1
|
Martin-Vicente A, Souza ACO, Guruceaga X, Thorn HI, Xie J, Nywening AV, Ge W, Fortwendel JR. A conserved fungal morphogenetic kinase regulates pathogenic growth in response to carbon source diversity. Nat Commun 2024; 15:8945. [PMID: 39414804 PMCID: PMC11484838 DOI: 10.1038/s41467-024-53358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Fungal pathogens must exhibit strong nutritional plasticity, effectively sensing and utilizing diverse nutrients to support virulence. How the signals generated by nutritional sensing are efficiently translated to the morphogenetic machinery for optimal growth and support of virulence remains incompletely understood. Here, we show that the conserved morphogenesis-related kinase, CotA, imparts isoform-specific control over Aspergillus fumigatus invasive growth in host-mimicking environments and during infection. CotA-mediated invasive growth is responsive to exogenous carbon source quality, with only preferred carbon sources supporting hyphal morphogenesis in a mutant lacking one of two identified protein isoforms. Strikingly, we find that the CotA protein does not regulate, nor is cotA gene expression regulated by, the carbon catabolite repression system. Instead, we show that CotA partially mediates invasive growth in specific carbon sources and virulence through the conserved downstream effector and translational repressor, SsdA. Therefore, A. fumigatus CotA accomplishes its conserved morphogenetic functions to drive pathogenic growth by translating host-relevant carbon source quality signals into morphogenetic outputs for efficient tissue invasive growth.
Collapse
Affiliation(s)
- Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ana Camila Oliveira Souza
- Department of Pharmacy and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harrison I Thorn
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Jinhong Xie
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Ashley V Nywening
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Wenbo Ge
- Department of Pharmacy and Pharmaceutical Sciences, Division of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
2
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Jin J, Diao Y, Xiong X, Yu C, Tian Y, Li C, Liu H. The Regulation of the Growth and Pathogenicity of Valsa mali by the Carbon Metabolism Repressor CreA. Int J Mol Sci 2023; 24:ijms24119252. [PMID: 37298203 DOI: 10.3390/ijms24119252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Carbon catabolite repression (CCR) is a very important mechanism for efficient use of carbon sources in the environment and is necessary for the regulation of fungal growth, development, and pathogenesis. Although there have been extensive studies conducted regarding this mechanism in fungi, little is yet known about the effects of CreA genes on Valsa mali. However, based on the results obtained in this study for the identification of the VmCreA gene in V. mali, it was determined that the gene was expressed at all stages of fungal growth, with self-repression observed at the transcriptional level. Furthermore, the functional analysis results of the gene deletion mutants (ΔVmCreA) and complements (CTΔVmCreA) showed that the VmCreA gene played an important role in the growth, development, pathogenicity, and carbon source utilization of V. mali.
Collapse
Affiliation(s)
- Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yehan Tian
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanrong Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Kunitake E, Uchida R, Asano K, Kanamaru K, Kimura M, Kimura T, Kobayashi T. cAMP signaling factors regulate carbon catabolite repression of hemicellulase genes in Aspergillus nidulans. AMB Express 2022; 12:126. [PMID: 36183035 PMCID: PMC9526778 DOI: 10.1186/s13568-022-01467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
Carbon catabolite repression (CCR) enables preferential utilization of easily metabolizable carbon sources, implying the presence of mechanisms to ensure discriminatory gene repression depending on the ambient carbon sources. However, the mechanisms for such hierarchical repression are not precisely understood. In this report, we examined how deletion of pkaA and ganB, which encode cAMP signaling factors, and creA, which encodes a well-characterized repressor of CCR, affects CCR of hemicellulase genes in the filamentous fungus Aspergillus nidulans. β-Xylanase production increased not only in ΔcreA but also in ΔpkaA and ΔganB, with the highest level observed in their double deletants, irrespective of the presence or absence of d-glucose. Expression of the β-xylanase genes in the presence of d-glucose was de-repressed in all the deletion mutants, with significantly higher tolerance against d-glucose repression in ΔpkaA and ΔganB than in ΔcreA. In the presence of galactomannan and d-glucose, partial de-repression of β-mannanase production was detected in ΔcreA, but not in ΔpkaA and ΔganB. The double deletion of creA/pkaA and creA/ganB led to earlier production. Release from d-glucose repression of the β-mannanase genes was partial in the single deletants, while nearly full de-repression was observed in ΔcreAΔpkaA and ΔcreAΔganB. The contribution of PkaA and GanB to CCR by d-xylose of the β-mannanase genes was very minor compared to that of CreA. Consequently, the present study revealed that cAMP signaling plays a major role in CCR of hemicellulase gene expression in a manner that is clearly independent from CreA.
Collapse
Affiliation(s)
- Emi Kunitake
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-Cho, Tsu, Mie, 514-8507, Japan.
| | - Ryota Uchida
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Keisuke Asano
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Kyoko Kanamaru
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.,Department of Biological Chemistry, Chubu University, 1200 Matsumoto-Cho, Kasugai, Aichi, 487-8501, Japan
| | - Makoto Kimura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Kimura
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-Cho, Tsu, Mie, 514-8507, Japan
| | - Tetsuo Kobayashi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
5
|
Carbohydrate esterase family 16 contains fungal hemicellulose acetyl esterases (HAEs) with varying specificity. N Biotechnol 2022; 70:28-38. [DOI: 10.1016/j.nbt.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
6
|
Ruiz‐Villafán B, Cruz‐Bautista R, Manzo‐Ruiz M, Passari AK, Villarreal‐Gómez K, Rodríguez‐Sanoja R, Sánchez S. Carbon catabolite regulation of secondary metabolite formation, an old but not well-established regulatory system. Microb Biotechnol 2022; 15:1058-1072. [PMID: 33675560 PMCID: PMC8966007 DOI: 10.1111/1751-7915.13791] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022] Open
Abstract
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram-positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.
Collapse
Affiliation(s)
- Beatriz Ruiz‐Villafán
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Rodrigo Cruz‐Bautista
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Monserrat Manzo‐Ruiz
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Ajit Kumar Passari
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Karen Villarreal‐Gómez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Romina Rodríguez‐Sanoja
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| | - Sergio Sánchez
- Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaCdMxMéxico City04510México
| |
Collapse
|
7
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
8
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
9
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
10
|
Picart P, Pastor FIJ, Orejas M. Transcriptional analysis of the lichenase-like gene cel12A of the filamentous fungus Stachybotrys atra BP-A and its relevance for lignocellulose depolymerization. Int Microbiol 2021; 24:197-205. [PMID: 33404932 DOI: 10.1007/s10123-020-00155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
To rationally optimize the production of industrial enzymes by molecular means requires previous knowledge of the regulatory circuits controlling the expression of the corresponding genes. The genus Stachybotrys is an outstanding producer of cellulose-degrading enzymes. Previous studies isolated and characterized the lichenase-like/non-typical cellulase Cel12A of S. atra (AKA S. chartarum) belonging to glycosyl hydrolase family 12 (GH12). In this study, we used RT-qPCR to determine the pattern of expression of cel12A under different carbon sources and initial ambient pH. Among the carbon sources examined, rice straw triggered a greater increase in the expression of cel12A than 1% lactose or 0.1% glucose, indicating specific induction by rice straw. In contrast, cel12A was repressed in the presence of glucose even when combined with this inducer. The proximity of 2 adjacent 5'-CTGGGGTCTGGGG-3' CreA consensus target sites to the translational start site of cel12A strongly suggests that the carbon catabolite repression observed is directly mediated by CreA. Ambient pH did not have a significant effect on cel12A expression. These findings present new knowledge on transcriptional regulatory networks in Stachybotrys associated with cellulose/hemicellulose depolymerization. Rational engineering of CreA to remove CCR could constitute a novel strategy for improving the production of Cel12A.
Collapse
Affiliation(s)
- Pere Picart
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - F I Javier Pastor
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain.
| | - Margarita Orejas
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avda. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
11
|
de Assis LJ, Silva LP, Bayram O, Dowling P, Kniemeyer O, Krüger T, Brakhage AA, Chen Y, Dong L, Tan K, Wong KH, Ries LNA, Goldman GH. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. mBio 2021; 12:e03146-20. [PMID: 33402538 PMCID: PMC8545104 DOI: 10.1128/mbio.03146-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.
Collapse
Affiliation(s)
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Ozgur Bayram
- Biology Department, Maynooth University, Maynooth, Kildare, Ireland
| | - Paul Dowling
- Biology Department, Maynooth University, Maynooth, Kildare, Ireland
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Yingying Chen
- Faculty of Health Science, University of Macau, Macau, China
| | - Liguo Dong
- Faculty of Health Science, University of Macau, Macau, China
| | - Kaeling Tan
- Faculty of Health Science, University of Macau, Macau, China
| | - Koon Ho Wong
- Faculty of Health Science, University of Macau, Macau, China
| | - Laure N A Ries
- University of Exeter, MRC Centre for Medical Mycology, Exeter, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, Brazil
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
12
|
Hong Y, Cai R, Guo J, Zhong Z, Bao J, Wang Z, Chen X, Zhou J, Lu GD. Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genet Biol 2020; 146:103496. [PMID: 33290821 DOI: 10.1016/j.fgb.2020.103496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
During the infection and colonization process, the rice blast fungus Magnaporthe oryzae faces various challenges from hostile environment, such as nutrient limitation and carbon stress, while carbon catabolite repression (CCR) mechanism would facilitate the fungus to shrewdly and efficiently utilize carbon nutrients under fickle nutritional conditions since it ensures the preferential utilization of most preferred carbon sources through repressing the expression of enzymes required for the utilization of less preferred carbon sources. Researches on M. oryzae CCR have made some progress, however the involved regulation mechanism is still largely obscured, especially, little is known about the key carbon catabolite repressor CreA. Here we identified and characterized the biological functions of the CreA homolog MoCreA in M. oryzae. MoCreA is constitutively expressed throughout all the life stages of the fungus, and it can shuttle between nucleus and cytoplasm which is induced by glucose. Following functional analyses of MoCreA suggested that it was required for the vegetative growth, conidiation, appressorium formation and pathogenicity of M. oryzae. Moreover, comparative transcriptomic analysis revealed that disruption of MoCreA resulted in the extensive gene expression variations, including a large number of carbon metabolism enzymes, transcription factors and pathogenicity-related genes. Taken together, our results demonstrated that, as a key regulator of CCR, MoCreA plays a vital role in precise regulation of the asexual development and pathogenicity of the rice blast fungus.
Collapse
Affiliation(s)
- Yonghe Hong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renli Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Seibold PS, Lenz C, Gressler M, Hoffmeister D. The Laetiporus polyketide synthase LpaA produces a series of antifungal polyenes. J Antibiot (Tokyo) 2020; 73:711-720. [PMID: 32820242 PMCID: PMC7473843 DOI: 10.1038/s41429-020-00362-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 01/20/2023]
Abstract
The conspicuous bright golden to orange-reddish coloration of species of the basidiomycete genus Laetiporus is a hallmark feature of their fruiting bodies, known among mushroom hunters as the "chicken of the woods". This report describes the identification of an eight-domain mono-modular highly reducing polyketide synthase as sole enzyme necessary for laetiporic acid biosynthesis. Heterologous pathway reconstitution in both Aspergillus nidulans and Aspergillus niger verified that LpaA functions as a multi-chain length polyene synthase, which produces a cocktail of laetiporic acids with a methyl-branched C26-C32 main chain. Laetiporic acids show a marked antifungal activity on Aspergillus protoplasts. Given the multiple products of a single biosynthesis enzyme, our work underscores the diversity-oriented character of basidiomycete natural product biosynthesis.
Collapse
Affiliation(s)
| | - Claudius Lenz
- Pharmaceutical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich Schiller University, Jena, Germany
| | - Dirk Hoffmeister
- Pharmaceutical Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
14
|
Transcription Factors Controlling Primary and Secondary Metabolism in Filamentous Fungi: The β-Lactam Paradigm. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Fasoyin OE, Wang B, Qiu M, Han X, Chung KR, Wang S. Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet Biol 2018; 115:41-51. [DOI: 10.1016/j.fgb.2018.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
|
16
|
Ries LNA, Beattie S, Cramer RA, Goldman GH. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol 2017; 107:277-297. [PMID: 29197127 DOI: 10.1111/mmi.13887] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
It is estimated that fungal infections, caused most commonly by Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, result in more deaths annually than malaria or tuberculosis. It has long been hypothesized the fungal metabolism plays a critical role in virulence though specific nutrient sources utilized by human pathogenic fungi in vivo has remained enigmatic. However, the metabolic utilisation of preferred carbon and nitrogen sources, encountered in a host niche-dependent manner, is known as carbon catabolite and nitrogen catabolite repression (CCR, NCR), and has been shown to be important for virulence. Several sensory and uptake systems exist, including carbon and nitrogen source-specific sensors and transporters, that allow scavenging of preferred nutrient sources. Subsequent metabolic utilisation is governed by transcription factors, whose functions and essentiality differ between fungal species. Furthermore, additional factors exist that contribute to the implementation of CCR and NCR. The role of the CCR and NCR-related factors in virulence varies greatly between fungal species and a substantial gap in knowledge exists regarding specific pathways. Further elucidation of carbon and nitrogen metabolism mechanisms is therefore required in a fungal species- and animal model-specific manner in order to screen for targets that are potential candidates for anti-fungal drug development.
Collapse
Affiliation(s)
- Laure Nicolas Annick Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo, 3900, CEP 14049-900, Brazil
| | - Sarah Beattie
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n°, Ribeirão Preto, São Paulo, CEP 14040903, Brazil
| |
Collapse
|
17
|
Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris. Genes Genomics 2017; 40:399-412. [PMID: 29892842 DOI: 10.1007/s13258-017-0641-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023]
Abstract
Two catabolite repressor genes (MIG1 and MIG2) were previously identified in Pichia pastoris, and the derepression of alcohol oxidase (AOX) expression was realized in Δmig1 or Δmig1Δmig2 mutants grown in glycerol, but not in glucose. In this study, genome-wide RNA-seq analysis of Δmig1Δmig2 and the wild-type strain grown in glycerol revealed that the expression of numerous genes was greatly altered. Nearly 7% (357 genes) of approximately 5276 genes annotated in P. pastoris were significantly upregulated, with at least a two-fold differential expression in Δmig1Δmig2; the genes were mainly related to cell metabolism. Approximately 23% (1197 genes) were significantly downregulated; these were mainly correlated with the physiological characteristics of the cell. The methanol catabolism and peroxisome biogenesis pathways were remarkably enhanced, and the genes AOX1 and AOX2 were upregulated higher than 30-fold, which was consistent with the experimental results of AOX expression. The Mig proteins had a slight effect on autophagy when cells were grown in glycerol. The expression analysis of transcription factors showed that deletion of MIG1 and MIG2 significantly upregulated the binding of an essential transcription activator, Mit1p, with the AOX1 promoter, which suggested that Mig proteins might regulate the AOX1 promoter through the regulation of Mit1p. This work provides a reference for the further exploration of the methanol induction and catabolite repression mechanisms of AOX expression in methylotrophic yeasts.
Collapse
|
18
|
Li Z, Liu G, Qu Y. Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition. BIORESOURCE TECHNOLOGY 2017; 245:1718-1726. [PMID: 28684177 DOI: 10.1016/j.biortech.2017.06.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Filamentous fungi are considered as the most efficient producers expressing lignocellulose-degrading enzymes. Penicillium oxalicum strains possess extraordinary fungal lignocellulolytic enzyme systems and can efficiently utilize plant biomass. In recent years, the regulatory aspects of production of hydrolytic enzymes by P. oxalicum have been well established. This review aims to discuss the recent developments for the production of lignocellulolytic enzymes by P. oxalicum. The main cellulolytic transcription factors mediating the complex transcriptional-regulatory network are highlighted. The genome-wide identification of cellulolytic transcription factors, the cascade regulation network for cellulolytic gene expression, and the synergistic and dose-controlled regulation by cellulolytic regulators are discussed. A cellulase regulatory network sensitive to inducers in intracellular environments, the cross-talk of regulation of lignocellulose-degrading enzyme and amylase, and accessory enzymes are also demonstrated. Finally, strategies for the metabolic engineering of P. oxalicum, which show promising applications in the enzymatic hydrolysis for biochemical production, are established.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qi Lu University of Technology, Jinan 250353, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
19
|
Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S, Caffrey-Carr AK, Cheng C, Black CC, Bowyer P, Bromley MJ, Obar JJ, Goldman GH, Cramer RA. Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathog 2017; 13:e1006340. [PMID: 28423062 PMCID: PMC5411099 DOI: 10.1371/journal.ppat.1006340] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022] Open
Abstract
Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).
Collapse
Affiliation(s)
- Sarah R. Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Arsa Thammahong
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | | | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Alayna K. Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Candice C. Black
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Paul Bowyer
- Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael J. Bromley
- Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
20
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
21
|
GlnR and PhoP Directly Regulate the Transcription of Genes Encoding Starch-Degrading, Amylolytic Enzymes in Saccharopolyspora erythraea. Appl Environ Microbiol 2016; 82:6819-6830. [PMID: 27637875 PMCID: PMC5103082 DOI: 10.1128/aem.02117-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
Starch-degrading enzymes hydrolyze starch- and starch-derived oligosaccharides to yield glucose. We investigated the transcriptional regulation of genes encoding starch-degrading enzymes in the industrial actinobacterium Saccharopolyspora erythraea We observed that most genes encoding amylolytic enzymes (one α-amylase, one glucoamylase, and four α-glucosidases) were regulated by GlnR and PhoP, which are global regulators of nitrogen and phosphate metabolism, respectively. Electrophoretic mobility shift assays and reverse transcription-PCR (RT-PCR) analyses demonstrated that GlnR and PhoP directly interact with their promoter regions and collaboratively or competitively activate their transcription. Deletion of glnR caused poor growth on starch, maltodextrin, and maltose, whereas overexpression of glnR and phoP increased the total activity of α-glucosidase, resulting in enhanced carbohydrate utilization. Additionally, transcript levels of amylolytic genes and total glucosidase activity were induced in response to nitrogen and phosphate limitation. Furthermore, regulatory effects of GlnR and PhoP on starch-degrading enzymes were conserved in Streptomyces coelicolor A3(2). These results demonstrate that GlnR and PhoP are involved in polysaccharide degradation by mediating the interplay among carbon, nitrogen, and phosphate metabolism in response to cellular nutritional states. Our study reveals a novel regulatory mechanism underlying carbohydrate metabolism, and suggests new possibilities for designing genetic engineering approaches to improve the rate of utilization of starch in actinobacteria.IMPORTANCE The development of efficient strategies for utilization of biomass-derived sugars, such as starch and cellulose, remains a major technical challenge due to the weak activity of associated enzymes. Here, we found that GlnR and PhoP directly regulate the transcription of genes encoding amylolytic enzymes and present insights into the regulatory mechanisms of degradation and utilization of starch in actinobacteria. Two nutrient-sensing regulators may play important roles in creating a direct association between nitrogen/phosphate metabolisms and carbohydrate utilization, as well as modulate the C:N:P balance in response to cellular nutritional states. These findings highlight the interesting possibilities for designing genetic engineering approaches and optimizing the fermentation process to improve the utilization efficiency of sugars in actinobacteria via overexpression of the glnR and phoP genes and nutrient signal stimulation.
Collapse
|
22
|
Alam MA, Kamlangdee N, Kelly JM. The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016:10.1007/s00294-016-0643-x. [PMID: 27589970 DOI: 10.1007/s00294-016-0643-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism. Previously, missense alleles of creA and creB were analysed for genetic interactions, and here we extended this to complete loss-of-function alleles of creA and creB, and compared morphological and biochemical phenotypes, which confirmed genetic interaction between the genes. We investigated whether CreA, or a protein in a complex with it, is a direct target of the CreB deubiquitination enzyme, using co-purifications of CreA and CreB, first using strains that overexpress the proteins and then using strains that express the proteins from their native promoters. The Phos-tag system was used to show that CreA is a phosphorylated protein, but no ubiquitination was detected using anti-ubiquitin antibodies and Western analysis. These findings were confirmed using mass spectrometry, which confirmed that CreA was differentially phosphorylated but not ubiquitinated. Thus, CreA is not a direct target of CreB, and nor are proteins that form part of a stable complex with CreA a target of CreB. These results open up new questions regarding the molecular mechanism of CreA repressing activity, and how the ubiquitination pathway involving CreB interacts with this regulatory network.
Collapse
Affiliation(s)
- Md Ashiqul Alam
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
| | - Niyom Kamlangdee
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia
- Walailak University, 222 Thaiburi Thasala, Nakhonsithamrat, Nakhon Si Thammarat, 80160, Thailand
| | - Joan M Kelly
- Department of Genetics and Evolution, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
23
|
Bravo Ruiz G, Di Pietro A, Roncero MIG. Combined action of the major secreted exo- and endopolygalacturonases is required for full virulence of Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2016; 17:339-53. [PMID: 26060046 PMCID: PMC6638378 DOI: 10.1111/mpp.12283] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expressed at significant levels during growth on citrus pectin, polygalacturonic acid or the monomer galacturonic acid, as well as during the infection of tomato plants. The remaining PG genes exhibit low expression levels under all the conditions tested. Secreted PG activity was decreased significantly during growth on pectin in the single deletion mutants lacking either pg1 or pgx6, as well as in the double mutant. Although the single deletion mutants did not display a significant virulence reduction on tomato plants, the Δpg1Δpgx6 double mutant was significantly attenuated in virulence. The combined action of exoPGs and endoPGs is thus essential for plant infection by the vascular wilt fungus F. oxysporum.
Collapse
Affiliation(s)
- Gustavo Bravo Ruiz
- Departamento de Genetica, Universidad de Cordoba, Córdoba, E-14071, Spain
| | - Antonio Di Pietro
- Departamento de Genetica, Universidad de Cordoba, Córdoba, E-14071, Spain
| | - M Isabel G Roncero
- Departamento de Genetica, Universidad de Cordoba, Córdoba, E-14071, Spain
| |
Collapse
|
24
|
Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 2016; 82:1041-54. [DOI: 10.1016/j.ijbiomac.2015.10.086] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023]
|
25
|
Kiesenhofer D, Mach-Aigner AR, Mach RL. Understanding the Mechanism of Carbon Catabolite Repression to Increase Protein Production in Filamentous Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Gomes EV, Costa MDN, de Paula RG, de Azevedo RR, da Silva FL, Noronha EF, Ulhoa CJ, Monteiro VN, Cardoza RE, Gutiérrez S, Silva RN. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Sci Rep 2015; 5:17998. [PMID: 26647876 PMCID: PMC4673615 DOI: 10.1038/srep17998] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants.
Collapse
Affiliation(s)
- Eriston Vieira Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana do Nascimento Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Ricci de Azevedo
- Department of Molecular and Cellular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Eliane F Noronha
- Department of Cellular Biology, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Cirano José Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Federal University of Goias, Goiânia, Goiás, Brazil
| | | | - Rosa Elena Cardoza
- Department of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain
| | - Santiago Gutiérrez
- Department of Microbiology, University School of Agricultural Engineers, University of León, Ponferrada, Spain
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Li Z, Yao G, Wu R, Gao L, Kan Q, Liu M, Yang P, Liu G, Qin Y, Song X, Zhong Y, Fang X, Qu Y. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum. PLoS Genet 2015; 11:e1005509. [PMID: 26360497 PMCID: PMC4567317 DOI: 10.1371/journal.pgen.1005509] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022] Open
Abstract
Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a “seesaw model” in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors. Cellulolytic fungi have evolved into sophisticated lignocellulolytic systems to adapt to their natural habitat. This trait is important for filamentous fungi, which are the main source of cellulases utilized to degrade lignocellulose to fermentable sugars. Penicillium oxalicum, which produces lignocellulolytic enzymes with more diverse components than Trichoderma reesei, has the capacity to secrete large amounts of cellulases. Meanwhile, cellulase expression is regulated by a complex network involved in many transcription factors in this organism. To better understand how cellulase genes are systematically regulated in P. oxalicum, we employed molecular genetics to uncover the cellulolytic transcription factors on a genome-wide scale. We discovered the synergistic and tunable regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a “seesaw model” in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.
Collapse
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Guangshan Yao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Ruimei Wu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Qinbiao Kan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Piao Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
28
|
Cupertino FB, Virgilio S, Freitas FZ, Candido TDS, Bertolini MC. Regulation of glycogen metabolism by the CRE-1, RCO-1 and RCM-1 proteins in Neurospora crassa. The role of CRE-1 as the central transcriptional regulator. Fungal Genet Biol 2015; 77:82-94. [PMID: 25889113 DOI: 10.1016/j.fgb.2015.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022]
Abstract
The transcription factor CreA/Mig1/CRE-1 is a repressor protein that regulates the use of alternative carbon sources via a mechanism known as Carbon Catabolite Repression (CCR). In Saccharomyces cerevisiae, Mig1 recruits the complex Ssn6-Tup1, the Neurospora crassa RCM-1 and RCO-1 orthologous proteins, respectively, to bind to promoters of glucose-repressible genes. We have been studying the regulation of glycogen metabolism in N. crassa and the identification of the RCO-1 corepressor as a regulator led us to investigate the regulatory role of CRE-1 in this process. Glycogen content is misregulated in the rco-1(KO), rcm-1(RIP) and cre-1(KO) strains, and the glycogen synthase phosphorylation is decreased in all strains, showing that CRE-1, RCO-1 and RCM-1 proteins are involved in glycogen accumulation and in the regulation of GSN activity by phosphorylation. We also confirmed the regulatory role of CRE-1 in CCR and its nuclear localization under repressing condition in N. crassa. The expression of all glycogenic genes is misregulated in the cre-1(KO) strain, suggesting that CRE-1 also controls glycogen metabolism by regulating gene expression. The existence of a high number of the Aspergillus nidulans CreA motif (5'-SYGGRG-3') in the glycogenic gene promoters led us to analyze the binding of CRE-1 to some DNA motifs both in vitro by DNA gel shift and in vivo by ChIP-qPCR analysis. CRE-1 bound in vivo to all motifs analyzed demonstrating that it down-regulates glycogen metabolism by controlling gene expression and GSN phosphorylation.
Collapse
Affiliation(s)
- Fernanda Barbosa Cupertino
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Stela Virgilio
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Fernanda Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Thiago de Souza Candido
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
29
|
Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR. Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 2014; 78:614-49. [PMID: 25428937 PMCID: PMC4248655 DOI: 10.1128/mmbr.00035-14] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation.
Collapse
Affiliation(s)
- Johanna Rytioja
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristiina Hildén
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer Yuzon
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Annele Hatakka
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Engineering Neurospora crassa for improved cellobiose and cellobionate production. Appl Environ Microbiol 2014; 81:597-603. [PMID: 25381238 DOI: 10.1128/aem.02885-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.
Collapse
|
31
|
Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment. Microbiology (Reading) 2014; 160:1985-1998. [DOI: 10.1099/mic.0.076216-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkaline pH triggers an adaptation mechanism in fungi that is mediated by Rim101/PacCp, a zinc finger transcription factor. To identify the genes under its control in Ustilago maydis, we performed microarray analyses, comparing gene expression in a wild-type strain versus a rim101/pacC mutation strain of the fungus. In this study we obtained evidence of the large number of genes regulated mostly directly, but also indirectly (probably through regulation of other transcription factors), by Rim101/PacCp, including proteins involved in a large number of physiological activities of the fungus. Our analyses suggest that the response to alkaline conditions under the control of the Pal/Rim pathway involves changes in the cell wall and plasma membrane through alterations in their lipid, protein and polysaccharide composition, changes in cell polarity, actin cytoskeleton organization, and budding patterns. Also as expected, adaptation involves regulation by Rim101/PacC of genes involved in meiotic functions, such as recombination and segregation, and expression of genes involved in ion and nutrient transport, as well as general vacuole functions.
Collapse
|
32
|
Kitamoto N, Yoshino-Yasuda S, Ohmiya K, Tsukagoshi N. Sequence Analysis and Overexpression of a Pectin Lyase Gene (pel1) from Aspergillus oryzae KBN616. Biosci Biotechnol Biochem 2014; 65:209-12. [PMID: 11272833 DOI: 10.1271/bbb.65.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A gene (pel1) encoding pectin lyase (Pel1) was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,196 bp with a single intron. The ORF encoded 381 amino acids with a signal peptide of 20 amino acids. The deduced amino acid sequence showed high similarity to those of Aspergillus niger pectin lyases and Glomerella cingulata PnlA. The pel1 gene was successfully overexpressed under the promoter of the A. oryzae TEF1 gene. The molecular mass of the recombinant pectin lyase substantially coincided with that calculated based on nucleotide sequence.
Collapse
Affiliation(s)
- N Kitamoto
- Food Research Institute, Aichi Prefectural Government, Nagoya, Japan.
| | | | | | | |
Collapse
|
33
|
Cepeda-García C, Domínguez-Santos R, García-Rico RO, García-Estrada C, Cajiao A, Fierro F, Martín JF. Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol 2014; 98:7113-24. [PMID: 24818689 DOI: 10.1007/s00253-014-5760-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 01/29/2023]
Abstract
The transcription factor CreA is the main regulator responsible for carbon repression in filamentous fungi. CreA is a wide domain regulator that binds to regulatory elements in the promoters of target genes to repress their transcription. Penicillin biosynthesis and the expression of penicillin biosynthetic genes are subject to carbon repression. However, evidence of the participation of CreA in this regulation is still lacking, and previous studies on the promoter of the pcbC gene of Aspergillus nidulans indicated the lack of involvement of CreA in its regulation. Here we present clear evidence of the participation of CreA in carbon repression of penicillin biosynthesis and expression of the pcbAB gene, encoding the first enzyme of the pathway, in Penicillium chrysogenum. Mutations in cis of some of the putative CreA binding sites present in the pcbAB gene promoter fused to a reporter gene caused an important increase in the measured enzyme activity in glucose-containing medium, whereas activity in the medium with lactose was not affected. An RNAi strategy was used to attenuate the expression of the creA gene. Transformants expressing a small interfering RNA for creA showed higher penicillin production, and this increase was more evident when glucose was used as carbon source. These results confirm that CreA plays an important role in the regulation of penicillin biosynthesis in P. chrysogenum and opens the possibility of its utilization to improve the industrial production of this antibiotic.
Collapse
Affiliation(s)
- Cristina Cepeda-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang T, Peng Y, Yu Q, Wang J, Tang K. Characterization of the 5' flanking region of lipase gene from Penicillium expansum and its application in molecular breeding. Biotechnol Appl Biochem 2014; 61:493-500. [PMID: 24502561 DOI: 10.1002/bab.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
A major challenge for further promotion of lipase productivity in Penicillium expansum PE-12 is to find a suitable promoter that can function efficiently in this industrial strain. In this study, the 5' flanking region of P. expansum lipase (Ppel) containing a putative novel promoter sequence was characterized by fusing to β-glucuronidase (GUS) and subsequently introducing into P. expansum. As a result, all the transformants showed blue color quickly after incubation in GUS detection buffer, suggesting a strong promoter activity of this fragment. Glucose repression was identified for the promoter, whereas olive oil acted as a positive regulator. Facilitated by this novel promoter, P. expansum PE-12 was genetically modified, with an improved lipase yield, via a recombinant plasmid with P. expansum lipase gene (PEL) under the control of Ppel promoter and TtrpC terminator. The highest lipase yield among the modified strains could attain 2,100 U/mL, which is more than twofold of the previous industrial strain (900 U/mL). The engineered strain through molecular breeding method as well as this new promoter has great value in lipase industry.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:14. [PMID: 24472375 PMCID: PMC3922861 DOI: 10.1186/1754-6834-7-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/14/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei. RESULTS We have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes. CONCLUSIONS Transcriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mari J Valkonen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Ann Westerholm-Parvinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Nina Aro
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| |
Collapse
|
36
|
Aguiar TQ, Dinis C, Magalhães F, Oliveira C, Wiebe MG, Penttilä M, Domingues L. Molecular and Functional Characterization of an Invertase Secreted by Ashbya gossypii. Mol Biotechnol 2014; 56:524-34. [DOI: 10.1007/s12033-013-9726-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Sibthorp C, Wu H, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 2013; 14:847. [PMID: 24299161 PMCID: PMC4046813 DOI: 10.1186/1471-2164-14-847] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The filamentous fungus Aspergillus nidulans has been a tractable model organism for cell biology and genetics for over 60 years. It is among a large number of Aspergilli whose genomes have been sequenced since 2005, including medically and industrially important species. In order to advance our knowledge of its biology and increase its utility as a genetic model by improving gene annotation we sequenced the transcriptome of A. nidulans with a focus on 5' end analysis. RESULTS Strand-specific whole transcriptome sequencing showed that 80-95% of annotated genes appear to be expressed across the conditions tested. We estimate that the total gene number should be increased by approximately 1000, to 11,800. With respect to splicing 8.3% of genes had multiple alternative transcripts, but alternative splicing by exon-skipping was very rare. 75% of annotated genes showed some level of antisense transcription and for one gene, meaB, we demonstrated the antisense transcript has a regulatory role. Specific sequencing of the 5' ends of transcripts was used for genome wide mapping of transcription start sites, allowing us to interrogate over 7000 promoters and 5' untranslated regions. CONCLUSIONS Our data has revealed the complexity of the A. nidulans transcriptome and contributed to improved genome annotation. The data can be viewed on the AspGD genome browser.
Collapse
Affiliation(s)
- Christopher Sibthorp
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Huihai Wu
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Gwendolyn Cowley
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Prudence W H Wong
- />Department of Computer Science, University of Liverpool, Ashton Building, Ashton Street, Liverpool, L69 3BX UK
| | - Paulius Palaima
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Igor Y Morozov
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
- />Department of Biomolecular and Sports Sciences, Faculty of Health and Life Sciences, Coventry University, James Starley Building, Coventry, CV1 5FB UK
| | - Gareth D Weedall
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Mark X Caddick
- />Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| |
Collapse
|
38
|
Esperón P, Scazzocchio C, Paulino M. In vitroandin silicoanalysis of theAspergillus nidulansDNA–CreA repressor interactions. J Biomol Struct Dyn 2013; 32:2033-41. [DOI: 10.1080/07391102.2013.843474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 2013; 14:230-49. [PMID: 24294104 PMCID: PMC3731814 DOI: 10.2174/1389202911314040002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/22/2022] Open
Abstract
Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Simona Giacobbe
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
- School of Biotechnological Sciences, University of Naples “Federico II” Italy
| |
Collapse
|
40
|
Culleton H, McKie V, de Vries RP. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: What have we learned fromAspergillus? Biotechnol J 2013; 8:884-94. [DOI: 10.1002/biot.201200382] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
|
41
|
Suzuki Y, Murray SL, Wong KH, Davis MA, Hynes MJ. Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Mol Microbiol 2012; 84:942-64. [DOI: 10.1111/j.1365-2958.2012.08067.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Ward E, Kerry BR, Manzanilla-López RH, Mutua G, Devonshire J, Kimenju J, Hirsch PR. The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PLoS One 2012; 7:e35657. [PMID: 22558192 PMCID: PMC3338732 DOI: 10.1371/journal.pone.0035657] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances.
Collapse
Affiliation(s)
- Elaine Ward
- Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Herts, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tani S, Kanamasa S, Sumitani JI, Arai M, Kawaguchi T. XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus. Curr Genet 2012; 58:93-104. [PMID: 22371227 DOI: 10.1007/s00294-012-0367-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/23/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
The expression levels of the cellulase and xylanase genes between the host strain and an xlnR disruptant were compared by quantitative RT-PCR (qPCR) to identify the genes controlled by XlnR-independent signaling pathway. The cellulose induction of the FI-carboxymethyl cellulase (cmc1) and FIb-xylanase (xynIb) genes was controlled by XlnR; in contrast, the cellulose induction of the FIII-avicelase (cbhI), FII-carboxymethyl cellulase (cmc2), and FIa-xylanase (xynIa) genes was controlled by an XlnR-independent signaling pathway. To gain deeper insight into the XlnR-independent signaling pathway, the expression profile of cbhI was analyzed as a representative target gene. Cellobiose together with 1-deoxynojirimycin (DNJ), a glucosidase inhibitor, induced cbhI the most efficiently among disaccharides composed of β-glucosidic bonds. Furthermore, cellobiose with DNJ induced the transcription of cmc2 and xynIa, whereas cmc1 and xynIb were not induced. GUS reporter fusion analyses of truncated and mutated cbhI promoters revealed that three regions were necessary for effective cellulose-induced transcription, all of which contained the conserved sequence 5'-CCGN(2)CCN(7)G(C/A)-3' within the CeRE, which has been identified as the upstream activating element essential for expression of eglA in A. nidulans (Endo et al. 2008). The data therefore delineate a pathway in which A. aculeatus perceives the presence of cellobiose, thereby activating a signaling pathway that drives cellulase and hemicellulase gene expression under the control of the XlnR-independent regulation through CeRE.
Collapse
Affiliation(s)
- Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | | | | | |
Collapse
|
44
|
Tamayo-Ramos JA, Flipphi M, Pardo E, Manzanares P, Orejas M. L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake. Microb Cell Fact 2012; 11:26. [PMID: 22353731 PMCID: PMC3312857 DOI: 10.1186/1475-2859-11-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the structure and regulation of fungal α-L-rhamnosidase genes despite increasing interest in the biotechnological potential of the enzymes that they encode. Whilst the paradigmatic filamentous fungus Aspergillus nidulans growing on L-rhamnose produces an α-L-rhamnosidase suitable for oenological applications, at least eight genes encoding putative α-L-rhamnosidases have been found in its genome. In the current work we have identified the gene (rhaE) encoding the former activity, and characterization of its expression has revealed a novel regulatory mechanism. A shared pattern of expression has also been observed for a second α-L-rhamnosidase gene, (AN10277/rhaA). RESULTS Amino acid sequence data for the oenological α-L-rhamnosidase were determined using MALDI-TOF mass spectrometry and correspond to the amino acid sequence deduced from AN7151 (rhaE). The cDNA of rhaE was expressed in Saccharomyces cerevisiae and yielded pNP-rhamnohydrolase activity. Phylogenetic analysis has revealed this eukaryotic α-L-rhamnosidase to be the first such enzyme found to be more closely related to bacterial rhamnosidases than other α-L-rhamnosidases of fungal origin. Northern analyses of diverse A. nidulans strains cultivated under different growth conditions indicate that rhaA and rhaE are induced by L-rhamnose and repressed by D-glucose as well as other carbon sources, some of which are considered to be non-repressive growth substrates. Interestingly, the transcriptional repression is independent of the wide domain carbon catabolite repressor CreA. Gene induction and glucose repression of these rha genes correlate with the uptake, or lack of it, of the inducing carbon source L-rhamnose, suggesting a prominent role for inducer exclusion in repression. CONCLUSIONS The A. nidulans rhaE gene encodes an α-L-rhamnosidase phylogenetically distant to those described in filamentous fungi, and its expression is regulated by a novel CreA-independent mechanism. The identification of rhaE and the characterization of its regulation will facilitate the design of strategies to overproduce the encoded enzyme - or homologs from other fungi - for industrial applications. Moreover, A. nidulans α-L-rhamnosidase encoding genes could serve as prototypes for fungal genes coding for plant cell wall degrading enzymes regulated by a novel mechanism of CCR.
Collapse
Affiliation(s)
- Juan A Tamayo-Ramos
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
- Present address: Fungal Systems Biology, Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Michel Flipphi
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Ester Pardo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Margarita Orejas
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
45
|
Feng J, Bhadauria V, Liu G, Selvaraj G, Hughes GR, Wei Y. Analysis of the promoter region of the gene LIP1 encoding triglyceride lipase from Fusarium graminearum. Microbiol Res 2011; 166:618-28. [PMID: 21295455 DOI: 10.1016/j.micres.2010.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/30/2010] [Accepted: 12/28/2010] [Indexed: 11/19/2022]
Abstract
Triglyceride lipases catalyze the reversible degradation of glycerol esters with long-chain fatty acids into fatty acids and glycerol. In silico analysis of 5'-end flanking sequence of the gene LIP1 encoding a triglyceride lipase from the wheat head blight pathogen Fusarium graminearum revealed the presence of several cis-regulatory elements. To delineate the function of these regulatory elements, we constructed a series of deletion mutants in the LIP1 promoter region fused to the open reading frame of a green fluorescent protein (GFP) and assayed the promoter activity. Analysis of GFP expression levels in mutants indicated that a 563-bp promoter sequence was sufficient to drive the expression of LIP1 and regulatory elements responsible for the gene induction were located within the 563-372bp region. To further investigate the regulatory elements, putative cis-acting elements spanned within the 563-372bp region were mutated using a targeted mutagenesis approach. A CCAAT box, a CreA binding site, and a fatty acid responsive element (FARE) were identified and confirmed to be required for the basal expression of LIP1, glucose suppression and fatty acid induction, respectively.
Collapse
Affiliation(s)
- Jie Feng
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
The anisin1 gene encodes a defensin-like protein and supports the fitness of Aspergillus nidulans. Arch Microbiol 2011; 194:427-37. [PMID: 22113351 PMCID: PMC3354322 DOI: 10.1007/s00203-011-0773-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 12/13/2022]
Abstract
In the genome of Aspergillus nidulans, a defensin-like protein, Anisin1, was annotated with high homology to the mosquito defensin AaDefA1. So far, no studies exist on defensins from filamentous ascomycetes. Therefore, we characterized the anisin1 gene in A. nidulans and generated a deletion mutant, which suffered from a defect in mitospore development and produced less conidia at 42°C compared to the reference strain. In surface cultures of A. nidulans wild type, the anisin1 expression correlated with that of the central regulator for asexual development, brlA, and with the major scavanger of H2O2 stress, catB, which is indicative for cell differentiation in developing fungi. Interestingly, brlA and anisin1 expressions were deregulated in a ΔsrrA strain that covers a central role in the histidine-to-aspartate (His-Asp) phosphorelay signaling pathway and shows impaired asexual development and H2O2 detoxification. In submers cultures of A. nidulans wild type and other mutants of the His-Asp phosphorelay signaling pathway, anisin1 was repressed, but derepressed in a ΔsrrA background, and anisin1 transcription was further increased in this mutant by H2O2 addition. We therefore conclude that the secreted protein Anisin1 contributes to the optimal development of A. nidulans and we further propose that it has a sensing/signaling function for elevated H2O2 levels.
Collapse
|
47
|
Battaglia E, Visser L, Nijssen A, van Veluw G, Wösten H, de Vries R. Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 2011; 69:31-8. [PMID: 21892241 PMCID: PMC3161754 DOI: 10.3114/sim.2011.69.03] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aspergilli are commonly found in soil and on decaying plant material. D-xylose and L-arabinose are highly abundant components of plant biomass. They are released from polysaccharides by fungi using a set of extracellular enzymes and subsequently converted intracellularly through the pentose catabolic pathway (PCP). In this study, the L-arabinose responsive transcriptional activator (AraR) is identified in Aspergillus niger and was shown to control the L-arabinose catabolic pathway as well as expression of genes encoding extracellular L-arabinose releasing enzymes. AraR interacts with the D-xylose-responsive transcriptional activator XlnR in the regulation of the pentose catabolic pathway, but not with respect to release of L-arabinose and D-xylose. AraR was only identified in the Eurotiales, more specifically in the family Trichocomaceae and appears to have originated from a gene duplication event (from XlnR) after this order or family split from the other filamentous ascomycetes. XlnR is present in all filamentous ascomycetes with the exception of members of the Onygenales. Since the Onygenales and Eurotiales are both part of the subclass Eurotiomycetidae, this indicates that strong adaptation of the regulation of pentose utilisation has occurred at this evolutionary node. In Eurotiales a unique two-component regulatory system for pentose release and metabolism has evolved, while the regulatory system was lost in the Onygenales. The observed evolutionary changes (in Eurotiomycetidae) mainly affect the regulatory system as in contrast, homologues for most genes of the L-arabinose/D-xylose catabolic pathway are present in all the filamentous fungi, irrespective of the presence of XlnR and/or AraR.
Collapse
Affiliation(s)
- E. Battaglia
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - L. Visser
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A. Nijssen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - G.J. van Veluw
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - H.A.B. Wösten
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R.P. de Vries
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Correspondence: Ronald P. de Vries,
| |
Collapse
|
48
|
Sun J, Glass NL. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 2011; 6:e25654. [PMID: 21980519 PMCID: PMC3183063 DOI: 10.1371/journal.pone.0025654] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and β-galactosidase. METHODOLOGY/PRINCIPAL FINDINGS Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Δcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Δcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 5'-SYGGRG-3' motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Δcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion. CONCLUSIONS/SIGNIFICANCE Our data provide comprehensive information on the CRE-1 regulon in N. crassa and contribute to deciphering the global role of carbon catabolite repression in filamentous ascomycete fungi during plant cell wall deconstruction.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:855-73. [PMID: 21733624 DOI: 10.1016/j.jhazmat.2011.05.106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/16/2023]
Abstract
A laccase-producing white-rot fungi strain Ganoderma sp.En3 was newly isolated from the forest of Tzu-chin Mountain in China. Ganoderma sp.En3 had a strong ability of decolorizing four synthetic dyes, two simulated dye bath effluents and the real textile dye effluent. Induction in the activity of laccase during the decolorization process indicated that laccase played an important role in the efficient decolorization of different dyes by this fungus. Phytotoxicity study with respect to Triticum aestivum and Oryza sativa demonstrated that Ganoderma sp.En3 was able to detoxify four synthetic dyes, two simulated dye effluents and the real textile dye effluent. The laccase gene lac-En3-1 and its corresponding full-length cDNA were then cloned and characterized from Ganoderma sp.En3. The deduced protein sequence of LAC-En3-1 contained four copper-binding conserved domains of typical laccase protein. The functionality of lac-En3-1 gene encoding active laccase was verified by expressing this gene in the yeast Pichia pastoris successfully. The recombinant laccase produced by the yeast transformant could decolorize the synthetic dyes, simulated dye effluents and the real textile dye effluent. The ability of decolorizing different dyes was positively related to the laccase activity. In addition, the 5'-flanking sequence upstream of the start codon ATG in lac-En3-1 gene was obtained. Many putative cis-acting responsive elements were predicted in the promoter region of lac-En3-1.
Collapse
Affiliation(s)
- Rui Zhuo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Differential expression of citA gene encoding the mitochondrial citrate synthase of Aspergillus nidulans in response to developmental status and carbon sources. J Microbiol 2010; 48:188-98. [PMID: 20437151 DOI: 10.1007/s12275-010-0096-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
As an extension of our previous studies on the mitochondrial citrate synthase of Aspergillus nidulans and cloning of its coding gene (citA), we analyzed differential expression of citA in response to the progress of development and change of carbon source. The cDNA consisted of 1,700 nucleotides and was predicted to encode a 474-amino acid protein. By comparing the cDNA sequence with the corresponding genomic sequence, we confirmed that citA gene contains 7 introns and that its transcription starts at position -26 (26-nucleotide upstream from the initiation codon). Four putative CreA binding motifs and three putative stress-response elements (STREs) were found within the 1.45-kb citA promoter region. The mode of citA expression was examined by both Northern blot and confocal microscopy using green fluorescent protein (sGFP) as a vital reporter. During vegetative growth and asexual development, the expression of citA was ubiquitous throughout the whole fungal body including mycelia and conidiophores. During sexual development, the expression of citA was quite strong in cleistothecial shells, but significantly weak in the content of cleistothecia including ascospores. Acetate showed a strong inductive effect on citA expression, which is subjected to carbon catabolite repression (CCR) caused by glucose. The recombinant fusion protein CitA(40)::sGFP (sGFP containing the 40-amino acid N-terminal segment of CitA) was localized into mitochondria, which supports that a mitochondrial targeting signal is included within the 40-amino acid N-terminal segment of CitA.
Collapse
|