1
|
Wang G, Wang M, Pang J, Sun Q, Fan T, Li Z, You X. Effect of daphnetin, the coumarin derivative isolated from Daphne genus, on Helicobacter pylori adhesion to gastric epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 137:156357. [PMID: 39799894 DOI: 10.1016/j.phymed.2024.156357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Adherence of Helicobacter pylori to the surface of the gastric mucosa is the initial and crucial step for its survival and colonization in the harsh conditions of the stomach. We had previously demonstrated that daphnetin has anti-adhesion effect. PURPOSE This study aims to explore the mechanisms of daphnetin to reduce H. pylori adhesion to gastric epithelial cells (GES-1). METHODS Fluorescence microscopy and urease assay were used to observe and validate the anti-adhesion effect of daphnetin. Terminal deoxynucleotidyl transferase dUTP nick end labeling, comet assay and agarose gel-based assay were conducted to evaluate the level of DNA damage. Quantitative real-time polymerase chain reaction, western blotting, electrophoretic mobility shifts assay and enzyme-linked immunosorbent assay were performed to investigate the mechanisms of the anti-adhesion effect of daphnetin. RESULTS Our results showed that daphnetin decreased H. pylori adhesion to GES-1 in time- and dose-dependent manners. The mechanisms by which daphnetin inhibits H. pylori adhesion involved the inducing of DNA double-strand breaks, the up-regulating of recA transcription leading to RecA binding at 1018-1597 site in the babA promoter, the decreasing of babA/babB transcription ratio, the decreasing of BabA expression and its interaction with Lewis b antigen. CONCLUSION Our results suggested that daphnetin significantly inhibits H. pylori adhesion to GES-1 through the RecA-BabA pathway. To our knowledge, this is the first report on the mechanisms of daphnetin affecting H. pylori adhesion to GES-1.
Collapse
Affiliation(s)
- Genzhu Wang
- Department of Clinical Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing 100073, China
| | - Mengjie Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Qiang Sun
- Department of Clinical Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing 100073, China
| | - Tianyun Fan
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China; Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, Guangdong 523000, China.
| | - Zhongdong Li
- Department of Clinical Pharmacy, Beijing Electric Power Hospital of State Grid Co. of China, Capital Medical University Electric Teaching Hospital, Beijing 100073, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China.
| |
Collapse
|
2
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Amundsen SK, Smith GR. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease. Microbiol Mol Biol Rev 2023; 87:e0004123. [PMID: 38047637 PMCID: PMC10732027 DOI: 10.1128/mmbr.00041-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.
Collapse
Affiliation(s)
| | - Gerald R. Smith
- Fred Hutchinson Cancer Center Seattle, Seattle, Washington, USA
| |
Collapse
|
4
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P, Gu Q. Reactive oxygen species and gastric carcinogenesis: The complex interaction between Helicobacter pylori and host. Helicobacter 2023; 28:e13024. [PMID: 37798959 DOI: 10.1111/hel.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Wilkinson M, Wilkinson OJ, Feyerherm C, Fletcher EE, Wigley DB, Dillingham MS. Structures of RecBCD in complex with phage-encoded inhibitor proteins reveal distinctive strategies for evasion of a bacterial immunity hub. eLife 2022; 11:e83409. [PMID: 36533901 PMCID: PMC9836394 DOI: 10.7554/elife.83409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Following infection of bacterial cells, bacteriophage modulate double-stranded DNA break repair pathways to protect themselves from host immunity systems and prioritise their own recombinases. Here, we present biochemical and structural analysis of two phage proteins, gp5.9 and Abc2, which target the DNA break resection complex RecBCD. These exemplify two contrasting mechanisms for control of DNA break repair in which the RecBCD complex is either inhibited or co-opted for the benefit of the invading phage. Gp5.9 completely inhibits RecBCD by preventing it from binding to DNA. The RecBCD-gp5.9 structure shows that gp5.9 acts by substrate mimicry, binding predominantly to the RecB arm domain and competing sterically for the DNA binding site. Gp5.9 adopts a parallel coiled-coil architecture that is unprecedented for a natural DNA mimic protein. In contrast, binding of Abc2 does not substantially affect the biochemical activities of isolated RecBCD. The RecBCD-Abc2 structure shows that Abc2 binds to the Chi-recognition domains of the RecC subunit in a position that might enable it to mediate the loading of phage recombinases onto its single-stranded DNA products.
Collapse
Affiliation(s)
- Martin Wilkinson
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Oliver J Wilkinson
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Connie Feyerherm
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Emma E Fletcher
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Dale B Wigley
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Mark S Dillingham
- DNA:protein Interactions Unit, School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
6
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
7
|
The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation. mBio 2022; 13:e0181122. [PMID: 35876509 PMCID: PMC9426483 DOI: 10.1128/mbio.01811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial carcinogenic pathogen that infects the stomachs of half of the human population. It is a natural mutator due to a deficient DNA mismatch repair pathway and is naturally competent for transformation. As a result, it is one of the most genetically diverse human bacterial pathogens. The length of chromosomal imports in H. pylori follows an unusual bimodal distribution consisting of macroimports with a mean length of 1,645 bp and microimports with a mean length of 28 bp. The mechanisms responsible for this import pattern were unknown. Here, we used a high-throughput whole-genome transformation assay to elucidate the role of nucleotide excision repair pathway (NER) components on import length distribution. The data show that the integration of microimports depended on the activity of the UvrC endonuclease, while none of the other components of the NER pathway was required. Using H. pylori site-directed mutants, we showed that the widely conserved UvrC nuclease active sites, while essential for protection from UV light, one of the canonical NER functions, are not required for generation of microimports. A quantitative analysis of recombination patterns based on over 1,000 imports from over 200 sequenced recombinant genomes showed that microimports occur frequently within clusters of multiple imports, strongly suggesting they derive from a single strand invasion event. We propose a hypothetical model of homologous recombination in H. pylori, involving a novel function of UvrC, that reconciles the available experimental data about recombination patterns in H. pylori. IMPORTANCE Helicobacter pylori is one of the most common and genetically diverse human bacterial pathogens. It is responsible for chronic gastritis and represents the main risk factor for gastric cancer. In H. pylori, DNA fragments can be imported by recombination during natural transformation. The length of those fragments determines how many potentially beneficial or deleterious alleles are acquired and thus influences adaptation to the gastric niche. Here, we used a transformation assay to examine imported fragments across the chromosome. We show that UvrC, an endonuclease involved in DNA repair, is responsible for the specific integration of short DNA fragments. This suggests that short and long fragments are imported through distinct recombination pathways. We also show that short fragments are frequently clustered with longer fragments, suggesting that both pathways may be mechanistically linked. These findings provide a novel basis to explain how H. pylori can fine-tune the genetic diversity acquired by transformation.
Collapse
|
8
|
Peng C, Sang S, Shen X, Zhang W, Yan J, Chen P, Jiang C, Yuan Y, Zhu W, Yao M. In vitro anti-Helicobacter pylori activity of Syzygium aromaticum and the preliminary mechanism of action. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114995. [PMID: 35032584 DOI: 10.1016/j.jep.2022.114995] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried flower bud of Syzygium aromaticum (L.) Merr. & L.M Perry (S. aromaticum) (Myrtaceae), also known as clove, was used in Traditional Chinese Medicine (TCM) to aid gastrointestinal function and treat stomach disorders including vomiting, flatulence and nausea. And it is a food homology medicine which is a promising candidate for H. pylori treatment. H. pylori is a Gram-negative bacterium that infects approximately 50% of the human population worldwide, which is closely related to multiple gastric diseases, including gastric cancer. However, there are still no sufficient studies on the anti-H. pylori activity of S. aromaticum, especially for the mechanism of action. AIM OF STUDY This study aimed to study the antibacterial activities of S. aromaticum extracts on both antibiotic-sensitive and -resistant H. pylori strains, and to explore the underlying mechanisms of action. MATERIALS AND METHODS The S. aromaticum extracts were obtained by heat reflux extraction and lyophilized to powder form. The phytochemical analyses were performed by High-performance liquid chromatography (HPLC) and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti-H. pylori activity was evaluated by broth microdilution method. Mechanism of action studies included morphological observation using electron microscopy, determination of expression of virulence genes by reverse transcription quantitative polymerase chain reaction (RT-qPCR), genes expression profile identification by transcriptomic analysis, and exploration of anti-H. pylori infection mechanisms by network pharmacology analysis and western blotting validation. RESULTS The S. aromaticum extracts, aqueous extract (AE) and 75% hydroalcoholic extract (HE), exerted significant antibacterial activities against both antibiotic-sensitive and -resistant H. pylori strains with MICs of 160∼320 μg/ml, without developing drug resistance. Among them, AE was bactericide to all the tested strains with MBCs of less than 4MIC, while HE was merely bacteriostatic to most of the tested strains with MBCs of 2MIC∼16MIC. Besides, they showed no antagonistic effects in combination with clarithromycin, metronidazole, levofloxacin, and amoxicillin. Additionally, these extracts altered the morphology and ultrastructure and down-regulated the virulence genes expression of H. pylori. And transcriptomic analysis showed that they regulated genes expression of multiple H. pylori biological processes, including tricarboxylic acid cycle (TAC) and pyruvate metabolic pathways. Furthermore, these extracts combated the abnormal activation of PI3K-Akt and MAPK signaling pathways caused by H. pylori infection. CONCLUSIONS Overall, the present study firstly analyzed the chemical compositions of S. aromaticum extracts, and then confirmed their activities on both antibiotic-sensitive and -resistant H. pylori strains. In addition, the mechanisms of action of S. aromaticum extracts against H. pylori were found to be destroying the bacterial structure, down-regulating the expression of virulence genes, and interfering TAC and pyruvate metabolic pathways. Finally, S. aromaticum extracts were found to combated the abnormal activation of PI3K-Akt and MAPK signaling pathways to treat H. pylori infection. This study should accelerate further research and application of S. aromaticum against H. pylori infection.
Collapse
Affiliation(s)
- Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Shuyi Sang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xue Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Weijia Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jiahui Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pengting Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Cheng Jiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuemei Yuan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Agarwal N, Jaiswal N, Gulati K, Gangele K, Nagar N, Kumar D, Poluri KM. Molecular Insights into Conformational Heterogeneity and Enhanced Structural Integrity of Helicobacter pylori DNA Binding Protein Hup at Low pH. Biochemistry 2021; 60:3236-3252. [PMID: 34665609 DOI: 10.1021/acs.biochem.1c00395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The summarized amalgam of internal relaxation modulations and external forces like pH, temperature, and solvent conditions determine the protein structure, stability, and function. In a free-energy landscape, although conformers are arranged in vertical hierarchy, there exist several adjacent parallel sets with conformers occupying equivalent energy cleft. Such conformational states are pre-requisites for the functioning of proteins that have oscillating environmental conditions. As these conformational changes have utterly small re-arrangements, nuclear magnetic resonance (NMR) spectroscopy is unique in elucidating the structure-dynamics-stability-function relationships for such conformations. Helicobacter pylori survives and causes gastric cancer at extremely low pH also. However, least is known as to how the genome of the pathogen is protected from reactive oxygen species (ROS) scavenging in the gut at low pH under acidic stress. In the current study, biophysical characteristics of H. pylori DNA binding protein (Hup) have been elucidated at pH 2 using a combination of circular dichroism, fluorescence, NMR spectroscopy, and molecular dynamics simulations. Interestingly, the protein was found to have conserved structural features, differential backbone dynamics, enhanced stability, and DNA binding ability at low pH as well. In summary, the study suggests the partaking of Hup protein even at low pH in DNA protection for maintaining the genome integrity.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Krishnakant Gangele
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand, India
| |
Collapse
|
10
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
11
|
RexAB promotes the survival of Staphylococcus aureus exposed to multiple classes of antibiotics. Antimicrob Agents Chemother 2021; 65:e0059421. [PMID: 34310219 PMCID: PMC8448105 DOI: 10.1128/aac.00594-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotics inhibit essential bacterial processes, resulting in arrest of growth and, in some cases, cell death. Many antibiotics are also reported to trigger endogenous production of reactive oxygen species (ROS), which damage DNA, leading to induction of the mutagenic SOS response associated with the emergence of drug resistance. However, the type of DNA damage that arises and how this triggers the SOS response are largely unclear. We found that several different classes of antibiotic triggered dose-dependent induction of the SOS response in Staphylococcus aureus, indicative of DNA damage, including some bacteriostatic drugs. The SOS response was heterogenous and varied in magnitude between strains and antibiotics. However, in many cases, full induction of the SOS response was dependent upon the RexAB helicase/nuclease complex, which processes DNA double-strand breaks to produce single-stranded DNA and facilitate RecA nucleoprotein filament formation. The importance of RexAB in repair of DNA was confirmed by measuring bacterial survival during antibiotic exposure, with most drugs having significantly greater bactericidal activity against rexB mutants than against wild-type strains. For some, but not all, antibiotics there was no difference in bactericidal activity between wild type and rexB mutant under anaerobic conditions, indicative of a role for reactive oxygen species in mediating DNA damage. Taken together, this work confirms previous observations that several classes of antibiotics cause DNA damage in S. aureus and extends them by showing that processing of DNA double-strand breaks by RexAB is a major trigger of the mutagenic SOS response and promotes bacterial survival.
Collapse
|
12
|
Ha KP, Clarke RS, Kim GL, Brittan JL, Rowley JE, Mavridou DAI, Parker D, Clarke TB, Nobbs AH, Edwards AM. Staphylococcal DNA Repair Is Required for Infection. mBio 2020; 11:e02288-20. [PMID: 33203752 PMCID: PMC7683395 DOI: 10.1128/mbio.02288-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
To cause infection, Staphylococcus aureus must withstand damage caused by host immune defenses. However, the mechanisms by which staphylococcal DNA is damaged and repaired during infection are poorly understood. Using a panel of transposon mutants, we identified the rexBA operon as being important for the survival of Staphylococcus aureus in whole human blood. Mutants lacking rexB were also attenuated for virulence in murine models of both systemic and skin infections. We then demonstrated that RexAB is a member of the AddAB family of helicase/nuclease complexes responsible for initiating the repair of DNA double-strand breaks. Using a fluorescent reporter system, we were able to show that neutrophils cause staphylococcal DNA double-strand breaks through reactive oxygen species (ROS) generated by the respiratory burst, which are repaired by RexAB, leading to the induction of the mutagenic SOS response. We found that RexAB homologues in Enterococcus faecalis and Streptococcus gordonii also promoted the survival of these pathogens in human blood, suggesting that DNA double-strand break repair is required for Gram-positive bacteria to survive in host tissues. Together, these data demonstrate that DNA is a target of host immune cells, leading to double-strand breaks, and that the repair of this damage by an AddAB-family enzyme enables the survival of Gram-positive pathogens during infection.IMPORTANCE To cause infection, bacteria must survive attack by the host immune system. For many bacteria, including the major human pathogen Staphylococcus aureus, the greatest threat is posed by neutrophils. These immune cells ingest the invading organisms and try to kill them with a cocktail of chemicals that includes reactive oxygen species (ROS). The ability of S. aureus to survive this attack is crucial for the progression of infection. However, it was not clear how the ROS damaged S. aureus and how the bacterium repaired this damage. In this work, we show that ROS cause breaks in the staphylococcal DNA, which must be repaired by a two-protein complex known as RexAB; otherwise, the bacterium is killed, and it cannot sustain infection. This provides information on the type of damage that neutrophils cause S. aureus and the mechanism by which this damage is repaired, enabling infection.
Collapse
Affiliation(s)
- Kam Pou Ha
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rebecca S Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jane L Brittan
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jessica E Rowley
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Gurung D, Blumenthal RM. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. MICROBIOLOGY-SGM 2020; 166:1047-1064. [PMID: 33085588 DOI: 10.1099/mic.0.000980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Homologous recombination plays key roles in fundamental processes such as recovery from DNA damage and in bacterial horizontal gene transfer, yet there are still open questions about the distribution of recognized components of recombination machinery among bacteria and archaea. RecBCD helicase-nuclease plays a central role in recombination among Gammaproteobacteria like Escherichia coli; while bacteria in other phyla, like the Firmicute Bacillus subtilis, use the related AddAB complex. The activity of at least some of these complexes is controlled by short DNA sequences called crossover hotspot instigator (Chi) sites. When RecBCD or AddAB complexes encounter an autologous Chi site during unwinding, they introduce a nick such that ssDNA with a free end is available to invade another duplex. If homologous DNA is present, RecA-dependent homologous recombination is promoted; if not (or if no autologous Chi site is present) the RecBCD/AddAB complex eventually degrades the DNA. We examined the distribution of recBCD and addAB genes among bacteria, and sought ways to distinguish them unambiguously. We examined bacterial species among 33 phyla, finding some unexpected distribution patterns. RecBCD and addAB are less conserved than recA, with the orthologous recB and addA genes more conserved than the recC or addB genes. We were able to classify RecB vs. AddA and RecC vs. AddB in some bacteria where this had not previously been done. We used logo analysis to identify sequence segments that are conserved, but differ between the RecBC and AddAB proteins, to help future differentiation between members of these two families.
Collapse
Affiliation(s)
- Deepti Gurung
- Present address: Department of Cancer Biology, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA.,Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology & Immunology, and Program in Bioinformatics, College of Medicine & Life Sciences, The University of Toledo, Toledo OH 43614-1021, USA
| |
Collapse
|
14
|
Bernheim A, Bikard D, Touchon M, Rocha EPC. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180088. [PMID: 30905287 PMCID: PMC6452273 DOI: 10.1098/rstb.2018.0088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The absence of CRISPR-Cas systems in more than half of the sequenced bacterial genomes is intriguing, because their role in adaptive immunity and their frequent transfer between species should have made them almost ubiquitous, as is the case in Archaea. Here, we investigate the possibility that the success of CRISPR-Cas acquisition by horizontal gene transfer is affected by the interactions of these systems with the host genetic background and especially with components of double-strand break repair systems (DSB-RS). We first described the distribution of systems specialized in the repair of double-strand breaks in Bacteria: homologous recombination and non-homologous end joining. This allowed us to show that such systems are more often positively or negatively correlated with the frequency of CRISPR-Cas systems than random genes of similar frequency. The detailed analysis of these co-occurrence patterns shows that our method identifies previously known cases of mechanistic interactions between these systems. It also reveals other positive and negative patterns of co-occurrence between DSB-RS and CRISPR-Cas systems. Notably, it shows that the patterns of distribution of CRISPR-Cas systems in Proteobacteria are strongly dependent on the epistatic groups including RecBCD and AddAB. Our results suggest that the genetic background plays an important role in the success of adaptive immunity in different bacterial clades and provide insights to guide further experimental research on the interactions between CRISPR-Cas and DSB-RS. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Aude Bernheim
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France.,2 Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,3 AgroParisTech , Paris 75005 , France
| | - David Bikard
- 2 Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France
| | - Marie Touchon
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France
| | - Eduardo P C Rocha
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France
| |
Collapse
|
15
|
A Genome-Wide Helicobacter pylori Morphology Screen Uncovers a Membrane-Spanning Helical Cell Shape Complex. J Bacteriol 2019; 201:JB.00724-18. [PMID: 31036730 DOI: 10.1128/jb.00724-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Evident in its name, the gastric pathogen Helicobacter pylori has a helical cell morphology which facilitates efficient colonization of the human stomach. An improved light-focusing strategy allowed us to robustly distinguish even subtle perturbations of H. pylori cell morphology by deviations in light-scattering properties measured by flow cytometry. Profiling of an arrayed genome-wide deletion library identified 28 genes that influence different aspects of cell shape, including properties of the helix, cell length or width, cell filament formation, cell shape heterogeneity, and cell branching. Included in this mutant collection were two that failed to form any helical cells, a soluble lytic transglycosylase and a previously uncharacterized putative multipass inner membrane protein HPG27_0728, renamed Csd7. A combination of cell fractionation, mutational, and immunoprecipitation experiments show that Csd7 and Csd2 collaborate to stabilize the Csd1 peptidoglycan (PG) endopeptidase. Thus, both csd2 and csd7 mutants show the same enhancement of PG tetra-pentapeptide cross-linking as csd1 mutants. Csd7 also links Csd1 with the bactofilin CcmA via protein-protein interactions. Although Csd1 is stable in ccmA mutants, these mutants show altered PG tetra-pentapeptide cross-linking, suggesting that Csd7 may directly or indirectly activate as well as stabilize Csd1. These data begin to illuminate a highly orchestrated program to regulate PG modifications that promote helical shape, which includes nine nonessential nonredundant genes required for helical shape and 26 additional genes that further modify H. pylori's cell morphology.IMPORTANCE The stomach ulcer and cancer-causing pathogen Helicobacter pylori has a helical cell shape which facilitates stomach infection. Using light scattering to measure perturbations of cell morphology, we identified 28 genes that influence different aspects of cell shape. A mutant in a previously uncharacterized protein renamed Csd7 failed to form any helical cells. Biochemical analyses showed that Csd7 collaborates with other proteins to stabilize the cell wall-degrading enzyme Csd1. Csd7 also links Csd1 with a putative filament-forming protein via protein-protein interactions. These data suggest that helical cell shape arises from a highly orchestrated program to regulate cell wall modifications. Targeting of this helical cell shape-promoting program could offer new ways to block infectivity of this important human pathogen.
Collapse
|
16
|
Feng X, He C, Jiao L, Liang X, Zhao R, Guo Y. Analysis of differential expression proteins reveals the key pathway in response to heat stress in Alicyclobacillus acidoterrestris DSM 3922T. Food Microbiol 2019; 80:77-84. [DOI: 10.1016/j.fm.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/12/2018] [Accepted: 01/06/2019] [Indexed: 11/27/2022]
|
17
|
Wang G, Pang J, Hu X, Nie T, Lu X, Li X, Wang X, Lu Y, Yang X, Jiang J, Li C, Xiong YQ, You X. Daphnetin: A Novel Anti- Helicobacter pylori Agent. Int J Mol Sci 2019; 20:ijms20040850. [PMID: 30781382 PMCID: PMC6412720 DOI: 10.3390/ijms20040850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Antibiotic-resistant H. pylori was increasingly found in infected individuals, which resulted in treatment failure and required alternative therapeutic strategies. Daphnetin, a coumarin-derivative compound, has multiple pharmacological activities. Methods: The mechanism of daphnetin on H. pylori was investigated focusing on its effect on cell morphologies, transcription of genes related to virulence, adhesion, and cytotoxicity to human gastric epithelial (GES-1) cell line. Results: Daphnetin showed good activities against multidrug resistant (MDR) H. pylori clinical isolates, with minimal inhibitory concentration (MIC) values ranging from 25 to 100 μg/mL. In addition, daphnetin exposure resulted in H. pylori morphological changes. Moreover, daphnetin caused increased translocation of phosphatidylserine (PS), DNA damage, and recA expression, and RecA protein production vs. control group. Of great importance, daphnetin significantly decreased H. pylori adhesion to GES-1 cell line vs. control group, which may be related to the reduced expression of colonization related genes (e.g., babA and ureI). Conclusions: These results suggested that daphnetin has good activity against MDR H. pylori. The mechanism(s) of daphnetin against H. pylori were related to change of membrane structure, increase of DNA damage and PS translocation, and decrease of H. pylori attachment to GES-1 cells.
Collapse
Affiliation(s)
- Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan Q Xiong
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
18
|
Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018; 9:3108. [PMID: 30631314 PMCID: PMC6315149 DOI: 10.3389/fmicb.2018.03108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T = DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing co-cultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The co-culture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The co-culture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach. Note: The locus tag for the genes encoded in Lucifera butyrica is LUCI_∗. To avoid repetition of the prefix along the text, the locus tags are represented by the specific identifier.
Collapse
Affiliation(s)
| | | | - Jeltzlin Semerel
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
19
|
Molecular interaction between human SUMO-I and histone like DNA binding protein of Helicobacter pylori (Hup) investigated by NMR and other biophysical tools. Int J Biol Macromol 2018; 123:446-456. [PMID: 30439429 DOI: 10.1016/j.ijbiomac.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
Abstract
The proteins secreted by bacteria contribute to immune mediated gastric inflammation and epithelial damage; thus aid bacterial invasion in host tissue, and may also interact with host proteins, conspirating a mechanism against host-immune system. The Histone-like DNA binding protein is one of the most abundant nucleoid-associated proteins in Helicobacter pylori (H. pylori). The protein -referred here as Hup- is also secreted in vitro by H. pylori, thus it may have its role in disease pathogenesis. This is possible only if Hup interact with some human proteins including Small-Ubiquitin-like-Modifier (SUMO) proteins. Studies have established that SUMO-proteins participate in various innate-immune pathways and thus promote an efficient immune response to combat pathogenic infections. Sequence analysis revealed the presence of two SUMO interacting motifs (SIMs) and several positively charged lysine residues on the protein surface of Hup. Additionally, SUMO-proteins epitomize negatively charged surface which confers them the ability to bind to DNA/RNA binding proteins. Based on the presence of SIMs as well as charge complementarity between the proteins, it is legitimate to consider that Hup protein would bind to SUMO-proteins. The present study has been undertaken to establish this interaction for the first time using NMR in combination with ITC and other biophysical techniques.
Collapse
|
20
|
Li P, Xu J, Rao HM, Li X, Zhang YK, Jiang F, Wu WX. Mechanism of Apoptosis Induction by Mycoplasmal Nuclease MGA_0676 in Chicken Embryo Fibroblasts. Front Cell Infect Microbiol 2018; 8:105. [PMID: 29670864 PMCID: PMC5893762 DOI: 10.3389/fcimb.2018.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
MGA_0676 has been characterized as a Mycoplasma gallisepticum nuclease that can induce apoptosis of chicken cells. However, the mechanism by which MGA_0676 induces apoptosis has remained unclear. In this study, we evaluated MGA_0676-induced apoptosis and internalization in immortalized chicken embryo fibroblasts (DF-1) and cancer cell lines. The internalization of MGA_0676 was proven through caveolin-mediated endocytosis by blocking the endocytosis with specific inhibitors or with siRNA. We identified the Thif domain of NEDD8-activating enzyme E1 regulatory subunit (NAE) in DF-1 as the target region interacting with the SNC domain of MGA_0676. The interaction between the Thif and SNC domains was observed co-located in the perinuclear and nuclear of DF-1. We found that the interaction between NAE and MGA_0676 increased the ability of apoptosis and accelerated the process of cullin neddylation in DF-1 cells, in turn activating NF-κB. This resulted in the observed aggregation of NF-κB in the nuclei of DF-1 cells. Moreover, the apoptosis induced by MGA_0676 decreased significantly when NF-κB was inhibited by siRNA or BAY 11-7082 or when NAE was silenced by siRNA. Overall, our results demonstrate that MGA_0676 is internalized through caveolin-mediated endocytosis, interacts with SNC-dependent Thif to accelerate the process of cullin neddylation and activates NF-κB in DF-1 cells, ultimately playing a key role in apoptosis in chicken cells. Our results indicate MGA_0676 constitutes a critical etiological virulence factor of the respiratory disease caused by M. gallisepticum. This study also opens a venue to investigate MGA_0676 as a potential candidate as pro-apoptotic drug in cancer studies.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Hong-Mei Rao
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xia Li
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yun-Ke Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fei Jiang
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing, China
| | - Wen-Xue Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Jaiswal N, Raikwal N, Pandey H, Agarwal N, Arora A, Poluri KM, Kumar D. NMR elucidation of monomer-dimer transition and conformational heterogeneity in histone-like DNA binding protein of Helicobacter pylori. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:285-299. [PMID: 29241299 DOI: 10.1002/mrc.4701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/25/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes under harsh acidic/oxidative stress conditions of human gastrointestinal tract and can survive there for infinitely longer durations of host life. The bacterium expresses several harbinger proteins to facilitate its persistent colonization under such conditions. One such protein in H. pylori is histone-like DNA binding protein (Hup), which in its homo-dimeric form binds to DNA to perform various DNA dependent cellular activities. Further, it also plays an important role in protecting the genomic DNA from oxidative stress and acidic denaturation. Legitimately, if the binding of Hup to DNA is suppressed, it will directly impact on the survival of the bacterium, thus making Hup a potential therapeutic target for developing new anti-H. pylori agents. However, to inhibit the binding of Hup to DNA, it is necessary to gain detailed insights into the molecular and structural basis of Hup-dimerization and its binding mechanism to DNA. As a first step in this direction, we report here the nuclear magnetic resonance (NMR) assignments and structural features of Hup at pH 6.0. The study revealed the occurrence of dynamic equilibrium between its monomer and dimer conformations. The dynamic equilibrium was found to shifting towards dimer both at low temperature and low pH; whereas DNA binding studies evidenced that the protein binds to DNA in its dimeric form. These preliminary investigations correlate very well with the diverse functionality of protein and will form the basis for future studies aiming to develop novel anti-H. pylori agents employing structure-based-rational drug discovery approach.
Collapse
Affiliation(s)
- Nancy Jaiswal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
- Dr. APJ Abdul Kalam Technical University, IET Campus, Sitapur Road, Lucknow, 226021, Uttar Pradesh, India
| | - Nisha Raikwal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| | - Himanshu Pandey
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Nipanshu Agarwal
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, 226 031, India
| | - Krishna Mohan Poluri
- Department of Biotechnology and Centre for Nanotechnology Indian Institute of Technology Roorkee, 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India
| |
Collapse
|
22
|
Gourley CR, Negretti NM, Konkel ME. The food-borne pathogen Campylobacter jejuni depends on the AddAB DNA repair system to defend against bile in the intestinal environment. Sci Rep 2017; 7:14777. [PMID: 29089630 PMCID: PMC5665897 DOI: 10.1038/s41598-017-14646-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Accurate repair of DNA damage is crucial to ensure genome stability and cell survival of all organisms. Bile functions as a defensive barrier against intestinal colonization by pathogenic microbes. Campylobacter jejuni, a leading bacterial cause of foodborne illness, possess strategies to mitigate the toxic components of bile. We recently found that growth of C. jejuni in medium with deoxycholate, a component of bile, caused DNA damage consistent with the exposure to reactive oxygen species. We hypothesized that C. jejuni must repair DNA damage caused by reactive oxygen species to restore chromosomal integrity. Our efforts focused on determining the importance of the putative AddAB DNA repair proteins. A C. jejuni addAB mutant demonstrated enhanced sensitivity to deoxycholate and was impaired in DNA double strand break repair. Complementation of the addAB mutant restored resistance to deoxycholate, as well as function of the DNA double strand break repair system. The importance of these findings translated to the natural host, where the AddAB system was found to be required for efficient C. jejuni colonization of the chicken intestine. This research provides new insight into the molecular mechanism utilized by C. jejuni, and possibly other intestinal pathogens, to survive in the presence of bile.
Collapse
Affiliation(s)
- Christopher R Gourley
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, 99164-7520, WA, USA
| | - Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, 99164-7520, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, 99164-7520, WA, USA.
| |
Collapse
|
23
|
Abstract
BACKGROUND Helicobacter pylori is well adapted to colonize the epithelial surface of the human gastric mucosa and can cause persistent infections. In order to infect the gastric mucosa, it has to survive in the gastric acidic pH. This organism has well developed mechanisms to neutralize the effects of acidic pH. OBJECTIVE This review article was designed to summarize the various functional and molecular aspects by which the bacterium can combat and survive the gastric acidic pH in order to establish the persistent infections. METHODS We used the keywords (acid acclimation, gastric acidic environment, H. pylori and survival) in combination or alone for pubmed search of recent scientific literatures. One hundred and forty one papers published between 1989 and 2016 were sorted out. The articles published with only abstracts, other than in English language, case reports and reviews were excluded. RESULTS Many literatures describing the role of several factors in acid survival were found. Recently, the role of several other factors has been claimed to participate in acid survival. CONCLUSION In conclusion, this organism has well characterized mechanisms for acid survival.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan,Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, Texas, USA,Corresponding author: Yoshio Yamaoka, MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
24
|
Zepeda Gurrola RC, Fu Y, Rodríguez Luna IC, Benítez Cardoza CG, López López MDJ, López Vidal Y, Gutíerrez GRA, Rodríguez Pérez MA, Guo X. Novel protein interactions with an actin homolog (MreB) of Helicobacter pylori determined by bacterial two-hybrid system. Microbiol Res 2017; 201:39-45. [PMID: 28602400 DOI: 10.1016/j.micres.2017.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Abstract
The bacterium Helicobacter pylori infects more than 50% of the world population and causes several gastroduodenal diseases, including gastric cancer. Nevertheless, we still need to explore some protein interactions that may be involved in pathogenesis. MreB, an actin homolog, showed some special characteristics in previous studies, indicating that it could have different functions. Protein functions could be realized via protein-protein interactions. In the present study, the MreB protein from H. pylori 26695 fused with two tags 10×His and GST in tandem was overexpressed and purified from Escherchia coli. The purified recombinant protein was used to perform a pull-down assay with H. pylori 26695 cell lysate. The pulled-down proteins were identified by mass spectrometry (MALDI-TOF), in which the known important proteins related to morphogenesis were absent but several proteins related to pathogenesis process were observed. The bacterial two-hybrid system was further used to evaluate the protein interactions and showed that new interactions of MreB respectively with VacA, UreB, HydB, HylB and AddA were confirmed but the interaction MreB-MreC was not validated. These results indicated that the protein MreB in H. pylori has a distinct interactome, does not participate in cell morphogenesis via MreB-MreC but could be related to pathogenesis.
Collapse
Affiliation(s)
| | - Yajuan Fu
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd. Reynosa Tamaulipas, Mexico
| | | | | | | | - Yolanda López Vidal
- Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de Mexico
| | - Germán Rubén Aguilar Gutíerrez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Mario A Rodríguez Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd. Reynosa Tamaulipas, Mexico
| | - Xianwu Guo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd. Reynosa Tamaulipas, Mexico.
| |
Collapse
|
25
|
ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 2017; 7:41495. [PMID: 28128333 PMCID: PMC5269756 DOI: 10.1038/srep41495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori chronically colonises half of the world’s human population and is the main cause of ulcers and gastric cancers. Its prevalence and the increase in antibiotic resistance observed recently reflect the high genetic adaptability of this pathogen. Together with high mutation rates and an efficient DNA recombination system, horizontal gene transfer through natural competence makes of H. pylori one of the most genetically diverse bacteria. We show here that transformation capacity is enhanced in strains defective for recN, extending previous work with other homologous recombination genes. However, inactivation of either mutY or polA has no effect on DNA transformation, suggesting that natural competence can be boosted in H. pylori by the persistence of DNA breaks but not by enhanced mutagenesis. The transformation efficiency of the different DNA repair impaired strains correlates with the number of transforming DNA foci formed on the cell surface and with the expression of comB8 and comB10 competence genes. Overexpression of the comB6-B10 operon is sufficient to increase the transformation capacity of a wild type strain, indicating that the ComB complex, present in the bacterial wall and essential for DNA uptake, can be a limiting factor for transformation efficiency.
Collapse
|
26
|
Wilkinson M, Troman LA, Wan Nur Ismah WAK, Chaban Y, Avison MB, Dillingham MS, Wigley DB. Structural basis for the inhibition of RecBCD by Gam and its synergistic antibacterial effect with quinolones. eLife 2016; 5:e22963. [PMID: 28009252 PMCID: PMC5218532 DOI: 10.7554/elife.22963] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Our previous paper (Wilkinson et al, 2016) used high-resolution cryo-electron microscopy to solve the structure of the Escherichia coli RecBCD complex, which acts in both the repair of double-stranded DNA breaks and the degradation of bacteriophage DNA. To counteract the latter activity, bacteriophage λ encodes a small protein inhibitor called Gam that binds to RecBCD and inactivates the complex. Here, we show that Gam inhibits RecBCD by competing at the DNA-binding site. The interaction surface is extensive and involves molecular mimicry of the DNA substrate. We also show that expression of Gam in E. coli or Klebsiella pneumoniae increases sensitivity to fluoroquinolones; antibacterials that kill cells by inhibiting topoisomerases and inducing double-stranded DNA breaks. Furthermore, fluoroquinolone-resistance in K. pneumoniae clinical isolates is reversed by expression of Gam. Together, our data explain the synthetic lethality observed between topoisomerase-induced DNA breaks and the RecBCD gene products, suggesting a new co-antibacterial strategy.
Collapse
Affiliation(s)
- Martin Wilkinson
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Luca A Troman
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Wan AK Wan Nur Ismah
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yuriy Chaban
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mark S Dillingham
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Dale B Wigley
- Department of Medicine, Section of Structural Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Singh A, Blaskovic D, Joo J, Yang Z, Jackson SH, Coleman WG, Yan M. Investigating the Role of Helicobacter pylori PriA Protein. Helicobacter 2016; 21:295-304. [PMID: 26817518 PMCID: PMC8483055 DOI: 10.1111/hel.12283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. MATERIALS AND METHODS We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. RESULTS The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. CONCLUSIONS These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa.
Collapse
Affiliation(s)
- Aparna Singh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Dusan Blaskovic
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jungsoo Joo
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Zhen Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Sharon H. Jackson
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - William G. Coleman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD,National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD
| | - Ming Yan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Yahara K, Furuta Y, Morimoto S, Kikutake C, Komukai S, Matelska D, Dunin-Horkawicz S, Bujnicki JM, Uchiyama I, Kobayashi I. Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori. DNA Res 2016; 23:135-43. [PMID: 26961370 PMCID: PMC4833421 DOI: 10.1093/dnares/dsw003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/23/2016] [Indexed: 01/04/2023] Open
Abstract
Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS> 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication,recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures.Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination.We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes.
Collapse
Affiliation(s)
- Koji Yahara
- Biostatistics Center, Kurume University, Kurume, Fukuoka 830-0011, Japan
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Shinpei Morimoto
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Chie Kikutake
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Sho Komukai
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
29
|
Gilhooly NS, Carrasco C, Gollnick B, Wilkinson M, Wigley DB, Moreno-Herrero F, Dillingham MS. Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination. Nucleic Acids Res 2016; 44:2727-41. [PMID: 26762979 PMCID: PMC4824097 DOI: 10.1093/nar/gkv1543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022] Open
Abstract
In bacteria, the repair of double-stranded DNA breaks is modulated by Chi sequences. These are recognised by helicase-nuclease complexes that process DNA ends for homologous recombination. Chi activates recombination by changing the biochemical properties of the helicase-nuclease, transforming it from a destructive exonuclease into a recombination-promoting repair enzyme. This transition is thought to be controlled by the Chi-dependent opening of a molecular latch, which enables part of the DNA substrate to evade degradation beyond Chi. Here, we show that disruption of the latch improves Chi recognition efficiency and stabilizes the interaction of AddAB with Chi, even in mutants that are impaired for Chi binding. Chi recognition elicits a structural change in AddAB that maps to a region of AddB which resembles a helicase domain, and which harbours both the Chi recognition locus and the latch. Mutation of the latch potentiates the change and moderately reduces the duration of a translocation pause at Chi. However, this mutant displays properties of Chi-modified AddAB even in the complete absence of bona fide hotspot sequences. The results are used to develop a model for AddAB regulation in which allosteric communication between Chi binding and latch opening ensures quality control during recombination hotspot recognition.
Collapse
Affiliation(s)
| | - Carolina Carrasco
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Cantoblanco, Madrid, Spain
| | - Benjamin Gollnick
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Cantoblanco, Madrid, Spain
| | - Martin Wilkinson
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Dale B Wigley
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Cantoblanco, Madrid, Spain
| | | |
Collapse
|
30
|
Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 2015; 33:1484-92. [PMID: 26057689 DOI: 10.1016/j.biotechadv.2015.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 02/05/2023]
Abstract
Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
31
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
32
|
Damke PP, Dhanaraju R, Marsin S, Radicella JP, Rao DN. The nuclease activities of both the Smr domain and an additional LDLK motif are required for an efficient anti-recombination function of Helicobacter pylori MutS2. Mol Microbiol 2015; 96:1240-56. [PMID: 25800579 DOI: 10.1111/mmi.13003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori, a human pathogen, is a naturally and constitutively competent bacteria, displaying a high rate of intergenomic recombination. While recombination events are essential for evolution and adaptation of H. pylori to dynamic gastric niches and new hosts, such events should be regulated tightly to maintain genomic integrity. Here, we analyze the role of the nuclease activity of MutS2, a protein that limits recombination during transformation in H. pylori. In previously studied MutS2 proteins, the C-terminal Smr domain was mapped as the region responsible for its nuclease activity. We report here that deletion of Smr domain does not completely abolish the nuclease activity of HpMutS2. Using bioinformatics analysis and mutagenesis, we identified an additional and novel nuclease motif (LDLK) at the N-terminus of HpMutS2 unique to Helicobacter and related ε-proteobacterial species. A single point mutation (D30A) in the LDLK motif and the deletion of Smr domain resulted in ∼ 5-10-fold loss of DNA cleavage ability of HpMutS2. Interestingly, the mutant forms of HpMutS2 wherein the LDLK motif was mutated or the Smr domain was deleted were unable to complement the hyper-recombination phenotype of a mutS2(-) strain, suggesting that both nuclease sites are indispensable for an efficient anti-recombinase activity of HpMutS2.
Collapse
Affiliation(s)
- Prashant P Damke
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajkumar Dhanaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Stéphanie Marsin
- Institute of Cellular and Molecular Radiobiology, CEA, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Universités Paris Diderot et Paris Sud, Fontenay-aux-Roses, France
| | - Juan Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, CEA, Fontenay-aux-Roses, France.,INSERM UMR967, Fontenay-aux-Roses, France.,Universités Paris Diderot et Paris Sud, Fontenay-aux-Roses, France
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
33
|
A novel DNA-binding protein plays an important role in Helicobacter pylori stress tolerance and survival in the host. J Bacteriol 2014; 197:973-82. [PMID: 25535274 DOI: 10.1128/jb.02489-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastric pathogen Helicobacter pylori must combat chronic acid and oxidative stress. It does so via many mechanisms, including macromolecule repair and gene regulation. Mitomycin C-sensitive clones from a transposon mutagenesis library were screened. One sensitive strain contained the insertion element at the locus of hp119, a hypothetical gene. No homologous gene exists in any (non-H. pylori) organism. Nevertheless, the predicted protein has some features characteristic of histone-like proteins, and we showed that purified HP119 protein is a DNA-binding protein. A Δhp119 strain was markedly more sensitive (viability loss) to acid or to air exposure, and these phenotypes were restored to wild-type (WT) attributes upon complementation of the mutant with the wild-type version of hp119 at a separate chromosomal locus. The mutant strain was approximately 10-fold more sensitive to macrophage-mediated killing than the parent or the complemented strain. Of 12 mice inoculated with the wild type, all contained H. pylori, whereas 5 of 12 mice contained the mutant strain; the mean colonization numbers were 158-fold less for the mutant strain. A proteomic (two-dimensional PAGE with mass spectrometric analysis) comparison between the Δhp119 mutant and the WT strain under oxidative stress conditions revealed a number of important antioxidant protein differences; SodB, Tpx, TrxR, and NapA, as well as the peptidoglycan deacetylase PgdA, were significantly less expressed in the Δhp119 mutant than in the WT strain. This study identified HP119 as a putative histone-like DNA-binding protein and showed that it plays an important role in Helicobacter pylori stress tolerance and survival in the host.
Collapse
|
34
|
Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells. Microbes Infect 2014; 16:833-9. [DOI: 10.1016/j.micinf.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
|
35
|
Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection. Infect Immun 2014; 82:3177-85. [PMID: 24842925 DOI: 10.1128/iai.01540-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.
Collapse
|
36
|
Nontraditional therapies to treat Helicobacter pylori infection. J Microbiol 2014; 52:259-72. [PMID: 24682990 DOI: 10.1007/s12275-014-3603-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022]
Abstract
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.
Collapse
|
37
|
Environmental determinants of transformation efficiency in Helicobacter pylori. J Bacteriol 2013; 196:337-44. [PMID: 24187089 DOI: 10.1128/jb.00633-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helicobacter pylori uses natural competence and homologous recombination to adapt to the dynamic environment of the stomach mucosa and maintain chronic colonization. Although H. pylori competence is constitutive, its rate of transformation is variable, and little is known about factors that influence it. To examine this, we first determined the transformation efficiency of H. pylori strains under low O2 (5% O2, 7.6% CO2, 7.6% H2) and high O2 (15% O2, 2.9% CO2, 2.9% H2) conditions using DNA containing an antibiotic resistance marker. H. pylori transformation efficiency was 6- to 32-fold greater under high O2 tension, which was robust across different H. pylori strains, genetic loci, and bacterial growth phases. Since changing the O2 concentration for these initial experiments also changed the concentrations of CO2 and H2, transformations were repeated under conditions where O2, CO2, and H2 were each varied individually. The results showed that the increase in transformation efficiency under high O2 was largely due to a decrease in CO2. An increase in pH similar to that caused by low CO2 was also sufficient to increase transformation efficiency. These results have implications for the physiology of H. pylori in the gastric environment, and they provide optimized conditions for the laboratory construction of H. pylori mutants using natural transformation.
Collapse
|
38
|
Talebi Bezmin Abadi A, Taghvaei T, Mohabbati Mobarez A, Vaira G, Vaira D. High correlation of babA 2-positive strains of Helicobacter pylori with the presence of gastric cancer. Intern Emerg Med 2013; 8:497-501. [PMID: 21604199 DOI: 10.1007/s11739-011-0631-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/06/2011] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that is well known in the involvement of chronic inflammation in the gastric mucosa of the human stomach. Several studies have investigated the possible role of H. pylori presence in different gastroduodenal disorders with conflicting results. This study aimed to further investigate such a field. Helicobacter pylori strains were cultured from 160 patients (mean age of 42 years; range 15-75; 90 were male, and 70 were female) [40 gastric cancer (GC), 55 duodenal ulcer (DU) and 65 non-ulcer dyspepsia (NUD)]. In this study, allelic variants of iceA 1, iceA 2 and babA 2 were identified by polymerase chain reaction. The overall prevalence of babA 2 gene was 40.6% (65/160). The prevalence of babA 2 gene was 95% with gastric cancer, 18.1% with duodenal ulcer and 26.1% with non ulcer dyspepsia, respectively. The prevalence of babA 2 in GC patients was significantly higher as compared to either NUD or UD patients (P = 0.0004), while no statistical significance was found between the latter two patient groups. Our study finds that babA 2 and iceA 1 genes are more prevalent in GC compared to either NUD or DU patients in Iran.
Collapse
Affiliation(s)
- Amin Talebi Bezmin Abadi
- Department of Bacteriology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
39
|
Duncan SS, Valk PL, McClain MS, Shaffer CL, Metcalf JA, Bordenstein SR, Cover TL. Comparative genomic analysis of East Asian and non-Asian Helicobacter pylori strains identifies rapidly evolving genes. PLoS One 2013; 8:e55120. [PMID: 23383074 PMCID: PMC3561388 DOI: 10.1371/journal.pone.0055120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/19/2012] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric adenocarcinoma, a disease that has a high incidence in East Asia. Genes that are highly divergent in East Asian H. pylori strains compared to non-Asian strains are predicted to encode proteins that differ in functional activity and could represent novel determinants of virulence. To identify such proteins, we undertook a comparative analysis of sixteen H. pylori genomes, selected equally from strains classified as East Asian or non-Asian. As expected, the deduced sequences of two known virulence determinants (CagA and VacA) are highly divergent, with 77% and 87% mean amino acid sequence identities between East Asian and non-Asian groups, respectively. In total, we identified 57 protein sequences that are highly divergent between East Asian and non-Asian strains, but relatively conserved within East Asian strains. The most highly represented functional groups are hypothetical proteins, cell envelope proteins and proteins involved in DNA metabolism. Among the divergent genes with known or predicted functions, population genetic analyses indicate that 86% exhibit evidence of positive selection. McDonald-Kreitman tests further indicate that about one third of these highly divergent genes, including cagA and vacA, are under diversifying selection. We conclude that, similar to cagA and vacA, most of the divergent genes identified in this study evolved under positive selection, and represent candidate factors that may account for the disproportionately high incidence of gastric cancer associated with East Asian H. pylori strains. Moreover, these divergent genes represent robust biomarkers that can be used to differentiate East Asian and non-Asian H. pylori strains.
Collapse
Affiliation(s)
- Stacy S. Duncan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pieter L. Valk
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Carrie L. Shaffer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jason A. Metcalf
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (SRB); (TLC)
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail: (SRB); (TLC)
| |
Collapse
|
40
|
Abstract
Fundamental aspects of the lifestyle of Mycobacterium tuberculosis implicate DNA metabolism in bacillary survival and adaptive evolution. The environments encountered by M. tuberculosis during successive cycles of infection and transmission are genotoxic. Moreover, as an obligate pathogen, M. tuberculosis has the ability to persist for extended periods in a subclinical state, suggesting that active DNA repair is critical to maintain genome integrity and bacterial viability during prolonged infection. In this chapter, we provide an overview of the major DNA metabolic pathways identified in M. tuberculosis, and situate key recent findings within the context of mycobacterial pathogenesis. Unlike many other bacterial pathogens, M. tuberculosis is genetically secluded, and appears to rely solely on chromosomal mutagenesis to drive its microevolution within the human host. In turn, this implies that a balance between high versus relaxed fidelity mechanisms of DNA metabolism ensures the maintenance of genome integrity, while accommodating the evolutionary imperative to adapt to hostile and fluctuating environments. The inferred relationship between mycobacterial DNA repair and genome dynamics is considered in the light of emerging data from whole-genome sequencing studies of clinical M. tuberculosis isolates which have revealed the potential for considerable heterogeneity within and between different bacterial and host populations.
Collapse
|
41
|
Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 2012; 47:531-55. [PMID: 23046409 DOI: 10.3109/10409238.2012.729562] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
42
|
A histone-like protein of Helicobacter pylori protects DNA from stress damage and aids host colonization. DNA Repair (Amst) 2012; 11:733-40. [PMID: 22776439 DOI: 10.1016/j.dnarep.2012.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
Abstract
Genomic DNA in a bacterial cell is folded into a compact structure called a nucleoid, and nucleoid-associated proteins are responsible for proper assembly of active higher-order genome structures. The human gastric pathogen Helicobacter pylori express a nucleoid-associated protein encoded by the hup gene, which is the homolog to the Escherichia coli histone-like protein HU. An H. pylori hup mutant strain (X47 hup:cat) showed a defect in stationary phase survival. The X47 hup:cat mutant was more sensitive to the DNA damaging agent mitomycin C, and displayed a decreased frequency of DNA recombination, indicating Hup plays a significant role in facilitating DNA recombinational repair. The X47 hup:cat mutant was also sensitive to both oxidative and acid stress, conditions that H. pylori commonly encounters in the host. The hup mutant cells survived significantly (7-fold) less upon exposure to macrophages than the wild type strain. In a mouse infection model, the hup mutant strain displayed a greatly reduced ability to colonize host stomachs. The geometric means of colonization number for the wild type and hup mutant were 6×10(5) and 1.5×10(4)CFU/g stomachs, respectively. Complementation of the hup strain by chromosomal insertion of a functional hup gene restored oxidative stress resistance, DNA transformation frequency, and mouse colonization ability to the wild type level. We directly demonstrated that the purified His-tagged H. pylori Hup protein can protect (in vitro) an H. pylori-derived DNA fragment from oxidative damage.
Collapse
|
43
|
Amundsen SK, Spicer T, Karabulut AC, Londoño LM, Eberhart C, Fernandez Vega V, Bannister TD, Hodder P, Smith GR. Small-molecule inhibitors of bacterial AddAB and RecBCD helicase-nuclease DNA repair enzymes. ACS Chem Biol 2012; 7:879-91. [PMID: 22443934 DOI: 10.1021/cb300018x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.
Collapse
Affiliation(s)
- Susan K. Amundsen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Timothy Spicer
- Scripps
Research Institute Molecular
Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458, United States
| | - Ahmet C. Karabulut
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Luz Marina Londoño
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| | - Christina Eberhart
- Scripps
Research Institute Molecular
Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458, United States
| | - Virneliz Fernandez Vega
- Scripps
Research Institute Molecular
Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458, United States
| | - Thomas D. Bannister
- Scripps Research Institute Department
of Chemistry, Translational Research Institute, Jupiter, Florida 33458, United States
| | - Peter Hodder
- Scripps
Research Institute Molecular
Screening Center, Lead Identification Division, Translational Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Therapeutics, Scripps Florida, Jupiter, Florida 33458, United States
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
98109, United States
| |
Collapse
|
44
|
Talarico S, Whitefield SE, Fero J, Haas R, Salama NR. Regulation of Helicobacter pylori adherence by gene conversion. Mol Microbiol 2012; 84:1050-61. [PMID: 22519812 DOI: 10.1111/j.1365-2958.2012.08073.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic diversification of Helicobacter pylori adhesin genes may allow adaptation of adherence properties to facilitate persistence despite host defences. The sabA gene encodes an adhesin that binds sialyl-Lewis antigens on inflamed gastric tissue. We found variability in the copy number and locus of the sabA gene and the closely related sabB and omp27 genes due to gene conversion among 51 North American paediatric H. pylori strains. We determined that sabB to sabA gene conversion is predominantly the result of intra-genomic recombination and RecA, RecG and AddA influence the rate at which it occurs. Although all clinical strains had at least one sabA gene copy, sabA and sabB were lost due to gene conversion at similar rates in vitro, suggesting host selection to maintain the sabA gene. sabA gene duplication resulted in increased SabA protein production and increased adherence to sialyl-Lewis antigens and mouse gastric tissue. In conclusion, gene conversion is a mechanism for H. pylori to regulate sabA expression level and adherence.
Collapse
Affiliation(s)
- Sarah Talarico
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
45
|
Yahara K, Kawai M, Furuta Y, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Genome-wide survey of mutual homologous recombination in a highly sexual bacterial species. Genome Biol Evol 2012; 4:628-40. [PMID: 22534164 PMCID: PMC3381677 DOI: 10.1093/gbe/evs043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2012] [Indexed: 12/11/2022] Open
Abstract
The nature of a species remains a fundamental and controversial question. The era of genome/metagenome sequencing has intensified the debate in prokaryotes because of extensive horizontal gene transfer. In this study, we conducted a genome-wide survey of outcrossing homologous recombination in the highly sexual bacterial species Helicobacter pylori. We conducted multiple genome alignment and analyzed the entire data set of one-to-one orthologous genes for its global strains. We detected mosaic structures due to repeated recombination events and discordant phylogenies throughout the genomes of this species. Most of these genes including the "core" set of genes and horizontally transferred genes showed at least one recombination event. Taking into account the relationship between the nucleotide diversity and the minimum number of recombination events per nucleotide, we evaluated the recombination rate in every gene. The rate appears constant across the genome, but genes with a particularly high or low recombination rate were detected. Interestingly, genes with high recombination included those for DNA transformation and for basic cellular functions, such as biosynthesis and metabolism. Several highly divergent genes with a high recombination rate included those for host interaction, such as outer membrane proteins and lipopolysaccharide synthesis. These results provide a global picture of genome-wide distribution of outcrossing homologous recombination in a bacterial species for the first time, to our knowledge, and illustrate how a species can be shaped by mutual homologous recombination.
Collapse
Affiliation(s)
- Koji Yahara
- Division of Biostatistics, Graduate School of Medicine, Kurume University, Fukuoka, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Noriko Takahashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Naofumi Handa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Takeshi Tsuru
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaru Yoshida
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Takeshi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z, Vollmer W, Salama NR. Multiple peptidoglycan modification networks modulate Helicobacter pylori's cell shape, motility, and colonization potential. PLoS Pathog 2012; 8:e1002603. [PMID: 22457625 PMCID: PMC3310797 DOI: 10.1371/journal.ppat.1002603] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022] Open
Abstract
Helical cell shape of the gastric pathogen Helicobacter pylori has been suggested to promote virulence through viscosity-dependent enhancement of swimming velocity. However, H. pylori csd1 mutants, which are curved but lack helical twist, show normal velocity in viscous polymer solutions and the reason for their deficiency in stomach colonization has remained unclear. Characterization of new rod shaped mutants identified Csd4, a DL-carboxypeptidase of peptidoglycan (PG) tripeptide monomers and Csd5, a putative scaffolding protein. Morphological and biochemical studies indicated Csd4 tripeptide cleavage and Csd1 crosslinking relaxation modify the PG sacculus through independent networks that coordinately generate helical shape. csd4 mutants show attenuation of stomach colonization, but no change in proinflammatory cytokine induction, despite four-fold higher levels of Nod1-agonist tripeptides in the PG sacculus. Motility analysis of similarly shaped mutants bearing distinct alterations in PG modifications revealed deficits associated with shape, but only in gel-like media and not viscous solutions. As gastric mucus displays viscoelastic gel-like properties, our results suggest enhanced penetration of the mucus barrier underlies the fitness advantage conferred by H. pylori's characteristic shape.
Collapse
Affiliation(s)
- Laura K. Sycuro
- Molecular and Cellular Biology Graduate Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Timna J. Wyckoff
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Science and Mathematics, University of Minnesota, Morris, Minnesota, United States of America
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Petra Born
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
All organisms have pathways that repair the genome, ensuring their survival and that of their progeny. But these pathways also serve to diversify the genome, causing changes at the nucleotide, whole gene, and genome structure levels. Sequencing of bacteria has revealed wide allelic diversity and differences in gene content within the same species, highlighting the importance of understanding pathways of recombination and DNA repair. The human stomach pathogen Helicobacter pylori is an excellent model system for studying these pathways. H. pylori harbors major recombination and repair pathways and is naturally competent, facilitating its ability to diversify its genome. Elucidation of DNA recombination, repair, and diversification programs in this pathogen will reveal connections between these pathways and their importance to infection.
Collapse
Affiliation(s)
- Marion S Dorer
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
48
|
Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression. J Bacteriol 2011; 193:6490-7. [PMID: 21949074 DOI: 10.1128/jb.05646-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a bacterial pathogen colonizing half of the world's human population. It has been implicated in a number of gastric diseases, from asymptomatic gastritis to cancer. It is characterized by an amazing genetic variability that results from high mutation rates and efficient DNA homologous recombination and transformation systems. Here, we report the characterization of H. pylori RecA (HpRecA), a protein shown to be involved in DNA repair, transformation, and mouse colonization. The biochemical characterization of the purified recombinase reveals activities similar to those of Escherichia coli RecA (EcRecA). We show that in H. pylori, HpRecA is present in about 80,000 copies per cell during exponential growth and decreases to about 50,000 copies in stationary phase. The amount of HpRecA remains unchanged after induction of DNA lesions, suggesting that HpRecA is always expressed at a high level in order to repair DNA damage or facilitate recombination. We performed HpRecA localization analysis by adding a Flag tag to the protein, revealing two different patterns of localization. During exponential growth, RecA-Flag presents a diffuse pattern, overlapping with the DAPI (4',6-diamidino-2-phenylindole) staining of DNA, whereas during stationary phase, the protein is present in more defined areas devoid of DAPI staining. These localizations are not affected by inactivation of competence or DNA recombination genes. Neither UV irradiation nor gamma irradiation modified HpRecA localization, suggesting the existence of a constitutive DNA damage adaptation system.
Collapse
|
49
|
Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 2011; 11:104. [PMID: 21575176 PMCID: PMC3120642 DOI: 10.1186/1471-2180-11-104] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/16/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. RESULTS A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target). CONCLUSIONS These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gilbreath JJ, Cody WL, Merrell DS, Hendrixson DR. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol Mol Biol Rev 2011; 75:84-132. [PMID: 21372321 PMCID: PMC3063351 DOI: 10.1128/mmbr.00035-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology.
Collapse
Affiliation(s)
- Jeremy J. Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - William L. Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David R. Hendrixson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|