1
|
Lv L, Yang C, Zhang X, Chen T, Luo M, Yu G, Chen Q. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii. Virulence 2024; 15:2322183. [PMID: 38438325 PMCID: PMC10913709 DOI: 10.1080/21505594.2024.2322183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.
Collapse
Affiliation(s)
- Lin Lv
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chengdong Yang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Zhang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Taixu Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Manfei Luo
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ge Yu
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qinghe Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Qian H, Lin L, Zhang Z, Gu X, Shen D, Yin Z, Ye W, Dou D, Wang Y. A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen. MOLECULAR PLANT PATHOLOGY 2024; 25:e13468. [PMID: 38808392 PMCID: PMC11134190 DOI: 10.1111/mpp.13468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.
Collapse
Affiliation(s)
- Hui Qian
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Long Lin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhichao Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Xinyi Gu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Danyu Shen
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhiyuan Yin
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Daolong Dou
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingJiangsuChina
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
4
|
Kasteel M, Ketelaar T, Govers F. Fatal attraction: How Phytophthora zoospores find their host. Semin Cell Dev Biol 2023; 148-149:13-21. [PMID: 36792439 DOI: 10.1016/j.semcdb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Oomycete plant pathogens, such as Phytophthora and Pythium species produce motile dispersal agents called zoospores that actively target host plants. Zoospores are exceptional in their ability to display taxis to chemical, electrical and physical cues to navigate the phyllosphere and reach stomata, wound sites and roots. Many components of root exudates have been shown attractive or repulsive to zoospores. Although some components possess very strong attractiveness, it seems that especially the mix of components exuded by the primary host is most attractive to zoospores. Zoospores actively approach attractants with swimming behaviour reminiscent of other microswimmers. To achieve a unified description of zoospore behaviour when sensing an attractant, we propose the following terms for the successive stages of the homing response: reorientation, approaching, retention and settling. How zoospores sense and process attractants is poorly understood but likely involves signal perception via cell surface receptors. Since zoospores are important for infection, undermining their activity by luring attractants or blocking receptors seem promising strategies for disease control.
Collapse
Affiliation(s)
- Michiel Kasteel
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; Laboratory of Cell Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
5
|
Ragunathan J, Appusami S, Kadiri M, Venkatesan R, Nallusamy S, Sevugapperumal N. Deciphering the Biomolecules from Bacillus atrophaeus NMB01 Untangles the Anti-Oomycetes Action of Trioxsalen and Corynan-17-ol, Against Phytophthora infestans Inciting Late Blight of Potato. Indian J Microbiol 2022; 62:641-650. [PMID: 36458213 PMCID: PMC9705679 DOI: 10.1007/s12088-022-01044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The antagonistic Bacillus spp. is known well for the production of versatile antimicrobial biomolecules with broad spectrum of action against different types of plant pathogens. Considering the significance of metabolically active biomolecules, attempts were made to decipher the anti-oomycete nature of biomolecules produced by Bacillus atrophaeus NMB01 during di-trophic interaction with Phytophthora infestans. Ten biomolecules produced by B. atrophaeus NMB01 during di-trophic interaction with P. infestans were docked against the twelve target proteins of P. infestans. Molecular docking of biomolecules reported trioxsalen and corynan-17-ol,18,19-didehydro-10-methoxy-acetate(ester) as best hits with highest binding energy in the range of - 7.5 to - 5 kcal/mol against target proteins of P. infestans. Comparatively less binding energy was observed for commercially available fungicides mandipropamid and metalaxyl on docking against the target proteins of P. infestans. We also confirmed the direct impact of trioxsalen andcorynan-17-ol, on P. infestans under in vitro with 66% and 50% inhibition of mycelial growth of P. infestans, respectively. This is the first study attempted to untangle the role of bioactive anti-oomycete compounds produced by B. atrophaeus strain NMB01 during di-trophic interaction with P. infestans against late blight pathogen P. infestans infecting potato. From the present study, we conclude that the biomolecules, trioxsalen and corynan-17-ol, can be explored for the management of P. infestans, the incitant of late blight of potato. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01044-7.
Collapse
Affiliation(s)
- Janani Ragunathan
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Sudha Appusami
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Mahendra Kadiri
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Ragapriya Venkatesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Saranya Nallusamy
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - Nakkeeran Sevugapperumal
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| |
Collapse
|
6
|
Zhang B, Zhang Z, Yong S, Yu S, Feng H, Yin M, Ye W, Wang Y, Qiu M. An Oomycete-Specific Leucine-Rich Repeat-Containing Protein Is Involved in Zoospore Flagellum Development in Phytophthora sojae. PHYTOPATHOLOGY 2022; 112:2351-2359. [PMID: 35694885 DOI: 10.1094/phyto-12-21-0523-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A leucine-rich repeat (LRR) is a widespread structural motif of 20 to 30 amino acids with characteristic repetitive sequences rich in leucine. LRR-containing proteins are critical for ligand recognition and binding, participating in plant development and defense. Like plants, oomycetes also harbor genes encoding LRR-containing proteins, but their functions remain largely unknown. We identified a zoospore-upregulated gene from Phytophthora sojae with LRRs and an extra structural maintenance of chromosomes-like domain. We generated knockout and complemented knockout strains of this LRR protein and found that its deletion resulted in a pronounced reduction in zoospore mobility and chemotaxis, cyst germination, and virulence. Interestingly, micro-examination of zoospores under a scanning electron microscope revealed irregularly shaped zoospores without flagella in these deletion mutants. In addition, the reintroduction of this LRR protein into the knockout mutant reversed all the deficiencies. Our data demonstrate a critical role for the Phytophthora LRR protein in modulating zoospore development, which impairs migration to the host soybean and affects the spread of Phytophthora pathogens.
Collapse
Affiliation(s)
- Baiyu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Saijiang Yong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuyang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
The molecular dialog between oomycete effectors and their plant and animal hosts. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|
9
|
Zhang Z, Lin L, Chen H, Ye W, Dong S, Zheng X, Wang Y. ATAC-Seq Reveals the Landscape of Open Chromatin and cis-Regulatory Elements in the Phytophthora sojae Genome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:301-310. [PMID: 35037783 DOI: 10.1094/mpmi-11-21-0291-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| |
Collapse
|
10
|
Yuan XL, Zhang CS, Kong FY, Zhang ZF, Wang FL. Genome Analysis of Phytophthora nicotianae JM01 Provides Insights into Its Pathogenicity Mechanisms. PLANTS 2021; 10:plants10081620. [PMID: 34451665 PMCID: PMC8400872 DOI: 10.3390/plants10081620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Phytophthora nicotianae is a widely distributed plant pathogen that can cause serious disease and cause significant economic losses to various crops, including tomatoes, tobacco, onions, and strawberries. To understand its pathogenic mechanisms and explore strategies for controlling diseases caused by this pathogen, we sequenced and analyzed the whole genome of Ph. nicotianae JM01. The Ph. nicotianae JM01 genome was assembled using a combination of approaches including shotgun sequencing, single-molecule sequencing, and the Hi-C technique. The assembled Ph. nicotianae JM01 genome is about 95.32 Mb, with contig and scaffold N50 54.23 kb and 113.15 kb, respectively. The average GC content of the whole-genome is about 49.02%, encoding 23,275 genes. In addition, we identified 19.15% of interspersed elements and 0.95% of tandem elements in the whole genome. A genome-wide phylogenetic tree indicated that Phytophthora diverged from Pythium approximately 156.32 Ma. Meanwhile, we found that 252 and 285 gene families showed expansion and contraction in Phytophthora when compared to gene families in Pythium. To determine the pathogenic mechanisms Ph. nicotianae JM01, we analyzed a suite of proteins involved in plant-pathogen interactions. The results revealed that gene duplication contributed to the expansion of Cell Wall Degrading Enzymes (CWDEs) such as glycoside hydrolases, and effectors such as Arg-Xaa-Leu-Arg (RXLR) effectors. In addition, transient expression was performed on Nicotiana benthamiana by infiltrating with Agrobacterium tumefaciens cells containing a cysteine-rich (SCR) protein. The results indicated that SCR can cause symptoms of hypersensitive response. Moreover, we also conducted comparative genome analysis among four Ph. nicotianae genomes. The completion of the Ph. nicotianae JM01 genome can not only help us understand its genomic characteristics, but also help us discover genes involved in infection and then help us understand its pathogenic mechanisms.
Collapse
Affiliation(s)
- Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| | - Fan-Yu Kong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Feng-Long Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (X.-L.Y.); (F.-Y.K.); (Z.-F.Z.)
- Special Crops Research Center of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (C.-S.Z.); (F.-L.W.); Tel.: +86-532-88701035 (C.-S.Z. & F.-L.W.)
| |
Collapse
|
11
|
Dai T, Xu Y, Yang X, Jiao B, Qiu M, Xue J, Arredondo F, Tyler BM. An Improved Transformation System for Phytophthora cinnamomi Using Green Fluorescent Protein. Front Microbiol 2021; 12:682754. [PMID: 34290684 PMCID: PMC8287854 DOI: 10.3389/fmicb.2021.682754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
Phytophthora cinnamomi is a destructive pathogen causing root rot and dieback diseases on hundreds of economically and ecologically important plant species. Effective transformation systems enable modifications of candidate genes to understand the pathogenesis of P. cinnamomi. A previous study reported a polyethylene glycol and calcium dichloride (PEG/CaCl2)-mediated protoplast transformation method of P. cinnamomi. However, the virulence of the transformants was compromised. In this study, we selected ATCC 15400 as a suitable wild-type isolate for PEG/CaCl2 transformation using the green fluorescent protein after screening 11 P. cinnamomi isolates. Three transformants, namely, PcGFP-1, PcGFP-3, and PcGFP-5, consistently displayed a green fluorescence in their hyphae, chlamydospores, and sporangia. The randomly selected transformant PcGFP-1 was as virulent as the wild-type isolate in causing hypocotyl lesions on lupines. Fluorescent hyphae and haustoria were observed intracellularly and intercellularly in lupine tissues inoculated with PcGFP-1 zoospores. The potential application of this improved transformation system for functional genomics studies of P. cinnamomi is discussed.
Collapse
Affiliation(s)
- Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yue Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture, Agricultural Research Service (ARS), Fort Detrick, MD, United States.,ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Binbin Jiao
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Min Qiu
- Nanjing Agricultural University, Nanjing, China
| | - Junxin Xue
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
13
|
de Vries S, de Vries J, Archibald JM, Slamovits CH. Comparative analyses of saprotrophy in Salisapilia sapeloensis and diverse plant pathogenic oomycetes reveal lifestyle-specific gene expression. FEMS Microbiol Ecol 2021; 96:5904760. [PMID: 32918444 PMCID: PMC7585586 DOI: 10.1093/femsec/fiaa184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
Oomycetes include many devastating plant pathogens. Across oomycete diversity, plant-infecting lineages are interspersed by non-pathogenic ones. Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically important primary colonizers of dead tissue that can serve as informative reference points for understanding the evolution of pathogens. Here, we established Salisapilia sapeloensis as a tractable system for the study of saprotrophic oomycetes. We generated multiple transcriptomes from S. sapeloensis and compared them with (i) 22 oomycete genomes and (ii) the transcriptomes of eight pathogenic oomycetes grown under 13 conditions. We obtained a global perspective on gene expression signatures of oomycete lifestyles. Our data reveal that oomycete saprotrophs and pathogens use similar molecular mechanisms for colonization but exhibit distinct expression patterns. We identify a S. sapeloensis-specific array and expression of carbohydrate-active enzymes and putative regulatory differences, highlighted by distinct expression levels of transcription factors. Salisapilia sapeloensis expresses only a small repertoire of candidates for virulence-associated genes. Our analyses suggest lifestyle-specific gene regulatory signatures and that, in addition to variation in gene content, shifts in gene regulatory networks underpin the evolution of oomycete lifestyles.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada.,Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.,Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany.,Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
14
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
15
|
Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen Phytophthora megakarya and Its Close Relative Phytophthora palmivora. G3-GENES GENOMES GENETICS 2020; 10:2241-2255. [PMID: 32354704 PMCID: PMC7341134 DOI: 10.1534/g3.120.401014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phytophthora megakarya and P. palmivora are oomycete pathogens that cause black pod rot of cacao (Theobroma cacao), the most economically important disease on cacao globally. While P. palmivora is a cosmopolitan pathogen, P. megakarya, which is more aggressive on cacao than P. palmivora, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The P. megakarya genome is exceptionally large (222 Mbp) and nearly twice the size of P. palmivora (135 Mbp) and most known Phytophthora species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in P. palmivora In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In P. megakarya we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of Phytophthora genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.
Collapse
|
16
|
The Basic Leucine Zipper Transcription Factor PlBZP32 Associated with the Oxidative Stress Response Is Critical for Pathogenicity of the Lychee Downy Blight Oomycete Peronophythora litchii. mSphere 2020; 5:5/3/e00261-20. [PMID: 32493721 PMCID: PMC7273347 DOI: 10.1128/msphere.00261-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete. Basic leucine zipper (bZIP) transcription factors are widespread in eukaryotes, including plants, animals, fungi, and oomycetes. However, the functions of bZIPs in oomycetes are rarely known. In this study, we identified a bZIP protein possessing a special bZIP-PAS structure in Peronophythora litchii, named PlBZP32. We found that PlBZP32 is upregulated in zoospores, in cysts, and during invasive hyphal growth. We studied the functions of PlBZP32 using the RNAi technique to suppress the expression of this gene. PlBZP32-silenced mutants were more sensitive to oxidative stress, showed a lower cyst germination rate, and produced more sporangia than the wild-type strain SHS3. The PlBZP32-silenced mutants were also less invasive on the host plant. Furthermore, we analyzed the activities of extracellular peroxidases and laccases and found that silencing PlBZP32 decreased the activities of P. litchii peroxidase and laccase. To our knowledge, this is the first report that the functions of a bZIP-PAS protein are associated with oxidative stress, asexual development, and pathogenicity in oomycetes. IMPORTANCE In this study, we utilized the RNAi technique to investigate the functions of PlBZP32, which possesses a basic leucine zipper (bZIP)-PAS structure, and provided insights into the contributions of bZIP transcription factors to oxidative stress, the production of sporangia, the germination of cysts, and the pathogenicity of Peronophythora litchii. This study also revealed the role of PlBZP32 in regulating the enzymatic activities of extracellular peroxidases and laccases in the plant-pathogenic oomycete.
Collapse
|
17
|
Joo H, Lim CW, Lee SC. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:399-410. [PMID: 31278798 DOI: 10.1111/tpj.14451] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 05/07/2023]
Abstract
Ubiquitination is a eukaryotic protein modulation system for identifying and affecting proteins that are no longer needed in the cell. In a previous study, we elucidated the biological function of CaASRF1, which contains a RING finger domain and functions as an E3 ligase. We showed that CaASRF1 positively modulates abscisic acid (ABA) signalling and drought stress tolerance by modulating the stability of subgroup D bZIP transcription factor CaAIBZ1. We performed yeast two-hybrid (Y2H) screening to identify an additional target protein of CaASRF1. In this study, we identified pepper CaATBZ1 (Capsicum annuum ASRF1 target bZIP transcription factor 1), which belongs to the subgroup A bZIP transcription factors. We investigated the biological function of this protein using virus-induced gene silencing (VIGS) in pepper plants and by generating overexpressing transgenic Arabidopsis plants. Our loss-of-function and gain-of-function studies revealed that CaATBZ1 negatively modulates ABA signalling and drought stress response. Consistent with CaATBZ1-silenced pepper plants, CaASRF1/CaATBZ1-silenced pepper plants displayed drought-tolerant phenotypes via ABA-mediated signalling. Our results demonstrated that CaASRF1-mediated ubiquitination plays a crucial role in regulating the stability of CaATBZ1. These findings provide valuable insight into the post-translational regulation of transcriptional factors.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
18
|
Goulin EH, Galdeano DM, Granato LM, Matsumura EE, Dalio RJD, Machado MA. RNA interference and CRISPR: Promising approaches to better understand and control citrus pathogens. Microbiol Res 2019; 226:1-9. [PMID: 31284938 DOI: 10.1016/j.micres.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/16/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Citrus crops have great economic importance worldwide. However, citrus production faces many diseases caused by different pathogens, such as bacteria, oomycetes, fungi and viruses. To overcome important plant diseases in general, new technologies have been developed and applied to crop protection, including RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems. RNAi has been demonstrated to be a powerful tool for application in plant defence mechanisms against different pathogens as well as their respective vectors, and CRISPR/Cas system has become widely used in gene editing or reprogramming or knocking out any chosen DNA/RNA sequence. In this article, we provide an overview of the use of RNAi and CRISPR/Cas technologies in management strategies to control several plants diseases, and we discuss how these strategies can be potentially used against citrus pathogens.
Collapse
Affiliation(s)
- Eduardo Henrique Goulin
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, Km 158, Cordeiropolis, SP, Brazil.
| | - Diogo Manzano Galdeano
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, Km 158, Cordeiropolis, SP, Brazil
| | - Laís Moreira Granato
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, Km 158, Cordeiropolis, SP, Brazil
| | | | | | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, Km 158, Cordeiropolis, SP, Brazil
| |
Collapse
|
19
|
Ochoa JC, Herrera M, Navia M, Romero HM. Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers. THE PLANT PATHOLOGY JOURNAL 2019; 35:19-31. [PMID: 30828276 PMCID: PMC6385658 DOI: 10.5423/ppj.oa.02.2018.0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 06/09/2023]
Abstract
Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.
Collapse
Affiliation(s)
- Juan C. Ochoa
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Mariana Herrera
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Mónica Navia
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
| | - Hernán Mauricio Romero
- Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center (CENIPALMA), Bogotá,
Colombia
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá,
Colombia
| |
Collapse
|
20
|
Leesutthiphonchai W, Judelson HS. A MADS-box transcription factor regulates a central step in sporulation of the oomycete Phytophthora infestans. Mol Microbiol 2018; 110:562-575. [PMID: 30194883 DOI: 10.1111/mmi.14114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 11/28/2022]
Abstract
MADS-box transcription factors play significant roles in eukaryotes, but have not yet been characterized in oomycetes. Here, we describe a MADS-box protein from Phytophthora infestans, which causes late blight of potato. P. infestans and most other oomycetes express a single MADS-box gene. PiMADS is not transcribed during vegetative growth, but is induced early during asexual sporulation. Its mRNA levels oscillate in response to light, which suppresses sporulation. The protein was not detected in nonsporulating mycelia, but was found in sporulating mycelia and spores. Both mRNA and protein levels decline upon spore germination. A similar expression pattern as well as nuclear localization was observed when the protein was expressed with a fluorescent tag from the native promoter. Gene silencing triggered by a construct expressing 478 nt of MADS sequences indicated that PiMADS is required for sporulation but not hyphal growth or plant colonization. A comparison of wild type to a silenced strain by RNA-seq indicated that PiMADS regulates about 3000 sporulation-associated genes, and acts before other genes previously shown to regulate sporulation. Analysis of the silenced strain also indicated that the native gene was not transcribed while the transgene was still expressed, which contradicts current models for homology-dependent silencing in oomycetes.
Collapse
Affiliation(s)
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Lim CW, Baek W, Lee SC. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:452-467. [PMID: 30051516 DOI: 10.1111/tpj.14046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that plays a key role in the environmental stress response, especially the induction of ABA-responsive and stress-responsive genes and modulation of the stomatal aperture in response to drought stress. Here, we identified CaDILZ1 (Capsicum annuum Drought-Induced Leucine Zipper 1) belonging to subgroup D of the bZIP protein family; gene functions of this family in response to ABA and drought signaling still remain unknown. CaDILZ1 expression was significantly induced in pepper leaves after exposure to ABA, drought, and NaCl. The CaDILZ1 protein localized in the nucleus of plant cells. In response to drought stress, CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants exhibited drought-sensitive and drought-tolerant phenotypes, respectively, via altered ABA content, stomatal closure, and expression of ABA-responsive and drought-responsive marker genes. We isolated the RING finger protein CaDSR1 (Capsicum annuum Drought Sensitive RING finger protein 1), which interacted with CaDILZ1 in the nucleus. The CaDSR1 protein exhibited E3 ligase activity and promoted CaDILZ1 degradation via the 26S proteasome pathway. Under drought stress conditions, CaDSR1-silenced pepper and CaDSR1-overexpressing Arabidopsis plants exhibited contrasting phenotypes to those of CaDILZ1-silenced pepper and CaDILZ1-overexpressing Arabidopsis plants. Taken together, our data suggest that CaDSR1 and CaDILZ1 function in ABA-mediated drought stress signaling in pepper plants.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
22
|
Generating Gene Silenced Mutants in Phytophthora sojae. Methods Mol Biol 2018. [PMID: 30182241 DOI: 10.1007/978-1-4939-8724-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phytophthora species are notorious pathogens of plants and cause enormous damage to agriculture. In order to understand Phytophthora pathogenesis, gene silencing and knockout methods are important for the investigation of gene functions. Although CRISPR/Cas9-based gene knockout procedures have been developed in Phytophthora sojae and Phytophthora capsici, it may not always be the best choice especially when knockout mutation leads to lethality. Therefore, gene silencing is a very useful tool for functional analysis of target genes in Phytophthora. This chapter introduces a gene silencing protocol for the soybean pathogen P. sojae. An expression cassette is incorporated into the P. sojae genome through PEG-mediated protoplast transformation, which leads to constitutive production of antisense RNA transcripts. These transcripts are able to target mRNAs through sequence complementarity and effectively reduce the expression of the target genes.
Collapse
|
23
|
Genetics, Molecular, and Proteomics Advances in Filamentous Fungi. Curr Microbiol 2017; 74:1226-1236. [PMID: 28733909 DOI: 10.1007/s00284-017-1308-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.
Collapse
|
24
|
Fang Y, Tyler BM. Nuclear localization of a putative Phytophthora sojae bZIP1 transcription factor is mediated by multiple targeting motifs. Mol Microbiol 2017; 104:621-635. [PMID: 28213898 DOI: 10.1111/mmi.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/28/2022]
Abstract
Oomycetes are fungal-like eukaryotic microbes in the kingdom Stramenopila. We recently found that the oomycete plant pathogen Phytophthora sojae uses nuclear localization signals (NLSs) for translocation of proteins into the nucleus that differ from conventional well-characterized NLSs from mammals and yeast. Here, we have characterized in depth the NLSs of a P. sojae basic leucine zipper transcription factor, PsbZIP1. Nuclear localization of PsbZIP1 was determined by a central conserved region overlapping the DNA binding domain. Mutational analysis of this region identified four distinct elements that contributed multiplicatively to nuclear localization, but the conserved DNA binding residues were not required. Three of the elements showed autonomous NLS activity and the fourth served as a nuclear localization enhancer. Sequences within two of the nuclear localization elements defined a new form of bipartite NLS consisting of a triplet of basic residues followed by a tail of scattered basic amino acids.
Collapse
Affiliation(s)
- Yufeng Fang
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brett M Tyler
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
25
|
Ah-Fong AMV, Kim KS, Judelson HS. RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. BMC Genomics 2017; 18:198. [PMID: 28228125 PMCID: PMC5322657 DOI: 10.1186/s12864-017-3585-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/13/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The oomycete Phytophthora infestans causes the devastating late blight diseases of potato and tomato. P. infestans uses spores for dissemination and infection, like many other filamentous eukaryotic plant pathogens. The expression of a subset of its genes during spore formation and germination were studied previously, but comprehensive genome-wide data have not been available. RESULTS RNA-seq was used to profile hyphae, sporangia, sporangia undergoing zoosporogenesis, motile zoospores, and germinated cysts of P. infestans. Parallel studies of two isolates generated robust expression calls for 16,000 of 17,797 predicted genes, with about 250 transcribed in one isolate but not the other. The largest changes occurred in the transition from hyphae to sporangia, when >4200 genes were up-regulated. More than 1350 of these were induced >100-fold, accounting for 26% of total mRNA. Genes encoding calcium-binding proteins, cation channels, signaling proteins, and flagellar proteins were over-represented in genes up-regulated in sporangia. Proteins associated with pathogenicity were transcribed in waves with subclasses induced during zoosporogenesis, in zoospores, or in germinated cysts. Genes involved in most metabolic pathways were down-regulated upon sporulation and reactivated during cyst germination, although there were exceptions such as DNA replication, where transcripts peaked in zoospores. Inhibitor studies indicated that the transcription of two-thirds of genes induced during zoosporogenesis relied on calcium signaling. A sporulation-induced protein kinase was shown to bind a constitutive Gβ-like protein, which contributed to fitness based on knock-down analysis. CONCLUSIONS Spore formation and germination involves the staged expression of a large subset of the transcriptome, commensurate with the importance of spores in the life cycle. A comparison of the RNA-seq results with the older microarray data indicated that information is now available for about twice the number of genes than before. Analyses based on function revealed dynamic changes in genes involved in pathogenicity, metabolism, and signaling, with diversity in expression observed within members of multigene families and between isolates. The effects of calcium signaling, a spore-induced protein kinase, and an interacting Gβ-like protein were also demonstrated experimentally. The results reveal aspects of oomycete biology that underly their success as pathogens and potential targets for crop protection chemicals.
Collapse
Affiliation(s)
- Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| | - Kyoung Su Kim
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
- Present address: Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Korea
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
26
|
Abrahamian M, Ah-Fong AMV, Davis C, Andreeva K, Judelson HS. Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis. PLoS Pathog 2016; 12:e1006097. [PMID: 27936244 PMCID: PMC5176271 DOI: 10.1371/journal.ppat.1006097] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity. Little is known of how plant pathogens adapt to different growth conditions and host tissues. To understand the interaction between the filamentous eukaryotic microbe Phytophthora infestans and its potato and tomato hosts, we mined the genome for genes encoding proteins involved in nutrient uptake and measured their expression in leaves, tubers, and three artificial media. We observed dynamic changes between the growth conditions, and identified transporters expressed mainly in the biotrophic stage, leaves, tubers, or artificial media. When we blocked the expression of a nitrate transporter and two other genes involved in assimilating nitrate, we observed that those genes were required for successful colonization of nitrate-rich leaves but not nitrate-poor tissues, and that nitrate had become toxic to the silenced strains. We therefore hypothesize that the nitrate assimilation pathway may help the pathogen use inorganic nitrogen for nutrition and/or detoxify nitrate when its levels may become damaging.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Audrey M. V. Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Carol Davis
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Kalina Andreeva
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zhu C, Yang X, Lv R, Li Z, Ding X, Tyler BM, Zhang X. Phytophthora capsici homologue of the cell cycle regulator SDA1 is required for sporangial morphology, mycelial growth and plant infection. MOLECULAR PLANT PATHOLOGY 2016; 17:369-87. [PMID: 26095317 PMCID: PMC6638425 DOI: 10.1111/mpp.12285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4',6-diamidino-2-phenylindole (DAPI) staining and PcSDA1-green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non-filamentous yeasts and human cells.
Collapse
Affiliation(s)
- Chunyuan Zhu
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Xiaoyan Yang
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Rongfei Lv
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Zhuang Li
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Xiaomeng Ding
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Xiuguo Zhang
- Department of Plant Pathology, Shandong Agricultural University, 61, Daizong Street, Tai'an, Shandong, 271018, China
| |
Collapse
|
28
|
Ma YR, Xia JW, Gao JM, Li Z, Zhang XG. Anacacumisporium, a New Genus Based on Morphology and Molecular Analyses from Hainan, China. CRYPTOGAMIE MYCOL 2016. [DOI: 10.7872/crym/v37.iss1.2016.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora. FRONTIERS IN PLANT SCIENCE 2016; 7:284. [PMID: 27014308 PMCID: PMC4791657 DOI: 10.3389/fpls.2016.00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.
Collapse
Affiliation(s)
- Stephanie R. Bollmann
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Yufeng Fang
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA
| | - Caroline M. Press
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Brett M. Tyler
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Niklaus J. Grünwald
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Niklaus J. Grünwald
| |
Collapse
|
30
|
Lim CW, Baek W, Lim S, Han SW, Lee SC. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:825-33. [PMID: 25738319 DOI: 10.1094/mpmi-10-14-0313-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pepper bZIP transcription factor gene, CabZIP2, was isolated from pepper leaves infected with a virulent strain of Xanthomonas campestris pv. vesicatoria. Transient expression analysis of the CabZIP2-GFP fusion protein in Nicotiana benthamiana revealed that the CabZIP2 protein is localized in the cytoplasm as well as the nucleus. The acidic domain in the N-terminal region of CabZIP2 that is fused to the GAL4 DNA-binding domain is required to activate the transcription of reporter genes in yeast. Transcription of CabZIP2 is induced in pepper plants inoculated with virulent or avirulent strains of X. campestris pv. vesicatoria. The CabZIP2 gene is also induced by defense-related hormones such as salicylic acid, methyl jasmonate, and ethylene. To elucidate the in vivo function of the CabZIP2 gene in plant defense, virus-induced gene silencing in pepper and overexpression in Arabidopsis were used. CabZIP2-silenced pepper plants were susceptible to infection by the virulent strain of X. campestris pv. vesicatoria, which was accompanied by reduced expression of defense-related genes such as CaBPR1 and CaAMP1. CabZIP2 overexpression in transgenic Arabidopsis plants conferred enhanced resistance to Pseudomonas syringae pv. tomato DC3000. Together, these results suggest that CabZIP2 is involved in bacterial disease resistance.
Collapse
Affiliation(s)
- Chae Woo Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Woonhee Baek
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sohee Lim
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Sang-Wook Han
- 2 Department of Integrative Plant Science, Chung-Ang University, Anseong, 456-756, Republic of Korea
| | - Sung Chul Lee
- 1 Department of Life Science (BK21 program), Chung-Ang University, Seoul, 156-756, Republic of Korea
| |
Collapse
|
31
|
Gao J, Cao M, Ye W, Li H, Kong L, Zheng X, Wang Y. PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean. MOLECULAR PLANT PATHOLOGY 2015; 16:61-70. [PMID: 24889742 PMCID: PMC6638454 DOI: 10.1111/mpp.12163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean.
Collapse
Affiliation(s)
- Jian Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kong S, Park SY, Lee YH. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environ Microbiol 2014; 17:1425-43. [PMID: 25314920 DOI: 10.1111/1462-2920.12633] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 01/26/2023]
Abstract
Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Sunghyung Kong
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
33
|
Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics 2014; 15:538. [PMID: 24974100 PMCID: PMC4111850 DOI: 10.1186/1471-2164-15-538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Oomycetes are a group of filamentous microorganisms that includes both animal and plant pathogens and causes major agricultural losses. Phytophthora species can infect most crops and plants from natural ecosystems. Despite their tremendous economic and ecologic importance, few effective methods exist for limiting the damage caused by these species. New solutions are required, and their development will require improvements in our understanding of the molecular events governing infection by these pathogens. In this study, we characterized the genetic program activated during penetration of the plant by the soil-borne pathogen Phytophthora parasitica. Results Using all the P. parasitica sequences available in public databases, we generated a custom oligo-array and performed a transcriptomic analysis of the early events of Arabidopsis thaliana infection. We characterized biological stages, ranging from the appressorium-mediated penetration of the pathogen into the roots to the occurrence of first dead cells in the plant. We identified a series of sequences that were transiently modulated during host penetration. Surprisingly, we observed an overall down regulation of genes encoding proteins involved in lipid and sugar metabolism, and an upregulation of functions controlling the transport of amino acids. We also showed that different groups of genes were expressed by P. parasitica during host penetration and the subsequent necrotrophic phase. Differential expression patterns were particularly marked for cell wall-degrading enzymes and other proteins involved in pathogenicity, including RXLR effectors. By transforming P. parasitica with a transcriptional fusion with GFP, we showed that an RXLR-ecoding gene was expressed in the appressorium and infectious hyphae during infection of the first plant cell. Conclusion We have characterized the genetic program activated during the initial invasion of plant cells by P. parasitica. We showed that a specific set of proteins, including effectors, was mobilized for penetration and to facilitate infection. Our detection of the expression of an RXLR encoding gene by the appressorium and infection hyphae highlights a role of this structure in the manipulation of the host cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-538) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Xiang Q, Judelson HS. Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans. PLoS One 2014; 9:e92086. [PMID: 24704821 PMCID: PMC3976263 DOI: 10.1371/journal.pone.0092086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/17/2014] [Indexed: 01/10/2023] Open
Abstract
Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.
Collapse
Affiliation(s)
- Qijun Xiang
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
35
|
Li A, Zhang M, Wang Y, Li D, Liu X, Tao K, Ye W, Wang Y. PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genet Biol 2014; 65:14-24. [PMID: 24480463 DOI: 10.1016/j.fgb.2014.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in the regulation of vegetative and pathogenic growth in plant pathogens. Here, we identified an SLT2-type MAP kinase in Phytophthora sojae, PsMPK1, which was transcriptionally induced in sporulating hyphae and the early stages of infection. Silencing of PsMPK1 caused defects in growth and zoosporogenesis, and increased hyphal swellings after the induction of sporangia formation, along with increasing hypersensitivity to cell wall-degrading enzymes. Transmission electron microscopy showed that the cell wall of PsMPK1-silenced mutants was also deleteriously affected. A dark outermost layer in the cell walls disappeared in the mutants, and an additional layer of the mutant cell wall that was deposited abnormally inside an inner bright layer appeared nonhomogeneous and rough compared to the wild type. Pathogenicity assays showed that PsMPK1-silenced transformants lost their pathogenicity on susceptible soybean host plants and triggered stronger cell death. Overall, PsMPK1 is involved in growth, differentiation, cell wall integrity, and pathogenicity in P. sojae.
Collapse
Affiliation(s)
- Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Delong Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyun Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Luo Q, Wang FX, Zhong NQ, Wang HY, Xia GX. The role of autophagy during development of the oomycete pathogen Phytophthora infestans. J Genet Genomics 2014; 41:225-8. [PMID: 24780621 DOI: 10.1016/j.jgg.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Qian Luo
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Xin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| |
Collapse
|
37
|
Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae. BMC Genomics 2013; 14:839. [PMID: 24286285 PMCID: PMC4046829 DOI: 10.1186/1471-2164-14-839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Basic leucine zipper (bZIP) transcription factors are present exclusively in eukaryotes and constitute one of the largest and most diverse transcription factor families. The proteins are responsible for central developmental and physiological processes in plants, animals, and fungi, including the pathogenicity of fungal plant pathogens. However, there is limited understanding of bZIPs in oomycetes, which are fungus-like organisms in the kingdom Stramenopila. Oomycetes include many destructive plant pathogens, including the well-studied species Phytophthora sojae, which causes soybean stem and root rot. RESULTS Candidate bZIPs encoded in the genomes of P. sojae and four other oomycetes, two diatoms, and two fungal species were predicted using bioinformatic methods. Comparative analysis revealed expanded numbers of bZIP candidates in oomycetes, especially the Phytophthora species, due to the expansion of several novel bZIP classes whose highly conserved asparagines in basic DNA-binding regions were substituted by other residues such as cysteine. The majority of these novel bZIP classes were mostly restricted to oomycetes. The large number of novel bZIPs appears to be the result of widespread gene duplications during oomycete evolution. The majority of P. sojae bZIP candidates, including both conventional and novel bZIP classes, were predicted to contain canonical protein secondary structures. Detection of gene transcripts using digital gene expression profiling and qRT-PCR suggested that most of the candidates were not pseudogenes. The major transcriptional shifts of bZIPs occurred during the zoosporangia/zoospore/cyst and host infection stages. Several infection-associated bZIP genes were identified that were positively regulated by H2O2 exposure. CONCLUSIONS The identification of large classes of bZIP proteins in oomycetes with novel bZIP motif variants, that are conserved and developmentally regulated and thus presumably functional, extends our knowledge of this important family of eukaryotic transcription factors. It also lays the foundation for detailed studies of the roles of these proteins in development and infection in P. sojae and other oomycetes.
Collapse
|
38
|
bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress. EUKARYOTIC CELL 2013; 12:1403-12. [PMID: 23975888 DOI: 10.1128/ec.00141-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.
Collapse
|
39
|
A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology. BMC Genomics 2013; 14:483. [PMID: 23865555 PMCID: PMC3734169 DOI: 10.1186/1471-2164-14-483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Associations between proteins are essential to understand cell biology. While this complex interplay between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight pathogen Phytophthora infestans. RESULTS We present an integrative probabilistic functional gene network that provides associations for 37 percent of the predicted P. infestans proteome. Our method unifies available genomic, transcriptomic and comparative genomic data into a single comprehensive network using a Bayesian approach. Enrichment of proteins residing in the same or related subcellular localization validates the biological coherence of our predictions. The network serves as a framework to query existing genomic data using network-based methods, which thus far was not possible in Phytophthora. We used the network to study the set of interacting proteins that are encoded by genes co-expressed during sporulation. This identified potential novel roles for proteins in spore formation through their links to proteins known to be involved in this process such as the phosphatase Cdc14. CONCLUSIONS The functional association network represents a novel genome-wide data source for P. infestans that also acts as a framework to interrogate other system-wide data. In both capacities it will improve our understanding of the complex biology of P. infestans and related oomycete pathogens.
Collapse
|
40
|
Grenville-Briggs LJ, Horner NR, Phillips AJ, Beakes GW, van West P. A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development of the mycoparasitic oomycete Pythium oligandrum. Fungal Biol 2013; 117:163-72. [PMID: 23537873 DOI: 10.1016/j.funbio.2013.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The mycoparasitic oomycete Pythium oligandrum is homothallic, producing an abundance of thick-walled spiny oospores in culture. After mining a cDNA sequence dataset, we identified a family of genes that code for small tyrosine rich (Pythium oligandrumsmall tyrosine rich (PoStr)) proteins. Sequence analysis identified similarity between the PoStr proteins and putative glycine-rich cell wall proteins from the related plant pathogenic oomycete Pythium ultimum, and mating-induced genes from the oomycete Phytophthora infestans. Expression analysis showed that PoStr transcripts accumulate during oospore production in culture and immunolocalisation indicates the presence of these proteins in oogonial and oospore cell walls. PoStr protein abundance correlated positively with production of oogonia as determined by antibiotic-mediated oogonia suppression. To further characterise the role of PoStr proteins in P. oligandrum oospore production, we silenced this gene family using homology-dependent gene silencing. This represents the first characterisation of genes using gene silencing in a Pythium species. Oospores from silenced strains displayed major ultrastructural changes and were sensitive to degradative enzyme treatment. Oogonia of silenced strains either appeared to be arrested at the mature oosphere stage of development or in around 40 % of the structures, showed a complete suppression of oospore formation. Suppressed oogonia were highly vacuolated and the oogonium wall was thickened by a new inner wall layer. Our data suggest PoStr proteins are probably integral structural components of the normal oospore cell wall and play a key role in oospore formation.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-106 91, Sweden
| | | | | | | | | |
Collapse
|
41
|
Zhang M, Meng Y, Wang Q, Liu D, Quan J, Hardham AR, Shan W. PnPMA1, an atypical plasma membrane H(+)-ATPase, is required for zoospore development in Phytophthora parasitica. Fungal Biol 2012; 116:1013-23. [PMID: 22954344 DOI: 10.1016/j.funbio.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Biflagellate zoospores are the major infective agents that initiate plant infection for most Phytophthora species. Once released from sporangia, zoospores swim and use a number of tactic responses to actively target host tissues. However, the molecular mechanisms controlling zoospore development and behaviour are largely unknown. Previous studies have shown that the PnPMA1 gene is highly expressed in zoospores and germinated cysts of Phytophthora parasitica and encodes an atypical plasma membrane H(+)-ATPase containing an insertion of ~155 amino acid residues at the C terminus. Using topology determination we now show that the C-terminal insertion loop in the PnPMA1 protein is located in the extracellular space. To elucidate the biological function of PnPMA1, PnPMA1-deficient transformants were generated by homology-dependent gene silencing and were confirmed by quantitative PCR of PnPMA1 transcripts and detection of associated small interfering RNAs (siRNAs). High levels of PnPMA1 silencing in P. parasitica resulted in production of nonflagellate and large aberrant zoospores, rapid transition from zoospores to cysts, and a decreased germination rate of cysts. These results indicate that PnPMA1 plays important roles in zoospore development.
Collapse
Affiliation(s)
- Meixiang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. MOLECULAR PLANT PATHOLOGY 2012; 13:519-29. [PMID: 22111693 PMCID: PMC6638818 DOI: 10.1111/j.1364-3703.2011.00766.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Department of Plant Pathology, Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
43
|
Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR, Day B. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS One 2012; 7:e35796. [PMID: 22545137 PMCID: PMC3335787 DOI: 10.1371/journal.pone.0035796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | | | | | | | |
Collapse
|
44
|
Islam MT, von Tiedemann A, Laatsch H. Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:938-947. [PMID: 21486142 DOI: 10.1094/mpmi-12-10-0280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.
Collapse
Affiliation(s)
- Md Tofazzal Islam
- Department of Crop Science, Georg-August-Universität Göttingen, Germany.
| | | | | |
Collapse
|
45
|
Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 2011; 7:e1002137. [PMID: 21829347 PMCID: PMC3145793 DOI: 10.1371/journal.ppat.1002137] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Collapse
Affiliation(s)
| | | | - Seogchan Kang
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paola Veronese
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Scott E. Gold
- USDA-ARS and University of Georgia, Athens, Georgia, United States of America
| | | | - Zehua Chen
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jongsun Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | | | - Dez J. Barbara
- University of Warwick, Wellesbourne, Warwick, United Kingdom
| | - Amy Anchieta
- USDA-ARS, Salinas, California, United States of America
| | | | | | | | - Zahi Atallah
- University of California, Davis, California, United States of America
| | | | - Zahi Paz
- USDA-ARS and University of Georgia, Athens, Georgia, United States of America
| | | | - Ryan J. Hayes
- USDA-ARS, Salinas, California, United States of America
| | - David I. Heiman
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Reinhard Engels
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - James Galagan
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Katherine F. Dobinson
- University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts, United States of America
- University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
46
|
|
47
|
Judelson HS, Ah-Fong AMV. The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genomics 2010; 11:700. [PMID: 21143935 PMCID: PMC3019232 DOI: 10.1186/1471-2164-11-700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/09/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Oomycetes are a large group of economically and ecologically important species. Its most notorious member is Phytophthora infestans, the cause of the devastating potato late blight disease. The life cycle of P. infestans involves hyphae which differentiate into spores used for dispersal and host infection. Protein phosphorylation likely plays crucial roles in these stages, and to help understand this we present here a genome-wide analysis of the protein kinases of P. infestans and several relatives. The study also provides new insight into kinase evolution since oomycetes are taxonomically distant from organisms with well-characterized kinomes. RESULTS Bioinformatic searches of the genomes of P. infestans, P. ramorum, and P. sojae reveal they have similar kinomes, which for P. infestans contains 354 eukaryotic protein kinases (ePKs) and 18 atypical kinases (aPKs), equaling 2% of total genes. After refining gene models, most were classifiable into families seen in other eukaryotes. Some ePK families are nevertheless unusual, especially the tyrosine kinase-like (TKL) group which includes large oomycete-specific subfamilies. Also identified were two tyrosine kinases, which are rare in non-metazoans. Several ePKs bear accessory domains not identified previously on kinases, such as cyclin-dependent kinases with integral cyclin domains. Most ePKs lack accessory domains, implying that many are regulated transcriptionally. This was confirmed by mRNA expression-profiling studies that showed that two-thirds vary significantly between hyphae, sporangia, and zoospores. Comparisons to neighboring taxa (apicomplexans, ciliates, diatoms) revealed both clade-specific and conserved features, and multiple connections to plant kinases were observed. The kinome of Hyaloperonospora arabidopsidis, an oomycete with a simpler life cycle than P. infestans, was found to be one-third smaller. Some differences may be attributable to gene clustering, which facilitates subfamily expansion (or loss) through unequal crossing-over. CONCLUSION The large sizes of the Phytophthora kinomes imply that phosphorylation plays major roles in their life cycles. Their kinomes also include many novel ePKs, some specific to oomycetes or shared with neighboring groups. Little experimentation to date has addressed the biological functions of oomycete kinases, but this should be stimulated by the structural, evolutionary, and expression data presented here. This may lead to targets for disease control.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521 USA
| | - Audrey MV Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521 USA
| |
Collapse
|
48
|
Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X, Wang Y. PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1022-31. [PMID: 20615113 DOI: 10.1094/mpmi-23-8-1022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are universal and evolutionarily conserved signal transduction modules in all eukaryotic cells. In this study, PsSAK1, which encodes a stress-activated MAPK of Phytophthora sojae, was identified. PsSAK1 is highly conserved in oomycetes, and it represents a novel group of MAPK due to its pleckstrin homology domain. Reverse-transcription polymerase chain reaction analysis showed that PsSAK1 expression was upregulated in zoospores and cysts and during early infection. In addition, its expression was induced by osmotic and oxidative stress mediated by NaCl and H(2)O(2), respectively. To elucidate the function, the expression of PsSAK1 was silenced using stable transformation of P. sojae. The silencing of PsSAK1 did not impair hyphal growth, sporulation, or oospore production but severely hindered zoospore development, in that the silenced strains showed quicker encystment and a lower germination ratio than the wild type. PsSAK1-silenced mutants produced much longer germ tubes and could not colonize either wounded or unwounded soybean leaves. Our results indicate that PsSAK1 is an important regulator of zoospore development and pathogenicity in P. sojae.
Collapse
Affiliation(s)
- Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Narayan RD, Blackman LM, Shan W, Hardham AR. Phytophthora nicotianae transformants lacking dynein light chain 1 produce non-flagellate zoospores. Fungal Genet Biol 2010; 47:663-71. [PMID: 20451645 DOI: 10.1016/j.fgb.2010.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 04/01/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
Biflagellate zoospores of the highly destructive plant pathogens in the genus Phytophthora are responsible for the initiation of infection of host plants. Zoospore motility is a critical component of the infection process because it allows zoospores to actively target suitable infection sites on potential hosts. Flagellar assembly and function in eukaryotes depends on a number of dynein-based molecular motors that facilitate retrograde intraflagellar transport and sliding of adjacent microtubule doublets in the flagellar axonemes. Dynein light chain 1 (DLC1) is one of a number of proteins in the dynein outer arm multiprotein complex. It is a 22 kDa leucine-rich repeat protein that binds to the catalytic motor domain of the dynein gamma heavy chain. We report the cloning and characterization of DLC1 homologues in Phytophthora cinnamomi and Phytophthora nicotianae (PcDLC1 and PnDLC1). PcDLC1 and PnDLC1 are single copy genes that are more highly expressed in sporulating hyphae than in vegetative hyphae, zoospores or germinated cysts. Polyclonal antibodies raised against PnDLC1 locallized PnDLC1 along the length of the flagella of P. nicotianae zoospores. RNAi-mediated silencing of PnDLC1 expression yielded transformants that released non-flagellate, non-motile zoospores from their sporangia. Our observations indicate that zoospore motility is not required for zoospore release from P. nicotianae sporangia or for breakage of the evanescent vesicle into which zoospores are initially discharged.
Collapse
Affiliation(s)
- Reena D Narayan
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
50
|
Blum M, Boehler M, Randall E, Young V, Csukai M, Kraus S, Moulin F, Scalliet G, Avrova AO, Whisson SC, Fonne-Pfister R. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2010; 11:227-43. [PMID: 20447272 PMCID: PMC6640402 DOI: 10.1111/j.1364-3703.2009.00604.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic. Here, we describe how a combination of biochemical and genetic techniques has been utilized to identify the molecular target of MPD in P. infestans. Phytophthora infestans germinating cysts treated with MPD produced swelling symptoms typical of cell wall synthesis inhibitors, and these effects were reversible after washing with H(2)O. Uptake studies with (14)C-labelled MPD showed that this oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, (14)C glucose incorporation into cellulose was perturbed in the presence of MPD which, taken together, suggests that the inhibition of cellulose synthesis is the primary effect of MPD. Laboratory mutants, insensitive to MPD, were raised by ethyl methane sulphonate (EMS) mutagenesis, and gene sequence analysis of cellulose synthase genes in these mutants revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (glycine-1105) in the protein. The transformation and expression of a mutated PiCesA3 allele was carried out in a sensitive wild-type isolate to demonstrate that the mutations in PiCesA3 were responsible for the MPD insensitivity phenotype.
Collapse
Affiliation(s)
- Mathias Blum
- Syngenta Crop Protection AG, CH-4332 Stein, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|