1128/jb.180.17.4734-4738.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene encoding beta-galactosidase, designated mbgA, was isolated from Bacillus megaterium ATCC 14581. Chromosomal beta-galactosidase production could be dramatically induced by lactose but not by isopropyl-beta-D-thiogalactopyranoside (IPTG) and was subject to catabolite repression by glucose. Disruption of mbgA in the B. megaterium chromosome resulted in loss of lactose-inducible beta-galactosidase production. A 27-bp inverted repeat was found to overlap the mbgA promoter sequence. Two partially overlapping catabolite-responsive elements (CREs) were identified within the inverted repeat. Base substitutions within CRE-I and/or CRE-II caused partial relief from catabolite repression. The results suggest that the 27-bp inverted repeat may serve as a target for a catabolite repressor(s).
Collapse
Affiliation(s)
- G C Shaw
- Institute of Biochemistry, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| | | | | |
Collapse
|
16
|
Pestova EV, Morrison DA. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J Bacteriol 1998; 180:2701-10. [PMID: 9573156 PMCID: PMC107223 DOI: 10.1128/jb.180.10.2701-2710.1998] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although more than a dozen new proteins are produced when Streptococcus pneumoniae cells become competent for genetic transformation, only a few of the corresponding genes have been identified to date. To find genes responsible for the production of competence-specific proteins, a random lacZ transcriptional fusion library was constructed in S. pneumoniae by using the insertional lacZ reporter vector pEVP3. Screening the library for clones with competence-specific beta-galactosidase (beta-Gal) production yielded three insertion mutants with induced beta-Gal levels of about 4, 10, and 40 Miller units. In all three clones, activation of the lacZ reporter correlated with competence and depended on competence-stimulating peptide. Chromosomal loci adjacent to the integrated vector were subcloned from the insertion mutants, and their nucleotide sequences were determined. Genes at two of the loci exhibited strong similarity to parts of Bacillus subtilis com operons. One locus contained open reading frames (ORFs) homologous to the comEA and comEC genes in B. subtilis but lacked a comEB homolog. A second locus contained four ORFs with homology to the B. subtilis comG gene ORFs 1 to 4, but comG gene ORFs 5 to 7 were replaced in S. pneumoniae with an ORF encoding a protein homologous to transport ATP-binding proteins. Genes at all three loci were confirmed to be required for transformation by mutagenesis using pEVP3 for insertion duplications or an erm cassette for gene disruptions.
Collapse
Affiliation(s)
- E V Pestova
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
17
|
Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J. Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 1997; 63:3902-10. [PMID: 9327554 PMCID: PMC168700 DOI: 10.1128/aem.63.10.3902-3910.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 5.9-kb fragment of chromosomal DNA coding for beta-glucosidase activity of the thermophilic anaerobe Thermoanaerobacter brockii was sequenced. Two genes, cglT and xglS, encoding a cellodextrin-cleaving beta-glucosidase and a xylodextrin-degrading xylo-beta-glucosidase, respectively, were located directly adjacent to each other. The 5' region contained two additional genes, cglF and cglG, whose products exhibited similarity to integral membrane proteins of metabolite transport systems. The two beta-glucosidases, CglT and XglS, with deduced molecular masses of 52 and 81 kDa, belong to different families of glycosyl hydrolases. Both enzymes were overexpressed in Escherichia coli and could be detected after protein gel electrophoresis and activity staining. The enzyme CglT was purified by fast protein liquid chromatography and identified by N-terminal sequencing. The enzyme was thermostable at 60 degrees C for at least 24 h, and the temperature optimum was 75 degrees C. The ki for glucose inhibition was calculated to 200 mM. The enzyme released glucose from the nonreducing end of beta-1,4-cello oligomers as well as from various disaccharides. CglT was active on glucosides, galactosides and on fucosides, while XglS cleaved beta-glucosides and beta-xylosides as well. The cglT gene was also expressed in Bacillus subtilis, and the enzyme was mainly intracellular during exponential growth but was efficiently released into the supernatant after cultures entered the stationary phase.
Collapse
Affiliation(s)
- R Breves
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Stein MA, Schäfer A, Giffhorn F. Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 1997; 179:6335-40. [PMID: 9335280 PMCID: PMC179547 DOI: 10.1128/jb.179.20.6335-6340.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The gene coding for sorbitol dehydrogenase (SDH) of Rhodobacter sphaeroides Si4 was located 55 nucleotides upstream of the mannitol dehydrogenase gene (mtlK) within a previously unrecognized polyol operon. This operon probably consists of all the proteins necessary for transport and metabolization of various polyols. The gene encoding SDH (smoS) was cloned and sequenced. Analysis of the deduced amino acid sequence revealed homology to enzymes of the short-chain dehydrogenase/reductase protein family. For structure analysis of this unique bacterial enzyme, smoS was subcloned into the overexpression vector pET-24a(+) and then overproduced in Escherichia coli BL21(DE3), which yielded a specific activity of 24.8 U/mg of protein and a volumetric yield of 38,000 U/liter. Compared to values derived with the native host, R. sphaeroides, these values reflected a 270-fold increase in expression of SDH and a 971-fold increase in the volumetric yield. SDH was purified to homogeneity, with a recovery of 49%, on the basis of a three-step procedure. Upstream from smoS, another gene (smoK), which encoded a putative ATP-binding protein of an ABC transporter, was identified.
Collapse
Affiliation(s)
- M A Stein
- Lehrstuhl für Angewandte Mikrobiologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | |
Collapse
|
19
|
Bayliss C, Bent E, Culham DE, MacLellan S, Clarke AJ, Brown GL, Wood JM. Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3--canola mutualism: identification of an exudate-inducible sugar transporter. Can J Microbiol 1997; 43:809-18. [PMID: 9336944 DOI: 10.1139/m97-118] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pseudomonas putida GR12-2R3 promotes the emergence and growth of diverse plant species. Analyses of TnphoA insertion mutations are revealing bacterial characteristics pertinent to the plant-microbe interaction. Pseudomonas putida PG269 is a TnphoA insertion derivative of GR12-2R3 that expresses canola seed exudate-inducible alkaline phosphatase (PhoA) activity. It promoted the growth of canola roots, as well as strain GR12-2R3, and outgrew its parent when they were cocultured in the presence of canola roots or in liquid seed exudate medium. (In contrast, mutant PG126 failed to promote canola root growth and was outgrown by its parent strain.) The PhoA activity of strain PG269 was induced by glucosamine and other sugars; glucosamine inhibited the growth of strain GR12-2R3 and stimulated the growth of strain PG269. Strain PG269 contained two TnphoA insertions: seiA1::TnphoA and seiB1::TnphoA. Strain PG312, which contained only insertion seiA1::TnphoA, shared all aspects of the PG269 phenotype, except the ability to outcompete strain GR12-2R3 during coculture. Insertion seiA1::TnphoA interrupted an open reading frame related in sequence to members of the MalF family of sugar transporter subunits. The PhoA-inducing fraction of canola seed exudate was hydrophilic, low in molecular weight, and heat stable. It cochromatographed with basic amino acids and amino sugars, and was inactivated by strains GR12-2R3 and PG269. Gene seiA may encode a subunit of an ABC transporter with broad specificity for glucose and related sugars whose expression can be induced by exudate sugars.
Collapse
Affiliation(s)
- C Bayliss
- Department of Microbiology, University of Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Kemner JM, Liang X, Nester EW. The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol 1997; 179:2452-8. [PMID: 9079938 PMCID: PMC178989 DOI: 10.1128/jb.179.7.2452-2458.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Agrobacterium tumefaciens virulence determinant ChvE is a periplasmic binding protein which participates in chemotaxis and virulence gene induction in response to monosaccharides which occur in the plant wound environment. The region downstream of the A. tumefaciens chvE gene was cloned and sequenced for nucleotide and expression analysis. Three open reading frames transcribed in the same direction as chvE were revealed. The first two, together with chvE, encode putative proteins of a periplasmic binding protein-dependent sugar uptake system, or ABC-type (ATP binding cassette) transporter. The third open reading frame encodes a protein of unknown function. The deduced transporter gene products are related on the amino acid level to bacterial sugar transporters and probably function in glucose and galactose uptake. We have named these genes gguA, -B, and -C, for glucose galactose uptake. Mutations in gguA, gguB, or gguC do not affect virulence of A. tumefaciens on Kalanchoe diagremontiana; growth on 1 mM galactose, glucose, xylose, ribose, arabinose, fucose, or sucrose; or chemotaxis toward glucose, galactose, xylose, or arabinose.
Collapse
Affiliation(s)
- J M Kemner
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
21
|
Alpert CA, Siebers U. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators. J Bacteriol 1997; 179:1555-62. [PMID: 9045813 PMCID: PMC178866 DOI: 10.1128/jb.179.5.1555-1562.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 5' region of the lac operon of Lactobacillus casei has been investigated. An open reading frame of 293 codons, designated lacT, was identified upstream of lacE. The gene product encoded by lacT is related to the family of transcriptional antiterminator proteins, which includes BglG from Escherichia coli, ArbG from Erwinia chrysanthemi, SacT, SacY, and LicT from Bacillus subtilis, and BglR from Lactococcus lactis. Amino acid sequence identities range from 35 to 24%, while similarities range from 56 to 47%. The transcriptional start site of the lac operon was identified upstream of lacT. The corresponding mRNA would contain in the 5' region a sequence with high similarity to the consensus RNA binding site of transcriptional antiterminators overlapping a sequence capable of folding into a structure that resembles a rho-independent terminator. LacT was shown to be active as an antiterminator in a B. subtilis test system using the sacB target sequence. lacT directly precedes lacEGF, the genes coding for enzyme IICB, phospho-beta-galactosidase, and enzyme IIA, and these genes are followed by a sequence that appears to encode a second rho-independent transcription terminator-like structure. Northern hybridizations with probes against lacT, lacE, and lacF revealed transcripts of similar sizes for the lac mRNAs of several L. casei strains. Since the length of the lac mRNA is just sufficient to contain lacTEGF, we conclude that the lac operon of L. casei does not contain the genes of the accessory tagatose-6-phosphate pathway as occurs in the lac operons of Lactococcus lactis, Streptococcus mutans, or Staphylococcus aureus.
Collapse
Affiliation(s)
- C A Alpert
- Fachbereich Biologie/Chemie, AG Genetik, Universität Osnabrück, Germany.
| | | |
Collapse
|
22
|
Horowitz H, Berg CA. The Drosophila pipsqueak gene encodes a nuclear BTB-domain-containing protein required early in oogenesis. Development 1996; 122:1859-71. [PMID: 8674425 DOI: 10.1242/dev.122.6.1859] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations at the pipsqueak locus affect early patterning in the Drosophila egg and embryo. We have cloned pipsqueak and found that it is a large and complex gene, encoding multiple transcripts and protein isoforms. One protein, PsqA, is absent in all of the mutants that we have examined. We show that PsqA is a nuclear protein present in the germ cells and somatically derived follicle cells throughout oogenesis and that it is required prior to stage one of oogenesis. PsqA contains a BTB (POZ) domain at its amino terminus; additionally, we have identified an evolutionarily conserved motif of unknown function present four times in tandem at the C terminus of the protein. PZ pipsqueak mutants produce a putative fusion protein containing the pipsqueak BTB domain fused to sequences resident on the PZ element (H. Horowitz and C. Berg, 1995 Genetics 139, 327–335). We demonstrate here that expression of this fusion protein in wild-type flies has a dominant effect, resulting in infertility and eggshell defects. These dominant phenotypes are discussed in light of current theories on the role of the BTB domain in protein-protein interactions.
Collapse
Affiliation(s)
- H Horowitz
- Department of Genetics, University of Washington, Seattle, 98195-7360, USA
| | | |
Collapse
|
23
|
Griffin HG, MacCormick CA, Gasson MJ. Cloning, DNA sequence, and regulation of expression of a gene encoding beta-galactosidase from Lactococcus lactis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1996; 6:337-46. [PMID: 8988372 DOI: 10.3109/10425179609047572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beta-galactosidase from Escherichia coli is one of the most important enzymes in molecular biology. Here we report the cloning and sequencing of a gene encoding beta-galactosidase from Lactococcus lactis and compare the predicted amino acid sequence to that from other organisms. The beta-galactosidase from L. lactis was found to be a protein of 996 residues with 68.7% similarity to the E. coli enzyme and 65.8% similarity to the enzyme from Klebsiella pneumoniae. The lactococcal beta-galactosidase has lower similarity (approx 55%) to the enzymes from other lactic acid bacteria and no significant similarity to the beta-galactosidase enzymes from Agrobacterium radiobacter, Bacillus stearothermophilus, or Clostridium thermosulfurogenes. Expression of the lacZ gene from L. lactis was found to be higher when cells were grown in medium containing lactose than when grown in glucose, and expression was higher when cells were grown at 30 degrees C than at 35 degrees C.
Collapse
Affiliation(s)
- H G Griffin
- Institute of Food Research, Colney, Norwich, UK.
| | | | | |
Collapse
|
24
|
Abstract
Lactose utilization is the primary function of lactic acid bacteria used in industrial dairy fermentations. The mechanism by which lactose is transported determines largely the pathway for the hydrolysis of the internalized disaccharide and the fate of the glucose and galactose moieties. Biochemical and genetic studies have indicated that lactose can be transported via phosphotransferase systems, transport systems dependent on ATP binding cassette proteins, or secondary transport systems including proton symport and lactose-galactose antiport systems. The genetic determinants for the group translocation and secondary transport systems have been identified in lactic acid bacteria and are reviewed here. In many cases the lactose genes are organized into operons or operon-like structures with a modular organization, in which the genes encoding lactose transport are tightly linked to those for lactose hydrolysis. In addition, in some cases the genes involved in the galactose metabolism are linked to or co-transcribed with the lactose genes, suggesting a common evolutionary pathway. The lactose genes show characteristic configurations and very high sequence identity in some phylogenetically distant lactic acid bacteria such as Leuconostoc and Lactobacillus or Lactococcus and Lactobacillus. The significance of these results for the adaptation of lactic acid bacteria to the industrial milk environment in which lactose is the sole energy source is discussed.
Collapse
Affiliation(s)
- W M de Vos
- Department of Biophysical Chemistry, NIZO, Ede, The Netherlands
| | | |
Collapse
|
25
|
Loh JT, Ho SC, Wang JL, Schindler M. Carbohydrate binding activities of Bradyrhizobium japonicum: IV. Effect of lactose and flavones on the expression of the lectin, BJ38. Glycoconj J 1994; 11:363-70. [PMID: 7873932 DOI: 10.1007/bf00731210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BJ38 is a galactose/lactose-specific lectin (M(r) approximately 38,000) found at one pole of Bradyrhizobium japonicum. It has been implicated in mediating the adhesion of the bacteria to soybean roots, leading to the establishment of a nitrogen-fixing symbiosis. When the ligand lactose is added to cultures of the bacteria for at least 1 h prior to harvesting the cells for BJ38 isolation, the yield of the protein was found to be elevated in a dose-dependent fashion. Half maximal stimulation was observed at approximately 50 microM; the effect was saturated at approximately 1 mM, where a 10-fold higher yield of BJ38 was obtained. Saccharides with a lower affinity for BJ38 than lactose yielded a correspondingly smaller induction effect when compared at a concentration of 1 mM. The higher level of BJ38 induced by lactose is also manifested by an elevated amount of BJ38 detectable at the cell surface and by a higher number of B. japonicum cells adsorbed onto soybean cells. Surprisingly, the induction of BJ38 expression seen with lactose was also observed with certain, but not all, flavonoids that induce the nod genes of the bacteria; genistein mimicked the induction observed with lactose, whereas luteolin failed to stimulate BJ38 production.
Collapse
Affiliation(s)
- J T Loh
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | |
Collapse
|
26
|
Saurin W, Köster W, Dassa E. Bacterial binding protein-dependent permeases: characterization of distinctive signatures for functionally related integral cytoplasmic membrane proteins. Mol Microbiol 1994; 12:993-1004. [PMID: 7934906 DOI: 10.1111/j.1365-2958.1994.tb01087.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial binding protein-dependent transport systems belong to the superfamily of ABC transporters, which is widely distributed among living organisms. Their hydrophobic membrane proteins are the least characterized components. The primary structures of 61 integral membrane proteins from 35 uptake systems were compared in order to characterize a short conserved hydrophilic segment, with a consensus EAA---G---------I-LP, located approximately 100 residues from the C-terminus. Secondary structure predictions indicated that this conserved region might be formed by two amphipathic alpha-helices connected by a loop containing the invariant G residue. We classified the conserved motifs and found that membrane proteins from systems transporting structurally related substrates specifically display a greater number of identical residues in the conserved region. We determined a consensus for each class of membrane protein and showed that these can be considered as signatures.
Collapse
Affiliation(s)
- W Saurin
- Unité de Programmation Moléculaire et Toxicologie génétique, CNRS URA 1444, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
27
|
Fanning S, Leahy M, Sheehan D. Nucleotide and deduced amino acid sequences of Rhizobium meliloti 102F34 lacZ gene: comparison with prokaryotic beta-galactosidases and human beta-glucuronidase. Gene 1994; 141:91-6. [PMID: 8163182 DOI: 10.1016/0378-1119(94)90133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide (nt) sequence of a 2.57-kb Sau3A fragment carrying the Rhizobium meliloti beta-galactosidase (beta Gal)-encoding gene (RmlacZ) was determined. An open reading frame (ORF) of 2.26 kb was identified which encoded a 755-amino-acid (aa) polypeptide with a calculated molecular mass of 84,141 Da, in fair agreement with the value of 88 kDa determined by SDS-PAGE. The deduced N-terminal aa sequence was confirmed by direct sequencing of electrophoretically purified R. meliloti beta Gal. The size of the native R. meliloti beta Gal was approx. 174 kDa. Similarities were found between the aa sequence of the R. meliloti beta Gal and those from Clostridium thermosulfurogenes EM1 and Agrobacterium radiobacter, as well as human beta-glucuronidase (beta Glu). Comparisons with beta Gal from Escherichia coli, Klebsiella pneumoniae, Lactobacillus bulgaricus and Kluyveromyces lactis found only weak similarities; however, the putative active site residues appear to be conserved. The RmlacZ sequence is flanked by two partially sequenced ORFs, which show aa sequence and organisational similarities to the previously reported lac operon in A. radiobacter.
Collapse
Affiliation(s)
- S Fanning
- Medical Sciences Department, Regional Technical College, Bishopstown, Cork, Ireland
| | | | | |
Collapse
|
28
|
Saurin W, Dassa E. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications. Protein Sci 1994; 3:325-44. [PMID: 8003968 PMCID: PMC2142789 DOI: 10.1002/pro.5560030216] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Periplasmic binding protein-dependent transport systems are composed of a periplasmic substrate-binding protein, a set of 2 (sometimes 1) very hydrophobic integral membrane proteins, and 1 (sometimes 2) hydrophilic peripheral membrane protein that binds and hydrolyzes ATP. These systems are members of the superfamily of ABC transporters. We performed a molecular phylogenetic analysis of the sequences of 70 hydrophobic membrane proteins of these transport systems in order to investigate their evolutionary history. Proteins were grouped into 8 clusters. Within each cluster, protein sequences displayed significant similarities, suggesting that they derive from a common ancestor. Most clusters contained proteins from systems transporting analogous substrates such as monosaccharides, oligopeptides, or hydrophobic amino acids, but this was not a general rule. Proteins from diverse bacteria are found within each cluster, suggesting that the ancestors of current clusters were present before the divergence of bacterial groups. The phylogenetic trees computed for hydrophobic membrane proteins of these permeases are similar to those described for the periplasmic substrate-binding proteins. This result suggests that the genetic regions encoding binding protein-dependent permeases evolved as whole units. Based on the results of the classification of the proteins and on the reconstructed phylogenetic trees, we propose an evolutionary scheme for periplasmic permeases. According to this model, it is probable that these transport systems derive from an ancestral system having only 1 hydrophobic membrane protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Saurin
- Unité de Programmation Moléculaire et Toxicologie génétique, CNRS URA 1444, Institut Pasteur 25, Paris, France
| | | |
Collapse
|