1
|
Chakraborty A, Bayry J, Mukherjee S. Helminth-derived biomolecules as potential therapeutics against ulcerative colitis. Immunotherapy 2024; 16:635-640. [PMID: 38888436 PMCID: PMC11404699 DOI: 10.1080/1750743x.2024.2360382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, 713340, India
| |
Collapse
|
2
|
Zhang D, Jiang W, Yu Y, Huang J, Jia Z, Cheng Y, Zhu X. Trichinella spiralis Paramyosin Alleviates Collagen-Induced Arthritis in Mice by Modulating CD4 + T Cell Differentiation. Int J Mol Sci 2024; 25:6706. [PMID: 38928413 PMCID: PMC11204176 DOI: 10.3390/ijms25126706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (D.Z.); (W.J.); (Y.Y.); (J.H.); (Z.J.)
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (D.Z.); (W.J.); (Y.Y.); (J.H.); (Z.J.)
| |
Collapse
|
3
|
Ni Y, Xiong R, Zhu Y, Luan N, Yu C, Yang K, Wang H, Xu X, Yang Y, Sun S, Shi L, Padde JR, Chen L, Chen L, Hou M, Xu Z, Lai R, Ji M. A target-based discovery from a parasitic helminth as a novel therapeutic approach for autoimmune diseases. EBioMedicine 2023; 95:104751. [PMID: 37579625 PMCID: PMC10448429 DOI: 10.1016/j.ebiom.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) can alleviate the development of autoimmune and inflammatory diseases, thereby proposing their role as a new therapeutic strategy. Parasitic helminths have co-evolved with hosts to generate immunological privilege and immune tolerance through inducing Tregs. Thus, constructing a "Tregs-induction"-based discovery pipeline from parasitic helminth is a promising strategy to control autoimmune and inflammatory diseases. METHODS The gel filtration chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) were used to isolate immunomodulatory components from the egg extracts of Schistosoma japonicum. The extracted peptides were evaluated for their effects on Tregs suppressive functions using flow cytometry, ELISA and T cell suppression assay. Finally, we carried out colitis and psoriasis models to evaluate the function of Tregs induced by helminth-derived peptide in vivo. FINDINGS Here, based on target-driven discovery strategy, we successfully identified a small 3 kDa peptide (SjDX5-53) from egg extracts of schistosome, which promoted both human and murine Tregs production. SjDX5-53 presented immunosuppressive function by arresting dendritic cells (DCs) at an immature state and augmenting the proportion and suppressive capacity of Tregs. In mouse models, SjDX5-53 protected mice against autoimmune-related colitis and psoriasis through inducing Tregs and inhibiting inflammatory T-helper (Th) 1 and Th17 responses. INTERPRETATION SjDX5-53 exhibited the promising therapeutic effects in alleviating the phenotype of immune-related colitis and psoriasis. This study displayed a screening and validation pipeline of the inducer of Tregs from helminth eggs, highlighting the discovery of new biologics inspired by co-evolution of hosts and their parasites. FUNDING This study was supported by the Natural Science Foundation of China (82272368) and Natural Science Foundation of Jiangsu Province (BK20211586).
Collapse
Affiliation(s)
- Yangyue Ni
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ruiyan Xiong
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuxiao Zhu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ning Luan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China
| | - Chuanxin Yu
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Kun Yang
- Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Huiquan Wang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuejun Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuxuan Yang
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Siyu Sun
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, China
| | - Jon Rob Padde
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Min Hou
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, China.
| | - Minjun Ji
- Department of Pathogen Biology, National Vaccine Innovation Platform, Jiangsu Province Engineering Research Center of Antibody Drug, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Nematode Orthologs of Macrophage Migration Inhibitory Factor (MIF) as Modulators of the Host Immune Response and Potential Therapeutic Targets. Pathogens 2022; 11:pathogens11020258. [PMID: 35215200 PMCID: PMC8877345 DOI: 10.3390/pathogens11020258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
One of the adaptations of nematodes, which allows long-term survival in the host, is the production of proteins with immunomodulatory properties. The parasites secrete numerous homologs of human immune mediators, such as macrophage migration inhibitory factor (MIF), which is a substantial regulator of the inflammatory immune response. Homologs of mammalian MIF have been recognized in many species of nematode parasites, but their role has not been fully understood. The application of molecular biology and genetic engineering methods, including the production of recombinant proteins, has enabled better characterization of their structure and properties. This review provides insight into the current state of knowledge on MIF homologs produced by nematodes, as well as their structure, enzymatic activity, tissue expression pattern, impact on the host immune system, and potential use in the treatment of parasitic, inflammatory, and autoimmune diseases.
Collapse
|
6
|
Guzzo GL, Andrews JM, Weyrich LS. The Neglected Gut Microbiome: Fungi, Protozoa, and Bacteriophages in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1112-1122. [PMID: 35092426 PMCID: PMC9247841 DOI: 10.1093/ibd/izab343] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
The gut microbiome has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Studies suggest that the IBD gut microbiome is less diverse than that of the unaffected population, a phenomenon often referred to as dysbiosis. However, these studies have heavily focused on bacteria, while other intestinal microorganisms-fungi, protozoa, and bacteriophages-have been neglected. Of the nonbacterial microbes that have been studied in relation to IBD, most are thought to be pathogens, although there is evidence that some of these species may instead be harmless commensals. In this review, we discuss the nonbacterial gut microbiome of IBD, highlighting the current biases, limitations, and outstanding questions that can be addressed with high-throughput DNA sequencing methods. Further, we highlight the importance of studying nonbacterial microorganisms alongside bacteria for a comprehensive view of the whole IBD biome and to provide a more precise definition of dysbiosis in patients. With the rise in popularity of microbiome-altering therapies for the treatment of IBD, such as fecal microbiota transplantation, it is important that we address these knowledge gaps to ensure safe and effective treatment of patients.
Collapse
Affiliation(s)
- Gina L Guzzo
- Address correspondence to: Gina L. Guzzo, The University of Adelaide, Adelaide, South Australia, Australia ()
| | - Jane M Andrews
- Inflammatory Bowel Disease Service, Department of Gastroenterology and Hepatology, Royal Adelaide Hospital and School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura S Weyrich
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
7
|
Zamora V, Carlos Andreu-Ballester J, Rodero M, Cuéllar C. Anisakis simplex: Immunomodulatory effects of larval antigens on the activation of Toll like Receptors. Int Immunopharmacol 2021; 100:108120. [PMID: 34537480 DOI: 10.1016/j.intimp.2021.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
AIMS The objective of this investigation is to evaluate the mechanisms Anisakis simplex employs to modify its host immune system, regarding the larval antigens interactions with Toll-Like-Receptors (TLRs). METHODS AND RESULTS In a previous study, we described that the stimulation of bone marrow derived dendritic cells (BMDCs) with A. simplex larval antigens drive an acute inflammatory response in BALB/c mice, but a more discrete and longer response in C57BL/6J. Moreover, when A. simplex larval antigens were combined with TLR agonists (TLR 1/2-9), they modified mainly TLR2, TLR4 and TLR9 agonists responses in both mice strains, and also TLR3, TLR5 and TLR7 in BALB/c. Antigen-presenting ability was analyzed by the detection of CD11c + cells expressing surface markers (CD80-86, MHC I-II), intracellular cytokines (IL-10, IL-12, TNF-α) and intracellular proteins (Myd88, NF-κβ) by Flow Cytometry. Secreted IL-10 was measured by ELISA. CONCLUSION Our findings confirm not only that the host genetic basis plays a role in the development of a Th2/Th1/Treg response, but also it states A. simplex larval antigens present specific mechanisms to modify the innate response of the host. As allergies share common pathways with the immune response against this particular helminth, our results provide a better understanding into the specific mechanisms of A. simplex allergy related diseases.
Collapse
Affiliation(s)
- Vega Zamora
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| | | | - Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
8
|
The therapeutic efficacy of mesenchymal stromal cells on experimental colitis was improved by the IFN-γ and poly(I:C) priming through promoting the expression of indoleamine 2,3-dioxygenase. Stem Cell Res Ther 2021; 12:37. [PMID: 33413597 PMCID: PMC7791665 DOI: 10.1186/s13287-020-02087-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease is a chronic and excessive inflammation of the colon and small intestine. We previously reported that priming of mesenchymal stromal cells (MSCs) with poly(I:C) induced them to express indoleamine 2,3-dioxygenase (IDO). We tried to find out whether the IFN-γ and poly(I:C)-primed MSCs have better therapeutic efficacy on the experimental colitis in the IDO1-dependent manner. METHODS To compare the therapeutic effects between the unstimulated MSCs and primed MSCs on murine colitis, mice (C57BL6) were administered with 2.5% dextran sodium sulfate (DSS) in drinking water for 5 days and injected with MSCs intraperitoneally on days 1 and 3 following DSS ingestion. The disease activity index score and body weight loss were assessed daily until day 9. RESULTS Mice receiving the IFN-γ and poly(I:C)-primed MSCs showed a reduced disease activity index and less weight loss. Colon tissue from the same mice presented attenuated pathological damage, increased Paneth cells, increased IDO1-expressing cells, and better proliferation of enterocytes. The primed MSC treatment upregulated the mRNA expression of intestinal stem cell markers (Lgr5, Olfm4, and Bmi1), enterocyte differentiation markers (Muc2, Alpi, Chga, and occludin), and regulatory T (Treg) cells (Foxp3). The same treatment decreased inflammatory cell infiltration to lymphoid organs and the level of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6, and MCP-1) in colon tissue. Notably, in vivo pharmacologic inhibition of the IDO1 activity blocked the Foxp3 upregulation in colon tissue and diminished the protective effects of the primed MSC. CONCLUSIONS The priming of MSCs with the IFN-γ and poly(I:C) is a promising new strategy to improve the therapeutic efficacy of MSC and is worth further research.
Collapse
|
9
|
Rodero M, Cuéllar C. Modulation by Anisakis simplex antigen of inflammatory response generated in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 90:107241. [PMID: 33321294 DOI: 10.1016/j.intimp.2020.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
The impact of immunization with Anisakis simplex larval antigen on the occurrence and progression of experimental autoimmune encephalomyelitis (EAE) induced in mice was studied. C57BL/6J mice were immunized with the MOG35-55 peptide and one batch was treated with A. simplex total larval antigen on days 1, 8, 10 and 12 after EAE induction. Significantly higher values were obtained in the EAE clinical parameters of the antigen-treated group. Likewise, there was a significant decrease in the weights of the animals. Anisakis-treatment produced a significant decrease in anti-MOG35-55 specific IgG1 on day 21. On day 14 there was an increase in serum IL-2, IL-6, IL-10, IL-17A, and TGF-β in the treated group. On day 21, a decrease in IL-4, IL-6, TNF-α, TGF-β was observed. All brain determinations were made on day 21. The treatment decreased values of IL-6, IL-10, IL-17A and TNF-α. A. simplex antigen caused a significantly higher incidence of EAE and an advance in the appearance of the disease manifestations. However, treatment with the antigen was able to cause a decrease in proinflammatory cytokines (IL-6, IL-17A, and TNF-α) in nervous tissue that could establish a future preventive scenario for myelin damage.
Collapse
Affiliation(s)
- Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
12
|
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Collapse
|
13
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
14
|
Ramani S, Chauhan N, Khatri V, Vitali C, Kalyanasundaram R. Wuchereria bancrofti macrophage migration inhibitory factor-2 (rWbaMIF-2) ameliorates experimental colitis. Parasite Immunol 2020; 42:e12698. [PMID: 31976564 DOI: 10.1111/pim.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
Abstract
Immunomodulatory molecules produced by helminth parasites are receiving much attention recently as novel therapeutic agents for inflammation and autoimmune diseases. In this study, we show that macrophage migration inhibitory factor (MIF) homologue from the filarial parasite, Wuchereria bancrofti (rWbaMIF-2), can suppress inflammation in a dextran sulphate sodium salt (DSS)-induced colitis model. The disease activity index (DAI) in DSS given mice showed loss of body weight and bloody diarrhoea. At autopsy, colon of these mice showed severe inflammation and reduced length. Administration of rWbaMIF-2 significantly reduced the DAI in DSS-induced colitis mice. rWbaMIF-2-treated mice had no blood in the stools, and their colon length was similar to the normal colon with minimal inflammation and histological changes. Pro-inflammatory cytokine genes (TNF-α, IL-6, IFN-γ, IL-1β, IL-17A and NOS2) were downregulated in the colon tissue and peritoneal macrophages of rWbaMIF-2-treated mice. However, there were significant increases in IL-10-producing Treg and B1 cells in the colon and peritoneal cavity of rWbaMIF-2-treated mice. These findings suggested that rWbaMIF-2 treatment significantly ameliorated the clinical symptoms, inflammation and colon pathology in DSS given mice. This immunomodulatory effect of rWbaMIF-2 appeared to be by promoting the infiltration of Treg cells into the colon.
Collapse
Affiliation(s)
- Shriram Ramani
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Nikhil Chauhan
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Vishal Khatri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Connie Vitali
- Department of Health Sciences Education, University of Illinois College of Medicine, Rockford, IL, USA
| | | |
Collapse
|
15
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Zamora V, Rodero M, Andreu-Ballester JC, Mendez S, Cuéllar C. Induction of tolerogenic properties by Anisakis larval antigens on murine dendritic cells. Parasite Immunol 2019; 41:e12616. [PMID: 30719721 DOI: 10.1111/pim.12616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
AIMS The objective of this work is to investigate whether Anisakis simplex larval antigens present immunomodulatory properties by the induction of tolerogenic dendritic cells (DCs) from two strains of mice (BALB/c and C57BL/6J). METHODS AND RESULTS We used mouse bone marrow-derived DCs. We determined their antigen-presenting ability by expression of membrane markers (MHC I and MHC II, CD80, CD86) and intracellular expression levels of IL-10 and IL-12 cytokines. We also analysed whether stimulation with A simplex larval antigens is enhanced by the co-administration of the TLR4 and TLR9 agonists [LPS E coli 026B6 and CpG (ODN1826), respectively]. Two differential types of responses were found in the two mouse strains studied: the BALB/c strain showed an acute and inflammatory response, whereas the C57BL/6J mice developed a more discrete and resistant response. This suggests the coexistence of two opposing responses generated by A simplex larval antigens and confirms that the host genetic basis plays a role in the development of a Th2 or Treg response. CONCLUSION The study of the mechanisms by which Anisakis manipulates the immune response through anti-inflammatory molecules is of interest not only for the direct application on the development of anthelmintic strategies, but also for the development of new anti-inflammatory products.
Collapse
Affiliation(s)
- Vega Zamora
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| | - Marta Rodero
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| | | | - Susana Mendez
- Microbiology Review Branch, DHHS/NIH/NIAID/DEA/SRP, Rockville, Maryland
| | - Carmen Cuéllar
- Facultad de Farmacia, Departamento de Microbiología y Parasitología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
17
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
19
|
Characterization of a secreted macrophage migration inhibitory factor homologue of the parasitic nematode Haemonchus Contortus acting at the parasite-host cell interface. Oncotarget 2018; 8:40052-40064. [PMID: 28402951 PMCID: PMC5522239 DOI: 10.18632/oncotarget.16675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Modulation and suppression of the immune response of the host by nematode parasites have been reported extensively and the migration inhibitory factor (MIF) is identified as one of the major immunomodulator. In the present study, we cloned and produced recombinant MIF protein from the small ruminant’s nematode parasite Haemonchus contortus (rHCMIF-1), and investigated its immunomodulatory effects on goat monocyte. Enzymatic assays indicated that rHCMIF-1 possessed tautomerase activity. Immunohistochemical test demonstrated that the native HCMIF-1 protein was predominantly localized at the body surface and internal surface of the worm’s gut. We demonstrated that rHCMIF-1 could be distinguished by antisera from goats experimentally infected with H. contortus and could bind by goat monocytes. The immunomodulatory effects of HCMIF-1 on cytokine secretion, MHC molecule expression, NO production and phagocytosis were observed by co-incubation of rHCMIF-1 with goat monocytes. The results showed that the interaction of rHCMIF-1 decreased the production of TNF-α, IL-1β and IL-12p40, where as, it significantly increased the secretion of IL-10 and TGF β in goat monocytes. After rHCMIF-1 exposure, the expression of MHC-II on goat monocytes was inhibited. Moreover, rHCMIF-1 could down-regulate the LPS induced NO production of goat monocytes. Phagocytotic assay by FITC-dextran internalization showed that rHCMIF-1 could inhibit the phagocytosis of goat monocytes. Our findings provided potential targetas immunoregulator, and will be helpful to elucidate the molecular basis of host–parasite interactions and search for new potential protein as vaccine and drug target candidate.
Collapse
|
20
|
Global issues in allergy and immunology: Parasitic infections and allergy. J Allergy Clin Immunol 2017; 140:1217-1228. [PMID: 29108604 DOI: 10.1016/j.jaci.2017.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
Allergic diseases are on the increase globally in parallel with a decrease in parasitic infection. The inverse association between parasitic infections and allergy at an ecological level suggests a causal association. Studies in human subjects have generated a large knowledge base on the complexity of the interrelationship between parasitic infection and allergy. There is evidence for causal links, but the data from animal models are the most compelling: despite the strong type 2 immune responses they induce, helminth infections can suppress allergy through regulatory pathways. Conversely, many helminths can cause allergic-type inflammation, including symptoms of "classical" allergic disease. From an evolutionary perspective, subjects with an effective immune response against helminths can be more susceptible to allergy. This narrative review aims to inform readers of the most relevant up-to-date evidence on the relationship between parasites and allergy. Experiments in animal models have demonstrated the potential benefits of helminth infection or administration of helminth-derived molecules on chronic inflammatory diseases, but thus far, clinical trials in human subjects have not demonstrated unequivocal clinical benefits. Nevertheless, there is sufficiently strong evidence to support continued investigation of the potential benefits of helminth-derived therapies for the prevention or treatment of allergic and other inflammatory diseases.
Collapse
|
21
|
Togre NS, Bhoj PS, Khatri VK, Tarnekar A, Goswami K, Shende MR, Reddy MVR. SXP-RAL Family Filarial Protein, rWbL2, Prevents Development of DSS-Induced Acute Ulcerative Colitis. Indian J Clin Biochem 2017; 33:282-289. [PMID: 30072827 DOI: 10.1007/s12291-017-0671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
Helminthic infections lead to the release of various molecules which play an important role in modulation of the host immune system. Such filarial proteins with immunomodulatory potential can be used for therapeutic purpose in inflammatory and immune mediated diseases. In the present study, we have explored the prophylactic effect of filarial SXP-RAL family protein of Wuchereria bancrofti i.e. rWbL2 protein in DSS induced inflammatory ulcerative colitis in a mouse model. Prior treatment of rWbL2, followed by induction of colitis, showed significantly reduced disease severity as indicated by the decreased disease manifestations and improved macroscopic and microscopic inflammation. This preventive effect was found to be associated with increased release of anti-inflammatory cytokine IL-10 and decreased release of proinflammatory cytokines IFN-γ, TNF-α, IL-6 and IL-17 by the splenocytes of treated mice. From this study, it can be envisaged that pretreatment with filarial protein, rWbL2, can prevent the establishment of ulcerative colitis in BALB/c mice. The underlying immunological mechanism may involve the up-regulation of Th2 immune response with down-regulation of Th1 response.
Collapse
Affiliation(s)
- Namdev S Togre
- 1Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - Priyanka S Bhoj
- 1Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - Vishal K Khatri
- 1Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - Aditya Tarnekar
- 2Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - Kalyan Goswami
- 1Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - Moreshwar R Shende
- 2Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| | - M V R Reddy
- 1Department of Biochemistry, JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, MS 442102 India
| |
Collapse
|
22
|
Haarder S, Kania PW, Holm TL, von Gersdorff Jørgensen L, Buchmann K. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish. Parasite Immunol 2017; 39. [PMID: 28779539 DOI: 10.1111/pim.12456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) in developed countries is linked with elevated hygienic standards. One of the several factors involved in this question may be reduced exposure to the immunomodulatory effects of parasitic helminths. Several investigations on treatment of mice and humans with helminth-derived substances have supported this notion, but underlying mechanisms remain unclear. This study therefore dissects to what extent a series of immune-related genes are modulated in zebrafish with experimentally induced colitis following exposure to excretory-secretory (ES) products isolated from larval Anisakis, a widely distributed fish nematode. Adult zebrafish intrarectally exposed to the colitis-inducing agent TNBS developed severe colitis leading to 80% severe morbidity, but if co-injected (ip) with Anisakis ES products, the morbidity rate was 50% at the end of the experiment (48 hours post-exposure). Gene expression studies of TNBS-treated zebrafish showed clear upregulation of a range of genes encoding inflammatory cytokines and effector molecules and some induction of genes related to the adaptive response. A distinct innate-driven immune response was seen in both TNBS and TNBS + ES groups, but expression values were significantly depressed for several important pro-inflammatory genes in the TNBS + ES group, indicating protective mechanisms of Anisakis ES compounds on intestinal immunopathology in zebrafish.
Collapse
Affiliation(s)
- S Haarder
- Novo Nordisk-LIFE In Vivo Pharmacology Centre, Frederiksberg, Denmark.,Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - P W Kania
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - T L Holm
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - L von Gersdorff Jørgensen
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - K Buchmann
- Faculty of Health and Medical Sciences, Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
23
|
Varyani F, Fleming JO, Maizels RM. Helminths in the gastrointestinal tract as modulators of immunity and pathology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G537-G549. [PMID: 28302598 PMCID: PMC5495915 DOI: 10.1152/ajpgi.00024.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 01/31/2023]
Abstract
Helminth parasites are highly prevalent in many low- and middle-income countries, in which inflammatory bowel disease and other immunopathologies are less frequent than in the developed world. Many of the most common helminths establish themselves in the gastrointestinal tract and can exert counter-inflammatory influences on the host immune system. For these reasons, interest has arisen as to how parasites may ameliorate intestinal inflammation and whether these organisms, or products they release, could offer future therapies for immune disorders. In this review, we discuss interactions between helminth parasites and the mucosal immune system, as well as the progress being made toward identifying mechanisms and molecular mediators through which it may be possible to attenuate pathology in the intestinal tract.
Collapse
Affiliation(s)
- Fumi Varyani
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; ,2Edinburgh Clinical Academic Track, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom; and
| | - John O. Fleming
- 3Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rick M. Maizels
- 1Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom;
| |
Collapse
|
24
|
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ, Miles JJ. Helminth Immunomodulation in Autoimmune Disease. Front Immunol 2017; 8:453. [PMID: 28484453 PMCID: PMC5401880 DOI: 10.3389/fimmu.2017.00453] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022] Open
Abstract
Helminths have evolved to become experts at subverting immune surveillance. Through potent and persistent immune tempering, helminths can remain undetected in human tissues for decades. Redirecting the immunomodulating "talents" of helminths to treat inflammatory human diseases is receiving intensive interest. Here, we review therapies using live parasitic worms, worm secretions, and worm-derived synthetic molecules to treat autoimmune disease. We review helminth therapy in both mouse models and clinical trials and discuss what is known on mechanisms of action. We also highlight current progress in characterizing promising new immunomodulatory molecules found in excretory/secretory products of helminths and their potential use as immunotherapies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Giacomin
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jason P Mulvenna
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Coronado S, Barrios L, Zakzuk J, Regino R, Ahumada V, Franco L, Ocampo Y, Caraballo L. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis. Parasite Immunol 2017; 39. [PMID: 28295446 DOI: 10.1111/pim.12425] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/05/2017] [Indexed: 12/20/2022]
Abstract
Helminthiasis may ameliorate inflammatory diseases, such as inflammatory bowel disease and asthma. Information about immunomodulators from Ascaris lumbricoides is scarce, but could be important considering the co-evolutionary relationships between helminths and humans. We evaluated the immunomodulatory effects of a recombinant cystatin from A. lumbricoides on an acute model of dextran sodium sulphate (DSS)-induced colitis in mice. From an A. lumbricoides cDNA library, we obtained a recombinant cystatin (rAl-CPI). Protease activity inhibition was demonstrated on cathepsin B and papain. Immunomodulatory effects were evaluated at two intraperitoneal doses (0.5 and 0.25 μg/G) on mice with DSS-induced colitis. Body weight, colon length, Disease Activity Index (DAI), histological inflammation score, myeloperoxidase (MPO) activity, gene expression of cytokines and cytokines levels in colon tissue were analysed. Treatment with rAl-CPI significantly reduced DAI, MPO activity and inflammation score without toxic effects. Also, IL-10 and TGF-B gene overexpression was observed in rAl-CPI-treated group compared to DSS-exposed control and healthy mice. Furthermore, a reduction in IL-6 and TNF-A expression was found, and this was confirmed by the levels of these cytokines in colonic tissue. In conclusion, rAl-CPI reduces inflammation in a mouse model of DSS-induced colitis, probably by increasing the expression of anti-inflammatory cytokines and reducing pro-inflammatory ones.
Collapse
Affiliation(s)
- S Coronado
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - L Barrios
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - J Zakzuk
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - R Regino
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - V Ahumada
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - L Franco
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - Y Ocampo
- Faculty of Pharmaceutical Sciences, Universidad de Cartagena, Cartagena, Colombia
| | - L Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
26
|
Nascimento Santos L, Carvalho Pacheco LG, Silva Pinheiro C, Alcantara-Neves NM. Recombinant proteins of helminths with immunoregulatory properties and their possible therapeutic use. Acta Trop 2017; 166:202-211. [PMID: 27871775 DOI: 10.1016/j.actatropica.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
The inverse relationship between helminth infections and the development of immune-mediated diseases is a cornerstone of the hygiene hypothesis and studies were carried out to elucidate the mechanisms by which helminth-derived molecules can suppress immunological disorders. These studies have fostered the idea that parasitic worms may be used as a promising therapeutic alternative for prevention and treatment of immune-mediated diseases. We discuss the current approaches for identification of helminth proteins with potential immunoregulatory properties, including the strategies based on high-throughput technologies. We also explore the methodological approaches and expression systems used for production of the recombinant forms of more than 20 helminth immunomodulatory proteins, besides their performances when evaluated as immunotherapeutic molecules to treat different immune-mediated conditions, including asthma and inflammatory bowel diseases. Finally, we discuss the perspectives of using these parasite-derived recombinant molecules as tools for future immunotherapy and immunoprophylaxis of human inflammatory diseases.
Collapse
|
27
|
Endharti AT, Baskoro AD, Norahmawati E. Therapeutic effect of soluble worm protein acting as immune regulatory on colitis. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
28
|
Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti. Acta Trop 2016; 153:14-20. [PMID: 26432350 DOI: 10.1016/j.actatropica.2015.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/25/2023]
Abstract
Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2.
Collapse
|
29
|
Abstract
Autoimmune and chronic inflammatory organic diseases represent a "postindustrial revolution epidemics," and their frequency has increased dramatically in the last century. Today, it is assumed that the increase in hygiene standards reduced the interactions with helminth parasites that coevolved with the immune system and are crucial for its proper functioning. Several helminths have been proposed and tested in the search of the ideal therapeutic. In this review, the authors summarize the translational and clinical studies and review the caveats and possible solutions for the optimization of helminth therapies.
Collapse
Affiliation(s)
- Irina Leonardi
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Isabelle Frey
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Cho MK, Park MK, Kang SA, Park SK, Lyu JH, Kim DH, Park HK, Yu HS. TLR2-dependent amelioration of allergic airway inflammation by parasitic nematode type II MIF in mice. Parasite Immunol 2015; 37:180-91. [PMID: 25559209 DOI: 10.1111/pim.12172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
In our previous studies, the recombinant type II macrophage migration inhibitory factor homologue (rAs-MIF) secreted from Anisakis simplex suppressed experimental inflammation mouse model through IL-10 production and CD4(+)CD25(+)Foxp3(+) T-cell recruitment. Also, TLR2 gene expression was significantly increased following rAs-MIF treatment. To know the relation between TLR2 and amelioration mechanisms of rAs-MIF, we induced allergic airway inflammation by ovalbumin and alum with or without rAs-MIF under TLR2 blocking systems [anti-TLR2-specific antibody (α-mTLR2 Ab) treatment and using TLR2 knockout mice]. As a result, the amelioration effects of rAs-MIF in allergic airway inflammation model (diminished inflammation and Th2 response in the lung, increased IL-10 secretion, CD4(+)CD25(+)Foxp3(+) T-cell recruitment) were diminished under two of the TLR2 blocking model. The expression of TLR2 on the surface of lung epithelial cell was significantly elevated by rAs-MIF treatment or Pam3CSK (TLR2-specific agonist) treatment, but they might have some competition effect on the elevation of TLR2 expression. In addition, the elevation of IL-10 gene expression by rAs-MIF treatment was significantly inhibited by α-mTLR2 Ab or Pam3CSK pretreatment. In conclusion, anti-inflammatory effects of the rAs-MIF on OVA-induced allergic airway inflammation might be closely related to TLR2.
Collapse
Affiliation(s)
- M K Cho
- Department of Parasitology, School of Medicine, Pusan National University, Yangsan-si, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Siles-Lucas M, Morchon R, Simon F, Manzano-Roman R. Exosome-transported microRNAs of helminth origin: new tools for allergic and autoimmune diseases therapy? Parasite Immunol 2015; 37:208-14. [PMID: 25712154 DOI: 10.1111/pim.12182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022]
Abstract
Chronic diseases associated with inflammation show fast annual increase in their incidence. This has been associated with excessive hygiene habits that limit contacts between the immune system and helminth parasites. Helminthic infections induce regulation and expansion of regulatory T cells (Treg) leading to atypical Th2 type immune responses, with downregulation of the inflammatory component usually associated with these type of responses. Many cells, including those of the immune system, produce extracellular vesicles called exosomes which mediate either immune stimulation (DCs) or immune modulation (T cells). The transfer of miRNAs contained in T-cell exosomes has been shown to contribute to downregulate the production of inflammatory mediators. It has been recently described the delivery to the host-parasite interface of exosomes containing miRNAs by helminths and its internalization by host cells. In this sense, helminth microRNAs transported in exosomes and internalized by immune host cells exert an important role in the expansion of Treg cells, resulting in the control of inflammation. We here provide relevant information obtained in the field of exosomes, cell-cell communication and miRNAs, showing the high potential of helminth miRNAs delivered in exosomes to host cells as new therapeutic tools against diseases associated with exacerbated inflammatory responses.
Collapse
Affiliation(s)
- M Siles-Lucas
- Instituto de Recursos Naturales y Agrobiologia de Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | | | | |
Collapse
|
32
|
Chauhan N, Sharma R, Hoti S. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop 2015; 142:71-8. [PMID: 25446175 DOI: 10.1016/j.actatropica.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/24/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Homologues of human macrophage migration inhibitory factor (hMIF) have been reported from vertebrates, invertebrates and prokaryotes, as well as plants. Filarial parasites produce two homologues of hMIF viz., MIF-1 and MIF-2, which play important role in the host immune modulation. Earlier, we have characterized MIF-1 (Wba-mif-1) from Wuchereria bancrofti, the major causal organism of human lymphatic filariasis. Here, we are reporting the molecular and biochemical characterization of MIF-2 from this parasite (Wba-mif-2). The complete Wba-mif-2 gene and its cDNA were amplified, cloned and sequenced. The size of Wba-mif-2 gene and cDNA were found to be 4.275 kb and 363 bp, respectively. The gene annotation revealed the presence of a large intron of 3.912 kb interspersed with two exons of 183 bp and 180 bp. The alignment of derived amino acid sequences of Wba-MIF-2 with Wba-MIF-1 showed 44% homology. The conserved CXXC oxido-reductase catalytic site present in Wba-mif-1 was found absent in Wba-mif-2 coding sequence. The amplified Wba-mif-2 cDNA was cloned into an expression vector pRSET-B and transformed into salt inducible Escherichia coli strain GJ1158. The expressed recombinant Wba-MIF-2 protein showed tautomerase activity against L-dopachrome methyl ester and the specific activity was determined to be 18.57±0.77 μmol/mg/min. Three known inhibitors of hMIF tautomerase activity significantly inhibited the tautomerase activity of recombinant Wba-MIF-2. Although the conserved CXXC oxido-reductase motif is absent in Wba-mif-2, the recombinant protein showed significant oxido-reductase activity in the insulin reduction assay, possibly because of the presence of vicinal cysteine residues.
Collapse
|
33
|
Santos LN, Gallo MBC, Silva ES, Figueiredo CAV, Cooper PJ, Barreto ML, Loureiro S, Pontes-de-Carvalho LC, Alcantara-Neves NM. A proteomic approach to identify proteins from Trichuris trichiura extract with immunomodulatory effects. Parasite Immunol 2014; 35:188-93. [PMID: 23398517 DOI: 10.1111/pim.12025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/28/2012] [Indexed: 12/28/2022]
Abstract
Infections with Trichuris trichiura and other trichurid nematodes have been reported to display protective effects against atopy, allergic and autoimmune diseases. The aims of the present study were to investigate the immunomodulatory properties of T. trichiura adult worm extract (TtE) and its fractions (TtEFs) on the production of cytokines by peripheral blood mononuclear cells and to identify their proteinaceous components. Fourteen TtEFs were obtained by ion exchange chromatography and tested for effects on cytokine production by peripheral blood mononuclear cells. The molecular constituents of the six most active fractions were evaluated using nano-LC/mass spectrometry. The homology between T. trichiura and the related nematode Trichinella spiralis was used to identify 12 proteins in TtEFs. Among those identified, fructose biphosphate aldolase, a homologue of macrophage migration inhibitory factor and heat-shock protein 70 may contribute to the immunomodulatory effects of TtEFs. The identification of such proteins could lead to the development of novel drugs for the therapy of allergic and other inflammatory diseases.
Collapse
Affiliation(s)
- L N Santos
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Harnett W. Secretory products of helminth parasites as immunomodulators. Mol Biochem Parasitol 2014; 195:130-6. [PMID: 24704440 DOI: 10.1016/j.molbiopara.2014.03.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/28/2022]
Abstract
Parasitic helminths release molecules into their environment, which are generally referred to as excretory-secretory products or ES. ES derived from a wide range of nematodes, trematodes and cestodes have been studied during the past 30-40 years, their characterization evolving from simple biochemical procedures such as SDS-PAGE in the early days to sophisticated proteomics in the 21st century. Study has incorporated investigation of ES structure, potential as vaccines, immunodiagnostic utility, functional activities and immunomodulatory properties. Immunomodulation by ES is increasingly the area of most intensive research with a number of defined helminth products extensively analyzed with respect to the nature of their selective effects on cells of the immune system as well as the molecular mechanisms, which underlie these immunomodulatory effects. As a consequence, we are now beginning to learn the identities of the receptors that ES employ and are increasingly acquiring detailed knowledge of the signalling pathways that they interact with and subvert. Such information is contributing to the growing idea that the anti-inflammatory properties of a number of ES products makes them suitable starting points for the development of novel drugs for treating human inflammatory disease.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
35
|
Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, De Man JG, De Winter BY. Of worms, mice and man: an overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Ther 2014; 143:153-67. [PMID: 24603369 DOI: 10.1016/j.pharmthera.2014.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The incidence of inflammatory and autoimmune disorders is highest in well-developed countries which is directly related to their higher hygienic standards: it is suggested that the lack of exposure to helminths contributes to the susceptibility for immune-related diseases. Epidemiological, experimental and clinical data support the idea that helminths provide protection against immune-mediated diseases such as inflammatory bowel disease (IBD). The most likely mechanism for the suppression of immune responses by helminths is the release of helminth-derived immunomodulatory molecules. This article reviews the experimental and clinical studies investigating the therapeutic potential of helminth-based therapy in IBD and also focuses on the current knowledge of its immunomodulatory mechanisms of action highlighting innate as well as adaptive immune mechanisms. Identifying the mechanisms by which these helminths and helminth-derived molecules modulate the immune system will help in creating novel drugs for the treatment of IBD and other disorders that result from an overactive immune response.
Collapse
Affiliation(s)
- Marthe Heylen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Nathalie E Ruyssers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els M Gielis
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Els Vanhomwegen
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Paul A Pelckmans
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Tom G Moreels
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium; Antwerp University Hospital, Division of Gastroenterology & Hepatology, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
36
|
Abstract
Modern hygienic lifestyles are associated with the emergence of inflammatory bowel disease (IBD) which now afflicts millions of people in highly-developed countries. Meticulous hygiene interrupts conduits of transmission required for ubiquitous exposure to parasitic worms (helminths). We proposed that loss of exposure to helminths permits development of IBD. Early clinical trials suggested that exposure to helminths such as Trichuris suis or Necator americanus can improve IBD. Over the last several years, processes to "medicinalize"T. suis have been developed and use of this helminth is now being studied in large multi-center clinical trials. Concurrently, we and others have identified some of the immune regulatory mechanisms elicited by helminth exposure that suppress inappropriate intestinal inflammation. These efforts could soon result in new therapies for patients with IBD.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA, USA.
| | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW There is something about living in an industrialized country that dramatically increases the risk of acquiring inflammatory bowel disease (IBD). Loss of routine exposure to parasitic worms (helminths), due to modern highly hygienic life styles, likely contributes to this risk. This article reviews current understanding on how helminths influence intestinal inflammation and mucosal immune responses. RECENT FINDINGS IBD emerges in populations as regions develop socioeconomically and lose exposure to previously ubiquitous helminthic infections. Helminthic infections provided strong selective pressure for the dissemination of gene variants, many of which predispose to development of IBD. In animal models of IBD, helminth colonization suppresses intestinal inflammation through multiple mechanisms including induction of innate and adaptive regulatory circuits. Trials using helminths like hookworm (Necator americanus) or porcine whipworm (Trichuris suis) show that they are safe and may be effective therapies for the control of the aberrant intestinal inflammation seen in Crohn's disease and ulcerative colitis. SUMMARY Evidence is accumulating that highly hygienic living conditions create risk for developing immune-mediated disease such as IBD. To live in their host, helminths have developed the ability to activate cells of innate and adaptive immunity that suppress inflammation. Therapeutic trials using helminths are in progress.
Collapse
|
38
|
Whelan RAK, Hartmann S, Rausch S. Nematode modulation of inflammatory bowel disease. PROTOPLASMA 2012; 249:871-886. [PMID: 22086188 PMCID: PMC3459088 DOI: 10.1007/s00709-011-0342-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease arising due to a culmination of genetic, environmental, and lifestyle-associated factors and resulting in an excessive pro-inflammatory response to bacterial populations in the gastrointestinal tract. The prevalence of IBD in developing nations is relatively low, and it has been proposed that this is directly correlated with a high incidence of helminth infections in these areas. Gastrointestinal nematodes are the most prevalent parasitic worms, and they efficiently modulate the immune system of their hosts in order to establish chronic infections. Thus, they may be capable of suppressing unrelated inflammation in disorders such as IBD. This review describes how nematodes, or their products, suppress innate and adaptive pro-inflammatory immune responses and how the mechanisms involved in the induction of anti-nematode responses regulate colitis in experimental models and clinical trials with IBD patients. We also discuss how refinement of nematode-derived therapies should ultimately result in the development of potent new therapeutics of clinical inflammatory disorders.
Collapse
Affiliation(s)
- Rose A. K. Whelan
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Susanne Hartmann
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Sebastian Rausch
- Department of Molecular Parasitology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
39
|
Park HK, Cho MK, Park HY, Kim KU, Kim YS, Lee MK, Park SK, Kim DH, Yu HS. Macrophage migration inhibitory factor isolated from a parasite inhibited Th2 cytokine production in PBMCs of atopic asthma patients. J Asthma 2011; 49:10-5. [PMID: 22149098 DOI: 10.3109/02770903.2011.637593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In a previous study, we demonstrated that the human macrophage migration inhibitory factor (MIF)-like protein (As-MIF) isolated from helminths could inhibit allergic airway inflammation via the recruitment of CD4(+)CD25(+)Foxp3(+) T cells. OBJECTIVE To evaluate the clinical importance of As-MIF as an antiasthma drug, we evaluated immune responses after recombinant As-MIF (rAs-MIF) treatment in peripheral blood mononuclear cell (PBMC) cultures. METHODS PBMC was isolated from 10 patients with atopic asthma, 8 patients with nonatopic asthma, and 12 nonatopic healthy subjects, and various concentrations of rAs-MIF were transferred into the PBMC culture medium. After 3 days, we measured the levels of T helper 2 and T helper 1 cytokines via ELISA. RESULTS In atopic asthma, IL-4 and IL-5 production was significantly reduced in the PBMC cultures after rAs-MIF treatment. These inhibitory effects were not observed in the nonatopic asthma group. By way of contrast, IL-10 production in the PMBC cultures was significantly increased after rAs-MIF treatment in all experimental groups. CONCLUSION The results of this study are similar to those previously reported in a mouse study, suggesting that As-MIF might be a candidate for the specific treatment of asthma.
Collapse
Affiliation(s)
- Hye-Kyung Park
- Department of Internal Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Younis AE, Soblik H, Ajonina-Ekoti I, Erttmann KD, Luersen K, Liebau E, Brattig NW. Characterization of a secreted macrophage migration inhibitory factor homologue of the parasitic nematode Strongyloides acting at the parasite-host cell interface. Microbes Infect 2011; 14:279-89. [PMID: 22037391 DOI: 10.1016/j.micinf.2011.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/01/2011] [Accepted: 09/28/2011] [Indexed: 01/25/2023]
Abstract
Strongyloidiasis is a tropical parasitosis characterized by an alternation between free-living and parasitic stages, and by long-term infection via autoinfection. Since invasion and evasion processes of helminth parasites are substantially attained by the involvement of excretory-secretory products, we identified and characterized the 13.5 kDa macrophage migration inhibitory factor (MIF)-like protein in Strongyloides ratti. Sra-MIF is mainly secreted from the infective stage larvae (iL3), while the transcript was found at lower levels in parasitic and free-living females. Sequence analysis of the full-length cDNA showed the highest homology to the human pathogen Strongyloides stercoralis, and both are related to the MIF type-2. Unlike other mif genes, the Sra-mif includes no intron. The protein was recombinantly expressed in Escherichia coli and purified. Sra-MIF exhibited no in vitro tautomerase activity. The exposure of Sra-MIF to the host immune system is confirmed by high IgG reactivities found in the hosts' sera following infection or immunization. Flow cytometric analysis indicated the binding of Sra-MIF to the monocytes/macrophage lineage but not to peripheral lymphocytes. After exposure to Sra-MIF, monocytes released IL-10 but not TNF-alpha suggesting the involvement of the secreted parasite MIF in host immune responses.
Collapse
|