1
|
Xue Y, Kang X. Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy. NPJ Biofilms Microbiomes 2025; 11:21. [PMID: 39880834 DOI: 10.1038/s41522-025-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period. The mature biofilm, established within 48 h, undergoes significant degradation in following 72 h. The steepest decline of proteins precedes that of exopolysaccharides, likely reflecting their distinct spatial distribution. Exopolysaccharide sugar units display clustered temporal patterns, suggesting the presence of distinct polysaccharide types. A sharp rise in aliphatic carbon signals on day 4 probably corresponds to a surge in biosurfactant production. Different dynamic regimes respond differently to dispersal: the mobile domain exhibits increased rigidity, while the rigid domain remains stable. These findings provide novel insights and perspectives on the complex process of biofilm dispersal.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Okda M, Spina S, Fakhr BS, Carroll RW. The Antimicrobial Effects of Nitric Oxide: A Narrative Review. Nitric Oxide 2025:S1089-8603(25)00001-1. [PMID: 39793728 DOI: 10.1016/j.niox.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Nitric oxide (NO) is a versatile endogenous molecule with multiple physiological roles, including neurotransmission, vasodilation, and immune regulation. As part of the immune response, NO exerts antimicrobial effects by producing reactive nitrogen species (RNS). These RNS combat pathogens via mechanisms such as DNA deamination, S-nitrosylation of thiol groups, and lipid peroxidation, leading to disruptions in microbial cell membranes and vital protein functions. Due to these broad actions, NO targets many pathogens, including bacteria, fungi, and viruses, with minimal risk of resistance development. Given its potent antimicrobial properties, the therapeutic potential of exogenous NO has been recently studied. Various preparations, such as NO donors, inhaled gaseous NO, and topical preparations, have shown promising results in preclinical and clinical settings. This literature review examines the antimicrobial effects of exogenous NO reported in in vitro studies, animal models, and human clinical trials. We provide an overview of the mechanisms by which NO exerts its antimicrobial activity, highlighting its efficacy against diverse pathogens. By presenting the current findings, we aim to contribute to the growing body of evidence supporting the use of NO as a versatile antimicrobial agent in clinical practice.
Collapse
Affiliation(s)
- Mohamed Okda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Stefano Spina
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Bijan Safaee Fakhr
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA
| | - Ryan W Carroll
- Harvard Medical School, Boston, MA, USA; Division of Pediatric Critical Care Medicine, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
3
|
Evans DC, Khamas AB, Payne-Dwyer A, Wollman AJ, Rasmussen KS, Klitgaard JK, Kallipolitis B, Leake MC, Meyer RL. Cooperation between coagulase and von willebrand factor binding protein in Staphylococcus aureus fibrin pseudocapsule formation. Biofilm 2024; 8:100233. [PMID: 39555140 PMCID: PMC11564979 DOI: 10.1016/j.bioflm.2024.100233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
The major human pathogen Staphylococcus aureus forms biofilms comprising of a fibrin network that increases attachment to surfaces and shields bacteria from the immune system. It secretes two coagulases, Coagulase (Coa) and von Willebrand factor binding protein (vWbp), which hijack the host coagulation cascade and trigger the formation of this fibrin clot. However, it is unclear how Coa and vWbp contribute differently to the localisation and dynamics of clot assembly in growing biofilms. Here, we address this question using high-precision time-resolved confocal microscopy of fluorescent fibrin to establish the spatiotemporal dynamics of fibrin clot formation in functional biofilms. We also use fluorescent fusion proteins to visualise the locations of Coa and vWbp in biofilms using both confocal laser scanning and high resolution highly inclined and laminated optical sheet microscopy. We visualise and quantify the spatiotemporal dynamics of fibrin production during initiation of biofilms in plasma amended with fluorescently labelled fibrinogen. We find that human serum stimulates coagulase production, and that Coa and vWbp loosely associate to the bacterial cell surface. Coa localises to cell surfaces to produce a surface-attached fibrin pseudocapsule but can diffuse from cells to produce matrix-associated fibrin. vWbp produces matrix-associated fibrin in the absence of Coa, and furthermore accelerates pseudocapsule production when Coa is present. Finally, we observe that fibrin production varies across the biofilm. A sub-population of non-dividing cells does not produce any pseudocapsule but remains within the protective extended fibrin network, which could be important for the persistence of S. aureus biofilm infections as antibiotics are more effective against actively growing cells. Our findings indicate a more cooperative role between Coa and vWbp in building fibrin networks than previously thought, and a bet-hedging cell strategy where some cells produce biofilm matrix while others do not, but instead assume a dormant phenotype that could be associated with antibiotic tolerance.
Collapse
Affiliation(s)
- Dominique C.S. Evans
- School of Physics, Engineering and Technology, University of York, York, UK
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| | - Amanda B. Khamas
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York, UK
| | - Adam J.M. Wollman
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Kristian S. Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janne K. Klitgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Li H, E W, Zhao D, Liu H, Pei J, Du B, Liu K, Zhu X, Wang C. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Appl Microbiol Biotechnol 2024; 108:17. [PMID: 38170316 DOI: 10.1007/s00253-023-12916-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui E
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dongying Zhao
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Pei
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Nguyen HK, Duke MM, Grayton QE, Broberg CA, Schoenfisch MH. Impact of nitric oxide donors on capsule, biofilm and resistance profiles of Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107339. [PMID: 39304122 PMCID: PMC11540743 DOI: 10.1016/j.ijantimicag.2024.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Klebsiella pneumoniae is considered to be a critical public health threat due to its ability to cause fatal, multi-drug-resistant infections in the bloodstream and key organs. The polysaccharide-based capsule layer that shields K. pneumoniae from clearance via innate immunity is a prominent virulence factor. K. pneumoniae also forms biofilms on biotic and abiotic surfaces. These biofilms significantly reduce penetration by, and antibacterial activity from, traditional antibiotics. Nitric oxide (NO), an endogenous molecule involved in the innate immune system, is equally effective at eradicating bacteria but without engendering resistance. This study investigated the effects of NO-releasing small molecules capable of diverse release kinetics on the capsule and biofilm formation characteristics of multiple K. pneumoniae strains. The use of NO donors with moderate and extended NO-release properties (i.e., half-life >1.8 h) inhibited bacterial growth. Additionally, treatment with NO decreased capsule mucoviscosity in K. pneumoniae strains that normally exhibit hypermucoviscosity. The NO donors were also effective against K. pneumoniae biofilms at the same minimum biocidal concentrations that eliminated planktonic bacteria, while meropenem showed little antibacterial action in the same experiments. These results represent the first account of exogenous NO affecting biomarkers involved in K. pneumoniae infections, and may therefore inform future development of NO-based therapeutics for treating such infections.
Collapse
Affiliation(s)
- Huan K Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Magdalena M Duke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quincy E Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024; 32:840-857. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
7
|
Høiby N, Moser C, Ciofu O. Pseudomonas aeruginosa in the Frontline of the Greatest Challenge of Biofilm Infection-Its Tolerance to Antibiotics. Microorganisms 2024; 12:2115. [PMID: 39597505 PMCID: PMC11596597 DOI: 10.3390/microorganisms12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics. The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic treatment, although the initial clinical response to the treatment is frequently favorable. There is a concentration gradient of oxygen and nutrients from the surface to the center of biofilms. Surface-located bacteria are multiplying and metabolizing, whereas deeper located bacteria are dormant and tolerant to most antibiotics. Colistin kills dormant bacteria, and combination therapy with colistin and antibiotics which kills multiplying bacteria is efficient in vitro. Some antibiotics such as imipenem induce additional production of the biofilm matrix and of chromosomal beta-lactamase in biofilms. Biofilms present a third Pharmacokinetic/Pharmacodynamic (PK/PD) micro-compartment (first: blood, second: tissue, third: biofilm) which must be taken into consideration when calculations try to predict the antibiotic concentrations in biofilms and thereby the probability of target attainment (PTA) for killing the biofilm. Treating biofilms with hyperbaric oxygen to wake up the dormant cells, destruction of the biofilm matrix, and the use of bacteriophage therapy in combination with antibiotics are promising possibilities which have shown proof of concept in in vitro experiments and in animal experiments.
Collapse
Affiliation(s)
- Niels Høiby
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Claus Moser
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Oana Ciofu
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
| |
Collapse
|
8
|
Tian M, Yan B, Jiang R, Liu C, Li Y, Xu B, Guo S, Li X. Activity of polymyxin B combined with cefepime-avibactam against the biofilms of polymyxin B-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae in in vitro and in vivo models. BMC Microbiol 2024; 24:409. [PMID: 39407114 PMCID: PMC11481319 DOI: 10.1186/s12866-024-03571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial biofilms, often forming on medical devices, can lead to treatment failure due to their increased antimicrobial resistance. Cefepime-avibactam (CFP-AVI) exhibits potent activities against Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) when used with polymyxin B (PMB). However, its efficacy in biofilm-related infections is unknown. The present study aimed to evaluate the activity of PMB combined with CFP-AVI against the biofilms of PMB-resistant Gram-negative bacteria. Five K. pneumoniae strains and three P. aeruginosa strains known to be PMB-resistant and prone to biofilm formation were selected and evaluated. Antimicrobial susceptibility assays demonstrated that the minimal biofilm inhibitory and eradication concentrations of PMB and CFP-AVI for biofilms formed by the eight strains were significantly higher than the minimal inhibitory concentrations of the antibiotics for planktonic cells. The biofilm formation inhibition and eradication assays showed that PMB combined with CFP-AVI cannot only suppress the formation of biofilm but also effectively eradicate the preformed mature biofilms. In a modified in vitro pharmacokinetic/pharmacodynamic biofilm model, CFP-AVI monotherapy exhibited a bacteriostatic or effective activity against the biofilms of seven strains, whereas PMB monotherapy did not have any activity at 72 h. However, PMB combined with CFP-AVI demonstrated bactericidal activity against the biofilms of all strains at 72 h. In an in vivo Galleria mellonella infection model, the 7-day survival rates of larvae infected with biofilm implants of K. pneumoniae or P. aeruginosa were 0-6.7%, 40.0-63.3%, and 46.7-90.0%, respectively, for PMB alone, CFP-AVI alone, and PMB combined with CFP-AVI; the combination therapy increased the rate by 6.7-33.3% (P < 0.05, n = 6), compared to CFP-AVI monotherapy. It is concluded that PMB combined with CFP-AVI exhibits effective anti-biofilm activities against PMB-resistant K. pneumoniae and P. aeruginosa both in vitro and in vivo, and thus may be a promising therapeutic strategy to treat biofilm-related infections.
Collapse
Affiliation(s)
- Miaomei Tian
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Bingqian Yan
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Rong Jiang
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Candi Liu
- Hunan Drug Inspection Center, Changsha, Hunan Province, People's Republic of China
| | - You Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China
| | - Siwei Guo
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, 176 Western Laodong Road, Tianxin District, Changsha, Hunan Province, 410015, People's Republic of China.
- Institute of Clinical Application of Antibiotics, Changsha, Hunan Province, People's Republic of China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan Province, People's Republic of China.
| |
Collapse
|
9
|
da Cruz Nizer WS, Adams ME, Montgomery MC, Allison KN, Beaulieu C, Overhage J. Genetic determinants of increased sodium hypochlorite and ciprofloxacin susceptibility in Pseudomonas aeruginosa PA14 biofilms. BIOFOULING 2024; 40:563-579. [PMID: 39189148 DOI: 10.1080/08927014.2024.2395378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Reactive chlorine species (RCS) like sodium hypochlorite (NaOCl) are potent oxidizing agents and widely used biocides in surface disinfection, water treatment, and biofilm elimination. Moreover, RCS are also produced by the human immune system to kill invading pathogens. However, bacteria have developed mechanisms to survive the damage caused by RCS. Using the comprehensive Pseudomonas aeruginosa PA14 transposon mutant library in a genetic screen, we identified a total of 28 P. aeruginosa PA14 mutants whose biofilms showed increased susceptibility to NaOCl in comparison to PA14 WT biofilms. Of these, ten PA14 mutants with a disrupted apaH, PA0793, acsA, PA1506, PA1547, PA3728, yajC, queA, PA3869, or PA14_32840 gene presented a 4-fold increase in NaOCl susceptibility compared to wild-type biofilms. While none of these mutants showed a defect in biofilm formation or attenuated susceptibility of biofilms toward the oxidant hydrogen peroxide (H2O2), all but PA14_32840 also exhibited a 2-4-fold increase in susceptibility toward the antibiotic ciprofloxacin. Further analyses revealed attenuated levels of intracellular ROS and catalase activity only for the apaH and PA1547 mutant, providing insights into the oxidative stress response in P. aeruginosa biofilms. The findings of this paper highlight the complexity of biofilm resistance and the intricate interplay between different mechanisms to survive oxidative stress. Understanding resistance strategies adopted by biofilms is crucial for developing more effective ways to fight resistant bacteria, ultimately contributing to better management of bacterial growth and resistance in clinical and environmental settings.
Collapse
Affiliation(s)
| | | | | | | | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Canada
| |
Collapse
|
10
|
Elawady R, Aboulela AG, Gaballah A, Ghazal AA, Amer AN. Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count. BMC Infect Dis 2024; 24:1065. [PMID: 39342123 PMCID: PMC11438285 DOI: 10.1186/s12879-024-09790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Biofilm formation is an essential virulence factor that creates a highly protected growth mode for Staphylococcus aureus (S. aureus) to survive in any hostile environment. Antibiotic sub-minimal inhibitory concentration (sub-MIC) may modulate the biofilm formation ability of bacterial pathogens, thereby affecting bacterial pathogenesis and infection outcomes. Intense antimicrobial therapy to treat biofilm-associated infections can control the pathogenic infection aggravation but cannot guarantee its complete eradication. OBJECTIVE This study aimed to assess the sub-MICs effect of 5 different antimicrobial classes on biofilm-forming capacity among Staphylococcus aureus clinical isolates using three different biofilm quantitation techniques. METHODS In this study, the effects of 5 different antimicrobial agents, namely, azithromycin, gentamicin, ciprofloxacin, doxycycline, and imipenem, at sub-MICs of 12.5%, 25%, and 50% were tested on 5 different clinical isolates of S. aureus. The biofilms formed in the absence and presence of different antimicrobial sub-MICs were then assessed using the following three different techniques: the crystal violet (CV) staining method, the quantitative PCR (qPCR) method, and the spread plate method (SPM). RESULTS Biofilm formation was significantly induced in 64% of the tested conditions using the CV technique. On the other hand, the qPCR quantifying the total bacterial count and the SPM quantifying the viable bacterial count showed significant induction only in 24% and 17.3%, respectively (Fig. 1). The difference between CV and the other techniques indicates an increase in biofilm biomass without an increase in bacterial growth. As expected, sub-MICs did not reduce the viable cell count, as shown by the SPM. The CV staining method revealed that sub-MICs of imipenem and ciprofloxacin had the highest significance rate (80%) showing an inductive effect on the biofilm development. On the other hand, doxycycline, azithromycin, and gentamicin displayed lower significance rates of 73%, 53%, and 47%, respectively. CONCLUSION Exposure to sub-MIC doses of antimicrobial agents induces the biofilm-forming capacity of S. aureus via increasing the total biomass without significantly affecting the bacterial growth of viable count.
Collapse
Affiliation(s)
- Raghda Elawady
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Aliaa G Aboulela
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer A Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed N Amer
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| |
Collapse
|
11
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Mancheño-Losa M, Murillo O, Benavent E, Sorlí L, Riera M, Cobo J, Benito N, Morata L, Ribera A, Sobrino B, Fernández-Sampedro M, Múñez E, Bahamonde A, Barbero JM, Del Toro MD, Villa J, Rigo-Bonnin R, Luque S, García-Luque I, Oliver A, Esteban J, Lora-Tamayo J. Efficacy and safety of colistin plus beta-lactams for bone and joint infection caused by fluoroquinolone-resistant gram-negative bacilli: a prospective multicenter study. Infection 2024:10.1007/s15010-024-02379-7. [PMID: 39249177 DOI: 10.1007/s15010-024-02379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES The prognosis of bone and joint infections (BJI) caused by Gram-negative bacilli (GNB) worsens significantly in the face of fluoroquinolone-resistance. In this setting, scarce pre-clinical and clinical reports suggest that intravenous beta-lactams plus colistin may improve outcome. Our aim was to assess the efficacy and safety of this treatment in a well-characterized prospective cohort. METHODS Observational, prospective, non-comparative, multicenter (14 hospitals) study of adults with BJI caused by fluoroquinolone-resistant GNB treated with surgery and intravenous beta-lactams plus colistin for ≥ 21 days. The primary endpoint was the cure rate. RESULTS Of the 44 cases included (median age 72 years [IQR 50-81], 22 [50%] women), 32 (73%) had an orthopedic device-related infection, including 17 (39%) prosthetic joints. Enterobacterales were responsible for 27 (61%) episodes, and Pseudomonas spp for 17 (39%), with an overall rate of MDR/XDR GNB infections of 27/44 (61%). Patients were treated with colistin plus intravenous beta-lactam for 28 days (IQR 22-37), followed by intravenous beta-lactam alone for 19 days (IQR 5-35). The cure rate (intention-to-treat analysis; median follow-up = 24 months, IQR 19-30) was 82% (95% CI 68%-90%) and particularly, 80% (95% CI 55%-93%) among patients managed with implant retention. Adverse events (AEs) leading to antimicrobial withdrawal occurred in 10 (23%) cases, all of which were reversible. Colistin AEs were associated with higher plasma drug concentrations (2.8 mg/L vs. 0.9 mg/L, p = 0.0001). CONCLUSIONS Combination therapy with intravenous beta-lactams plus colistin is an effective regimen for BJI caused by fluoroquinolone-resistant GNB. AEs were reversible and potentially preventable by close therapeutic drug monitoring.
Collapse
Affiliation(s)
- Mikel Mancheño-Losa
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Instituto de Investigación Imas12, Madrid, Spain
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
| | - Oscar Murillo
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain.
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Infectious Diseases, Hospital Universitari Bellvitge, Avda. Feixa Llarga S/N, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Eva Benavent
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Infectious Diseases, Hospital Universitari Bellvitge, Avda. Feixa Llarga S/N, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luisa Sorlí
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases. Instituto Hospital del Mar de Investigaciones Médicas (IMIM). Hospital del Mar, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Melchor Riera
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Univeristari Son Espases, Fundación Instituto de Investigación Sanitaria Islas Baleares (IdISBa), Palma, Spain
| | - Javier Cobo
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Natividad Benito
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit, Hospital de La Santa Creu I Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, Australia
| | - Laura Morata
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Infectious Diseases, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques Agust Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Alba Ribera
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Internal Medicine, Hospital de Barcelona, Barcelona, Spain
| | - Beatriz Sobrino
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Infectious Diseases, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Marta Fernández-Sampedro
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Elena Múñez
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Alberto Bahamonde
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Internal Medicine, Hospital El Bierzo, Ponferrada, Spain
| | - José María Barbero
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - Mª Dolores Del Toro
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Unit of Infectious Diseases and Microbiology, Hospital Universitario Virgen Macarena, University of Sevilla, Seville, Spain
| | - Jenifer Villa
- Department of Microbiology, Hospital Universitario 12 de Octubre, Instituto de Investigación Imas12, Madrid, Spain
| | - Raül Rigo-Bonnin
- Clinical Laboratory, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Luque
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Pharmacy Department, Hospital del Mar. Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | | | - Antonio Oliver
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, Hospital Universitari Son Espases, IdISBa, Palma, Spain
| | - Jaime Esteban
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, ISS-Hospital Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaime Lora-Tamayo
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Instituto de Investigación Imas12, Madrid, Spain
- Grupo de Estudio de Infecciones Osteoarticulares - Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (GEIO-SEIMC), Madrid, Spain
- CIBERINFEC - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Ferreira L, Pos E, Nogueira DR, Ferreira FP, Sousa R, Abreu MA. Antibiotics with antibiofilm activity - rifampicin and beyond. Front Microbiol 2024; 15:1435720. [PMID: 39268543 PMCID: PMC11391936 DOI: 10.3389/fmicb.2024.1435720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The management of prosthetic joint infections is a complex and multilayered process that is additionally complicated by the formation of bacterial biofilm. Foreign material provides the ideal grounds for the development of an intricate matrix that hinders treatment and creates a difficult environment for antibiotics to act. Surgical intervention is often warranted but requires appropriate adjunctive therapy. Despite available guidelines, several aspects of antibiotic therapy with antibiofilm activity lack clear definition. Given the escalating challenges posed by antimicrobial resistance, extended treatment durations, and tolerance issues, it is essential to ensure that antimicrobials with antibiofilm activity are both potent and diverse. Evidence of biofilm-active drugs is highlighted, and alternatives to classical regimens are further discussed.
Collapse
Affiliation(s)
- Luís Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ema Pos
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | | | - Filipa Pinto Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ricardo Sousa
- Department of Orthopaedic Surgery, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| | - Miguel Araújo Abreu
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| |
Collapse
|
14
|
Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol 2024; 14:1408569. [PMID: 39035353 PMCID: PMC11257871 DOI: 10.3389/fcimb.2024.1408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
A complex structure known as a biofilm is formed when a variety of bacterial colonies or a single type of cell in a group sticks to a surface. The extracellular polymeric compounds that encase these cells, often consisting of proteins, eDNA, and polysaccharides, exhibit strong antibiotic resistance. Concerns about biofilm in the pharmaceutical industry, public health, and medical fields have sparked a lot of interest, as antibiotic resistance is a unique capacity exhibited by these biofilm-producing bacteria, which increases morbidity and death. Biofilm formation is a complicated process that is controlled by several variables. Insights into the processes to target for the therapy have been gained from multiple attempts to dissect the biofilm formation process. Targeting pathogens within a biofilm is profitable because the bacterial pathogens become considerably more resistant to drugs in the biofilm state. Although biofilm-mediated infections can be lessened using the currently available medications, there has been a lot of focus on the development of new approaches, such as bioinformatics tools, for both treating and preventing the production of biofilms. Technologies such as transcriptomics, metabolomics, nanotherapeutics and proteomics are also used to develop novel anti-biofilm agents. These techniques help to identify small compounds that can be used to inhibit important biofilm regulators. The field of appropriate control strategies to avoid biofilm formation is expanding quickly because of this spurred study. As a result, the current article addresses our current knowledge of how biofilms form, the mechanisms by which bacteria in biofilms resist antibiotics, and cutting-edge treatment approaches for infections caused by biofilms. Furthermore, we have showcased current ongoing research utilizing the CRISPR/Cas9 gene editing system to combat bacterial biofilm infections, particularly those brought on by lethal drug-resistant pathogens, concluded the article with a novel hypothesis and aspirations, and acknowledged certain limitations.
Collapse
Affiliation(s)
- Azna Zuberi
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Obs & Gynae, Northwestern University, Chicago, IL, United States
| | - Nayeem Ahmad
- Department of Biophysics, All India Institute of Medical Science, New Delhi, India
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohd Saeed
- Department of Biology, College of Science University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
15
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
16
|
Wang J, Guo Y, Lu W, Liu X, Zhang J, Sun J, Chai G. Dry powder inhalation containing muco-inert ciprofloxacin and colistin co-loaded liposomes for pulmonary P. Aeruginosa biofilm eradication. Int J Pharm 2024; 658:124208. [PMID: 38723731 DOI: 10.1016/j.ijpharm.2024.124208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa (PA), a predominant pathogen in lung infections, poses significant challenges due to its biofilm formation, which is the primary cause of chronic and recalcitrant pulmonary infections. Bacteria within these biofilms exhibit heightened resistance to antibiotics compared to their planktonic counterparts, and their secreted toxins exacerbate lung infections. Diverging from traditional antibacterial therapy for biofilm eradication, this study introduces a novel dry powder inhalation containing muco-inert ciprofloxacin and colistin co-encapsulated liposomes (Cipro-Col-Lips) prepared using ultrasonic spray freeze drying (USFD) technique. This USFD dry powder is designed to efficiently deliver muco-inert Cipro-Col-Lips to the lungs. Once deposited, the liposomes rapidly diffuse into the airway mucus, reaching the biofilm sites. The muco-inert Cipro-Col-Lips neutralize the biofilm-secreted toxins and simultaneously trigger the release of their therapeutic payload, exerting a synergistic antibiofilm effect. Our results demonstrated that the optimal USFD liposomal dry powder formulation exhibited satisfactory in vitro aerosol performance in terms of fine particle fraction (FPF) of 44.44 ± 0.78 %, mass median aerodynamic diameter (MMAD) of 4.27 ± 0.21 μm, and emitted dose (ED) of 99.31 ± 3.31 %. The muco-inert Cipro-Col-Lips effectively penetrate the airway mucus and accumulate at the biofilm site, neutralizing toxins and safeguarding lung cells. The triggered release of ciprofloxacin and colistin works synergistically to reduce the biofilm's antibiotic resistance, impede the development of antibiotic resistance, and eliminate 99.99 % of biofilm-embedded bacteria, including persister bacteria. Using a PA-beads induced biofilm-associated lung infection mouse model, the in vivo efficacy of this liposomal dry powder aerosol was tested, and the results demonstrated that this liposomal dry powder aerosol achieved a 99.7 % reduction in bacterial colonization, and significantly mitigated inflammation and pulmonary fibrosis. The USFD dry powder inhalation containing muco-inert Cipro-Col-Lips emerges as a promising therapeutic strategy for treating PA biofilm-associated lung infections.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, Guangdong, China
| | - Yutong Guo
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, Guangdong, China
| | - Xinyue Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfeng Zhang
- The Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo 315000, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Guihong Chai
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Mondal AH, Khare K, Saxena P, Debnath P, Mukhopadhyay K, Yadav D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024; 12:772. [PMID: 38674716 PMCID: PMC11051878 DOI: 10.3390/microorganisms12040772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.
Collapse
Affiliation(s)
- Aftab Hossain Mondal
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kriti Khare
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Prachika Saxena
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Parbati Debnath
- Department of Microbiology, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, Haryana, India; (A.H.M.); (P.D.)
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (K.K.); (P.S.); (K.M.)
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
18
|
El Haj C, Agustí E, Benavent E, Soldevila-Boixader L, Rigo-Bonnin R, Tubau F, Torrejón B, Esteban J, Murillo O. Comparative Efficacy of Continuous Ceftazidime Infusion vs. Intermittent Bolus against In Vitro Ceftazidime-Susceptible and -Resistant Pseudomonas aeruginosa Biofilm. Antibiotics (Basel) 2024; 13:344. [PMID: 38667020 PMCID: PMC11047404 DOI: 10.3390/antibiotics13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Background: As the anti-biofilm pharmacokinetic/pharmacodynamic (PK/PD) properties of antibiotics are not well-defined, we have evaluated the PK/PD indices for different regimens of ceftazidime (CAZ; with/without colistin) against Pseudomonas aeruginosa biofilm. Methods: We have used the Center for Disease Control and Prevention Biofilm Reactor with two susceptible (PAO1 and HUB-PAS) and one resistant (HUB-XDR) strains of P. aeruginosa. The regimens were CAZ monotherapies (mimicking a human dose of 2 g/8 h, CAZ-IB; 6 g/daily as continuous infusion at 50 mg/L, CAZ-CI50; and 9 g/daily at 70 mg/L, CAZ-CI70) and CAZ-colistin combinations. Efficacy was correlated with the CAZ PK/PD parameters. Results: CAZ-CI70 was the most effective monotherapy against CAZ-susceptible strains (Δlog CFU/mL 54-0 h = -4.15 ± 0.59 and -3.05 ± 0.5 for HUB-PAS and PAO1, respectively; p ≤ 0.007 vs. other monotherapies), and adding colistin improved the efficacy over CAZ monotherapy. CAZ monotherapies were ineffective against the HUB-XDR strain, and CAZ-CI50 plus colistin achieved higher efficacy than CAZ-IB with colistin. The PK/PD index that correlated best with anti-biofilm efficacy was fAUC0-24h/MIC (r2 = 0.78). Conclusions: CAZ exhibited dose-dependent anti-biofilm killing against P. aeruginosa, which was better explained by the fAUC0-24h/MIC index. CAZ-CI provided benefits compared to CAZ-IB, particularly when using higher doses and together with colistin. CAZ monotherapies were ineffective against the CAZ-resistant strain, independently of the optimized strategy and only CAZ-CI plus colistin appeared useful for clinical practice.
Collapse
Affiliation(s)
- Cristina El Haj
- Infectious Diseases Service, Laboratory of Experimental Infection, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain; (C.E.H.); (E.A.); (E.B.); (L.S.-B.)
| | - Eugènia Agustí
- Infectious Diseases Service, Laboratory of Experimental Infection, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain; (C.E.H.); (E.A.); (E.B.); (L.S.-B.)
| | - Eva Benavent
- Infectious Diseases Service, Laboratory of Experimental Infection, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain; (C.E.H.); (E.A.); (E.B.); (L.S.-B.)
| | - Laura Soldevila-Boixader
- Infectious Diseases Service, Laboratory of Experimental Infection, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain; (C.E.H.); (E.A.); (E.B.); (L.S.-B.)
| | - Raül Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain;
| | - Fe Tubau
- Department of Microbiology, Hospital Universitari de Bellvitge and CIBERES-Instituto de Salud Carlos III, 08907 Barcelona, Spain;
| | - Benjamín Torrejón
- Centres Científics i Tecnològics, Universitat de Barcelona, 08907 Barcelona, Spain;
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Murillo
- Infectious Diseases Service, Laboratory of Experimental Infection, Hospital Universitari de Bellvitge and Bellvitge Biomedical Research Institute, Universitat de Barcelona, 08907 Barcelona, Spain; (C.E.H.); (E.A.); (E.B.); (L.S.-B.)
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Obando MC, Serra DO. Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance. Curr Opin Microbiol 2024; 78:102450. [PMID: 38422558 DOI: 10.1016/j.mib.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Bacterial biofilms consist of large, self-formed aggregates where resident bacteria can exhibit very different physiological states and phenotypes. This heterogeneity of cell types is crucial for many structural and functional emergent properties of biofilms. Consequently, it becomes essential to understand what drives cells to differentiate and how they achieve it within the three-dimensional landscape of the biofilms. Here, we discuss recent advances in comprehending two forms of cell heterogeneity that, while recognized to coexist within biofilms, have proven challenging to distinguish. These two forms include cell heterogeneity arising as a consequence of bacteria physiologically responding to resource gradients formed across the biofilms and cell-to-cell phenotypic heterogeneity, which emerges locally within biofilm subzones among neighboring bacteria due to stochastic variations in gene expression. We describe the defining features and concepts related to both forms of cell heterogeneity and discuss their implications, with a particular focus on antibiotic tolerance.
Collapse
Affiliation(s)
- Mayra C Obando
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Diego O Serra
- Laboratorio de Estructura y Fisiología de Biofilms Microbianos, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina.
| |
Collapse
|
20
|
Ghosh D, Mangar P, Choudhury A, Kumar A, Saha A, Basu P, Saha D. Characterization of a hemolytic and antibiotic-resistant Pseudomonas aeruginosa strain S3 pathogenic to fish isolated from Mahananda River in India. PLoS One 2024; 19:e0300134. [PMID: 38547304 PMCID: PMC10977779 DOI: 10.1371/journal.pone.0300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Virulent strain Pseudomonas aeruginosa isolated from Mahananda River exhibited the highest hemolytic activity and virulence factors and was pathogenic to fish as clinical signs of hemorrhagic spots, loss of scales, and fin erosions were found. S3 was cytotoxic to the human liver cell line (WRL-68) in the trypan blue dye exclusion assay. Genotype characterization using whole genome analysis showed that S3 was similar to P. aeruginosa PAO1. The draft genome sequence had an estimated length of 62,69,783 bp, a GC content of 66.3%, and contained 5916 coding sequences. Eight genes across the genome were predicted to be related to hemolysin action. Antibiotic resistance genes such as class C and class D beta-lactamases, fosA, APH, and catB were detected, along with the strong presence of multiple efflux system genes. This study shows that river water is contaminated by pathogenic P. aeruginosa harboring an array of virulence and antibiotic resistance genes which warrants periodic monitoring to prevent disease outbreaks.
Collapse
Affiliation(s)
- Dipanwita Ghosh
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Preeti Mangar
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Abhinandan Choudhury
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, West Bengal, India
| | - Protip Basu
- Department of Botany, Siliguri College, West Bengal, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, India
| |
Collapse
|
21
|
Oladosu VI, Park S, Sauer K. Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0036523. [PMID: 38436566 PMCID: PMC10955856 DOI: 10.1128/jb.00365-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen causing chronic infections that are associated with the sessile/biofilm mode of growth rather than the free-living/planktonic mode of growth. The transcriptional regulator FleQ contributes to both modes of growth by functioning both as an activator and repressor and inversely regulating flagella genes associated with the planktonic mode of growth and genes contributing to the biofilm mode of growth. Here, we review findings that enhance our understanding of the molecular mechanism by which FleQ enables the transition between the two modes of growth. We also explore recent advances in the mechanism of action of FleQ to both activate and repress gene expression from a single promoter. Emphasis will be on the role of sigma factors, cyclic di-GMP, and the transcriptional regulator AmrZ in inversely regulating flagella and biofilm-associated genes and converting FleQ from a repressor to an activator.
Collapse
Affiliation(s)
- Victoria I. Oladosu
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | - Soyoung Park
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
22
|
Le Guern F, Ouk TS, Arnoux P, Frochot C, Sol V. Easy and versatile cellulosic support inhibiting broad spectrum strains: synergy between photodynamic antimicrobial therapy and polymyxin B. Photochem Photobiol Sci 2024; 23:395-407. [PMID: 38300464 DOI: 10.1007/s43630-023-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Despite advances achieved in the health field over the last decade, infections caused by resistant bacterial strains are an increasingly important societal issue that needs to be addressed. New approaches have already been developed to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide a promising alternative method to eradicate microbes. This approach has already inspired the development of innovative surfaces. Interesting results were achieved against Gram-positive bacteria, but it also appeared that Gram-negative strains, especially Pseudomonas aeruginosa, were less sensitive to PACT. However, materials coated with cationic porphyrins have already proven their wide-spectrum activity, but these materials were not suitable for industrial-scale production. The main aim of this work was the design of a large-scale evolutionary material based on PACT and antibiotic prophylaxis. Transparent regenerated cellulose has been simply impregnated with a usual cationic porphyrin (N-methylpyridyl) and an antimicrobial peptide (polymyxin B). In addition to its photophysical properties, this film exhibited a wide-spectrum bactericidal activity over 4 days despite daily application of fresh bacterial inoculums. The efficiency of PACT and polymyxin B combination could help to reduce the emergence of bacterial multi-resistant strains and we believe that this kind of material would provide an excellent opportunity to prevent bacterial contamination of bandages or packaging.
Collapse
Affiliation(s)
- Florent Le Guern
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | | | - Phillipe Arnoux
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS LRGP UMR 7274, 54000, Nancy, France
| | - Vincent Sol
- Univ Limoges, LABCiS, UR22722, 87000, Limoges, France.
| |
Collapse
|
23
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
24
|
Tan X, Huang Y, Rana A, Singh N, Abbey TC, Chen H, Toth PT, Bulman ZP. Optimization of an in vitro Pseudomonas aeruginosa Biofilm Model to Examine Antibiotic Pharmacodynamics at the Air-Liquid Interface. NPJ Biofilms Microbiomes 2024; 10:16. [PMID: 38429317 PMCID: PMC10907394 DOI: 10.1038/s41522-024-00483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Pseudomonas aeruginosa is an important cause of lower respiratory tract infections, such as ventilator-associated bacterial pneumonia (VABP). Using inhaled antibiotics to treat VABP can achieve high drug concentrations at the infection site while minimizing systemic toxicities. Despite the theoretical advantages, clinical trials have failed to show a benefit for inhaled antibiotic therapy in treating VABP. A potential reason for this discordance is the presence of biofilm-embedded bacteria in lower respiratory tract infections. Drug selection and dosing are often based on data from bacteria grown planktonically. In the present study, an in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model was optimized to evaluate the activity of simulated epithelial lining fluid exposures of inhaled and intravenous doses of polymyxin B and tobramycin against two P. aeruginosa strains. Antibiotic activity was also determined against the P. aeruginosa strains grown planktonically. Our study revealed that inhaled antibiotic exposures were more active than their intravenous counterparts across biofilm and planktonic populations. Inhaled exposures of polymyxin B and tobramycin exhibited comparable activity against planktonic P. aeruginosa. Although inhaled polymyxin B exposures were initially more active against P. aeruginosa biofilms (through 6 h), tobramycin was more active by the end of the experiment (48 h). Together, these data slightly favor the use of inhaled tobramycin for VABP caused by biofilm-forming P. aeruginosa that are not resistant to either antibiotic. The optimized in vitro air-liquid interface pharmacokinetic/pharmacodynamic biofilm model may be beneficial for the development of novel anti-biofilm agents or to optimize antibiotic dosing for infections such as VABP.
Collapse
Affiliation(s)
- Xing Tan
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Amisha Rana
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Taylor C Abbey
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA
| | - Hui Chen
- Mass Spectrometry Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Peter T Toth
- Fluorescence Imaging Core, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
25
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
26
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
27
|
Guliy OI, Evstigneeva SS, Shirokov AA, Bunin VD. Sensor system for analysis of biofilm sensitivity to ampicillin. Appl Microbiol Biotechnol 2024; 108:172. [PMID: 38265501 PMCID: PMC10808281 DOI: 10.1007/s00253-023-12831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
The resistance of biofilms to antibiotics is a key factor that makes bacterial infections unsusceptible to antimicrobial therapy. The results of classical tests of cell sensitivity to antibiotics cannot be used to predict therapeutic success in infections associated with biofilm formation. We describe a simple and rapid method for the real-time evaluation of bacterial biofilm sensitivity to antibiotics, with Pseudomonas putida and ampicillin as examples. The method uses an electric biosensor to detect the difference between changes in the biofilm electric polarizability, thereby evaluating antibiotic sensitivity. The electric signals showed that P. putida biofilms were susceptible to ampicillin and that at high antibiotic concentrations, the biofilms differed markedly in their susceptibility (dose-dependent effect). The sensor also detected differences between biofilms before and after ampicillin treatment. The electric-signal changes enabled us to describe the physical picture of the processes occurring in bacterial biofilms in the presence of ampicillin. The approach used in this study is promising for evaluating the activity of various compounds against biofilms, because it permits a conclusion about the antibiotic sensitivity of biofilm bacteria to be made in real time and in a short period (analysis time, not longer than 20 min). An added strong point is that analysis can be done directly in liquid, without preliminary sample preparation. KEY POINTS: • Sensor system to analyze biofilm antimicrobial susceptibility is described. • The signal change depended on the ampicillin concentration (dose-dependent effect). • The sensor allows real-time determination of the antibiofilm effect of ampicillin.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia.
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| | - Alexander A Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov, 410049, Russia
| | | |
Collapse
|
28
|
Tunç MN, Guéneau V, Loux V, Del Campo R, Carballido Lopez R, Briandet R. Genome sequences of four colistin-resistant ESKAPE bacterial strains isolated from patients within the same hospital. Microbiol Resour Announc 2024; 13:e0087423. [PMID: 38112476 DOI: 10.1128/mra.00874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023] Open
Abstract
The genomes of four clinical Gram-negative ESKAPE bacterial strains highly resistant to the last-resort antibiotic colistin were sequenced and analyzed. The strains were found to carry multidrug-resistant genes besides colistin-resistant genes.
Collapse
Affiliation(s)
- Merve Nur Tunç
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute , Jouy-en-Josas, France
| | - Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute , Jouy-en-Josas, France
- Lallemand SAS , Blagnac, France
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE , Jouy-en-Josas, France
- INRAE, BioinfOmics, MIGALE bioinformatics facility, Université Paris-Saclay , Jouy-en-Josas, France
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria , Madrid, Spain
| | - Rut Carballido Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute , Jouy-en-Josas, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute , Jouy-en-Josas, France
| |
Collapse
|
29
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
30
|
Guo Q, Cheng Y, Fan Z, Wu W, Wu Z, Zhang X. Zwitterion‐conjugated Topological Glycomimics for Dual‐Blocking Effects to Eradicate Biofilm Infection. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 01/06/2025]
Abstract
AbstractP. aeruginosa, a leading nosocomial pathogen, commonly causes chronic biofilm infections in tissues and biomedical devices, including wound infections, osteomyelitis, and infective endocarditis, heavily threatening life. The dynamic lifecycle of these biofilms leads to persistent generation, making it challenging to prevent and disperse these biofilms effectively. Herein, a topological eight‐arm zwitterion‐conjugated glycomimetics (PCBAA‐b‐PLAMA)8 to address this challenge by exerting a dual‐blocking effect on P. aeruginosa biofilms is introduced. Initially, carboxybetaine acrylate (CBAA) and 2‐lactobionamidoethyl methacrylate (LAMA) are introduced to the topological bromine‐based initiator to prepare (PCBAA‐b‐PLAMA)8. This copolymer demonstrats remarkable efficiency in dispersing P. aeruginosa biofilms, approximately up to 99%. This high efficacy can be attributed to the multivalent and triaxial interactions between LAMA and CBAA groups, which enable the capture of P. aeruginosa cells and the biofilm matrix. Furthermore, (PCBAA‐b‐PLAMA)8 efficiently inhibit the expression of resistance genes related to biofilm formation and antibiotic efflux, including cdrA, lasB, mexE, and mexH, regaining bacterial cell sensitivity to antibiotics and further facilitating the natural dispersal of biofilms. This study provides a generic dual‐blocking strategy for the efficient eliminating of biofilms from biomedical devices.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
- The State Key Laboratory of Functions and Applications of Medicinal Plants School of Pharmaceutical Sciences Guizhou Medical University University Town Guian New District Guizhou 550025 China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education Department of Microbiology College of Life Sciences Nankai University Tianjin 300071 China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education Department of Microbiology College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhongming Wu
- Department of Endocrinology Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan Shandong 250021 China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
31
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Rivera M. Mobilization of iron stored in bacterioferritin, a new target for perturbing iron homeostasis and developing antibacterial and antibiofilm molecules. J Inorg Biochem 2023; 247:112306. [PMID: 37451083 PMCID: PMC11642381 DOI: 10.1016/j.jinorgbio.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Antibiotic resistance is a global public health threat. The care of chronic infections is complicated by bacterial biofilms. Biofilm embedded cells can be up to 1000-fold more tolerant to antibiotic treatment than planktonic cells. Antibiotic tolerance is a condition which does not involve mutation and enables bacteria to survive in the presence of antibiotics. The antibiotic tolerance of biofilm-cells often renders antibiotics ineffective, even against strains that do not carry resistance-impairing mutations. This review discusses bacterial iron homeostasis and the strategies being developed to target this bacterial vulnerability, with emphasis on a recently proposed approach which aims at targeting the iron storage protein bacterioferritin (Bfr) and its physiological partner, the ferredoxin Bfd. Bfr regulates cytosolic iron concentrations by oxidizing Fe2+ and storing Fe3+ in its internal cavity, and by forming a complex with Bfd to reduce Fe3+ in the internal cavity and release Fe2+ to the cytosol. Blocking the Bfr-Bfd complex in P. aeruginosa cells causes an irreversible accumulation of Fe3+ in BfrB and simultaneous cytosolic iron depletion, which leads to impaired biofilm maintenance and biofilm cell death. Recently discovered small molecule inhibitors of the Bfr-Bfd complex, which bind Bfr at the Bfd binding site, inhibit iron mobilization, and elicit biofilm cell death.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA.
| |
Collapse
|
33
|
Cafaro V, Bosso A, Di Nardo I, D’Amato A, Izzo I, De Riccardis F, Siepi M, Culurciello R, D’Urzo N, Chiarot E, Torre A, Pizzo E, Merola M, Notomista E. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals (Basel) 2023; 16:1386. [PMID: 37895857 PMCID: PMC10610514 DOI: 10.3390/ph16101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.
Collapse
Affiliation(s)
- Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Nunzia D’Urzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | | | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| |
Collapse
|
34
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
35
|
Lichtenberg M, Coenye T, Parsek MR, Bjarnsholt T, Jakobsen TH. What's in a name? Characteristics of clinical biofilms. FEMS Microbiol Rev 2023; 47:fuad050. [PMID: 37656883 PMCID: PMC10503651 DOI: 10.1093/femsre/fuad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Matthew R Parsek
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., WA 98195 Seattle, United States
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2100 Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
36
|
Neidig A, Strempel N, Waeber NB, Nizer WSDC, Overhage J. Knock-out of multidrug efflux pump MexXY-OprM results in increased susceptibility to antimicrobial peptides in Pseudomonas aeruginosa. Microbiol Immunol 2023; 67:422-427. [PMID: 37424105 DOI: 10.1111/1348-0421.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Multidrug efflux systems of the resistance-nodulation-cell division family play a crucial role in resistance of Pseudomonas aeruginosa to a large variety of antibiotics. Here, we investigated the role of clinically relevant efflux pumps MexAB- OprM, MexCD- OprJ, and MexXY- OprM in resistance against different cationic antimicrobial peptides (AMPs). Our results indicate that a knock-out in efflux pump MexXY-OprM increased susceptibility to some AMPs by two- to eightfold. Our data suggest a contribution of MexXY-OprM in resistance to certain AMPs in P. aeruginosa, which should be considered in the future development of new and highly active antimicrobial peptides to fight multidrug resistant infections.
Collapse
Affiliation(s)
- Anke Neidig
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nikola Strempel
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nadine Bianca Waeber
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Kragh KN, Tolker-Nielsen T, Lichtenberg M. The non-attached biofilm aggregate. Commun Biol 2023; 6:898. [PMID: 37658117 PMCID: PMC10474055 DOI: 10.1038/s42003-023-05281-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Biofilms have conventionally been perceived as dense bacterial masses on surfaces, following the five-step model of development. Initial biofilm research focused on surface-attached formations, but detached aggregates have received increasing attention in the past decade due to their pivotal role in chronic infections. Understanding their nature sparked fervent discussions in biofilm conferences and scientific literature. This review consolidates current insights on non-attached aggregates, offering examples of their occurrence in nature and diseases. We discuss their formation and dispersion mechanisms, resilience to antibiotics and immune-responses, drawing parallels to surface-attached biofilms. Moreover, we outline available in vitro models for studying non-attached aggregates.
Collapse
Affiliation(s)
- Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LE. Cell arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545666. [PMID: 37645902 PMCID: PMC10462148 DOI: 10.1101/2023.06.20.545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | | | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
39
|
Stewart PS, Owkes M. Simulation of catalase-dependent tolerance of microbial biofilm to hydrogen peroxide with a biofilm computer model. NPJ Biofilms Microbiomes 2023; 9:60. [PMID: 37612330 PMCID: PMC10447567 DOI: 10.1038/s41522-023-00426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Hydrogen peroxide (HP) is a common disinfectant and antiseptic. When applied to a biofilm, it may be expected that the top layer of the biofilm would be killed by HP, the HP would penetrate further, and eventually eradicate the entire biofilm. However, using the Biofilm.jl computer model, we demonstrate a mechanism by which the biofilm can persist, and even become thicker, in the indefinite treatment with an HP solution at concentrations that are lethal to planktonic microorganisms. This surprising result is found to be dependent on the neutralization of HP by dead biomass, which provides protection for living biomass deeper within the biofilm. Practically, to control a biofilm, this result leads to the concept of treating with an HP dose exceeding a critical threshold concentration rather than a sustained, lower-concentration treatment.
Collapse
Affiliation(s)
- Philip S Stewart
- Chemical & Biological Engineering, Montana State University, Bozeman, 59717, MT, USA.
| | - Mark Owkes
- Mechanical & Industrial Engineering, Montana State University, Bozeman, 59717, MT, USA.
| |
Collapse
|
40
|
Kauser A, Parisini E, Suarato G, Castagna R. Light-Based Anti-Biofilm and Antibacterial Strategies. Pharmaceutics 2023; 15:2106. [PMID: 37631320 PMCID: PMC10457815 DOI: 10.3390/pharmaceutics15082106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilm formation and antimicrobial resistance pose significant challenges not only in clinical settings (i.e., implant-associated infections, endocarditis, and urinary tract infections) but also in industrial settings and in the environment, where the spreading of antibiotic-resistant bacteria is on the rise. Indeed, developing effective strategies to prevent biofilm formation and treat infections will be one of the major global challenges in the next few years. As traditional pharmacological treatments are becoming inadequate to curb this problem, a constant commitment to the exploration of novel therapeutic strategies is necessary. Light-triggered therapies have emerged as promising alternatives to traditional approaches due to their non-invasive nature, precise spatial and temporal control, and potential multifunctional properties. Here, we provide a comprehensive overview of the different biofilm formation stages and the molecular mechanism of biofilm disruption, with a major focus on the quorum sensing machinery. Moreover, we highlight the principal guidelines for the development of light-responsive materials and photosensitive compounds. The synergistic effects of combining light-triggered therapies with conventional treatments are also discussed. Through elegant molecular and material design solutions, remarkable results have been achieved in the fight against biofilm formation and antibacterial resistance. However, further research and development in this field are essential to optimize therapeutic strategies and translate them into clinical and industrial applications, ultimately addressing the global challenges posed by biofilm and antimicrobial resistance.
Collapse
Affiliation(s)
- Ambreen Kauser
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
| | - Emilio Parisini
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giulia Suarato
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, CNR-IEIIT, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rossella Castagna
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; (A.K.); (E.P.)
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
41
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
42
|
Li P, Yin R, Cheng J, Lin J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int J Mol Sci 2023; 24:11680. [PMID: 37511440 PMCID: PMC10380251 DOI: 10.3390/ijms241411680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial biofilms can cause widespread infection. In addition to causing urinary tract infections and pulmonary infections in patients with cystic fibrosis, biofilms can help microorganisms adhere to the surfaces of various medical devices, causing biofilm-associated infections on the surfaces of biomaterials such as venous ducts, joint prostheses, mechanical heart valves, and catheters. Biofilms provide a protective barrier for bacteria and provide resistance to antimicrobial agents, which increases the morbidity and mortality of patients. This review summarizes biofilm formation processes and resistance mechanisms, as well as the main features of clinically persistent infections caused by biofilms. Considering the various infections caused by clinical medical devices, we introduce two main methods to prevent and treat biomaterial-related biofilm infection: antibacterial coatings and the surface modification of biomaterials. Antibacterial coatings depend on the covalent immobilization of antimicrobial agents on the coating surface and drug release to prevent and combat infection, while the surface modification of biomaterials affects the adhesion behavior of cells on the surfaces of implants and the subsequent biofilm formation process by altering the physical and chemical properties of the implant material surface. The advantages of each strategy in terms of their antibacterial effect, biocompatibility, limitations, and application prospects are analyzed, providing ideas and research directions for the development of novel biofilm infection strategies related to therapeutic materials.
Collapse
Affiliation(s)
| | | | | | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China; (P.L.); (R.Y.); (J.C.)
| |
Collapse
|
43
|
Mangiaterra G, Cedraro N, Vaiasicca S, Citterio B, Frangipani E, Biavasco F, Vignaroli C. Involvement of Acquired Tobramycin Resistance in the Shift to the Viable but Non-Culturable State in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11618. [PMID: 37511375 PMCID: PMC10380639 DOI: 10.3390/ijms241411618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Persistent and viable but non-culturable (VBNC) Pseudomonas aeruginosa cells are mainly responsible for the recurrence and non-responsiveness to antibiotics of cystic fibrosis (CF) lung infections. The sub-inhibitory antibiotic concentrations found in the CF lung in between successive therapeutic cycles can trigger the entry into the VBNC state, albeit with a strain-specific pattern. Here, we analyzed the VBNC cell induction in the biofilms of two CF P. aeruginosa isolates, exposed to starvation with/without antibiotics, and investigated the putative genetic determinants involved. Total viable bacterial cells were quantified by the validated ecfX-targeting qPCR protocol and the VBNC cells were estimated as the difference between qPCR and cultural counts. The isolates were both subjected to whole genome sequencing, with attention focused on their carriage of aminoglycoside resistance genes and on identifying mutated toxin-antitoxin and quorum sensing systems. The obtained results suggest the variable contribution of different antibiotic resistance mechanisms to VBNC cell abundance, identifying a major contribution from tobramycin efflux, mediated by MexXY efflux pump overexpression. The genome analysis evidenced putative mutation hotspots, which deserve further investigation. Therefore, drug efflux could represent a crucial mechanism through which the VBNC state is entered and a potential target for anti-persistence strategies.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Salvatore Vaiasicca
- Department of Molecular and Clinical Sciences, Polytechnic University of Marche, Via Tronto 10/a, 60020 Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via S. Chiara 27, 61029 Urbino, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
44
|
Armengol E, Kragh KN, Tolker-Nielsen T, Sierra JM, Higazy D, Ciofu O, Viñas M, Høiby N. Colistin Enhances Rifampicin's Antimicrobial Action in Colistin-Resistant Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2023; 67:e0164122. [PMID: 36856424 PMCID: PMC10112245 DOI: 10.1128/aac.01641-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa infections has urged the need to find new strategies, such as the use of combinations of antibiotics. Among these, the combination of colistin with other antibiotics has been studied. Here, the action of combinations of colistin and rifampicin on both planktonic and sessile cells of colistin-resistant P. aeruginosa was studied. Dynamic biofilms were formed and treated with such a combination, resulting in an active killing effect of both colistin-resistant and colistin-susceptible P. aeruginosa in biofilms. The results suggest that the action of colistin on the outer membrane facilitates rifampicin penetration, regardless of the colistin-resistant phenotype. Based on these in vitro data, we propose a colistin-rifampicin combination as a promising treatment for infections caused by colistin-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Eva Armengol
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Josep M. Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Doaa Higazy
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
45
|
Young E, Melaugh G, Allen RJ. Active layer dynamics drives a transition to biofilm fingering. NPJ Biofilms Microbiomes 2023; 9:17. [PMID: 37024470 PMCID: PMC10079924 DOI: 10.1038/s41522-023-00380-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
The emergence of spatial organisation in biofilm growth is one of the most fundamental topics in biofilm biophysics and microbiology. It has long been known that growing biofilms can adopt smooth or rough interface morphologies, depending on the balance between nutrient supply and microbial growth; this 'fingering' transition has been linked with the average width of the 'active layer' of growing cells at the biofilm interface. Here we use long-time individual-based simulations of growing biofilms to investigate in detail the driving factors behind the biofilm-fingering transition. We show that the transition is associated with dynamical changes in the active layer. Fingering happens when gaps form in the active layer, which can cause local parts of the biofilm interface to pin, or become stationary relative to the moving front. Pinning can be transient or permanent, leading to different biofilm morphologies. By constructing a phase diagram for the transition, we show that the controlling factor is the magnitude of the relative fluctuations in the active layer thickness, rather than the active layer thickness per se. Taken together, our work suggests a central role for active layer dynamics in controlling the pinning of the biofilm interface and hence biofilm morphology.
Collapse
Affiliation(s)
- Ellen Young
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Gavin Melaugh
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom.
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Buchaer Strasse 6, 07745, Jena, Germany.
| |
Collapse
|
46
|
Dong S, Mei F, Li JJ, Xing D. Global Cluster Analysis and Network Visualization in Prosthetic Joint Infection: A Scientometric Mapping. Orthop Surg 2023; 15:1165-1178. [PMID: 36855945 PMCID: PMC10102317 DOI: 10.1111/os.13681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Prosthetic joint infection (PJI) is the main reason of failure of total joint arthroplasty (TJA). This study aimed to investigate the global trends and network visualization in research of PJI. METHODS Publications in PJI search during 1980-2022 were extracted from the Science Citation Index-Expanded of Web of Science Core Collection database (WoSCC). The source data was investigated and analyzed by bibliometric methodology. For network visualization, VOS viewer and R software was used to perform bibliographic coupling, co-citation, co-authorship and co-occurrence analysis and to predict the publication trends in PJI research. RESULTS There were 7288 articles included. The number of publications and relative research interests increased gradually per year globally. The USA made the highest contributions in the world and with the highest H-index and the most citations. Journal of Arthroplasty published the highest number of articles in this area. The Mayo Clinic, Thomas Jefferson University (Rothman Institute), Hospital Special Surgery and the Rush University were the most contributive institutions by network visualization. Included studies were divided into four clusters: bacterial pathogenic mechanism and antibacterial drugs study, TJA complications, risk factors and epidemiology of PJI, diagnosis of PJI, and revision surgical management. More articles in PJI could be published over the next few years. CONCLUSION The number of publications about PJI will be increasing dramatically based on the global trends and network visualization. The USA made the highest contributions in PJI. Diagnosis and revision management may be the next hot spots in this field.
Collapse
Affiliation(s)
| | - Fengyao Mei
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jiao jiao Li
- School of Biomedical EngineeringFaculty of Engineering and IT, University of Technology SydneyUltimoAustralia
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
47
|
Ali S, Karaynir A, Salih H, Öncü S, Bozdoğan B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from university hospital sewage. Virus Res 2023; 326:199049. [PMID: 36717023 DOI: 10.1016/j.virusres.2023.199049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The crystalline formation of biofilms by Proteus blocks the urine flow which often complicates the health care of catheterized patients. Bacteriophages has been highlighted as a promising tool to control biofilm-mediated bacterial infections. Here, we isolated and characterized two newly isolated lytic phages capable of infecting clinical isolates of P. mirabilis and P. vulgaris. Moreover, insights regarding the biological and molecular characterization were analysed. Both RP6 and RP7 phages showed a Proteus-genus-specific profile, administering no lytic activity against other family of Enterobacteriaceae. The optimal MOI value of the RP6 and RP7 phages were determined as 0.1 and 0.01, respectively. The one-step growth curve showed that RP6 and RP7 phages have a short latent period of 20 min and large burst size of 220-371 PFU/ML per infected host cell. Bacteria growth was reduced immediately after the phages were added, which is shown by the optical density (OD) measurement after 24 hr. Proteus phage RP6 and RP7 were found to eradicate both the planktonic and mature biofilms produced by the Proteus isolates tested. Genome sequence of Proteus phage RP6 was found to be 58,619 bp, and a G-C content of 47%. Also, Proteus phage RP7 genome size was 103,593 bp with G-C ratio of 38.45%. A total of 70 and 172 open reading frame (ORF) was encoded in RP6 and RP7 phage genomes, respectively. Interestingly, there were no tRNA encoded by Proteus phage RP6 genome even though there is a significant G-C content difference between the phage and its host. Additionally, the exhibition of highly lytic activity and absence of virulence and antibiotic-resistant genes in both Proteus RP6 and RP7 phages emphasized that this newly isolated phages are promising for potential therapeutic phages.
Collapse
Affiliation(s)
- Sahd Ali
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye.
| | - Abdulkerim Karaynir
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Hanife Salih
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye
| | - Serkan Öncü
- Medical Faculty, Department of Infectious Diseases and Clinical Microbiology, Aydin Adnan Menderes University, Turkiye
| | - Bülent Bozdoğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Turkiye; Medical Faculty, Department of Medical Microbiology, Aydın Adnan Menderes University, Turkiye
| |
Collapse
|
48
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
49
|
Tetz G, Tetz V. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms 2022; 10:2383. [PMID: 36557636 PMCID: PMC9781420 DOI: 10.3390/microorganisms10122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY 100141, USA
| | | |
Collapse
|
50
|
Chiu S, Hancock AM, Schofner BW, Sniezek KJ, Soto-Echevarria N, Leon G, Sivaloganathan DM, Wan X, Brynildsen MP. Causes of polymyxin treatment failure and new derivatives to fill the gap. J Antibiot (Tokyo) 2022; 75:593-609. [PMID: 36123537 DOI: 10.1038/s41429-022-00561-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
Polymyxins are a class of antibiotics that were discovered in 1947 from programs searching for compounds effective in the treatment of Gram-negative infections. Produced by the Gram-positive bacterium Paenibacillus polymyxa and composed of a cyclic peptide chain with a peptide-fatty acyl tail, polymyxins exert bactericidal effects through membrane disruption. Currently, polymyxin B and colistin (polymyxin E) have been developed for clinical use, where they are reserved as "last-line" therapies for multidrug-resistant (MDR) infections. Unfortunately, the incidences of strains resistant to polymyxins have been increasing globally, and polymyxin heteroresistance has been gaining appreciation as an important clinical challenge. These phenomena, along with bacterial tolerance to this antibiotic class, constitute important contributors to polymyxin treatment failure. Here, we review polymyxins and their mechanism of action, summarize the current understanding of how polymyxin treatment fails, and discuss how the next generation of polymyxins holds promise to invigorate this antibiotic class.
Collapse
Affiliation(s)
- Selena Chiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Anna M Hancock
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Bob W Schofner
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Xuanqing Wan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|