1
|
Hayashi M, Takaoka C, Higashi K, Kurokawa K, Margolin W, Oshima T, Shiomi D. Septal wall synthesis is sufficient to change ameba-like cells into uniform oval-shaped cells in Escherichia coli L-forms. Commun Biol 2024; 7:1569. [PMID: 39587276 PMCID: PMC11589767 DOI: 10.1038/s42003-024-07279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A cell wall is required to control cell shape and size to maintain growth and division. However, some bacterial species maintain their morphology and size without a cell wall, calling into question the importance of the cell wall to maintain shape and size. It has been very difficult to examine the dispensability of cell wall synthesis in rod-shaped bacteria such as Escherichia coli for maintenance of their shape and size because they lyse without cell walls under normal culture conditions. Here, we show that wall-less E. coli L-form cells, which have a heterogeneous cell morphology, can be converted to a mostly uniform oval shape solely by FtsZ-dependent division, even in the absence of cylindrical cell wall synthesis. This FtsZ-dependent control of cell shape and size in the absence of a cell wall requires at least either the Min or nucleoid occlusion systems for positioning FtsZ at mid cell division sites.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Rikkyo University, Tokyo, Japan
- Gakushuin University, Tokyo, Japan
| | | | | | | | | | - Taku Oshima
- Toyama Prefectural University, Toyama, Japan.
| | | |
Collapse
|
2
|
Pinho MG, Foster SJ. Cell Growth and Division of Staphylococcus aureus. Annu Rev Microbiol 2024; 78:293-310. [PMID: 39565951 DOI: 10.1146/annurev-micro-041222-125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
Collapse
Affiliation(s)
- Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal;
| | - Simon J Foster
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom;
| |
Collapse
|
3
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Updegrove TB, Ferreira CN, Ibrahim AM, Tai CH, Kruhlak MJ, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. PcdA promotes orthogonal division plane selection in Staphylococcus aureus. Nat Microbiol 2024; 9:2997-3012. [PMID: 39468247 DOI: 10.1038/s41564-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/30/2024] [Indexed: 10/30/2024]
Abstract
The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor. Molecular biology and imaging approaches revealed non-orthogonal division plane selection for pcdA mutant bacteria. PcdA is a structurally and functionally altered member of the McrB AAA+ NTPase family, which are often found as restriction enzyme subunits. PcdA interacts with the tubulin-like divisome component, FtsZ, and the structural protein, DivIVA; it also localizes to future cell division sites. PcdA multimerization, localization and function are NTPase activity-dependent. We propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Although pcdA deletion did not affect S. aureus growth in several laboratory conditions, its clustered growth pattern was disrupted, sensitivity to cell-wall-targeting antibiotics increased and virulence in mice decreased. We propose that the characteristic clustered growth pattern of S. aureus, which emerges from dividing in alternating orthogonal division planes, might protect the bacterium from host defences.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Amany M Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique M Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in Staphylococcus aureus. Nat Microbiol 2024; 9:801-813. [PMID: 38443581 PMCID: PMC10914604 DOI: 10.1038/s41564-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for antibiotic-resistant infections. To identify vulnerabilities in cell envelope biogenesis that may overcome resistance, we enriched for S. aureus transposon mutants with defects in cell surface integrity or cell division by sorting for cells that stain with propidium iodide or have increased light-scattering properties, respectively. Transposon sequencing of the sorted populations identified more than 20 previously uncharacterized factors impacting these processes. Cells inactivated for one of these proteins, factor preventing extra Z-rings (FacZ, SAOUHSC_01855), showed aberrant membrane invaginations and multiple FtsZ cytokinetic rings. These phenotypes were suppressed in mutants lacking the conserved cell-division protein GpsB, which forms an interaction hub bridging envelope biogenesis factors with the cytokinetic ring in S. aureus. FacZ was found to interact directly with GpsB in vitro and in vivo. We therefore propose that FacZ is an envelope biogenesis factor that antagonizes GpsB function to prevent aberrant division events in S. aureus.
Collapse
Affiliation(s)
- Thomas M Bartlett
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler A Sisley
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aaron Mychack
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Richard W Baker
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z Rudner
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Thomas G Bernhardt
- Department of Microbiology Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, Tai CH, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556088. [PMID: 37886572 PMCID: PMC10602043 DOI: 10.1101/2023.09.03.556088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Brandon R. Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Colby N. Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Dominique M. Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
6
|
Sutton JAF, Cooke M, Tinajero-Trejo M, Wacnik K, Salamaga B, Portman-Ross C, Lund VA, Hobbs JK, Foster SJ. The roles of GpsB and DivIVA in Staphylococcus aureus growth and division. Front Microbiol 2023; 14:1241249. [PMID: 37711690 PMCID: PMC10498921 DOI: 10.3389/fmicb.2023.1241249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
The spheroid bacterium Staphylococcus aureus is often used as a model of morphogenesis due to its apparently simple cell cycle. S. aureus has many cell division proteins that are conserved across bacteria alluding to common functions. However, despite intensive study, we still do not know the roles of many of these components. Here, we have examined the functions of the paralogues DivIVA and GpsB in the S. aureus cell cycle. Cells lacking gpsB display a more spherical phenotype than the wild-type cells, which is associated with a decrease in peripheral cell wall peptidoglycan synthesis. This correlates with increased localization of penicillin-binding proteins at the developing septum, notably PBPs 2 and 3. Our results highlight the role of GpsB as an apparent regulator of cell morphogenesis in S. aureus.
Collapse
Affiliation(s)
- Joshua A. F. Sutton
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Mark Cooke
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mariana Tinajero-Trejo
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Wacnik
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Bartłomiej Salamaga
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Callum Portman-Ross
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Victoria A. Lund
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Lee J, Cox JV, Ouellette SP. The Unique N-Terminal Domain of Chlamydial Bactofilin Mediates Its Membrane Localization and Ring-Forming Properties. J Bacteriol 2023; 205:e0009223. [PMID: 37191556 PMCID: PMC10294636 DOI: 10.1128/jb.00092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen. In evolving to the intracellular niche, Chlamydia has reduced its genome size compared to other bacteria and, as a consequence, has a number of unique features. For example, Chlamydia engages the actin-like protein MreB, rather than the tubulin-like protein FtsZ, to direct peptidoglycan (PG) synthesis exclusively at the septum of cells undergoing polarized cell division. Interestingly, Chlamydia possesses another cytoskeletal element-a bactofilin ortholog, BacA. Recently, we reported BacA is a cell size-determining protein that forms dynamic membrane-associated ring structures in Chlamydia that have not been observed in other bacteria with bactofilins. Chlamydial BacA possesses a unique N-terminal domain, and we hypothesized this domain imparts the membrane-binding and ring-forming properties of BacA. We show that different truncations of the N terminus result in distinct phenotypes: removal of the first 50 amino acids (ΔN50) results in large ring structures at the membrane whereas removal of the first 81 amino acids (ΔN81) results in an inability to form filaments and rings and a loss of membrane association. Overexpression of the ΔN50 isoform altered cell size, similar to loss of BacA, suggesting that the dynamic properties of BacA are essential for the regulation of cell size. We further show that the region from amino acid 51 to 81 imparts membrane association as appending it to green fluorescent protein (GFP) resulted in the relocalization of GFP from the cytosol to the membrane. Overall, our findings suggest two important functions for the unique N-terminal domain of BacA and help explain its role as a cell size determinant. IMPORTANCE Bacteria use a variety of filament-forming cytoskeletal proteins to regulate and control various aspects of their physiology. For example, the tubulin-like FtsZ recruits division proteins to the septum whereas the actin-like MreB recruits peptidoglycan (PG) synthases to generate the cell wall in rod-shaped bacteria. Recently, a third class of cytoskeletal protein has been identified in bacteria-bactofilins. These proteins have been primarily linked to spatially localized PG synthesis. Interestingly, Chlamydia, an obligate intracellular bacterium, does not have PG in its cell wall and yet possesses a bactofilin ortholog. In this study, we characterize a unique N-terminal domain of chlamydial bactofilin and show that this domain controls two important functions that affect cell size: its ring-forming and membrane-associating properties.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Bartlett TM, Sisley TA, Mychack A, Walker S, Baker RW, Rudner DZ, Bernhardt TG. Identification of FacZ as a division site placement factor in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538170. [PMID: 37162900 PMCID: PMC10168275 DOI: 10.1101/2023.04.24.538170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Staphylococcus aureus is a gram-positive pathogen responsible for life-threatening infections that are difficult to treat due to antibiotic resistance. The identification of new vulnerabilities in essential processes like cell envelope biogenesis represents a promising avenue towards the development of anti-staphylococcal therapies that overcome resistance. To this end, we performed cell sorting-based enrichments for S. aureus mutants with defects in envelope integrity and cell division. We identified many known envelope biogenesis factors as well as a large collection of new factors with roles in this process. Mutants inactivated for one of the hits, the uncharacterized SAOUHSC_01855 protein, displayed aberrant membrane invaginations and multiple FtsZ cytokinetic ring structures. This factor is broadly distributed among Firmicutes, and its inactivation in B. subtilis similarly caused division and membrane defects. We therefore renamed the protein FacZ (Firmicute-associated coordinator of Z-rings). In S. aureus, inactivation of the conserved cell division protein GpsB suppressed the division and morphological defects of facZ mutants. Additionally, FacZ and GpsB were found to interact directly in a purified system. Thus, FacZ is a novel antagonist of GpsB function with a conserved role in controlling division site placement in S. aureus and other Firmicutes.
Collapse
Affiliation(s)
- Thomas M. Bartlett
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tyler A. Sisley
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Mychack
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard W. Baker
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Z. Rudner
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
10
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
11
|
Ersoy SC, Gonçalves B, Cavaco G, Manna AC, Sobral RG, Nast CC, Proctor RA, Chambers HF, Cheung A, Bayer AS. Influence of Sodium Bicarbonate on Wall Teichoic Acid Synthesis and β-Lactam Sensitization in NaHCO 3-Responsive and Nonresponsive Methicillin-Resistant Staphylococcus aureus. Microbiol Spectr 2022; 10:e0342222. [PMID: 36377886 PMCID: PMC9769754 DOI: 10.1128/spectrum.03422-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains pose major treatment challenges due to their innate resistance to most β-lactams under standard in vitro antimicrobial susceptibility testing conditions. A novel phenotype among MRSA, termed "NaHCO3 responsiveness," where certain strains display increased susceptibility to β-lactams in the presence of NaHCO3, has been identified among a relatively large proportion of MRSA isolates. One underlying mechanism of NaHCO3 responsiveness appears to be related to decreased expression and altered functionality of several genes and proteins involved in cell wall synthesis and maturation. Here, we studied the impact of NaHCO3 on wall teichoic acid (WTA) synthesis, a process intimately linked to peptidoglycan (PG) synthesis and functionality, in NaHCO3-responsive versus -nonresponsive MRSA isolates. NaHCO3 sensitized responsive MRSA strains to cefuroxime, a specific penicillin-binding protein 2 (PBP2)-inhibitory β-lactam known to synergize with early WTA synthesis inhibitors (e.g., ticlopidine). Combining cefuroxime with ticlopidine with or without NaHCO3 suggested that these latter two agents target the same step in WTA synthesis. Further, NaHCO3 decreased the abundance and molecular weight of WTA only in responsive strains. Additionally, NaHCO3 stimulated increased autolysis and aberrant cell division in responsive strains, two phenotypes associated with disruption of WTA synthesis. Of note, studies of key genes involved in the WTA biosynthetic pathway (e.g., tarO, tarG, dltA, and fmtA) indicated that the inhibitory impact of NaHCO3 on WTA biosynthesis in responsive strains likely occurred posttranslationally. IMPORTANCE MRSA is generally viewed as resistant to standard β-lactam antibiotics. However, a NaHCO3-responsive phenotype is observed in a substantial proportion of clinical MRSA strains in vitro, i.e., isolates which demonstrate enhanced susceptibility to standard β-lactam antibiotics (e.g., oxacillin) in the presence of NaHCO3. This phenotype correlates with increased MRSA clearance in vivo by standard β-lactam antibiotics, suggesting that patients with infections caused by such MRSA strains might be amenable to treatment with β-lactams. The mechanism(s) behind this phenotype is not fully understood but appears to involve mecA-PBP2a production and maturation axes. Our study adds significantly to this body of knowledge in terms of additional mechanistic targets of NaHCO3 in selected MRSA strains. This investigation demonstrates that NaHCO3 has direct impacts on S. aureus wall teichoic acid biosynthesis in NaHCO3-responsive MRSA. These findings provide an additional target for new agents being designed to synergistically kill MRSA using β-lactam antibiotics.
Collapse
Affiliation(s)
| | - Barbara Gonçalves
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gonçalo Cavaco
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Adhar C. Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rita G. Sobral
- Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Nova School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Cynthia C. Nast
- Cedars-Sinai Medical Center, Los Angeles, California, USA
- Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arnold S. Bayer
- The Lundquist Institute, Torrance, California, USA
- Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids. J Mol Biol 2022; 434:167770. [PMID: 35907571 DOI: 10.1016/j.jmb.2022.167770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022]
Abstract
The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.
Collapse
|
13
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
14
|
RefZ and Noc Act Synthetically to Prevent Aberrant Divisions during Bacillus subtilis Sporulation. J Bacteriol 2022; 204:e0002322. [PMID: 35506695 DOI: 10.1128/jb.00023-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation, Bacillus subtilis undergoes an atypical cell division that requires overriding mechanisms that protect chromosomes from damage and ensure inheritance by daughter cells. Instead of assembling between segregated chromosomes at midcell, the FtsZ-ring coalesces polarly, directing division over one chromosome. The DNA-binding protein RefZ facilitates the timely assembly of polar Z-rings and partially defines the region of chromosome initially captured in the forespore. RefZ binds to motifs (RBMs) located proximal to the origin of replication (oriC). Although refZ and the RBMs are conserved across the Bacillus genus, a refZ deletion mutant sporulates with wild-type efficiency, so the functional significance of RefZ during sporulation remains unclear. To further investigate RefZ function, we performed a candidate-based screen for synthetic sporulation defects by combining ΔrefZ with deletions of genes previously implicated in FtsZ regulation and/or chromosome capture. Combining ΔrefZ with deletions of ezrA, sepF, parA, or minD did not detectably affect sporulation. In contrast, a ΔrefZ Δnoc mutant exhibited a sporulation defect, revealing a genetic interaction between RefZ and Noc. Using reporters of sporulation progression, we determined the ΔrefZ Δnoc mutant exhibited sporulation delays after Spo0A activation but prior to late sporulation, with a subset of cells failing to divide polarly or activate the first forespore-specific sigma factor, SigF. The ΔrefZ Δnoc mutant also exhibited extensive dysregulation of cell division, producing cells with extra, misplaced, or otherwise aberrant septa. Our results reveal a previously unknown epistatic relationship that suggests refZ and noc contribute synthetically to regulating cell division and supporting spore development. IMPORTANCE The DNA-binding protein RefZ and its binding sites (RBMs) are conserved in sequence and location on the chromosome across the Bacillus genus and contribute to the timing of polar FtsZ-ring assembly during sporulation. Only a small number of noncoding and nonregulatory DNA motifs are known to be conserved in chromosomal position in bacteria, suggesting there is strong selective pressure for their maintenance; however, a refZ deletion mutant sporulates efficiently, providing no clues as to their functional significance. Here, we find that in the absence of the nucleoid occlusion factor Noc, deletion of refZ results in a sporulation defect characterized by developmental delays and aberrant divisions.
Collapse
|
15
|
Abstract
Cell division and cell wall synthesis in staphylococci need to be precisely coordinated and controlled to allow the cell to multiply while maintaining its nearly spherical shape. The mechanisms ensuring correct placement of the division plane and synthesis of new cell wall have been studied intensively. However, hitherto unknown factors and proteins are likely to play key roles in this complex interplay. Here, we identified and investigated a protein with a major influence on cell morphology in Staphylococcus aureus. The protein, named SmdA (for staphylococcal morphology determinant A), is a membrane protein with septum-enriched localization. By CRISPRi knockdown and overexpression combined with different microscopy techniques, we demonstrated that proper levels of SmdA were necessary for cell division, including septum formation and cell splitting. We also identified conserved residues in SmdA that were critical for its functionality. Pulldown and bacterial two-hybrid interaction experiments showed that SmdA interacted with several known cell division and cell wall synthesis proteins, including penicillin-binding proteins (PBPs) and EzrA. Notably, SmdA also affected susceptibility to cell wall targeting antibiotics, particularly in methicillin-resistant S. aureus (MRSA). Together, our results showed that S. aureus was dependent on balanced amounts of membrane attached SmdA to carry out proper cell division.
Collapse
|
16
|
Sorzabal-Bellido I, Barbieri L, Beckett AJ, Prior IA, Susarrey-Arce A, Tiggelaar RM, Fothergill J, Raval R, Diaz Fernandez YA. Effect of Local Topography on Cell Division of Staphylococcus spp. NANOMATERIALS 2022; 12:nano12040683. [PMID: 35215010 PMCID: PMC8877970 DOI: 10.3390/nano12040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.
Collapse
Affiliation(s)
- Ioritz Sorzabal-Bellido
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
| | - Luca Barbieri
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK;
| | - Alison J. Beckett
- Biomedical Electron Microscopy Unit, University of Liverpool, Liverpool L69 3BX, UK; (A.J.B.); (I.A.P.)
| | - Ian A. Prior
- Biomedical Electron Microscopy Unit, University of Liverpool, Liverpool L69 3BX, UK; (A.J.B.); (I.A.P.)
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Roald M. Tiggelaar
- NanoLab Cleanroom, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands;
| | - Joanne Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK;
| | - Rasmita Raval
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Correspondence: (R.R.); (Y.A.D.F.)
| | - Yuri A. Diaz Fernandez
- Surface Science Research Centre and Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK; (I.S.-B.); (L.B.)
- Correspondence: (R.R.); (Y.A.D.F.)
| |
Collapse
|
17
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 DOI: 10.1101/2021.02.11.430593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
18
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 PMCID: PMC8429893 DOI: 10.1016/j.molcel.2021.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity. CTP is required for Noc to form a higher-order nucleoprotein complex on DNA CTP binding switches DNA-entrapped Noc to a membrane-active state CTP hydrolysis likely reverses the association between Noc-DNA and the membrane The membrane-targeting helix adopts an autoinhibitory conformation in apo-Noc
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
19
|
Abstract
In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.
Collapse
|
20
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
21
|
Singhi D, Srivastava P. How similar or dissimilar cells are produced by bacterial cell division? Biochimie 2020; 176:71-84. [DOI: 10.1016/j.biochi.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
22
|
Reassessment of the distinctive geometry of Staphylococcus aureus cell division. Nat Commun 2020; 11:4097. [PMID: 32796861 PMCID: PMC7427965 DOI: 10.1038/s41467-020-17940-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus is generally thought to divide in three alternating orthogonal planes over three consecutive division cycles. Although this mode of division was proposed over four decades ago, the molecular mechanism that ensures this geometry of division has remained elusive. Here we show, for three different strains, that S. aureus cells do not regularly divide in three alternating perpendicular planes as previously thought. Imaging of the divisome shows that a plane of division is always perpendicular to the previous one, avoiding bisection of the nucleoid, which segregates along an axis parallel to the closing septum. However, one out of the multiple planes perpendicular to the septum which divide the cell in two identical halves can be used in daughter cells, irrespective of its orientation in relation to the penultimate division plane. Therefore, division in three orthogonal planes is not the rule in S. aureus.
Collapse
|
23
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
24
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Chan H, Söderström B, Skoglund U. Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus. Microbiologyopen 2020; 9:e999. [PMID: 31990138 PMCID: PMC7142367 DOI: 10.1002/mbo3.999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial chromosome segregation is an essential cellular process that is particularly elusive in spherical bacteria such as the opportunistic human pathogen Staphylococcus aureus. In this study, we examined the functional significance of a ParB homologue, Spo0J, in staphylococcal chromosome segregation and investigated the role of the structural maintenance of chromosomes (SMC) bacterial condensin in this process. We show that neither spo0J nor smc is essential in S. aureus; however, their absence causes abnormal chromosome segregation. We demonstrate that formation of complexes containing Spo0J and SMC is required for efficient S. aureus chromosome segregation and that SMC localization is dependent on Spo0J. Furthermore, we found that cell division and cell cycle progression are unaffected by the absence of spo0J or smc. Our results verify the role of Spo0J and SMC in ensuring accurate staphylococcal chromosome segregation and also imply functional redundancy or the involvement of additional mechanisms that might contribute to faithful chromosome inheritance.
Collapse
Affiliation(s)
- Helena Chan
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
26
|
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status. J Bacteriol 2020; 202:JB.00408-19. [PMID: 31548275 DOI: 10.1128/jb.00408-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.
Collapse
|
27
|
Floc'h K, Lacroix F, Servant P, Wong YS, Kleman JP, Bourgeois D, Timmins J. Cell morphology and nucleoid dynamics in dividing Deinococcus radiodurans. Nat Commun 2019; 10:3815. [PMID: 31444361 PMCID: PMC6707255 DOI: 10.1038/s41467-019-11725-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.
Collapse
Affiliation(s)
- Kevin Floc'h
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, DPM, 38000, Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.
| |
Collapse
|
28
|
Stamsås GA, Myrbråten IS, Straume D, Salehian Z, Veening JW, Håvarstein LS, Kjos M. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol Microbiol 2018; 109:615-632. [PMID: 29884993 DOI: 10.1111/mmi.13999] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus needs to control the position and timing of cell division and cell wall synthesis to maintain its spherical shape. We identified two membrane proteins, named CozEa and CozEb, which together are important for proper cell division in S. aureus. CozEa and CozEb are homologs of the cell elongation regulator CozESpn of Streptococcus pneumoniae. While cozEa and cozEb were not essential individually, the ΔcozEaΔcozEb double mutant was lethal. To study the functions of cozEa and cozEb, we constructed a CRISPR interference (CRISPRi) system for S. aureus, allowing transcriptional knockdown of essential genes. CRISPRi knockdown of cozEa in the ΔcozEb strain (and vice versa) causes cell morphological defects and aberrant nucleoid staining, showing that cozEa and cozEb have overlapping functions and are important for normal cell division. We found that CozEa and CozEb interact with and possibly influence localization of the cell division protein EzrA. Furthermore, the CozE-EzrA interaction is conserved in S. pneumoniae, and cell division is mislocalized in cozESpn -depleted S. pneumoniae cells. Together, our results show that CozE proteins mediate control of cell division in S. aureus and S. pneumoniae, likely via interactions with key cell division proteins such as EzrA.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ine Storaker Myrbråten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
29
|
Bottomley AL, Liew ATF, Kusuma KD, Peterson E, Seidel L, Foster SJ, Harry EJ. Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus. Front Microbiol 2017; 8:1575. [PMID: 28878745 PMCID: PMC5572376 DOI: 10.3389/fmicb.2017.01575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/03/2017] [Indexed: 12/03/2022] Open
Abstract
Productive bacterial cell division and survival of progeny requires tight coordination between chromosome segregation and cell division to ensure equal partitioning of DNA. Unlike rod-shaped bacteria that undergo division in one plane, the coccoid human pathogen Staphylococcus aureus divides in three successive orthogonal planes, which requires a different spatial control compared to rod-shaped cells. To gain a better understanding of how this coordination between chromosome segregation and cell division is regulated in S. aureus, we investigated proteins that associate with FtsZ and the divisome. We found that DnaK, a well-known chaperone, interacts with FtsZ, EzrA and DivIVA, and is required for DivIVA stability. Unlike in several rod shaped organisms, DivIVA in S. aureus associates with several components of the divisome, as well as the chromosome segregation protein, SMC. This data, combined with phenotypic analysis of mutants, suggests a novel role for S. aureus DivIVA in ensuring cell division and chromosome segregation are coordinated.
Collapse
Affiliation(s)
- Amy L Bottomley
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Andrew T F Liew
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Kennardy D Kusuma
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Elizabeth Peterson
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Lisa Seidel
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of SheffieldSheffield, United Kingdom
| | - Elizabeth J Harry
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia
| |
Collapse
|
30
|
Pang T, Wang X, Lim HC, Bernhardt TG, Rudner DZ. The nucleoid occlusion factor Noc controls DNA replication initiation in Staphylococcus aureus. PLoS Genet 2017; 13:e1006908. [PMID: 28723932 PMCID: PMC5540599 DOI: 10.1371/journal.pgen.1006908] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/02/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
Successive division events in the spherically shaped bacterium Staphylococcus aureus are oriented in three alternating perpendicular planes. The mechanisms that underlie this relatively unique pattern of division and coordinate it with chromosome segregation remain largely unknown. Thus far, the only known spatial regulator of division in this organism is the nucleoid occlusion protein Noc that inhibits assembly of the cytokinetic ring over the chromosome. However, Noc is not essential in S. aureus, indicating that additional regulators are likely to exist. To search for these factors, we screened for mutants that are synthetic lethal with Noc inactivation. Our characterization of these mutants led to the discovery that S. aureus Noc also controls the initiation of DNA replication. We show that cells lacking Noc over-initiate and mutations in the initiator gene dnaA suppress this defect. Importantly, these dnaA mutations also partially suppress the division problems associated with Δnoc. Reciprocally, we show that over-expression of DnaA enhances the over-initiation and cell division phenotypes of the Δnoc mutant. Thus, a single factor both blocks cell division over chromosomes and helps to ensure that new rounds of DNA replication are not initiated prematurely. This degree of economy in coordinating key cell biological processes has not been observed in rod-shaped bacteria and may reflect the challenges posed by the reduced cell volume and complicated division pattern of this spherical pathogen.
Collapse
Affiliation(s)
- Ting Pang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hoong Chuin Lim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G. Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DZR); (TGB)
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DZR); (TGB)
| |
Collapse
|
31
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|
32
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160417. [PMID: 28386413 PMCID: PMC5367290 DOI: 10.1098/rsos.160417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/23/2017] [Indexed: 05/24/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
|
33
|
Gangan MS, Athale CA. Threshold effect of growth rate on population variability of Escherichia coli cell lengths. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28386413 DOI: 10.5061/dryad.2bs69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and 'mother machine'-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division.
Collapse
Affiliation(s)
- Manasi S Gangan
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| | - Chaitanya A Athale
- Division of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr Homi Bhabha Road, Pashan, Pune 411008 , India
| |
Collapse
|
34
|
Abstract
In bacteria and archaea, the most widespread cell division system is based on the tubulin homologue FtsZ protein, whose filaments form the cytokinetic Z-ring. FtsZ filaments are tethered to the membrane by anchors such as FtsA and SepF and are regulated by accessory proteins. One such set of proteins is responsible for Z-ring's spatiotemporal regulation, essential for the production of two equal-sized daughter cells. Here, we describe how our still partial understanding of the FtsZ-based cell division process has been progressed by visualising near-atomic structures of Z-rings and complexes that control Z-ring positioning in cells, most notably the MinCDE and Noc systems that act by negatively regulating FtsZ filaments. We summarise available data and how they inform mechanistic models for the cell division process.
Collapse
|
35
|
Schumacher MA. Bacterial Nucleoid Occlusion: Multiple Mechanisms for Preventing Chromosome Bisection During Cell Division. Subcell Biochem 2017; 84:267-298. [PMID: 28500529 DOI: 10.1007/978-3-319-53047-5_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In most bacteria cell division is driven by the prokaryotic tubulin homolog, FtsZ, which forms the cytokinetic Z ring. Cell survival demands both the spatial and temporal accuracy of this process to ensure that equal progeny are produced with intact genomes. While mechanisms preventing septum formation at the cell poles have been known for decades, the means by which the bacterial nucleoid is spared from bisection during cell division, called nucleoid exclusion (NO), have only recently been deduced. The NO theory was originally posited decades ago based on the key observation that the cell division machinery appeared to be inhibited from forming near the bacterial nucleoid. However, what might drive the NO process was unclear. Within the last 10 years specific proteins have been identified as important mediators of NO. Arguably the best studied NO mechanisms are those employed by the Escherichia coli SlmA and Bacillus subtilis Noc proteins. Both proteins bind specific DNA sequences within selected chromosomal regions to act as timing devices. However, Noc and SlmA contain completely different structural folds and utilize distinct NO mechanisms. Recent studies have identified additional processes and factors that participate in preventing nucleoid septation during cell division. These combined data show multiple levels of redundancy as well as a striking diversity of mechanisms have evolved to protect cells against catastrophic bisection of the nucleoid. Here we discuss these recent findings with particular emphasis on what is known about the molecular underpinnings of specific NO machinery and processes.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, 243 Nanaline H. Duke, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Veiga H, G Pinho M. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. Mol Microbiol 2016; 103:504-517. [PMID: 27886417 DOI: 10.1111/mmi.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Faithful coordination between bacterial cell division and chromosome segregation in rod-shaped bacteria, such as Escherichia coli and Bacillus subtilis, is dependent on the DNA translocase activity of FtsK/SpoIIIE proteins, which move DNA away from the division site before cytokinesis is completed. However, the role of these proteins in chromosome partitioning has not been well studied in spherical bacteria. Here, it was shown that the two Staphylococcus aureus FtsK/SpoIIIE homologues, SpoIIIE and FtsK, operate in independent pathways to ensure correct chromosome management during cell division. SpoIIIE forms foci at the centre of the closing septum in at least 50% of the cells that are close to complete septum synthesis. FtsK is a multifunctional septal protein with a C-terminal DNA translocase domain that is not required for correct chromosome management in the presence of SpoIIIE. However, lack of both SpoIIIE and FtsK causes severe nucleoid segregation and morphological defects, showing that the two proteins have partially redundant roles in S. aureus.
Collapse
Affiliation(s)
- Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
37
|
Abstract
A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZG193D allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZG193D filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci. The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.
Collapse
|
38
|
Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. Semin Cell Dev Biol 2016; 53:2-9. [DOI: 10.1016/j.semcdb.2015.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
|
39
|
A. Elnakady Y, Chatterjee I, Bischoff M, Rohde M, Josten M, Sahl HG, Herrmann M, Müller R. Investigations to the Antibacterial Mechanism of Action of Kendomycin. PLoS One 2016; 11:e0146165. [PMID: 26795276 PMCID: PMC4721675 DOI: 10.1371/journal.pone.0146165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 12/14/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose The emergence of bacteria that are resistant to many currently used drugs emphasizes the need to discover and develop new antibiotics that are effective against such multi-resistant strains. Kendomycin is a novel polyketide that has a unique quinone methide ansa structure and various biological properties. This compound exhibits strong antibacterial activity against Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the promise of kendomycinin in several therapeutic areas, its mode of action has yet to be identified. Methods In this study, we used a multidisciplinary approach to gain insight into the antibacterial mechanism of this compound. Results The antibacterial activity of kendomycin appears to be bacteriostatic rather than bactericidal. Kendomycin inhibited the growth of the MRSA strain COL at a low concentration (MIC of 5 μg/mL). Proteomic analysis and gene transcription profiling of kendomycin-treated cells indicated that this compound affected the regulation of numerous proteins and genes involved in central metabolic pathways, such as the tricarboxylic acid (TCA) cycle (SdhA) and gluconeogenesis (PckA and GapB), cell wall biosynthesis and cell division (FtsA, FtsZ, and MurAA), capsule production (Cap5A and Cap5C), bacterial programmed cell death (LrgA and CidA), the cellular stress response (ClpB, ClpC, ClpP, GroEL, DnaK, and GrpE), and oxidative stress (AhpC and KatA). Electron microscopy revealed that kendomycin strongly affected septum formation during cell division. Most kendomycin-treated cells displayed incomplete septa with abnormal morphology. Conclusions Kendomycin might directly or indirectly affect the cell division machinery, protein stability, and programmed cell death in S. aureus. Additional studies are still needed to obtain deeper insight into the mode of action of kendomycin.
Collapse
Affiliation(s)
- Yasser A. Elnakady
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- Faculty of Science, Zoology Department, King Saud University, Riyadh, Saudi Arabia
| | - Indranil Chatterjee
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Manfred Rohde
- Department of Medical Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Michaele Josten
- Department of Medical Microbiology, Bonn University, Bonn, Germany
| | - Hans-Georg Sahl
- Department of Medical Microbiology, Bonn University, Bonn, Germany
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
40
|
Adams DW, Wu LJ, Errington J. Cell cycle regulation by the bacterial nucleoid. Curr Opin Microbiol 2015; 22:94-101. [PMID: 25460802 PMCID: PMC4726725 DOI: 10.1016/j.mib.2014.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
Nucleoid occlusion prevents cell division over the bacterial chromosome. Nucleoid occlusion factors identified in B. subtilis, E. coli and S. aureus. Noc and SlmA are sequence specific DNA-binding proteins. They both act as spatial and temporal regulators of cell division. Using some basic general principles bacteria employ diverse regulatory mechanisms.
Division site selection presents a fundamental challenge to all organisms. Bacterial cells are small and the chromosome (nucleoid) often fills most of the cell volume. Thus, in order to maximise fitness and avoid damaging the genetic material, cell division must be tightly co-ordinated with chromosome replication and segregation. To achieve this, bacteria employ a number of different mechanisms to regulate division site selection. One such mechanism, termed nucleoid occlusion, allows the nucleoid to protect itself by acting as a template for nucleoid occlusion factors, which prevent Z-ring assembly over the DNA. These factors are sequence-specific DNA-binding proteins that exploit the precise organisation of the nucleoid, allowing them to act as both spatial and temporal regulators of bacterial cell division. The identification of proteins responsible for this process has provided a molecular understanding of nucleoid occlusion but it has also prompted the realisation that substantial levels of redundancy exist between the diverse systems that bacteria employ to ensure that division occurs in the right place, at the right time.
Collapse
Affiliation(s)
- David William Adams
- Centre for Bacterial Cell Biology, Baddiley-Clark Building, Medical School, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | | | | |
Collapse
|
41
|
Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 2015; 6:8055. [PMID: 26278781 PMCID: PMC4557339 DOI: 10.1038/ncomms9055] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. Staphylococci are spherical bacteria that divide in sequential orthogonal planes. Here, the authors use super-resolution microscopy to show that staphylococcal cells elongate before dividing, and that the division septum generates less than one hemisphere of each daughter cell, generating asymmetry.
Collapse
Affiliation(s)
- João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro B Fernandes
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Andreia C Tavares
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Maria T Ferreira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Erkin Kuru
- 1] Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, USA [2] Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
42
|
Rowlett VW, Margolin W. The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 2015; 6:478. [PMID: 26029202 PMCID: PMC4429545 DOI: 10.3389/fmicb.2015.00478] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Rod-shaped bacteria such as E. coli have mechanisms to position their cell division plane at the precise center of the cell, to ensure that the daughter cells are equal in size. The two main mechanisms are the Min system and nucleoid occlusion (NO), both of which work by inhibiting assembly of FtsZ, the tubulin-like scaffold that forms the cytokinetic Z ring. Whereas NO prevents Z rings from constricting over unsegregated nucleoids, the Min system is nucleoid-independent and even functions in cells lacking nucleoids and thus NO. The Min proteins of E. coli and B. subtilis form bipolar gradients that inhibit Z ring formation most at the cell poles and least at the nascent division plane. This article will outline the molecular mechanisms behind Min function in E. coli and B. subtilis, and discuss distinct Z ring positioning systems in other bacterial species.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston , Houston, TX, USA
| |
Collapse
|
43
|
Abstract
To proliferate efficiently, cells must co-ordinate division with chromosome segregation. In Bacillus subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences (NBSs) scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Here, we demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix, which is necessary for function. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of NBS DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. Indeed, Noc production in a heterologous system is sufficient for recruitment of chromosomal DNA to the membrane. Our results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.
Collapse
Affiliation(s)
- David William Adams
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
44
|
Abstract
Cardiolipin (CL) is an anionic phospholipid with a characteristically large curvature and is of growing interest for two primary reasons: (i) it binds to and regulates many peripheral membrane proteins in bacteria and mitochondria, and (ii) it is distributed asymmetrically in rod-shaped cells and is concentrated at the poles and division septum. Despite the growing number of studies of CL, its function in bacteria remains unknown. 10-N-Nonyl acridine orange (NAO) is widely used to image CL in bacteria and mitochondria, as its interaction with CL is reported to produce a characteristic red-shifted fluorescence emission. Using a suite of biophysical techniques, we quantitatively studied the interaction of NAO with anionic phospholipids under physiologically relevant conditions. We found that NAO is promiscuous in its binding and has photophysical properties that are largely insensitive to the structure of diverse anionic phospholipids to which it binds. Being unable to rely solely on NAO to characterize the localization of CL in Escherichia coli cells, we instead used quantitative fluorescence microscopy, mass spectrometry, and mutants deficient in specific classes of anionic phospholipids. We found CL and phosphatidylglycerol (PG) concentrated in the polar regions of E. coli cell membranes; depletion of CL by genetic approaches increased the concentration of PG at the poles. Previous studies suggested that some CL-binding proteins also have a high affinity for PG and display a pattern of cellular localization that is not influenced by depletion of CL. Framed within the context of these previous experiments, our results suggest that PG may play an essential role in bacterial physiology by maintaining the anionic character of polar membranes.
Collapse
|
45
|
Kjos M, Veening JW. Tracking of chromosome dynamics in liveStreptococcus pneumoniaereveals that transcription promotes chromosome segregation. Mol Microbiol 2014; 91:1088-105. [DOI: 10.1111/mmi.12517] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Morten Kjos
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group; Groningen Biomolecular Sciences and Biotechnology Institute; Centre for Synthetic Biology; University of Groningen; Nijenborgh 7 Groningen 9747 AG The Netherlands
| |
Collapse
|
46
|
Monahan LG, Liew ATF, Bottomley AL, Harry EJ. Division site positioning in bacteria: one size does not fit all. Front Microbiol 2014; 5:19. [PMID: 24550892 PMCID: PMC3910319 DOI: 10.3389/fmicb.2014.00019] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 11/13/2022] Open
Abstract
Spatial regulation of cell division in bacteria has been a focus of research for decades. It has been well studied in two model rod-shaped organisms, Escherichia coli and Bacillus subtilis, with the general belief that division site positioning occurs as a result of the combination of two negative regulatory systems, Min and nucleoid occlusion. These systems influence division by preventing the cytokinetic Z ring from forming anywhere other than midcell. However, evidence is accumulating for the existence of additional mechanisms that are involved in controlling Z ring positioning both in these organisms and in several other bacteria. In some cases the decision of where to divide is solved by variations on a common evolutionary theme, and in others completely different proteins and mechanisms are involved. Here we review the different ways bacteria solve the problem of finding the right place to divide. It appears that a one-size-fits-all model does not apply, and that individual species have adapted a division-site positioning mechanism that best suits their lifestyle, environmental niche and mode of growth to ensure equal partitioning of DNA for survival of the next generation.
Collapse
Affiliation(s)
- Leigh G Monahan
- The ithree Institute, University of Technology Sydney, NSW, Australia
| | - Andrew T F Liew
- The ithree Institute, University of Technology Sydney, NSW, Australia
| | - Amy L Bottomley
- The ithree Institute, University of Technology Sydney, NSW, Australia
| | - Elizabeth J Harry
- The ithree Institute, University of Technology Sydney, NSW, Australia
| |
Collapse
|
47
|
How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 2013; 11:601-14. [PMID: 23949602 DOI: 10.1038/nrmicro3088] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria come in a range of shapes, including round, rod-shaped, curved and spiral cells. This morphological diversity implies that different mechanisms exist to guide proper cell growth, division and chromosome segregation. Although the majority of studies on cell division have focused on rod-shaped cells, the development of new genetic and cell biology tools has provided mechanistic insight into the cell cycles of bacteria with different shapes, allowing us to appreciate the underlying molecular basis for their morphological diversity. In this Review, we discuss recent progress that has advanced our knowledge of the complex mechanisms for chromosome segregation and cell division in bacteria which have, deceptively, the simplest possible shape: the cocci.
Collapse
|
48
|
Brzoska AJ, Firth N. Two-plasmid vector system for independently controlled expression of green and red fluorescent fusion proteins in Staphylococcus aureus. Appl Environ Microbiol 2013; 79:3133-6. [PMID: 23455338 PMCID: PMC3623144 DOI: 10.1128/aem.00144-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 02/07/2023] Open
Abstract
We have constructed a system for the regulated coexpression of green fluorescent protein (GFP) and red fluorescent protein (RFP) fusions in Staphylococcus aureus. It was validated by simultaneous localization of cell division proteins FtsZ and Noc and used to detect filament formation by an actin-like ParM plasmid partitioning protein in its native coccoid host.
Collapse
Affiliation(s)
- Anthony J Brzoska
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
49
|
Pereira AR, Reed P, Veiga H, Pinho MG. The Holliday junction resolvase RecU is required for chromosome segregation and DNA damage repair in Staphylococcus aureus. BMC Microbiol 2013; 13:18. [PMID: 23356868 PMCID: PMC3584850 DOI: 10.1186/1471-2180-13-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/17/2013] [Indexed: 11/24/2022] Open
Abstract
Background The Staphylococcus aureus RecU protein is homologous to a Bacillus subtilis Holliday junction resolvase. Interestingly, RecU is encoded in the same operon as PBP2, a penicillin-binding protein required for cell wall synthesis and essential for the full expression of resistance in Methicillin Resistant S. aureus strains. In this work we have studied the role of RecU in the clinical pathogen S. aureus. Results Depletion of RecU in S. aureus results in the appearance of cells with compact nucleoids, septa formed over the DNA and anucleate cells. RecU-depleted cells also show increased septal recruitment of the DNA translocase SpoIIIE, presumably to resolve chromosome segregation defects. Additionally cells are more sensitive to DNA damaging agents such as mitomycin C or UV radiation. Expression of RecU from the ectopic chromosomal spa locus showed that co-expression of RecU and PBP2 was not necessary to ensure correct cell division, a process that requires tight coordination between chromosome segregation and septal cell wall synthesis. Conclusions RecU is required for correct chromosome segregation and DNA damage repair in S. aureus. Co-expression of recU and pbp2 from the same operon is not required for normal cell division.
Collapse
Affiliation(s)
- Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av, da República, Oeiras 2780-157, Portugal
| | | | | | | |
Collapse
|
50
|
Ptacin JL, Shapiro L. Chromosome architecture is a key element of bacterial cellular organization. Cell Microbiol 2012; 15:45-52. [PMID: 23078580 DOI: 10.1111/cmi.12049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
The bacterial chromosome encodes information at multiple levels. Beyond direct protein coding, genomes encode regulatory information required to orchestrate the proper timing and levels of gene expression and protein synthesis, and contain binding sites and regulatory sequences to co-ordinate the activities of proteins involved in chromosome repair and maintenance. In addition, it is becoming increasingly clear that yet another level of information is encoded by the bacterial chromosome - the three-dimensional packaging of the chromosomal DNA molecule itself and its positioning relative to the cell. This vast structural blueprint of specific positional information is manifested in various ways, directing chromosome compaction, accessibility, attachment to the cell envelope, supercoiling, and general architecture and arrangement of the chromosome relative to the cell body. Recent studies have begun to identify and characterize novel systems that utilize the three-dimensional spatial information encoded by chromosomal architecture to co-ordinate and direct fundamental cellular processes within the cytoplasm, providing large-scale order within the complex clutter of the cytoplasmic compartment.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|