1
|
de Aguiar Barros J, Granja F, de Abreu-Fernandes R, de Queiroz LT, e Silva DDS, Citó AC, Mocelin NKADO, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Investigation of Mutations in the crt-o and mdr1 Genes of Plasmodium vivax for the Molecular Surveillance of Chloroquine Resistance in Parasites from Gold Mining Areas in Roraima, Brazil. Microorganisms 2024; 12:1680. [PMID: 39203521 PMCID: PMC11356832 DOI: 10.3390/microorganisms12081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Plasmodium vivax causes the largest malaria burden in Brazil, and chloroquine resistance poses a challenge to eliminating malaria by 2035. Illegal mining in the Roraima Yanomami Indigenous territory can lead to the introduction of resistant parasites. This study aimed to investigate mutations in the pvcrt-o and pvmdr-1 genes to determine their potential as predictors of P. vivax chloroquine-resistant phenotypes. Samples were collected in two health centers of Boa Vista. A questionnaire was completed, and blood was drawn from each patient. Then, DNA extraction, PCR, amplicon purification, and DNA sequencing were performed. After alignment with the Sal-1, the amplified fragment was analyzed. Patients infected with the mutant parasites were queried in the Surveillance Information System. Among the patients, 98% (157/164) of participants were from illegal mining areas. The pvcrt-o was sequenced in 151 samples, and the K10 insertion was identified in 13% of them. The pvmdr1 was sequenced in 80 samples, and the MYF haplotype (958M) was detected in 92% of them and the TYF was detected in 8%, while the MYL was absent. No cases of recrudescence, hospitalization, or death were found. Mutations in the pvcrt-o and pvmdr-1 genes have no potential to predict chloroquine resistance in P. vivax.
Collapse
Affiliation(s)
- Jacqueline de Aguiar Barros
- Malaria Control Center, Epidemiological Surveillance Department, General Health Surveillance Coordination, SESAU-RR, Boa Vista 69310-043, RR, Brazil;
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
- Graduate Program in Biodiversity and Biotechnology (Bionorte-RR), Boa Vista 69301-290, RR, Brazil
| | - Fabiana Granja
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
- Graduate Program in Biodiversity and Biotechnology (Bionorte-RR), Boa Vista 69301-290, RR, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Daniel da Silva e Silva
- Center for Biodiversity Studies, Federal University of Roraima (UFRR), Boa Vista 69310-000, RR, Brazil (D.d.S.e.S.)
| | - Arthur Camurça Citó
- Research Support Center in Roraima (NAPRR), National Institute for Amazonian Research (INPA), Boa Vista 69301-150, RR, Brazil;
| | - Natália Ketrin Almeida-de-Oliveira Mocelin
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil; (R.d.A.-F.); (L.T.d.Q.); (N.K.A.-d.-O.M.)
- Center for Malaria Research, Diagnosis and Training (CPD-Mal)/Reference Center for Malaria in the Extra-Amazon Region of the Brazilian Ministry of Health, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
2
|
Rossi NRDLP, Fialho SN, Gouveia ADJ, Ferreira AS, da Silva MA, Martinez LDN, Paula do Nascimento WDS, Gonzaga A, de Medeiros DSS, de Barros NB, de Cássia Alves R, Gonçalves GM, Teles CGB. Quinine and chloroquine: Potential preclinical candidates for the treatment of tegumentary Leishmaniasis. Acta Trop 2024; 252:107143. [PMID: 38331084 DOI: 10.1016/j.actatropica.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Leishmaniasis is an endemic disease in more than 90 countries, constituting a relevant public health problem. Limited treatment options, increase in resistance, and therapeutic failure are important aspects for the discovery of new treatment options. Drug repurposing may accelerate the discovery of antiLeishmanial drugs. Recent tests indicating the in vitro potential of antimalarials Leishmania resulted in the design of this study. This study aimed at evaluating the susceptibility of Leishmania (L.) amazonensis to chloroquine (CQ) and quinine (QN), alone or in combination with amphotericin B (AFT) and pentamidine (PTN). In the in vitro tests, first, we evaluated the growth inhibition of 50 % of promastigotes (IC50) and cytotoxicity for HepG2 and THP-1 cells (CC50). The IC50 values of AFT and PNT were below 1 µM, while the IC50 values of CQ and QN ranged between 4 and 13 µM. Concerning cytotoxicity, CC50 values ranged between 7 and 30 µM for AFT and PNT, and between 22 and 157 µM for the antimalarials. We also calculated the Selectivity Index (SI), where AFT and PTN obtained the highest values, while the antimalarias obtained values between 5 and 12. Both antimalarials were additive (ƩFIC 1.05-1.8) in combination with AFT and PTN. For anti-amastigote activity, the drugs obtained the following ICA50 values: AFT (0.26 µM), PNT (2.09 µM), CQ (3.77 µM) and QN (24.5 µM). In the in vivo tests, we observed that the effective dose for the death of 50 % of parasites (ED50) of AFT and CQ were 0.63 mg/kg and 27.29 mg/kg, respectively. When combining CQ with AFT, a decrease in parasitemia was observed, being statistically equal to the naive group. For cytokine quantification, it was observed that CQ, despite presenting anti-inflammatory activity was effective at increasing the production of IFN-γ. Overall, our data indicate that chloroquine will probably be a candidate for repurposing and use in drug combination therapy.
Collapse
Affiliation(s)
- Norton Rubens Diunior Lucas Pejara Rossi
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil.
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Amália Santos Ferreira
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | | | - Leandro Do Nascimento Martinez
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Welington da Silva Paula do Nascimento
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Arlindo Gonzaga
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | | | - Giselle Martins Gonçalves
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Carolina Garcia Bioni Teles
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| |
Collapse
|
3
|
Magboul AM, Nour BYM, Tamomh AG, Abdul-Ghani R, Albushra SM, Eltahir HB. Unraveling Key Chloroquine Resistance-Associated Alleles Among Plasmodium falciparum Isolates in South Darfur State, Sudan Twelve Years After Drug Withdrawal. Infect Drug Resist 2024; 17:221-227. [PMID: 38283109 PMCID: PMC10822104 DOI: 10.2147/idr.s439875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Background Due to the increasing resistance of Plasmodium falciparum to chloroquine (CQ) in Sudan, a shift from CQ to artesunate combined with sulfadoxine/pyrimethamine as a first-line treatment for uncomplicated falciparum malaria was adopted in 2004. This study aimed to determine the frequency distribution of K76T and N86Y mutations in P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes as key markers of resistance to CQ among P. falciparum isolates from patients in Nyala district of South Darfur state, west of Sudan. Methods A descriptive, cross-sectional study was conducted among 75 P. falciparum isolates from Sudanese patients diagnosed with falciparum malaria mono-infection. Parasite DNA was extracted from dried blood spots and amplified using a nested polymerase chain reaction (PCR). Then, restriction fragment length polymorphism (RFLP) was used to detect the genetic polymorphisms in codons 76 of pfcrt and 86 of pfmdr1. PCR-RFLP products were analyzed using 1.5% gel electrophoresis to identify the genetic polymorphisms in the studied codons. The wild-type (pfcrt K76 and pfmdr1 N86), mutant (pfcrt 76T and pfmdr1 86Y) and mixed-type (pfcrt K76T and pfmdr1 N86Y) alleles were expressed as frequencies and proportions. Results The wild-type pfcrt K76 allele was observed among 34.7% of isolates and the mutant 76T allele among 20% of isolates, while the mixed-type K76T allele was observed among 45.3% of isolates. On the other hand, 54.7% of isolates harbored the wild-type pfmdr1 N86 allele and 5.3% of isolates had the mutant 86Y allele, while the mixed-type N86Y allele was observed among 40% of isolates. Conclusion The key molecular markers associated with CQ resistance (pfcrt 76T and pfmdr1 86Y) are still circulating in high frequency among P. falciparum isolates in South Darfur state, about twelve years after the official withdrawal of the drug as a treatment for uncomplicated falciparum malaria.
Collapse
Affiliation(s)
- Abdalmoneim M Magboul
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Bakri Y M Nour
- Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| | - Abdelhakam G Tamomh
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
- Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Sayed Mustafa Albushra
- Department of Internal Medicine, Faculty of Medicine, University of Gezira, Wad Madani, Sudan
| | - Hanan Babiker Eltahir
- Department of Biochemistry, Faculty of Medicine, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
4
|
Bora PS, Agrawal P, Kaushik NK, Puri S, Sahal D, Sharma U. Antiplasmodial activity of the bulbs of Fritillaria cirrhosa D.Don (Syn: Fritillaria roylei Hook.): UPLC-IM-Q-TOF-MS/MS-based biochemometric approach for the identification of marker compounds. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116389. [PMID: 36924862 DOI: 10.1016/j.jep.2023.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillaria cirrhosa D.Don (Syn: Fritillaria roylei Hook.) (Hindi name: Kshirakakoli) is a critically endangered Himalayan medicinal plant, well documented in Ayurveda for its therapeutic uses against various disorders such as jvara (fever), kasa (respiratory tract disease) etc. Its bulbs are also used as Szechuan-Pei-Mu for their antipyretic properties in the traditional Chinese medicine. However, despite its ethnomedicinal usage, the therapeutic use of F. cirrhosa bulbs for jvara (fever) related conditions such as malaria has remained unexplored. Hence in the context of increasing global concerns about drug-resistant malaria, it is important to investigate the antiplasmodial activity of F. cirrhosa bulbs for novel antimalarial agents. AIM OF THE STUDY To investigate the antiplasmodial effects of the extracts/fractions of F. cirrhosa bulbs by the biochemometric approach and to rationalize its ethnopharmacological usage for jvara (fever) related conditions such as malaria. MATERIAL AND METHODS This study involves the UHPLC-MS-based plant material selection, preparation, quantification, and assessment of F. cirrhosa bulb extracts against CQ-sensitive Pf 3D7 & CQ-resistant Pf INDO strains. Further, UPLC-IM-Q-TOF-MS-based biochemometric approach has been applied for the identification of marker compounds responsible for the observed antiplasmodial effects. The identified marker compounds were also assessed for their in silico ADMET properties and binding efficacy with the drug transporter Pf CRT. RESULTS Different F. cirrhosa bulb extracts/fractions showed promising antiplasmodial activity with IC50 values 2.71-19.77 μg/mL for CQ-resistant Pf INDO strain and 1.76-21.52 μg/mL for CQ-sensitive Pf 3D7 strain. UPLC-IM-Q-TOF-MS/MS-based biochemometric analysis revealed four marker compounds i.e., peimine (m/z 432.3448), peimisine (m/z 428.3504), puqiedinone (m/z 414.3379), and puqiedine (m/z 416.3509) responsible for the observed antiplasmodial activity. The identified marker compounds showed excellent binding efficacy with Pf CRT and suitable drug-like properties in silico. CONCLUSIONS The study demonstrated promising antiplasmodial activity of the chloroform and alkaloid enriched fractions of F. cirrhosa bulbs and further identified the four marker compounds responsible for the promising antiplasmodial activity. These marker compounds i.e., peimine, peimisine, puqiedinone and puqiedine were identified by the biochemometric analysis as the putative antiplasmodial constituents of the F. cirrhosa bulbs. Further, in silico studies indicated the good binding affinity of the marker compounds with Pf CRT along with suitable ADMET properties. Overall, the study elucidates the antiplasmodial activity of F. cirrhosa bulbs from the western Himalayan region and provides nascent scientific evidence for their ethnopharmacological usage in jvara (fever) related conditions such as malaria.
Collapse
Affiliation(s)
- Prateek Singh Bora
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Shivani Puri
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Abumsimir B, Al-Qaisi TS. The next generation of malaria treatments: the great expectations. Future Sci OA 2023; 9:FSO834. [PMID: 37009056 PMCID: PMC10061259 DOI: 10.2144/fsoa-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Affiliation(s)
- Berjas Abumsimir
- Department of Medical Laboratory Sciences, Pharmacological & Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
| | - Talal S Al-Qaisi
- Department of Medical Laboratory Sciences, Pharmacological & Diagnostic Research Centre (PDRC), Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (AAU), Amman, 19328, Jordan
| |
Collapse
|
6
|
Wells M, Fossépré M, Hambye S, Surin M, Blankert B. Uncovering the antimalarial potential of toad venoms through a bioassay-guided fractionation process. Int J Parasitol Drugs Drug Resist 2022; 20:97-107. [PMID: 36343571 PMCID: PMC9772263 DOI: 10.1016/j.ijpddr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) μg/mL and (23 ± 1) μg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.
Collapse
Affiliation(s)
- Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Stéphanie Hambye
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Faculty of Sciences, Research Institute for Biosciences and Research Institute for Materials, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Place du Parc 20, 7000, Mons, Belgium.
| |
Collapse
|
7
|
Guerra AP, Olivera MJ, Cortés LJ, Chenet SM, Macedo de Oliveira A, Lucchi NW. Molecular surveillance for anti-malarial drug resistance and genetic diversity of Plasmodium falciparum after chloroquine and sulfadoxine-pyrimethamine withdrawal in Quibdo, Colombia, 2018. Malar J 2022; 21:306. [PMID: 36307852 PMCID: PMC9617338 DOI: 10.1186/s12936-022-04328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. Methods The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether–lumefantrine conducted in 2018–2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72–76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. Results All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. Conclusions Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04328-x.
Collapse
Affiliation(s)
| | | | | | - Stella M Chenet
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | - Alexandre Macedo de Oliveira
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, GA, Atlanta, USA
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, GA, Atlanta, USA
| |
Collapse
|
8
|
Genome-wide functional screening of drug-resistance genes in Plasmodium falciparum. Nat Commun 2022; 13:6163. [PMID: 36257944 PMCID: PMC9579134 DOI: 10.1038/s41467-022-33804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
The global spread of drug resistance is a major obstacle to the treatment of Plasmodium falciparum malaria. The identification of drug-resistance genes is an essential step toward solving the problem of drug resistance. Here, we report functional screening as a new approach with which to identify drug-resistance genes in P. falciparum. Specifically, a high-coverage genomic library of a drug-resistant strain is directly generated in a drug-sensitive strain, and the resistance gene is then identified from this library using drug screening. In a pilot experiment using the strain Dd2, the known chloroquine-resistant gene pfcrt is identified using the developed approach, which proves our experimental concept. Furthermore, we identify multidrug-resistant transporter 7 (pfmdr7) as a novel candidate for a mefloquine-resistance gene from a field-isolated parasite; we suggest that its upregulation possibly confers the mefloquine resistance. These results show the usefulness of functional screening as means by which to identify drug-resistance genes.
Collapse
|
9
|
Molecular Epidemiology of Drug Resistance Genes in Plasmodium falciparum Isolates Imported from Nigeria between 2016 and 2020: Continued Emergence of Fully Resistant
Pfdhfr
-
Pfdhps
Alleles. Microbiol Spectr 2022; 10:e0052822. [PMID: 36106887 PMCID: PMC9604097 DOI: 10.1128/spectrum.00528-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Malaria poses public health threats worldwide. Nigeria accounted for the highest numbers of cases (26.8%) and deaths (31.9%) among countries where malaria is endemic in 2020. Currently, monitoring molecular markers in imported malaria cases provides an efficient means to screen for emerging drug resistance in countries where malaria is endemic, particularly in those where field surveillance is challenging. Here, we investigated 165 Plasmodium falciparum infections imported from Nigeria to Zhejiang Province, China, between 2016 and 2020. Multiple molecular markers in k13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps were detected. The prevalences and patterns of mutations were analyzed. Polymorphism of k13 was limited to 5 of 156 (3.21%) isolates. The wild-type CVMNK allele of Pfcrt became predominant (65.36%) compared with the triple mutation CVIET. A low frequency (4.73%) of double mutations (N86Y and Y184F) in Pfmdr1 was observed. The dominant haplotypes of Pfdhfr and Pfdhps were IRNDI (92.41%) and ISGKAA (36.84%), respectively. The newly discovered mutant I431V was identified in 21.71% of isolates. A “fully resistant” combination of Pfdhfr-Pfdhps, IRN-GE, was found in eight (5.67%) samples, which was hardly seen in Nigeria. The current study demonstrated a high frequency of wild-type Pfcrt. Limited polymorphism of Pfmdr1 but a high prevalence of Pfdhfr and Pfdhps mutations was illustrated. Our data so far serve as comprehensive surveillance of molecular markers of the k13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes. Based on our findings, it has become crucial to evaluate the impact of the emerging fully resistant type of Pfdhfr-Pfdhps as well as its combination with I431V on the efficacy of sulfadoxine-pyrimethamine (SP) in Nigeria. IMPORTANCE Monitoring the current resistance to antimalarial drugs is critical to enable timely action to prevent its spread and limit its impact. The high prevalence of wild-type Pfcrt found in our study is an optimistic signal to reevaluate chloroquine (CQ) sensitivity in Nigeria, which is cost-effective and once played a crucial role in the fight against malaria. Based on the continued emergence of fully resistant Pfdhfr-Pfdhps alleles illustrated in the current investigation, actions are needed in Nigeria, such as national systemic surveillance to monitor their updated epidemiology as well as assessments of their influence on SP efficacy to minimize any public health impact. These findings urge a response to the threat of drug resistance to facilitate appropriate drug policies in the study area.
Collapse
|
10
|
In Silico and In Vitro Antimalarial Screening and Validation Targeting Plasmodium falciparum Plasmepsin V. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092670. [PMID: 35566023 PMCID: PMC9102085 DOI: 10.3390/molecules27092670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Malaria chemotherapy is greatly threatened by the recent emergence and spread of resistance in the Plasmodium falciparum parasite against artemisinins and their partner drugs. Therefore, it is an urgent priority to develop new antimalarials. Plasmepsin V (PMV) is regarded as a superior drug target for its essential role in protein export. In this study, we performed virtual screening based on homology modeling of PMV structure, molecular docking and pharmacophore model analysis against a library with 1,535,478 compounds, which yielded 233 hits. Their antimalarial activities were assessed amongst four non-peptidomimetic compounds that demonstrated the promising inhibition of parasite growth, with mean IC50 values of 6.67 μM, 5.10 μM, 12.55 μM and 8.31 μM. No significant affection to the viability of L929 cells was detected in these candidates. These four compounds displayed strong binding activities with the PfPMV model through H-bond, hydrophobic, halogen bond or π-π interactions in molecular docking, with binding scores under −9.0 kcal/mol. The experimental validation of molecule-protein interaction identified the binding of four compounds with multiple plasmepsins; however, only compound 47 showed interaction with plasmepsin V, which exhibited the potential to be developed as an active PfPMV inhibitor.
Collapse
|
11
|
Nadeem MF, Zeeshan N, Khattak AA, Awan UA, Yaqoob A. Fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum clinical isolates collected from unrest tribal agencies of Pakistan. BRAZ J BIOL 2021; 83:e247422. [PMID: 34431917 DOI: 10.1590/1519-6984.247422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum resistance to Chloroquine (CQ) is a significant cause of mortality and morbidity worldwide. There is a paucity of documented data on the prevalence of CQ-resistant mutant haplotypes of Pfcrt and Pfmdr1 genes from malaria-endemic war effected Federally Administered Tribal Areas of Pakistan. The objective of this study was to investigate the prevalence of P. falciparum CQ-resistance in this area. Clinical isolates were collected between May 2017 and May 2018 from North Waziristan and South Waziristan agencies of Federally Administrated Trial Area. Subsequently, Giemsa-stained blood smears were examined to detect Plasmodium falciparum. Extraction of malarial DNA was done from microscopy positive P. falciparum samples, and P. falciparum infections were confirmed by nested PCR (targeting Plasmodium small subunit ribosomal ribonucleic acid (ssrRNA) genes). All PCR confirmed P. falciparum samples were sequenced by pyrosequencing to find out mutation in Pfcrt gene at codon K76T and in pfmdr1 at codons N86Y, Y184F, N1042D, and D1246Y. Out of 121 microscopies positive P. falciparum cases, 109 samples were positive for P. falciparum by nested PCR. Pfcrt K76T mutation was found in 96% of isolates, Pfmdr1 N86Y mutation was observed in 20%, and 11% harboured Y184F mutation. All samples were wild type for Pfmdr1 codon N1042D and D1246Y. In the FATA, Pakistan, the frequency of resistant allele 76T remained high despite the removal of CQ. However, current findings of the study suggest complete fixation of P. falciparum CQ-resistant genotype in the study area.
Collapse
Affiliation(s)
- M F Nadeem
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - N Zeeshan
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - A A Khattak
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - U A Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - A Yaqoob
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| |
Collapse
|
12
|
Maiga H, Grivoyannis A, Sagara I, Traore K, Traore OB, Tolo Y, Traore A, Bamadio A, Traore ZI, Sanogo K, Doumbo OK, Plowe CV, Djimde AA. Selection of pfcrt K76 and pfmdr1 N86 Coding Alleles after Uncomplicated Malaria Treatment by Artemether-Lumefantrine in Mali. Int J Mol Sci 2021; 22:ijms22116057. [PMID: 34205228 PMCID: PMC8200001 DOI: 10.3390/ijms22116057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Artemether-lumefantrine is a highly effective artemisinin-based combination therapy that was adopted in Mali as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study was designed to measure the efficacy of artemether-lumefantrine and to assess the selection of the P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multi-drug resistance 1 (pfmdr1) genotypes that have been associated with drug resistance. Methods: A 28-day follow-up efficacy trial of artemether-lumefantrine was conducted in patients aged 6 months and older suffering from uncomplicated falciparum malaria in four different Malian areas during the 2009 malaria transmission season. The polymorphic genetic markers MSP2, MSP1, and Ca1 were used to distinguish between recrudescence and reinfection. Reinfection and recrudescence were then grouped as recurrent infections and analyzed together by PCR-restriction fragment length polymorphism (RFLP) to identify candidate markers for artemether-lumefantrine tolerance in the P. falciparum chloroquine resistance transporter (pfcrt) gene and the P. falciparum multi-drug resistance 1 (pfmdr1) gene. Results: Clinical outcomes in 326 patients (96.7%) were analyzed and the 28-day uncorrected adequate clinical and parasitological response (ACPR) rate was 73.9%. The total PCR-corrected 28-day ACPR was 97.2%. The pfcrt 76T and pfmdr1 86Y population prevalence decreased from 49.3% and 11.0% at baseline (n = 337) to 38.8% and 0% in patients with recurrent infection (n = 85); p = 0.001), respectively. Conclusion: Parasite populations exposed to artemether-lumefantrine in this study were selected toward chloroquine-sensitivity and showed a promising trend that may warrant future targeted reintroduction of chloroquine or/and amodiaquine.
Collapse
Affiliation(s)
- Hamma Maiga
- Institut National de Sante Publique, INSP, Bamako P.O. Box 1771, Mali;
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Issaka Sagara
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Karim Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Oumar B. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Youssouf Tolo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Aliou Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Amadou Bamadio
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Zoumana I. Traore
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Kassim Sanogo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | - Ogobara K. Doumbo
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
| | | | - Abdoulaye A. Djimde
- Malaria Research & Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali; (I.S.); (K.T.); (O.B.T.); (Y.T.); (A.T.); (A.B.); (Z.I.T.); (K.S.); (O.K.D.)
- Correspondence: ; Tel.: +223-2022-8109
| |
Collapse
|
13
|
Arya A, Kojom Foko LP, Chaudhry S, Sharma A, Singh V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions - India and sub-Saharan Africa. Int J Parasitol Drugs Drug Resist 2021; 15:43-56. [PMID: 33556786 PMCID: PMC7887327 DOI: 10.1016/j.ijpddr.2020.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022]
Abstract
Artemisinin-based combination therapies (ACT) are currently used as a first-line malaria therapy in endemic countries worldwide. This systematic review aims at presenting the current scenario of drug resistance molecular markers, either selected or involved in treatment failures (TF) during in vivo ACT efficacy studies from sub-Saharan Africa (sSA) and India. Eight electronic databases were comprehensively used to search relevant articles and finally a total of 28 studies were included in the review, 21 from sSA and seven from India. On analysis, Artemether + lumefantrine (AL) and artesunate + sulfadoxine-pyrimethamine (AS + SP) are the main ACT in African and Indian regions with a 28-day efficacy range of 54.3-100% for AL and 63-100% for AS + SP respectively. It was observed that mutations in the Pfcrt (76T), Pfdhfr (51I, 59R, 108N), Pfdhps (437G) and Pfmdr1 (86Y, 184F, 1246Y) genes were involved in TF, which varied with respect to ACTs. Based on studies that have genotyped the Pfk13 gene, the reported TF cases, were mainly linked with mutations in genes associated with resistance to ACT partner drugs; indicating that the protection of the partner drug efficacy is crucial for maintaining the efficacy of ACT. This review reveals that ACT are largely efficacious in India and sSA despite the fact that some clinical efficacy and epidemiological studies have reported some validated mutations (i.e., 476I, 539T and 561H) in circulation in these two regions. Also, the role of PfATPase6 in ART resistance is controversial still, while P. falciparum plasmepsin 2 (Pfpm2) in piperaquine (PPQ) resistance and dihydroartemisinin (DHA) + PPQ failures is well documented in Southeast Asian countries but studied less in sSA. Hence, there is a need for continuous molecular surveillance of Pfk13 mutations for emergence of artemisinin (ART) resistance in these countries.
Collapse
Affiliation(s)
- Aditi Arya
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Shewta Chaudhry
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
14
|
Sampath Kumar HM, Herrmann L, Tsogoeva SB. Structural hybridization as a facile approach to new drug candidates. Bioorg Med Chem Lett 2020; 30:127514. [PMID: 32860980 DOI: 10.1016/j.bmcl.2020.127514] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Structural hybridization of preclinically and clinically validated pharmacologically active molecules has emerged as a promising tool to develop new generations of safe and highly efficient drug candidates against various diseases including microbial infections, virus infections and cancer. Strategies of drug-drug combinations have been adopted to generate hybrid conjugates of many clinically used drugs, designed to address inherent problems associated with these drugs. Thus, the design of hybrids was aimed to achieve higher efficacy through possible multi-target interactions, selective delivery of the drug to the site of action with the aim to improve bioavailability, alleviate toxicity and circumvent drug resistances. In this review article, we summarize the progress made in recent years in the rapidly growing field of drug discovery, focusing on the rationality of the hybrid design with particular emphasis on the linker architecture, which plays a crucial role in the overall success of a hybrid drug.
Collapse
Affiliation(s)
- Halmuthur M Sampath Kumar
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany; CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lars Herrmann
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|
15
|
Khan AQ, Pernaute-Lau L, Khattak AA, Luijcx S, Aydin-Schmidt B, Hussain M, Khan TA, Mufti FU, Morris U. Surveillance of genetic markers associated with Plasmodium falciparum resistance to artemisinin-based combination therapy in Pakistan, 2018-2019. Malar J 2020; 19:206. [PMID: 32513171 PMCID: PMC7282094 DOI: 10.1186/s12936-020-03276-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The spread of artemisinin resistance in the Greater Mekong Subregion of Southeast Asia poses a significant threat for current anti-malarial treatment guidelines globally. The aim of this study was to assess the current prevalence of molecular markers of drug resistance in Plasmodium falciparum in the four provinces with the highest malaria burden in Pakistan, after introducing artemether-lumefantrine as first-line treatment in 2017. METHODS Samples were collected during routine malaria surveillance in Punjab, Sindh, Baluchistan, and Khyber Pakhtunkhwa provinces of Pakistan between January 2018 and February 2019. Plasmodium falciparum infections were confirmed by rapid diagnostic test or microscopy. Plasmodium falciparum positive isolates (n = 179) were screened by Sanger sequencing for single nucleotide polymorphisms (SNPs) in the P. falciparum kelch 13 (pfk13) propeller domain and in P. falciparum coronin (pfcoronin). SNPs in P. falciparum multidrug resistance 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine resistance transporter (pfcrt) K76T were genotyped by PCR-restriction fragment length polymorphism. RESULTS No artemisinin resistance associated SNPs were identified in the pfk13 propeller domain or in pfcoronin. The pfmdr1 N86, 184F, D1246 and pfcrt K76 alleles associated with reduced lumefantrine sensitivity were present in 83.8% (150/179), 16.9% (29/172), 100.0% (173/173), and 8.4% (15/179) of all infections, respectively. The chloroquine resistance associated pfcrt 76T allele was present in 98.3% (176/179) of infections. CONCLUSION This study provides an update on the current prevalence of molecular markers associated with reduced P. falciparum sensitivity to artemether and/or lumefantrine in Pakistan, including a first baseline assessment of polymorphisms in pfcoronin. No mutations associated with artemisinin resistance were observed in pfk13 or pfcoronin. However, the prevalence of the pfmdr1 N86 and D1246 alleles, that have been associated with decreased susceptibility to lumefantrine, remain high. Although clinical and molecular data suggest that the current malaria treatment guidelines for P. falciparum are presently effective in Pakistan, close monitoring for artemisinin and lumefantrine resistance will be critical to ensure early detection and enhanced containment of emerging ACT resistance spreading across from Southeast Asia.
Collapse
Affiliation(s)
- Abdul Qader Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Biosystems and Integrative Science Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sanna Luijcx
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Taj Ali Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Farees Uddin Mufti
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Mensah BA, Aydemir O, Myers-Hansen JL, Opoku M, Hathaway NJ, Marsh PW, Anto F, Bailey J, Abuaku B, Ghansah A. Antimalarial Drug Resistance Profiling of Plasmodium falciparum Infections in Ghana Using Molecular Inversion Probes and Next-Generation Sequencing. Antimicrob Agents Chemother 2020; 64:e01423-19. [PMID: 31932374 PMCID: PMC7179265 DOI: 10.1128/aac.01423-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 01/24/2023] Open
Abstract
A key drawback to monitoring the emergence and spread of antimalarial drug resistance in sub-Saharan Africa is early detection and containment. Next-generation sequencing methods offer the resolution, sensitivity, and scale required to fill this gap by surveilling for molecular markers of drug resistance. We performed targeted sequencing using molecular inversion probes to interrogate five Plasmodium falciparum genes (pfcrt, pfmdr1, pfdhps, pfdhfr, and pfk13) implicated in chloroquine, sulfadoxine-pyrimethamine (SP), and artemisinin resistance in two sites in Ghana. A total of 803 dried blood spots from children aged between 6 months and 14 years presenting with uncomplicated P. falciparum malaria at the Begoro District Hospital in Begoro and the Ewim Polyclinic in Cape Coast, Ghana, from 2014 to 2017 were prepared on filter paper. Thirteen years after the removal of drug pressure, chloroquine-sensitive parasite strains with pfcrt K76 have increased nearly to fixation in Begoro, in the forest area (prevalence = 95%), but at a lower rate in Cape Coast, in the coastal region (prevalence = 71%, Z = -3.5, P < 0.001). In addition, pfmdr1 184F-bearing parasites are under strong selection. The pfdhfr/pfdhps quadruple genotype ( IRNG K), associated with SP resistance, is near saturation. Our study identified at a 2 to 10% prevalence pfdhps 581G, which is a sulfadoxine resistance marker that correlates with the failure of SP prophylaxis in pregnancy and which has not been observed in Ghana. The differences in the reexpansion of chloroquine-sensitive strains observed at the two study sites, the stronger SP resistance, and the high prevalence of pfmdr1 184F should be further monitored to inform malaria control strategies in Ghana.
Collapse
Affiliation(s)
- Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- School of Public Health, University of Ghana, Accra, Ghana
| | - Ozkan Aydemir
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - James L Myers-Hansen
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Millicent Opoku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - Patrick W Marsh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
| | - Francis Anto
- School of Public Health, University of Ghana, Accra, Ghana
| | - Jeffrey Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
18
|
Mohammadi S, Jafari B, Asgharian P, Martorell M, Sharifi-Rad J. Medicinal plants used in the treatment of Malaria: A key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother Res 2020; 34:1556-1569. [PMID: 32022345 DOI: 10.1002/ptr.6628] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/14/2020] [Indexed: 01/30/2023]
Abstract
Malaria is one of the life-threatening parasitic diseases that is endemic in tropical areas. The increased prevalence of malaria due to drug resistance leads to a high incidence of mortality. Drug discovery based on natural products and secondary metabolites is considered as alternative approaches for antimalarial therapy. Herbal medicines have advantages over modern medicines, including fewer side effects, cost-effectiveness, and affordability encouraging the herbal-based drug discovery. Several naturally occurring, semisynthetic, and synthetic antimalarial medications are on the market. For example, chloroquine is a synthetic medication for antimalarial therapy derived from quinine. Moreover, artemisinin, and its derivative, artesunate with sesquiterpene lactone backbone, is an antimalarial agent originated from Artemisia annua L. A. annua traditionally has been used to detoxify blood and eliminate fever in China. Although the artemisinin-based combination therapy against malaria has shown exceptional responses, the limited medicinal options demand novel therapeutics. Furthermore, drug resistance is the cause in most cases, and new medications are proposed to overcome the resistance. In addition to conventional therapeutics, this review covers some important genera in this area, including Artemisia, Cinchona, Cryptolepis, and Tabebuia, whose antimalarial activities are finely verified.
Collapse
Affiliation(s)
- Samin Mohammadi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Jafari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Parina Asgharian
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Chile.,Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang X, Ruan W, Zhou S, Huang F, Lu Q, Feng X, Yan H. Molecular surveillance of Pfcrt and k13 propeller polymorphisms of imported Plasmodium falciparum cases to Zhejiang Province, China between 2016 and 2018. Malar J 2020; 19:59. [PMID: 32019571 PMCID: PMC7001319 DOI: 10.1186/s12936-020-3140-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Resistance to anti-malarial drugs hinders malaria elimination. Monitoring the molecular markers of drug resistance helps improve malaria treatment policies. This study aimed to assess the distribution of molecular markers of imported Plasmodium falciparum infections. METHODS In total, 485 P. falciparum cases imported from Africa, Southeast Asia, and Oceania into Zhejiang province, China, from 2016 to 2018 were investigated. Most were imported from Africa, and only a few cases originated in Asia and Oceania. Blood samples were collected from each patient. Plasmodium falciparum chloroquine resistance transporter (Pfcrt) at residues 72-76 and Kelch13-propeller (k13) were determined by nested PCR and DNA sequence. RESULTS Wild-type Pfcrt at residues 72-76 was predominant (72.61%), but mutant and mixed alleles were also detected, of which CVIET (22.72%) was the most common. Mutant Pfcrt haplotypes were more frequent in patients from West Africa (26.92%), North Africa (25%), and Central Africa (21.93%). The number of cases of P. falciparum infections was small in Southeast Asia and Oceania, and these cases involved Pfcrt mutant type. For the k13 propeller gene, 26 samples presented 19 different point mutations, including eight nonsynonymous mutations (P441S, D464E, K503E, R561H, A578S, R622I, V650F, N694K). In addition, R561H, one of the validated SNPs in k13, was detected in one patient from Myanmar and one patient from Rwanda. A578S, although common in Africa, was found in only one patient from Cameroon. R622I was detected in one sample from Mozambique and one sample from Somalia. The genetic diversity of k13 was low in most regions of Africa and purifying selection was suggested by Tajima's D test. CONCLUSIONS The frequency and spatial distributions of Pfcrt and k13 mutations associated with drug resistance were determined. Wild-type Pfcrt was dominant in Africa. Among k13 mutations correlated with delayed parasite clearance, only the R561H mutation was found in one case from Rwanda in Africa. Both Pfcrt and k13 mutations were detected in patients from Southeast Asia and Oceania. These findings provide insights into the molecular epidemiological profile of drug resistance markers in the study region.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Schistosomiasis and Filariasis, MOH, and WHO Collaborating Centre for Malaria, Shanghai, People's Republic of China
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Wei Ruan
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Schistosomiasis and Filariasis, MOH, and WHO Collaborating Centre for Malaria, Shanghai, People's Republic of China.
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Schistosomiasis and Filariasis, MOH, and WHO Collaborating Centre for Malaria, Shanghai, People's Republic of China.
| | - Qiaoyi Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Zhejiang, People's Republic of China
| | - Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Schistosomiasis and Filariasis, MOH, and WHO Collaborating Centre for Malaria, Shanghai, People's Republic of China
| | - He Yan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Schistosomiasis and Filariasis, MOH, and WHO Collaborating Centre for Malaria, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Reiling SJ, Rohrbach P. Uptake of a fluorescently tagged chloroquine analogue is reduced in CQ-resistant compared to CQ-sensitive Plasmodium falciparum parasites. Malar J 2019; 18:342. [PMID: 31590674 PMCID: PMC6781371 DOI: 10.1186/s12936-019-2980-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/28/2019] [Indexed: 11/11/2022] Open
Abstract
Background Chloroquine (CQ) was the drug of choice for decades in the treatment of falciparum malaria until resistance emerged. CQ is suggested to accumulate in the parasite’s digestive vacuole (DV), where it unfolds its anti-malarial properties. Discrepancies of CQ accumulation in CQ-sensitive (CQS) and CQ-resistant (CQR) strains are thought to play a significant role in drug susceptibility. Analysis of CQ transport and intracellular localization using a fluorescently tagged CQ analogue could provide much needed information to distinguish susceptible from resistant parasite strains. The fluorescently tagged CQ analogue LynxTag-CQ™GREEN (CQGREEN) is commercially available and was assessed for its suitability. Methods IC50 values were determined for both CQ and CQGREEN in two CQS and two CQR Plasmodium falciparum strains. Buffer solutions with varying pH were used to determine pH-dependent localization of CQGREEN in infected red blood cells. Before CQS or CQR parasites were exposed to different pH buffers, they were pre-loaded with varying concentrations of CQGREEN for up to 7 h. Intracellular accumulation was analysed using live cell confocal microscopy. CQGREEN uptake rates were determined for the cytosol and DV in the presence and absence of verapamil. Results In CQS strains, twofold higher IC50 values were determined for the CQGREEN analogue compared to CQ. No significant differences in IC50 values were observed in CQR strains. Addition of verapamil reversed drug resistance of CQR strains to both CQ and CQGREEN. Live cell imaging revealed that CQGREEN fluorescence was mainly seen in the cytosol of most parasites, independent of the concentration used. Incubation periods of up to 7 h did not influence intracellular localization of CQGREEN. Nevertheless, CQGREEN uptake rates in CQR strains were reduced by 50% compared to CQS strains. Conclusion Although fluorescence of CQGREEN was mainly seen in the cytosol of parasites, IC50 assays showed comparable efficacy of CQGREEN and CQ in parasite killing of CQS and CQR strains. Reduced uptake rates of CQGREEN in CQR strains compared to CQS strains indicate parasite-specific responses to CQGREEN exposure. The data contains valuable information when CQGREEN is used as an analogue for CQ.
Collapse
Affiliation(s)
- Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montreal, QC, H9X-3V9, Canada
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montreal, QC, H9X-3V9, Canada.
| |
Collapse
|
21
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Lawrenson AS, Cooper DL, O'Neill PM, Berry NG. Study of the antimalarial activity of 4-aminoquinoline compounds against chloroquine-sensitive and chloroquine-resistant parasite strains. J Mol Model 2018; 24:237. [PMID: 30120591 PMCID: PMC6097041 DOI: 10.1007/s00894-018-3755-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/20/2018] [Indexed: 11/14/2022]
Abstract
This study is concerned with identifying features of 4-aminoquinoline scaffolds that can help pinpoint characteristics that enhance activity against chloroquine-resistant parasites. Statistically valid predictive models are reported for a series of 4-aminoquinoline analogues that are active against chloroquine-sensitive (NF54) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Quantitative structure activity relationship techniques, based on statistical and machine learning methods such as multiple linear regression and partial least squares, were used with a novel pruning method for the selection of descriptors to develop robust models for both strains. Inspection of the dominant descriptors supports the hypothesis that chemical features that enable accumulation in the food vacuole of the parasite are key determinants of activity against both strains. The hydrophilic properties of the compounds were found to be crucial in predicting activity against the chloroquine-sensitive NF54 parasite strain, but not in the case of the chloroquine-resistant K1 strain, in line with previous studies. Additionally, the models suggest that ‘softer’ compounds tend to have improved activity for both strains than do ‘harder’ ones. The internally and externally validated models reported here should also prove useful in the future screening of potential antimalarial compounds for targeting chloroquine-resistant strains. Predictive models reveal linear relationships for activity of 4-aminoquinoline analogues active against chloroquine-sensitive strains of Plasmodium falciparum ![]()
Collapse
Affiliation(s)
| | - David L Cooper
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
23
|
Xu L, Li W, Diao Y, Sun H, Li H, Zhu L, Zhou H, Zhao Z. Synthesis, Design, and Structure⁻Activity Relationship of the Pyrimidone Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Molecules 2018; 23:molecules23061254. [PMID: 29794978 PMCID: PMC6099574 DOI: 10.3390/molecules23061254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
The inhibition of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) potentially represents a new treatment option for malaria, as P. falciparum relies entirely on a de novo pyrimidine biosynthetic pathway for survival. Herein, we report a series of pyrimidone derivatives as novel inhibitors of PfDHODH. The most potent compound, 26, showed high inhibition activity against PfDHODH (IC50 = 23 nM), with >400-fold species selectivity over human dihydroorotate dehydrogenase (hDHODH). The brand-new inhibitor scaffold targeting PfDHODH reported in this work may lead to the discovery of new antimalarial agents.
Collapse
Affiliation(s)
- Le Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongxia Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongchang Zhou
- Department of Microbiology, Medical School of Huzhou Teachers College, Huzhou 313000, China.
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
24
|
Adamantane amine-linked chloroquinoline derivatives as chloroquine resistance modulating agents in Plasmodium falciparum. Bioorg Med Chem Lett 2018; 28:1287-1291. [DOI: 10.1016/j.bmcl.2018.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
|
25
|
Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 2018; 14:e1006930. [PMID: 29538461 PMCID: PMC5868857 DOI: 10.1371/journal.ppat.1006930] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 03/26/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022] Open
Abstract
Due to their remarkable parasitocidal activity, artemisinins represent the key components of first-line therapies against Plasmodium falciparum malaria. However, the decline in efficacy of artemisinin-based drugs jeopardizes global efforts to control and ultimately eradicate the disease. To better understand the resistance phenotype, artemisinin-resistant parasite lines were derived from two clones of the 3D7 strain of P. falciparum using a selection regimen that mimics how parasites interact with the drug within patients. This long term in vitro selection induced profound stage-specific resistance to artemisinin and its relative compounds. Chemosensitivity and transcriptional profiling of artemisinin-resistant parasites indicate that enhanced adaptive responses against oxidative stress and protein damage are associated with decreased artemisinin susceptibility. This corroborates our previous findings implicating these cellular functions in artemisinin resistance in natural infections. Genomic characterization of the two derived parasite lines revealed a spectrum of sequence and copy number polymorphisms that could play a role in regulating artemisinin response, but did not include mutations in pfk13, the main marker of artemisinin resistance in Southeast Asia. Taken together, here we present a functional in vitro model of artemisinin resistance that is underlined by a new set of genetic polymorphisms as potential genetic markers.
Collapse
Affiliation(s)
- Frances Rocamora
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kek Yee Liong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sachel Mok
- Columbia University Medical Center, New York, New York, United States of America
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Idowu AO, Bhattacharyya S, Gradus S, Oyibo W, George Z, Black C, Igietseme J, Azenabor AA. Plasmodium falciparum Treated with Artemisinin-based Combined Therapy Exhibits Enhanced Mutation, Heightened Cortisol and TNF-α Induction. Int J Med Sci 2018; 15:1449-1457. [PMID: 30443164 PMCID: PMC6216064 DOI: 10.7150/ijms.27350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
The artemisinin-based combined therapy (ACT) post-treatment illness in Plasmodium falciparum-endemic areas is characterized by vague malaria-like symptoms. The roles of treatment modality, persistence of parasites and host proinflammatory response in disease course are unknown. We investigated the hypothesis that ACT post-treatment syndrome is driven by parasite genetic polymorphisms and proinflammatory response to persisting mutant parasites. Patients were categorized as treated, untreated and malaria-negative. Malaria positive samples were analyzed for Pfcrt, Pfmdr1, K13 kelch gene polymorphisms, while all samples were evaluated for cytokines (TNF-α, IL-12p70, IL-10, TGF-β, IFN-γ) and corticosteroids (cortisol and dexamethasone) levels. The treated patients exhibited higher levels of parasitemia, TNF-α, and cortisol, increased incidence of parasite genetic mutations, and greater number of mutant alleles per patient. In addition, corticosteroid levels declined with increasing number of mutant alleles. TGF-β levels were negatively correlated with parasitemia, while IL-10 and TGF-β were negatively correlated with increasing number of mutant alleles. However, IL-12 displayed slight positive correlation and TNF-α exhibited moderate positive correlation with increasing number of mutant alleles. Since post-treatment management ultimately results in patient recovery, the high parasite gene polymorphism may act in concert with induced cortisol and TNF-α to account for ACT post-treatment syndrome.
Collapse
Affiliation(s)
- Abel Olusola Idowu
- Department of Biomedical Sciences, University of Wisconsin, Milwaukee WI 53211 USA.,Department of Pharmaceutics and Pharmaceutical Technology, University of Lagos, Nigeria
| | | | - Steve Gradus
- City of Milwaukee Health Department Laboratories, Milwaukee, WI 53202 USA
| | - Wellington Oyibo
- Department of Medical Microbiology and Parasitology, University of Lagos, Nigeria
| | - Zenas George
- Molecular Pathogenesis laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Carolyn Black
- Molecular Pathogenesis laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joseph Igietseme
- Molecular Pathogenesis laboratory, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
27
|
Transmembrane solute transport in the apicomplexan parasite Plasmodium. Emerg Top Life Sci 2017; 1:553-561. [PMID: 33525850 DOI: 10.1042/etls20170097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Apicomplexa are a large group of eukaryotic, single-celled parasites, with complex life cycles that occur within a wide range of different microenvironments. They include important human pathogens such as Plasmodium, the causal agent of malaria, and Toxoplasma, which causes toxoplasmosis most often in immunocompromised individuals. Despite environmental differences in their life cycles, these parasites retain the ability to obtain nutrients, remove waste products, and control ion balances. They achieve this flexibility by relying on proteins that can deliver and remove solutes. This reliance on transport proteins for essential functions makes these pathways excellent potential targets for drug development programmes. Transport proteins are frequently key mediators of drug resistance by their ability to remove drugs from their sites of action. The study of transport processes mediated by integral membrane proteins and, in particular, identification of their physiological functions and localisation, and differentiation from host orthologues has already established new validated drug targets. Our understanding of how apicomplexan parasites have adapted to changing environmental challenges has also increased through the study of their transporters. This brief introduction to membrane transporters of apicomplexans highlights recent discoveries focusing on Plasmodium and emphasises future directions.
Collapse
|
28
|
Dwivedi A, Reynes C, Kuehn A, Roche DB, Khim N, Hebrard M, Milanesi S, Rivals E, Frutos R, Menard D, Mamoun CB, Colinge J, Cornillot E. Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia. Malar J 2017; 16:493. [PMID: 29258508 PMCID: PMC5735551 DOI: 10.1186/s12936-017-2140-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs. Results Eight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population. Conclusions Functional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations. Electronic supplementary material The online version of this article (10.1186/s12936-017-2140-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ankit Dwivedi
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France. .,Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France. .,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Christelle Reynes
- Laboratoire de Biostatistiques, Informatique et Physique Pharmaceutique, UFR Pharmacie, Université de Montpellier, 34093, Montpellier, France.,Institut de Génomique Fonctionnelle-CNRS, 34094, Montpellier, France
| | - Axel Kuehn
- Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France
| | - Daniel B Roche
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, 34293, Montpellier, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Maxim Hebrard
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Laboratoire d'informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France.,Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Sylvain Milanesi
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France
| | - Eric Rivals
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France.,Laboratoire d'informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Roger Frutos
- CIRAD, UMR Intertryp, 34398, Montpellier, France.,IES, UMR 5214, Université de Montpellier, CNRS, 34095, Montpellier, France
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jacques Colinge
- Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France. .,Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France.
| |
Collapse
|
29
|
Joshi MC, Okombo J, Nsumiwa S, Ndove J, Taylor D, Wiesner L, Hunter R, Chibale K, Egan TJ. 4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant Plasmodium falciparum and Exhibit Oral Activity in Mice. J Med Chem 2017; 60:10245-10256. [PMID: 29185748 DOI: 10.1021/acs.jmedchem.7b01537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Emergence of drug resistant Plasmodium falciparum including artemisinin-tolerant parasites highlights the need for new antimalarials. We have previously shown that dibemequines, 4-amino-7-chloroquinolines with dibenzylmethylamine (dibemethin) side chains, are efficacious. In this study, analogues in which the terminal phenyl group of the dibemethin was replaced with a 2-pyridyl group and in which the 4-amino-7-chloroquinoline was either maintained or replaced with a 4-aminoquinoline-7-carbonitrile were synthesized in an effort to improve druglikeness. These compounds exhibited significantly improved solubility and decreased lipophilicity and were potent against chloroquine-sensitive (NF54) and -resistant (Dd2 and 7G8) P. falciparum strains with 5/6 having IC50 < 100 nM against the NF54 strain. All inhibited both β-hematin (synthetic hemozoin) formation and hemozoin formation in the parasite. Parasitemia was reduced by over 90% in P. berghei infected mice in 3/6 derivatives following oral dosing at 4 × 30 mg/kg, with microsomal metabolic stability data suggesting that this could be attributed to highly active metabolites.
Collapse
Affiliation(s)
- Mukesh C Joshi
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - John Okombo
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Samkele Nsumiwa
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Jeffrey Ndove
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Dale Taylor
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town , Observatory 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town , Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| |
Collapse
|
30
|
Simplified Reversed Chloroquines To Overcome Malaria Resistance to Quinoline-Based Drugs. Antimicrob Agents Chemother 2017; 61:AAC.01913-16. [PMID: 28193646 PMCID: PMC5404532 DOI: 10.1128/aac.01913-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/22/2017] [Indexed: 02/01/2023] Open
Abstract
Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and β-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.
Collapse
|
31
|
H2O2 dynamics in the malaria parasite Plasmodium falciparum. PLoS One 2017; 12:e0174837. [PMID: 28369083 PMCID: PMC5378400 DOI: 10.1371/journal.pone.0174837] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/15/2017] [Indexed: 12/04/2022] Open
Abstract
Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity.
Collapse
|
32
|
Singh SV, Manhas A, Kumar Y, Mishra S, Shanker K, Khan F, Srivastava K, Pal A. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomed Pharmacother 2017; 89:761-771. [PMID: 28273638 DOI: 10.1016/j.biopha.2017.02.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 10/20/2022] Open
Abstract
A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10μg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05μM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.
Collapse
Affiliation(s)
- Shiv Vardan Singh
- In-vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashan Manhas
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yogesh Kumar
- Molecular and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Sonali Mishra
- Anlaytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Karuna Shanker
- Anlaytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Feroz Khan
- Molecular and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Kumkum Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Pal
- In-vivo Testing Laboratory, Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| |
Collapse
|
33
|
The "pushmi-pullyu" of resistance to chloroquine in malaria. Essays Biochem 2017; 61:167-175. [PMID: 28258239 DOI: 10.1042/ebc20160060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Malarial infection continues to impart devastating health problems in the developing world. Treatment of malaria has involved chemotherapy since 168 BC, with the most prevalent and successful forms using plant alkaloids. Perhaps the greatest treatment success against malaria was by chloroquine, a synthetic derivative of the quinines found in the Cinchona tree bark. Chloroquine is able to kill parasites by interfering with haem metabolism in the parasite's digestive vacuole. The widespread use of chloroquine predictably resulted in the development of drug-resistant malaria and the most highly implicated resistance mediators are the transporter proteins P-glycoprotein (P-gp) homologue 1 (P-gh1) and Plasmodium falciparum chloroquine-resistance transporter (PfCRT), which reside on the parasite's digestive vacuole. The presence of PfCRT and P-gh1 on the vacuole membrane is analogous to the two-headed fictional creature known as the "Pushmi-Pullyu". P-gh1 (Pushmi) increases influx of chloroquine into the vacuole, while PfCRT (Pullmi) causes efflux of chloroquine from the vacuole. This review describes how drug-resistant malarial parasites co-ordinate chloroquine distribution through adaptive mutations to promote their survival in the presence of this cytotoxic drug.
Collapse
|
34
|
Dana S, Keshri SK, Shukla J, Vikramdeo KS, Mondal N, Mukhopadhyay P, Dhar SK. Design, Synthesis and Evaluation of Bifunctional Acridinine-Naphthalenediimide Redox-Active Conjugates as Antimalarials. ACS OMEGA 2016; 1:318-333. [PMID: 30023479 PMCID: PMC6044610 DOI: 10.1021/acsomega.6b00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/30/2016] [Indexed: 06/08/2023]
Abstract
A novel class of bifunctional molecules was synthesized integrating acridine (Ac) and redox-active naphthalenediimide (NDI) scaffolds directly and through a flexible linker (en). We evaluated in vitro antiplasmodial activity, physicochemical properties, and a possible mode of action. Theoretical studies suggested electronic segmentation between the electron-rich Ac and electron-deficient NDI scaffolds. Orthogonal Ac-NDI molecules showed activities in the micromolar to submicromolar range against a chloroquine (CQ)-sensitive strain of human malaria pathogen Plasmodium falciparum (maximum activity, IC50: 0.419 μM). The flexible Ac-en-NDI molecules were most potent and showed activity in the nanomolar range against both CQ-sensitive (with most effective compounds, IC50: 3.65 and 4.33 nM) as well as CQ-resistant (with most effective compounds, IC50: 52.20 and 28.53 nM) strains of P. falciparum. Significantly, with CQ-resistant strains, the activity of the most effective compounds was 1 order of magnitude better than that of standard drug CQ. Ac-en-NDI-conjugated molecules were significantly more potent than the individual NDI and Ac-based molecules. The structure-activity relationship (SAR) suggests that the flexible spacer (en) linking the Ac and NDI scaffolds plays a vital role in exhibiting improved potency. None of the molecules triggered hemolysis in culture, and the most potent compounds did not show cytotoxicity in vitro against mammalian fibroblast NIH3T3 cells at their respective IC50 values. The other significant outcome of this work is that some of the investigated molecules have the potential to affect multiple processes in the parasite including the hemozoin formation in digestive vacuoles (DVs), mitochondrial membrane potential, and the redox homeostasis of the parasite.
Collapse
Affiliation(s)
- Srikanta Dana
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| | - Sudhir Kumar Keshri
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Jyoti Shukla
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Kunwar Somesh Vikramdeo
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Neelima Mondal
- School
of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Pritam Mukhopadhyay
- Supramolecular
and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, 110067 New Delhi, India
| | - Suman Kumar Dhar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New
Mehrauli Road, 110067 New Delhi, India
| |
Collapse
|
35
|
Overcoming chloroquine resistance in malaria: Design, synthesis and structure–activity relationships of novel chemoreversal agents. Eur J Med Chem 2016; 119:231-49. [DOI: 10.1016/j.ejmech.2016.04.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/15/2022]
|
36
|
Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds. Antimicrob Agents Chemother 2016; 60:3076-89. [PMID: 26953199 DOI: 10.1128/aac.02476-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.
Collapse
|
37
|
Mohring F, Jortzik E, Becker K. Comparison of methods probing the intracellular redox milieu in Plasmodium falciparum. Mol Biochem Parasitol 2015; 206:75-83. [PMID: 26593282 DOI: 10.1016/j.molbiopara.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
Glutathione plays a crucial role in the redox regulation of the malaria parasite Plasmodium falciparum and is linked to drug resistance mechanisms, especially in resistance against the antimalarial drug chloroquine (CQ). The determination of the glutathione-dependent redox potential was recently established in living parasites using a cytosolically expressed biosensor comprising redox-sensitive green fluorescent protein coupled to human glutaredoxin 1 (hGrx1-roGFP2). In order to further elucidate redox changes induced by antimalarial drugs and to consolidate the application spectrum of the ratiometric biosensor we systematically compared it to other methods probing thiol and redox metabolism. Among these methods were cell disruptive and non-disruptive approaches including spectrophotometric assays with Ellman's reagent and naphthalene dicarboxyaldehyde as well as molecular probes such as ThiolTracker™ Violet and the dichlorofluorescein-based probe CM-H2DCFDA. To directly compare the methods, blood stages of the CQ-sensitive P. falciparum 3D7 strain were challenged with the oxidative agent diamide and the antimalarial drugs artemisinin and CQ for 1h, 4h, and 24h. For all conditions, dose-dependent changes in the different redox parameters could be monitored which are compared and discussed. We furthermore detected slight differences in thiol status of parasites transiently transfected with hGrx1-roGFP2 in comparison with control 3D7 cells. In conclusion, ThiolTracker™ Violet and, even more so, the hGrx1-roGFP2 probe reacted reliably and sensitively to drug induced changes in intracellular redox metabolism. These results were substantiated by classical cell disruptive methods.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
38
|
Pulcini S, Staines HM, Lee AH, Shafik SH, Bouyer G, Moore CM, Daley DA, Hoke MJ, Altenhofen LM, Painter HJ, Mu J, Ferguson DJP, Llinás M, Martin RE, Fidock DA, Cooper RA, Krishna S. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities. Sci Rep 2015; 5:14552. [PMID: 26420308 PMCID: PMC4588581 DOI: 10.1038/srep14552] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs.
Collapse
Affiliation(s)
- Serena Pulcini
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Henry M Staines
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Andrew H Lee
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Guillaume Bouyer
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK.,Sorbonne Universités, UPMC Univ. Paris 06, UMR 8227, Integrative Biology of Marine Models, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, Roscoff, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Comparative Physiology of Erythrocytes, Station Biologique de Roscoff, Roscoff, France
| | - Catherine M Moore
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| | - Daniel A Daley
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Matthew J Hoke
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Lindsey M Altenhofen
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Heather J Painter
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD 20852, USA
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Roland A Cooper
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.,Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - Sanjeev Krishna
- Institute for Infection and Immunity, St. George's, University of London, London SW17 0RE, UK
| |
Collapse
|
39
|
In Vitro Activities of Primaquine-Schizonticide Combinations on Asexual Blood Stages and Gametocytes of Plasmodium falciparum. Antimicrob Agents Chemother 2015; 59:7650-6. [PMID: 26416869 DOI: 10.1128/aac.01948-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022] Open
Abstract
Currently, the World Health Organization recommends addition of a 0.25-mg base/kg single dose of primaquine (PQ) to artemisinin combination therapies (ACTs) for Plasmodium falciparum malaria as a gametocytocidal agent for reducing transmission. Here, we investigated the potential interactions of PQ with the long-lasting components of the ACT drugs for eliminating the asexual blood stages and gametocytes of in vitro-cultured P. falciparum strains. Using the SYBR green I assay for asexual parasites and a flow cytometry-based assay for gametocytes, we determined the interactions of PQ with the schizonticides chloroquine, mefloquine, piperaquine, lumefantrine, and naphthoquine. With the sums of fractional inhibitory concentrations and isobolograms, we were able to determine mostly synergistic interactions for the various PQ and schizonticide combinations on the blood stages of P. falciparum laboratory strains. The synergism in inhibiting asexual stages and gametocytes was highly evident with PQ-naphthoquine, whereas synergism was moderate for the PQ-piperaquine, PQ-chloroquine, and PQ-mefloquine combinations. We have detected potentially antagonistic interactions between PQ and lumefantrine under certain drug combination ratios, suggesting that precautions might be needed when PQ is added as the gametocytocide to the artemether-lumefantrine ACT (Coartem).
Collapse
|
40
|
Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015; 20:10511-34. [PMID: 26060916 PMCID: PMC6272303 DOI: 10.3390/molecules200610511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.
Collapse
|
41
|
From hybrid compounds to targeted drug delivery in antimalarial therapy. Bioorg Med Chem 2015; 23:5120-30. [PMID: 25913864 DOI: 10.1016/j.bmc.2015.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented.
Collapse
|
42
|
von Seidlein L, Dondorp A. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance. Expert Rev Anti Infect Ther 2015; 13:715-30. [PMID: 25831482 DOI: 10.1586/14787210.2015.1031744] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence and spread of antimalarial resistance has been a major liability for malaria control. The spread of chloroquine-resistant Plasmodium falciparum strains had catastrophic consequences for people in malaria-endemic regions, particularly in sub-Saharan Africa. The recent emergence of artemisinin-resistant P. falciparum strains is of highest concern. Current efforts to contain artemisinin resistance have yet to show success. In the absence of more promising plans, it has been suggested to eliminate falciparum malaria from foci of artemisinin resistance using a multipronged approach, including mass drug administrations. The use of mass drug administrations is controversial as it increases drug pressure. Based on current knowledge it is difficult to conceptualize how targeted malaria elimination could contribute to artemisinin resistance, provided a full treatment course is ensured.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU) - Faculty of Tropical Medicine, 420/6 Rajvithi Road Bangkok 10400, Thailand
| | | |
Collapse
|
43
|
Jones RA, Panda SS, Hall CD. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur J Med Chem 2015; 97:335-55. [PMID: 25683799 DOI: 10.1016/j.ejmech.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.
Collapse
Affiliation(s)
- Rachel A Jones
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA.
| | - Siva S Panda
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| | - C Dennis Hall
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| |
Collapse
|
44
|
Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz 2015; 108:947-61. [PMID: 24402147 PMCID: PMC4005552 DOI: 10.1590/0074-0276130274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
The development and rapid spread of chloroquine resistance (CQR) in
Plasmodium falciparum have triggered the identification of
several genetic target(s) in the P. falciparum genome. In
particular, mutations in the Pfcrt gene, specifically, K76T and
mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75
and 76), are considered to be highly related to CQR. These various mutations form
several different haplotypes and Pfcrt gene polymorphisms and the
global distribution of the different CQR- Pfcrt haplotypes in
endemic and non-endemic regions of P. falciparum malaria have been
the subject of extensive study. Despite the fact that the Pfcrt gene
is considered to be the primary CQR gene in P. falciparum , several
studies have suggested that this may not be the case. Furthermore, there is a poor
correlation between the evolutionary implications of the Pfcrt
haplotypes and the inferred migration of CQR P. falciparum based on
CQR epidemiological surveillance data. The present paper aims to clarify the existing
knowledge on the genetic basis of the different CQR- Pfcrt
haplotypes that are prevalent in worldwide populations based on the published
literature and to analyse the data to generate hypotheses on the genetics and
evolution of CQR malaria.
Collapse
|
45
|
Reemergence of chloroquine (CQ) analogs as multi-targeting antimalarial agents: a review. Eur J Med Chem 2014; 90:280-95. [PMID: 25461328 DOI: 10.1016/j.ejmech.2014.11.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
Amongst several communicable diseases (CDs), malaria is one of the deadliest parasitic disease all over the world, particularly in African and Asian countries. To curb this menace, numbers of antimalarial agents are being sold as over the counter (OTC) drugs. Chloroquine (CQ) is one of them and is one of the oldest, cheapest, and easily available synthetic agents used to curb malaria. Unfortunately, after the reports of CQ-resistance against different strains of malarial parasite strains worldwide, scientist are continuously modifying the core structure of CQ to get an efficient drug. Interestingly, several new drugs have been emerged in due course having unique and enhanced properties (like dual stage inhibitors, resistance reversing ability etc.) and are ready to enter into the clinical trial. In this course, some new agents have also been discovered which are; though inactive against CQS strain, highly active against CQR strains. The present article describes the role of modification of the core structure of CQ and its effects on the biological activities. Moreover, the attempt has also been made to predict the future prospects of such drugs to reemerge as antimalarial agents.
Collapse
|
46
|
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. ACTA ACUST UNITED AC 2014; 21:61. [PMID: 25402734 PMCID: PMC4234044 DOI: 10.1051/parasite/2014059] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
47
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
48
|
Edaye S, Reiling SJ, Leimanis ML, Wunderlich J, Rohrbach P, Georges E. A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum. Mol Biochem Parasitol 2014; 195:34-42. [PMID: 24914817 DOI: 10.1016/j.molbiopara.2014.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/15/2022]
Abstract
Malaria is a major disease in the tropics where chemotherapy remains the main mode of treatment and as such the rise and spread of drug-resistant malaria can lead to human tragedy. Two membrane transport proteins, PfMDR1 (Plasmodium falciparum multidrug resistance protein 1) and PfCRT (P. falciparum chloroquine resistance transporter), have been shown to cause resistance to several antimalarials. Both PfMDR1 and PfCRT are localized to the digestive vacuolar membrane and appear to regulate the transport of drugs and physiological metabolites. In this study we have used MK571, a 2-amino quinoline, to explore its interaction with PfMDR1 and PfCRT in chloroquine-sensitive and -resistant strains of P. falciparum. Our results show that chloroquine-resistant strains (e.g., K1, Dd2, and 7G8) are consistently more sensitive to MK571 than chloroquine-sensitive strains (e.g., 3D7, 106/1 and D10). This association, however, was not maintained with the chloroquine-resistant strain FCB which IC50 value was similar to chloroquine-sensitive strains. Moreover, the susceptibility of chloroquine-sensitive and -resistant strains to MK571 does not correlate with mutated PfCRT, nor is it reversible with verapamil; but correlates with mutations in PfMDR1. Furthermore, MK571 appears to target the parasite's digestive vacuole (DV), as demonstrated by the ability of MK571 to: (1) block the accumulation of the fluorescent dye Fluo-4 AM, a PfMDR1 substrate, into the digestive vacuole; (2) reduce the transvacuolar pH gradient; and (3) inhibit the formation of β-hematin in vitro. Moreover, the presence of non-toxic concentrations of MK571 sensitized both chloroquine-sensitive and -resistant parasites to mefloquine and halofantrine, likely by competing against PfMDR1-mediated sequestering of the drugs into the DV compartment and away from the drugs' cytosolic targets. Our data, nevertheless, found only a minimal decrease in MK571 IC50 value in FCB parasite which second pfmdr1 copy was inactivated via gene disruption. Taken together, the findings of this study suggest that MK571 interacts with native and mutant PfMDR1 and modulates the import of drugs or solutes into the parasite's DV and, as such, MK571 may be a useful tool in the characterization of PfMDR1 drug interactions and substrate specificity.
Collapse
Affiliation(s)
- Sonia Edaye
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada
| | - Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada
| | - Mara L Leimanis
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada
| | - Juliane Wunderlich
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada
| | - Elias Georges
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Montréal, Québec, Canada.
| |
Collapse
|
49
|
Miura T, Hidaka K, Azai Y, Kashimoto K, Kawasaki Y, Chen SE, de Freitas RF, Freire E, Kiso Y. Optimization of plasmepsin inhibitor by focusing on similar structural feature with chloroquine to avoid drug-resistant mechanism of Plasmodium falciparum. Bioorg Med Chem Lett 2014; 24:1698-701. [DOI: 10.1016/j.bmcl.2014.02.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/12/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022]
|
50
|
Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria. Future Med Chem 2014; 5:1341-60. [PMID: 23859211 DOI: 10.4155/fmc.13.51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.
Collapse
|