1
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Smc5/6 silences episomal transcription by a three-step function. Nat Struct Mol Biol 2022; 29:922-931. [PMID: 36097294 DOI: 10.1038/s41594-022-00829-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process. The first step is entrapment of the episomal DNA by a mechanism dependent on Smc5/6 ATPase activity and a function of its Nse4a subunit for which the Nse4b paralog cannot substitute. The second step results in Smc5/6 recruitment to promyelocytic leukemia nuclear bodies by SLF2 (the human ortholog of Nse6). The third step promotes silencing through a mechanism requiring Nse2 but not its SUMO ligase activity. By contrast, the related cohesin and condensin complexes fail to bind to or silence episomal DNA, indicating a property unique to Smc5/6.
Collapse
|
3
|
Odiba AS, Ezechukwu CS, Liao G, Li S, Chen Z, Liu X, Fang W, Jin C, Wang B. Loss of NSE-4 Perturbs Genome Stability and DNA Repair in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23137202. [PMID: 35806213 PMCID: PMC9266361 DOI: 10.3390/ijms23137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The Structural Maintenance of Chromosomes (SMC) complex plays an important role in maintaining chromosome integrity, in which the SMC5/6 complex occupies a central position by facilitating mitotic and meiotic processes as well as DNA repair. NSE-4 Kleisin is critical for both the organization and function of the SMC5/6 complex, bridging NSE1 and NSE3 (MAGE related) with the head domains of the SMC5 and SMC6 proteins. Despite the conservation in protein sequence, no functional relevance of the NSE-4 homologous protein (NSE-4) in Caenorhabditis elegans has been reported. Here, we demonstrated the essential role of C. elegans NSE-4 in genome maintenance and DNA repair. Our results showed that NSE-4 is essential for the maintenance of chromosomal structure and repair of a range of chemically induced DNA damage. Furthermore, NSE-4 is involved in inter-sister repair during meiosis. NSE-4 localizes on the chromosome and is indispensable for the localization of NSE-1. Collectively, our data from this study provide further insight into the evolutionary conservation and diversification of NSE-4 function in the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Genetics and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Correspondence: (G.L.); (B.W.)
| | - Siqiao Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Zhongliang Chen
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Xihui Liu
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
| | - Wenxia Fang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
| | - Cheng Jin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China; (A.S.O.); (C.S.E.); (S.L.); (W.F.); (C.J.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (Z.C.); (X.L.)
- Correspondence: (G.L.); (B.W.)
| |
Collapse
|
4
|
Yoshinaga M, Inagaki Y. Ubiquity and Origins of Structural Maintenance of Chromosomes (SMC) Proteins in Eukaryotes. Genome Biol Evol 2021; 13:evab256. [PMID: 34894224 PMCID: PMC8665677 DOI: 10.1093/gbe/evab256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 12/03/2022] Open
Abstract
Structural maintenance of chromosomes (SMC) protein complexes are common in Bacteria, Archaea, and Eukaryota. SMC proteins, together with the proteins related to SMC (SMC-related proteins), constitute a superfamily of ATPases. Bacteria/Archaea and Eukaryotes are distinctive from one another in terms of the repertory of SMC proteins. A single type of SMC protein is dimerized in the bacterial and archaeal complexes, whereas eukaryotes possess six distinct SMC subfamilies (SMC1-6), constituting three heterodimeric complexes, namely cohesin, condensin, and SMC5/6 complex. Thus, to bridge the homodimeric SMC complexes in Bacteria and Archaea to the heterodimeric SMC complexes in Eukaryota, we need to invoke multiple duplications of an SMC gene followed by functional divergence. However, to our knowledge, the evolution of the SMC proteins in Eukaryota had not been examined for more than a decade. In this study, we reexamined the ubiquity of SMC1-6 in phylogenetically diverse eukaryotes that cover the major eukaryotic taxonomic groups recognized to date and provide two novel insights into the SMC evolution in eukaryotes. First, multiple secondary losses of SMC5 and SMC6 occurred in the eukaryotic evolution. Second, the SMC proteins constituting cohesin and condensin (i.e., SMC1-4), and SMC5 and SMC6 were derived from closely related but distinct ancestral proteins. Based on the above-mentioned findings, we discuss how SMC1-6 have diverged from the archaeal homologs.
Collapse
Affiliation(s)
- Mari Yoshinaga
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Holá M, Vágnerová R, Angelis KJ. Kleisin NSE4 of the SMC5/6 complex is necessary for DNA double strand break repair, but not for recovery from DNA damage in Physcomitrella (Physcomitrium patens). PLANT MOLECULAR BIOLOGY 2021; 107:355-364. [PMID: 33550456 DOI: 10.1007/s11103-020-01115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Kleisin NSE4 and circular form of SMC5/6 is indispensable for DSB repair and necessary for gene targeting but is not enough for recovery of cells from DNA damage in Physcomitrella. Structural maintenance of chromosomes (SMC) complexes are involved in cohesion, condensation and maintenance of genome stability. Based on the sensitivity of mutants to genotoxic stress the SMC5/6 complex is thought to play a prominent role in DNA stabilization during repair by tethering DNA at the site of lesion by a heteroduplex of SMC5 and SMC6 encircled with non-SMC components NSE1, NSE3 and kleisin NSE4. In this study, we tested how formation of the SMC5/6 circular structure affects mutant sensitivity to DNA damage, kinetics of DSB repair and gene targeting. In the moss Physcomitrella (Physcomitrium patens), SMC6 and NSE4 are essential single copy genes and this is why we used blocking of transcription to reveal their mutated phenotype. Even slight reduction of transcript levels by dCas9 binding was enough to obtain stable lines with severe DSB repair defects and specific bleomycin sensitivity. We show that survival after bleomycin or MMS treatment fully depends on active SMC6, whereas attenuation of NSE4 has little or negligible effect. We conclude that circularization of SMC5/6 provided by the kleisin NSE4 is indispensable for the DSB repair, nevertheless there are other functions associated with the SMC5/6 complex, which are critical to survive DNA damage.
Collapse
Affiliation(s)
- Marcela Holá
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, The Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic.
| |
Collapse
|
6
|
Zelkowski M, Zelkowska K, Conrad U, Hesse S, Lermontova I, Marzec M, Meister A, Houben A, Schubert V. Arabidopsis NSE4 Proteins Act in Somatic Nuclei and Meiosis to Ensure Plant Viability and Fertility. FRONTIERS IN PLANT SCIENCE 2019; 10:774. [PMID: 31281325 PMCID: PMC6596448 DOI: 10.3389/fpls.2019.00774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 05/02/2023]
Abstract
The SMC 5/6 complex together with cohesin and condensin is a member of the structural maintenance of chromosome (SMC) protein family. In non-plant organisms SMC5/6 is engaged in DNA repair, meiotic synapsis, genome organization and stability. In plants, the function of SMC5/6 is still enigmatic. Therefore, we analyzed the crucial δ-kleisin component NSE4 of the SMC5/6 complex in the model plant Arabidopsis thaliana. Two functional conserved Nse4 paralogs (Nse4A and Nse4B) are present in A. thaliana, which may have evolved via gene subfunctionalization. Due to its high expression level, Nse4A seems to be the more essential gene, whereas Nse4B appears to be involved mainly in seed development. The morphological characterization of A. thaliana T-DNA mutants suggests that the NSE4 proteins are essential for plant growth and fertility. Detailed investigations in wild-type and the mutants based on live cell imaging of transgenic GFP lines, fluorescence in situ hybridization (FISH), immunolabeling and super-resolution microscopy suggest that NSE4A acts in several processes during plant development, such as mitosis, meiosis and chromatin organization of differentiated nuclei, and that NSE4A operates in a cell cycle-dependent manner. Differential response of NSE4A and NSE4B mutants after induced DNA double strand breaks (DSBs) suggests their involvement in DNA repair processes.
Collapse
Affiliation(s)
- Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Katarzyna Zelkowska
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Plant Cytogenomics Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
7
|
PJA1 Coordinates with the SMC5/6 Complex To Restrict DNA Viruses and Episomal Genes in an Interferon-Independent Manner. J Virol 2018; 92:JVI.00825-18. [PMID: 30185588 PMCID: PMC6206484 DOI: 10.1128/jvi.00825-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases. Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not “immune privileged” and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus. IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.
Collapse
|
8
|
Li G, Zou W, Jian L, Qian J, Deng Y, Zhao J. Non-SMC elements 1 and 3 are required for early embryo and seedling development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1039-1054. [PMID: 28207059 PMCID: PMC5441860 DOI: 10.1093/jxb/erx016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early embryo development from the zygote is an essential stage in the formation of the seed, while seedling development is the beginning of the formation of an individual plant. AtNSE1 and AtNSE3 are subunits of the structural maintenance of chromosomes (SMC) 5/6 complex and have been identified as non-SMC elements, but their functions in Arabidopsis growth and development remain as yet unknown. In this study, we found that loss of function of AtNSE1 and AtNSE3 led to severe defects in early embryo development. Partially complemented mutants showed that the development of mutant seedlings was inhibited, that chromosome fragments occurred during anaphase, and that the cell cycle was delayed at G2/M, which led to the occurrence of endoreduplication. Further, a large number of DNA double-strand breaks (DSBs) occurred in the nse1 and nse3 mutants, and the expression of AtNSE1 and AtNSE3 was up-regulated following treatment of the plants with DSB inducer compounds, suggesting that AtNSE1 and AtNSE3 have a role in DNA damage repair. Therefore, we conclude that AtNSE1 and AtNSE3 facilitate DSB repair and contribute to maintaining genome stability and cell division in mitotic cells. Thus, we think that AtNSE1 and AtNSE3 may be crucial factors for maintaining proper early embryonic and post-embryonic development.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liufang Jian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Li J, Dukowic-Schulze S, Lindquist IE, Farmer AD, Kelly B, Li T, Smith AG, Retzel EF, Mudge J, Chen C. The plant-specific protein FEHLSTART controls male meiotic entry, initializing meiotic synchronization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:659-71. [PMID: 26382719 DOI: 10.1111/tpj.13026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 05/15/2023]
Abstract
Meiosis marks the transition from the sporophyte to the gametophyte generation in the life cycle of flowering plants, and creates genetic variations through homologous recombination. In most flowering plants, meiosis is highly synchronized within each anther, which is significant for efficient fertilization. To date, little is known about the molecular mechanisms of entry into meiosis and exit from it, and only a few genes in Arabidopsis have been characterized with a role in regulating meiotic progression. In this study, we report the functional characterization of a plant-specific basic helix-loop-helix (bHLH) protein, FEHLSTART (FST), a defect in which leads to premature meiotic entry and asynchronous meiosis, and results in decreased seed yield. Investigation of the time course of meiosis showed that the onset of leptotene, the first stage of prophase I, frequently occurred earlier in fst-1 than in the wild type. Asynchronous meiosis followed, which could manifest in the disruption of regular spindle structures and symmetric cell divisions in fst-1 mutants during the meiosis I/II transition. In accordance with frequently accelerated meiotic entry, whole-transcriptome analysis of fst-1 anthers undergoing meiosis revealed that 19 circadian rhythm genes were affected and 47 pollen-related genes were prematurely expressed at a higher level. Taken together, we propose that FST is required for normal meiotic entry and the establishment of meiotic synchrony.
Collapse
Affiliation(s)
- Junhua Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ingrid E Lindquist
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Bridget Kelly
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Tao Li
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM, 87505, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
10
|
Kramer A, Beck HC, Kumar A, Kristensen LP, Imhoff JF, Labes A. Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant. PLoS One 2015; 10:e0140047. [PMID: 26460745 PMCID: PMC4603891 DOI: 10.1371/journal.pone.0140047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
The marine fungus Microascus brevicaulis strain LF580 is a non-model secondary metabolite producer with high yields of the two secondary metabolites scopularides A and B, which exhibit distinct activities against tumour cell lines. A mutant strain was obtained using UV mutagenesis, showing faster growth and differences in pellet formation besides higher production levels. Here, we show the first proteome study of a marine fungus. Comparative proteomics were applied to gain deeper understanding of the regulation of production and of the physiology of the wild type strain and its mutant. For this purpose, an optimised protein extraction protocol was established. In total, 4759 proteins were identified. The central metabolic pathway of strain LF580 was mapped using the KEGG pathway analysis and GO annotation. Employing iTRAQ labelling, 318 proteins were shown to be significantly regulated in the mutant strain: 189 were down- and 129 upregulated. Proteomics are a powerful tool for the understanding of regulatory aspects: The differences on proteome level could be attributed to limited nutrient availability in the wild type strain due to a strong pellet formation. This information can be applied for optimisation on strain and process level. The linkage between nutrient limitation and pellet formation in the non-model fungus M. brevicaulis is in consensus with the knowledge on model organisms like Aspergillus niger and Penicillium chrysogenum.
Collapse
Affiliation(s)
- Annemarie Kramer
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department for Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Abhishek Kumar
- Department for Botany and Molecular Biology, Institute of Botany, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Lars Peter Kristensen
- Centre for Clinical Proteomics, Department for Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Johannes F. Imhoff
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Antje Labes
- Research Unit Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
11
|
Taniura H, Tanabe N, Bando Y, Arai N. Nse1 and Nse4, subunits of the Smc5-Smc6 complex, are involved in Dictyostelium development upon starvation. Dev Growth Differ 2015; 57:430-443. [PMID: 26036668 PMCID: PMC11520956 DOI: 10.1111/dgd.12223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Abstract
The Smc5-Smc6 complex contains a heterodimeric core of two SMC proteins and non-Smc elements (Nse1-6), and plays an important role in DNA repair. We investigated the functional roles of Nse4 and Nse1 in Dictyostelium discoideum. Nse4 and Nse3 expressed as Flag-tagged fusion proteins were highly enriched in nuclei, while Nse1 was localized in whole cells. Using yeast two-hybrid assays, only the interaction between Nse3 and Nse1 was detected among the combinations. However, all of the interactions among these three proteins were recognized by co-immunoprecipitation assay using cell lysates prepared from the cells expressing green fluorescent protein (GFP)- or Flag-tagged fusion proteins. GFP-tagged Nse1, which localized in whole cells, was translocated to nuclei when co-expressed with Flag-tagged Nse3 or Nse4. RNAi-mediated Nse1 and Nse4 knockdown cells (Nse1 KD and Nse4 KD cells) were generated and found to be more sensitive to UV-induced cell death than control cells. Upon starvation, Nse1 and Nse4 KD cells had increases in the number of smaller fruiting bodies that formed on non-nutrient agar plates or aggregates that formed under submerged culture. We found a reduction in the mRNA level of pdsA, in vegetative and 8 h-starved Nse4 KD cells, and pdsA knockdown cells displayed effects similar to Nse4 KD cells. Our results suggest that Nse4 and Nse1 are involved in not only the cellular DNA damage response but also cellular development in D. discoideum.
Collapse
Affiliation(s)
- Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Naoya Tanabe
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yumi Bando
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsumi Arai
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
12
|
Choucair N, Abou Ghoch J, Fawaz A, Mégarbané A, Chouery E. 10q26.1 Microdeletion: Redefining the critical regions for microcephaly and genital anomalies. Am J Med Genet A 2015; 167A:2707-13. [DOI: 10.1002/ajmg.a.37211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/04/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy Choucair
- Unité de Génétique Médicale et Laboratoire Associé INSERM à l'Unité UMR_S 910; Faculté de Médecine; Université Saint-Joseph; Beirut Lebanon
- Faculté de Médecine de la Timone; Aix-Marseille Université; Marseille France
- Institut National de la Santé et de la Recherche Médicale; UMR_S910; Marseille France
| | - Joelle Abou Ghoch
- Unité de Génétique Médicale et Laboratoire Associé INSERM à l'Unité UMR_S 910; Faculté de Médecine; Université Saint-Joseph; Beirut Lebanon
| | - Ali Fawaz
- Neuropediatrics Department; Lebanese University; Beirut Lebanon
| | - André Mégarbané
- Unité de Génétique Médicale et Laboratoire Associé INSERM à l'Unité UMR_S 910; Faculté de Médecine; Université Saint-Joseph; Beirut Lebanon
- Institut Jérôme Lejeune; Paris France
| | - Eliane Chouery
- Unité de Génétique Médicale et Laboratoire Associé INSERM à l'Unité UMR_S 910; Faculté de Médecine; Université Saint-Joseph; Beirut Lebanon
| |
Collapse
|
13
|
Mec1-dependent phosphorylation of Mms21 modulates its SUMO ligase activity. DNA Repair (Amst) 2015; 28:83-92. [DOI: 10.1016/j.dnarep.2015.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/25/2022]
|
14
|
The function of ORAOV1/LTO1, a gene that is overexpressed frequently in cancer: essential roles in the function and biogenesis of the ribosome. Oncogene 2013; 33:484-94. [PMID: 23318452 DOI: 10.1038/onc.2012.604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022]
Abstract
ORAOV1 (oral cancer overexpressed) is overexpressed in many solid tumours, making a key contribution to the development of cancer, but the cellular role of ORAOV1 is unknown. The yeast orthologue of this protein is encoded by the hitherto uncharacterized essential gene, YNL260c. Expression of ORAOV1 restores viability to yeast cells lacking YNL260c. Under nonpermissive conditions, our conditional mutants of YNL260c are defective in the maturation of the 60S ribosomal subunit, whereas maturation of the 40S subunit is unaffected. Also, initiation of translation is abrogated when YNL260c function is lost. YNL260c is indispensible for life in oxygen, but is nonessential under anaerobic conditions. Consequently, the toxic affects of aerobic metabolism on biogenesis and function of the ribosome are alleviated by YNL260c, hence, we rename YNL260c as LTO1; required for biogenesis of the large ribosomal subunit and initiation of translation in oxygen. Lto1 is found in a complex with Rli1/ABCE1, an ATP-binding cassette (ABC)-ATPase bearing N-terminal [4Fe-4S] clusters. Like Lto1, the Rli1/ABCE1 [4Fe-4S] clusters are not required for viability under anaerobic conditions, but are essential in the presence of oxygen. Loss of Lto1 function renders cells susceptible to hydroperoxide pro-oxidants, though this type of sensitivity is specific to certain types of oxidative stress as the lto1 mutants are not sensitive to an agent that oxidizes thiols. These findings reflect a functional interaction between Lto1 and the Rli1/ABCE1 [4Fe-4S] clusters, as part of a complex, which relieves the toxic effects of reactive oxygen species (ROS) on biogenesis and function of the ribosome. This complex also includes Yae1, which bridges the interaction between Lto1 and Rli1/ABCE1. Interactions between members of this complex were demonstrated both in vivo and in vitro. An increased generation of ROS is a feature shared by many cancers. The ORAOV1 complex could prevent ROS-induced ribosomal damage, explaining why overexpression of ORAOV1 is so common in solid tumours.
Collapse
|
15
|
Yong-Gonzales V, Hang LE, Castellucci F, Branzei D, Zhao X. The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS One 2012; 7:e51540. [PMID: 23284708 PMCID: PMC3527468 DOI: 10.1371/journal.pone.0051540] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022] Open
Abstract
The Smc5-Smc6 complex in Saccharomyces cerevisiae is both essential for growth and important for coping with genotoxic stress. While it facilitates damage tolerance throughout the genome under genotoxin treatment, its function during unperturbed growth is mainly documented for repetitive DNA sequence maintenance. Here we provide physical and genetic evidence showing that the Smc5–Smc6 complex regulates recombination at non-repetitive loci such as centromeres in the absence of DNA damaging agents. Mutating Smc6 results in the accumulation of recombination intermediates at centromeres and other unique sequences as assayed by 2D gel analysis. In addition, smc6 mutant cells exhibit increased levels of Rad52 foci that co-localize with centromere markers. A rad52 mutation that decreases centromeric, but not overall, levels of Rad52 foci in smc6 mutants suppresses the nocodazole sensitivity of these cells, suggesting that the Smc6-mediated regulation of recombination at centromeric regions impacts centromere-related functions. In addition to influencing recombination, the SUMO ligase subunit of the Smc5–Smc6 complex promotes the sumoylation of two kinetochore proteins and affects mitotic spindles. These results suggest that the Smc5–Smc6 complex regulates both recombination and kinetochore sumoylation to facilitate chromosomal maintenance during growth.
Collapse
Affiliation(s)
- Vladimir Yong-Gonzales
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Lisa E. Hang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Programs in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, United States of America
| | | | - Dana Branzei
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bustard DE, Menolfi D, Jeppsson K, Ball LG, Dewey SC, Shirahige K, Sjögren C, Branzei D, Cobb JA. During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J Biol Chem 2012; 287:11374-83. [PMID: 22303010 DOI: 10.1074/jbc.m111.336263] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1-6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase important for Smc5 sumoylation. Characterization of two temperature-sensitive mutants, nse5-ts1 and nse5-ts2, demonstrated the importance of Nse5 within the Smc5/6 complex for its stability and functionality at forks during hydroxyurea-induced replication stress. Both NSE5 alleles showed a marked reduction in Smc5 sumoylation to levels lower than those observed with mms21-11, a mutant of Mms21 that is deficient in SUMO ligase activity. However, a phenotypic comparison of nse5-ts1 and nse5-ts2 revealed a separation of importance between Smc5 sumoylation and the function of the Smc5/6 complex during replication. Only cells carrying the nse5-ts1 allele exhibited defects such as dissociation of the replisome from stalled forks, formation of fork-associated homologous recombination intermediates, and hydroxyurea sensitivity that is additive with mms21-11. These defects are attributed to a failure in Smc5/6 localization to forks in nse5-ts1 cells. Overall, these data support the premise that Nse5 is important for vital interactions between components within the Smc5/6 complex, and for its functionality during replication stress.
Collapse
Affiliation(s)
- Denise E Bustard
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Topology is the study of geometric properties that are preserved during bending, twisting and stretching of objects. In the context of the genome, topology is discussed at two interconnected and overlapping levels. The first focuses the DNA double helix itself, and includes alterations such as those triggered by DNA interacting proteins, processes which require the separation of the two DNA strands and DNA knotting. The second level is centered on the higher order organization of DNA into chromosomes, as well as dynamic conformational changes that occur on a chromosomal scale. Here, we refer to the first level as "DNA topology", the second as "chromosome topology". Since their identification, evidences suggesting that the so called structural maintenance of chromosomes (SMC) protein complexes are central to the interplay between DNA and chromosome topology have accumulated. The SMC complexes regulate replication, segregation, repair and transcription, all processes which influence, and are influenced by, DNA and chromosome topology. This review focuses on the details of the relationship between the SMC complexes and topology. It also discusses the possibility that the SMC complexes are united by a capability to sense the geometrical chirality of DNA crossings.
Collapse
Affiliation(s)
- Sidney D Carter
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | | |
Collapse
|
18
|
Sipling T, Zhai C, Panaretou B. Emw1p/YNL313cp is essential for maintenance of the cell wall in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2011; 157:1032-1041. [PMID: 21273246 DOI: 10.1099/mic.0.045971-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are six essential genes in the Saccharomyces cerevisiae genome which encode proteins bearing the tetratricopeptide repeat (TPR) domain that mediates protein-protein interaction. Thus far, the function of one of them, YNL313c, remains unknown. Our conditional mutants of YNL313c display osmoremedial temperature sensitivity, hypersensitivity to both Calcofluor White and low concentrations of SDS, and osmoremedial caffeine sensitivity. These are hallmarks of mutants that display cell wall defects. Accordingly we rename the gene as EMW1 (essential for maintenance of the cell wall). Loss of Emw1p function is not associated with abrogation of the cell wall integrity (CWI) MAP kinase cascade. Instead, emw1(ts) mutants activate this cascade even at permissive temperature, indicating that loss of Emw1p function does not cause a defect in sensors and effectors of cell wall signalling, but leads to a cell wall defect directly. Constitutive activation of the CWI cascade is reflected by the overproduction of chitin by emw1(ts) mutants, a compensatory response frequently displayed by cell wall mutants. Growth is restored to emw1(ts) mutants incubated at otherwise non-permissive temperature when GFA1 is overexpressed. GFA1 encodes the hexosephosphate aminotransferase that catalyses the rate-limiting step in the pathway that synthesizes the chitin precursor UDP-GlcNAc. The possibility that Emw1p is required for function of Gfa1p was ruled out, because the emw1(ts) phenotype persists when the requirement for Gfa1p is bypassed. Furthermore, if loss of Emw1p function leads to loss of function of Gfa1p, then chitin synthesis would be diminished. Instead, a stimulation of the synthesis of this polymer is detected. Consequently, the defect associated with emw1(ts) mutants may be associated with compromise in one of the remaining processes that depend on UDP-GlcNAc, namely N-glycosylation or glycosylphosphatidylinositol (GPI)-anchor synthesis.
Collapse
Affiliation(s)
- Tatjana Sipling
- Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Chao Zhai
- Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Barry Panaretou
- Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
19
|
Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol Cell Biol 2011; 31:1369-81. [PMID: 21245390 DOI: 10.1128/mcb.00786-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.
Collapse
|
20
|
Nikpour M, Pellagatti A, Liu A, Karimi M, Malcovati L, Gogvadze V, Forsblom AM, Wainscoat JS, Cazzola M, Zhivotovsky B, Grandien A, Boultwood J, Hellström-Lindberg E. Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br J Haematol 2010; 149:844-54. [PMID: 20408843 DOI: 10.1111/j.1365-2141.2010.08174.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Refractory anaemia with ring sideroblasts (RARS) is characterized by anaemia, erythroid apoptosis, cytochrome c release and mitochondrial ferritin accumulation. Granulocyte-colony-stimulating factor (G-CSF) inhibits the first three of these features in vitro and in vivo. To dissect the molecular mechanisms underlying the RARS phenotype and anti-apoptotic effects of G-CSF, erythroblasts generated from normal (NBM) and RARS marrow CD34(+) cells were cultured +/-G-CSF and subjected to gene expression analysis (GEP). Several erythropoiesis-associated genes that were deregulated in RARS CD34(+) cells showed normal expression in erythroblasts, underscoring the importance of differentiation-specific GEP. RARS erythroblasts showed a marked deregulation of several pathways including apoptosis, DNA damage repair, mitochondrial function and the JAK/Stat pathway. ABCB7, transporting iron from mitochondria to cytosol and associated with inherited ring sideroblast formation was severely suppressed and expression decreased with differentiation, while increasing in NBM cultures. The same pattern was observed for the mitochondrial integrity gene MFN2. Other downregulated key genes included STAT5B, HSPA5, FANCC and the negative apoptosis regulator MAP3K7. Methylation status of key downregulated genes was normal. The mitochondrial pathway including MFN2 was significantly modified by G-CSF, and several heat shock protein genes were upregulated, as evidence of anti-apoptotic protection of erythropoiesis. By contrast, G-CSF had no effect on iron-transport or erythropoiesis-associated genes.
Collapse
Affiliation(s)
- Maryam Nikpour
- Centre of Experimental Haematology, Department of Medicine (Huddinge), Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dettman JR, Anderson JB, Kohn LM. Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping. Evolution 2009; 64:694-709. [PMID: 19817850 DOI: 10.1111/j.1558-5646.2009.00863.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfe-dma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky-Muller model of genic incompatibility. We developed microarray-based, restriction-site associated DNA (RAD) markers that identified approximately 1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk-segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only approximately 2% of the nuclear genome. This study demonstrates how advances in high-throughput, genome-wide genotyping can be applied to mapping reproductive isolation genes and speciation research.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | | | | |
Collapse
|
22
|
Duan X, Yang Y, Chen YH, Arenz J, Rangi GK, Zhao X, Ye H. Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6. J Biol Chem 2009; 284:8507-15. [PMID: 19141609 PMCID: PMC2659209 DOI: 10.1074/jbc.m809139200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/12/2009] [Indexed: 12/23/2022] Open
Abstract
The evolutionarily conserved structural maintenance of chromosome (SMC) proteins forms the core structures of three multisubunit complexes as follows: cohesin, condensin, and the Smc5/6 complex. These complexes play crucial roles in different aspects of chromosomal organization, duplication, and segregation. Although the architectures of cohesin and condensin are better understood, that of the more recently identified Smc5/6 complex remains to be elucidated. We have previously shown that the Smc5/6 complex of Saccharomyces cerevisiae contains Smc5, Smc6, and six non-SMC elements (Nse1-6). In this study, we investigated the architecture of the budding yeast Smc5/6 complex employing the yeast two-hybrid assay as well as in vitro biochemical approaches using purified recombinant proteins. These analyses revealed that Smc5 and Smc6 associate with each other at their hinge regions and constitute the backbone of the complex, whereas the Nse1-6 subunits form three distinct subcomplexes/entities that interact with different regions of Smc5 and Smc6. The Nse1, -3, and -4 subunits form a stable subcomplex that binds to the head and the adjacent coiled-coil region of Smc5. Nse2 binds to the middle of the coiled-coil region of Smc5. Nse5 and Nse6 interact with each other and, as a heterodimer, bind to the hinge regions of Smc5 and Smc6. These findings provide new insights into the structures of the Smc5/6 complex and lay the foundation for further investigations into the mechanism of its functions.
Collapse
Affiliation(s)
- Xinyuan Duan
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ypp1/YGR198w plays an essential role in phosphoinositide signalling at the plasma membrane. Biochem J 2008; 415:455-66. [DOI: 10.1042/bj20080209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositide signalling through the eukaryotic plasma membrane makes essential contributions to many processes, including remodelling of the actin cytoskeleton, vesicle trafficking and signalling from the cell surface. A proteome-wide screen performed in Saccharomyces cerevisiae revealed that Ypp1 interacts physically with the plasma-membrane-associated phosphoinositide 4-kinase, Stt4. In the present study, we demonstrate that phenotypes of ypp1 and stt4 conditional mutants are identical, namely osmoremedial temperature sensitivity, hypersensitivity to cell wall destabilizers and defective organization of actin. We go on to show that overexpression of STT4 suppresses the temperature-sensitive growth defect of ypp1 mutants. In contrast, overexpression of genes encoding the other two phosphoinositide 4-kinases in yeast, Pik1 and Lsb6, do not suppress this phenotype. This implies a role for Ypp1 in Stt4-dependent events at the plasma membrane, as opposed to a general role in overall metabolism of phosphatidylinositol 4-phosphate. Use of a pleckstrin homology domain sensor reveals that there are substantially fewer plasma-membrane-associated 4-phosphorylated phosphoinositides in ypp1 mutants in comparison with wild-type cells. Furthermore, in vivo labelling with [3H]inositol indicates a dramatic reduction in the level of phosphatidylinositol 4-phosphate in ypp1 mutants. This is the principal cause of lethality under non-permissive conditions in ypp1 mutants, as limiting the activity of the Sac1 phosphoinositide 4-phosphate phosphatase leads to restoration of viability. Additionally, the endocytic defect associated with elevated levels of PtdIns4P in sac1Δ cells is restored in combination with a ypp1 mutant, consistent with the opposing effects that these two mutations have on levels of this phosphoinositide.
Collapse
|
24
|
Pebernard S, Perry JJP, Tainer JA, Boddy MN. Nse1 RING-like domain supports functions of the Smc5-Smc6 holocomplex in genome stability. Mol Biol Cell 2008; 19:4099-109. [PMID: 18667531 DOI: 10.1091/mbc.e08-02-0226] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein-protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions.
Collapse
Affiliation(s)
- Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
25
|
Nishimura I, Sakoda JY, Yoshikawa K. Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis. Neuroscience 2008; 154:572-81. [DOI: 10.1016/j.neuroscience.2008.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
|
26
|
Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, Hieter P. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 2008; 30:248-58. [PMID: 18439903 DOI: 10.1016/j.molcel.2008.02.021] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/18/2008] [Accepted: 02/07/2008] [Indexed: 11/16/2022]
Abstract
The Saccharomyces cerevisiae gene deletion project revealed that approximately 20% of yeast genes are required for viability. The analysis of essential genes traditionally relies on conditional mutants, typically temperature-sensitive (ts) alleles. We developed a systematic approach (termed "diploid shuffle") useful for generating a ts allele for each essential gene in S. cerevisiae and for improved genetic manipulation of mutant alleles and gene constructs in general. Importantly, each ts allele resides at its normal genomic locus, flanked by specific cognate UPTAG and DNTAG bar codes. A subset of 250 ts mutants, including ts alleles for all uncharacterized essential genes and prioritized for genes with human counterparts, is now ready for distribution. The importance of this collection is demonstrated by biochemical and genetic screens that reveal essential genes involved in RNA processing and maintenance of chromosomal stability.
Collapse
Affiliation(s)
- Shay Ben-Aroya
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Murray JM, Carr AM. Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 2008; 9:177-82. [PMID: 18059412 DOI: 10.1038/nrm2309] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity.
Collapse
Affiliation(s)
- Johanne M Murray
- Johanne M. Murray and Antony M. Carr are at the Genome Damage and Stability Centre, University of Sussex, Brighton, Sussex, BN1 9RQ, UK.
| | | |
Collapse
|
28
|
Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:8409-18. [PMID: 17923688 DOI: 10.1128/mcb.01543-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In Saccharomyces cerevisiae, postreplication repair (PRR) of UV-damaged DNA occurs by a Rad6-Rad18- and an Mms2-Ubc13-Rad5-dependent pathway or by a Rad52-dependent pathway. The Rad5 DNA helicase activity is specialized for promoting replication fork regression and template switching; previously, we suggested a role for the Rad5-dependent PRR pathway when the lesion is located on the leading strand and a role for the Rad52 pathway when the lesion is located on the lagging strand. In this study, we present evidence for the requirement of Nse1, a subunit of the Smc5-Smc6 complex, in Rad52-dependent PRR, and our genetic analyses suggest a role for the Nse1 and Mms21 E3 ligase activities associated with this complex in this repair mode. We discuss the possible ways by which the Smc5-Smc6 complex, including its associated ubiquitin ligase and SUMO ligase activities, might contribute to the Rad52-dependent nonrecombinational and recombinational modes of PRR.
Collapse
|
29
|
Ampatzidou E, Irmisch A, O'Connell MJ, Murray JM. Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 2006; 26:9387-401. [PMID: 17030601 PMCID: PMC1698528 DOI: 10.1128/mcb.01335-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.
Collapse
Affiliation(s)
- Eleni Ampatzidou
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | | | |
Collapse
|
30
|
Palecek J, Vidot S, Feng M, Doherty AJ, Lehmann AR. The Smc5-Smc6 DNA repair complex. bridging of the Smc5-Smc6 heads by the KLEISIN, Nse4, and non-Kleisin subunits. J Biol Chem 2006; 281:36952-9. [PMID: 17005570 DOI: 10.1074/jbc.m608004200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Structural maintenance of chromosomes (SMC) proteins play fundamental roles in many aspects of chromosome organization and dynamics. The SMC complexes form unique structures with long coiled-coil arms folded at a hinge domain, so that the globular N- and C-terminal domains are brought together to form a "head." Within the Smc5-Smc6 complex, we previously identified two subcomplexes containing Smc6-Smc5-Nse2 and Nse1-Nse3-Nse4. A third subcomplex containing Nse5 and -6 has also been identified recently. We present evidence that Nse4 is the kleisin component of the complex, which bridges the heads of Smc5 and -6. The C-terminal part of Nse4 interacts with the head domain of Smc5, and structural predictions for Nse4 proteins suggest similar motifs that are shared within the kleisin family. Specific mutations within a predicted winged helix motif of Nse4 destroy the interaction with Smc5. We propose that Nse4 and its orthologs form the delta-kleisin subfamily. We further show that Nse3, as well as Nse5 and Nse6, also bridge the heads of Smc5 and -6. The Nse1-Nse3-Nse4 and Nse5-Nse6 subcomplexes bind to the Smc5-Smc6 heads domain at different sites.
Collapse
Affiliation(s)
- Jan Palecek
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Betts Lindroos H, Ström L, Itoh T, Katou Y, Shirahige K, Sjögren C. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 2006; 22:755-767. [PMID: 16793545 DOI: 10.1016/j.molcel.2006.05.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/31/2006] [Accepted: 05/12/2006] [Indexed: 01/25/2023]
Abstract
The SMC protein complexes safeguard genomic integrity through their functions in chromosome segregation and repair. The chromosomal localization of the budding yeast Smc5/6 complex determined here reveals that the complex works specifically on the duplicated genome in differently regulated pathways. The first controls the association to centromeres and chromosome arms in unchallenged cells, the second regulates the association to DNA breaks, and the third directs the complex to the chromosome arm that harbors the ribosomal DNA arrays. The chromosomal interaction pattern predicts a function that becomes more important with increasing chromosome length and that the complex's role in unchallenged cells is independent of DNA damage. Additionally, localization of Smc6 to collapsed replication forks indicates an involvement in their rescue. Altogether this shows that the complex maintains genomic integrity in multiple ways, and evidence is presented that the Smc5/6 complex is needed during replication to prevent the accumulation of branched chromosome structures.
Collapse
Affiliation(s)
- Hanna Betts Lindroos
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Takehiko Itoh
- Research Center for Advanced Science and Technology, Mitsubishi Research Institute, Inc., Tokyo 100-8141, Japan
| | - Yuki Katou
- Gene Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan
| | - Katsuhiko Shirahige
- Gene Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan.
| | - Camilla Sjögren
- Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
32
|
Potts PR, Porteus MH, Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 2006; 25:3377-88. [PMID: 16810316 PMCID: PMC1523187 DOI: 10.1038/sj.emboj.7601218] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/07/2006] [Indexed: 01/09/2023] Open
Abstract
The structural maintenance of chromosomes (SMC) family of proteins has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The SMC1/3 cohesin complex is thought to promote HR by maintaining the close proximity of sister chromatids at DSBs. The SMC5/6 complex is also required for DNA repair, but the mechanism by which it accomplishes this is unclear. Here, we show that RNAi-mediated knockdown of the SMC5/6 complex components in human cells increases the efficiency of gene targeting due to a specific requirement for hSMC5/6 in sister chromatid HR. Knockdown of the hSMC5/6 complex decreases sister chromatid HR, but does not reduce nonhomologous end-joining (NHEJ) or intra-chromatid, homologue, or extrachromosomal HR. The hSMC5/6 complex is itself recruited to nuclease-induced DSBs and is required for the recruitment of cohesin to DSBs. Our results establish a mechanism by which the hSMC5/6 complex promotes DNA repair and suggest a novel strategy to improve the efficiency of gene targeting in mammalian somatic cells.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew H Porteus
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongtao Yu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Miyazaki T, Tsai HF, Bennett JE. Kre29p is a novel nuclear protein involved in DNA repair and mitotic fidelity in Candida glabrata. Curr Genet 2006; 50:11-22. [PMID: 16775745 DOI: 10.1007/s00294-006-0072-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/09/2006] [Accepted: 03/10/2006] [Indexed: 01/27/2023]
Abstract
Candida glabrata KRE29 is an ortholog of Saccharomyces cerevisiae KRE29. S. cerevisiae Kre29p has been identified by affinity purification as a subunit of the Smc5-Smc6 complex, which is required for DNA repair and chromosome segregation. However, mutant phenotypes of S. cerevisiae KRE29 have not been well characterized and none of its orthologs' functions has been reported. Here we report phenotypic characteristics of a C. glabrata kre29 deletant. The absence of C. glabrata Kre29p resulted in decreased viability, exhibiting cell cycle arrest between late S-phase and metaphase even under normal growth conditions, and also caused an increase of plasmid loss rate, implying that Kre29p is required for mitotic chromosome transmission fidelity. The deletant showed increased sensitivity to high temperature as well as to DNA damaging agents including UV, gamma ray, 4-nitroquinoline-1-oxide and methyl methanesulfonate, and the phenotypes were restored in the KRE29 reintegrant. Consistent with the Deltakre29 phenotypes, a Kre29p-GFP fusion protein was located in the nucleus. Furthermore, Kre29p-GFP became concentrated and formed distinct foci after exposure to 4-nitroquinoline-1-oxide. These results suggest the involvement of C. glabrata Kre29p in DNA repair. To our knowledge, this is the first report addressing a cellular protein involved in DNA repair in C. glabrata.
Collapse
Affiliation(s)
- Taiga Miyazaki
- Clinical Mycology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
34
|
Cost GJ, Cozzarelli NR. Smc5p promotes faithful chromosome transmission and DNA repair in Saccharomyces cerevisiae. Genetics 2006; 172:2185-200. [PMID: 16452135 PMCID: PMC1456416 DOI: 10.1534/genetics.105.053876] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heterodimers of structural maintenance of chromosomes (SMC) proteins form the core of several protein complexes involved in the organization of DNA, including condensation and cohesion of the chromosomes at metaphase. The functions of the complexes with a heterodimer of Smc5p and Smc6p are less clear. To better understand them, we created two S. cerevisiae strains bearing temperature-sensitive alleles of SMC5. When shifted to the restrictive temperature, both mutants lose viability gradually, concomitant with the appearance of nuclear abnormalities and phosphorylation of the Rad53p DNA damage checkpoint protein. Removal of Rad52p or overexpression of the SUMO ligase Mms21p partially suppresses the temperature sensitivity of smc5 strains and increases their survival at the restrictive temperature. At the permissive temperature, smc5-31 but not smc5-33 cells exhibit hypersensitivity to several DNA-damaging agents despite induction of the DNA damage checkpoint. Similarly, smc5-31 but not smc5-33 cells are killed by overexpression of the SUMO ligase-defective Mms21-SAp but not by overexpression of wild-type Mms21p. Both smc5 alleles are synthetically lethal with mms21-SA and exhibit Rad52p-independent chromosome fragmentation and loss at semipermissive temperatures. Our data indicate a critical role for the S. cerevisiae Smc5/6-containing complexes in both DNA repair and chromosome segregation.
Collapse
Affiliation(s)
- Gregory J Cost
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
35
|
Abstract
DNA repair is required for the genomic stability and well-being of an organism. In yeasts, a multisubunit complex consisting of SMC5, SMC6, MMS21/NSE2, and other non-SMC proteins is required for DNA repair through homologous recombination. The yeast MMS21 protein is a SUMO ligase. Here we show that the human homolog of MMS21 is also a SUMO ligase. hMMS21 stimulates sumoylation of hSMC6 and the DNA repair protein TRAX. Depletion of hMMS21 by RNA interference (RNAi) sensitizes HeLa cells toward DNA damage-induced apoptosis. Ectopic expression of wild-type hMMS21, but not its ligase-inactive mutant, rescues this hypersensitivity of hMMS21-RNAi cells. ATM/ATR are hyperactivated in hMMS21-RNAi cells upon DNA damage. Consistently, hMMS21-RNAi cells show an increased number of phospho-CHK2 foci. Finally, we show that hMMS21-RNAi cells show a decreased capacity to repair DNA lesions as measured by the comet assay. Our findings suggest that the human SMC5/6 complex and the SUMO ligase activity of hMMS21 are required for the prevention of DNA damage-induced apoptosis by facilitating DNA repair in human cells.
Collapse
Affiliation(s)
- Patrick Ryan Potts
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, 75390-9041, USA
| | | |
Collapse
|