1
|
Bornø ML, Zervas A, Bak F, Merl T, Koren K, Nicolaisen MH, Jensen LS, Müller-Stöver DS. Differential impacts of sewage sludge and biochar on phosphorus-related processes: An imaging study of the rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166888. [PMID: 37730064 DOI: 10.1016/j.scitotenv.2023.166888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Recycling of phosphorus (P) from waste streams in agriculture is essential to reduce the negative environmental effects of surplus P and the unsustainable mining of geological P resources. Sewage sludge (SS) is an important P source; however, several issues are associated with the handling and application of SS in agriculture. Thus, post-treatments such as pyrolysis of SS into biochar (BC) could address some of these issues. Here we elucidate how patches of SS in soil interact with the living roots of wheat and affect important P-related rhizosphere processes compared to their BC counterparts. Wheat plants were grown in rhizoboxes with sandy loam soil, and 1 cm Ø patches with either SS or BC placed 10 cm below the seed. A negative control (CK) was included. Planar optode pH sensors were used to visualize spatiotemporal pH changes during 40 days of plant growth, diffusive gradients in thin films (DGT) were applied to map labile P, and zymography was used to visualize the spatial distribution of acid (ACP) and alkaline (ALP) phosphatase activity. In addition, bulk soil measurements of available P, pH, and ACP activity were conducted. Finally, the relative abundance of bacterial P-cycling genes (phoD, phoX, phnK) was determined in the patch area rhizosphere. Labile P was only observed in the area of the SS patches, and SS further triggered root proliferation and increased the activity of ACP and ALP in interaction with the roots. In contrast, BC seemed to be inert, had no visible effect on root growth, and even reduced ACP and ALP activity in the patch area. Furthermore, there was a lower relative abundance of phoD and phnK genes in the BC rhizosphere compared to the CK. Hence, optimization of BC properties is needed to increase the short-term efficiency of BC from SS as a P fertilizer.
Collapse
Affiliation(s)
- Marie Louise Bornø
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark.
| | - Athanasios Zervas
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Frederik Bak
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark; Austrian Institute of Technology, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Theresa Merl
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology - Microbiology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Mette H Nicolaisen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Lars S Jensen
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| | - Dorette S Müller-Stöver
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1821 Frederiksberg, Denmark
| |
Collapse
|
2
|
Lin J, Sun Y, Zhang H, Shen Q, Xu L, Zeng Q, Su Y, Han C. Two-dimensional, high-resolution imaging of pH dynamics in the phyllosphere of submerged macrophyte using a new Nano-optode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166327. [PMID: 37595908 DOI: 10.1016/j.scitotenv.2023.166327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
The phyllosphere pH helps shape the plant microbiome and strongly influences aboveground interactions in plant canopies. Yet little is known about the distribution of pH at a microscale within the macrophyte phyllosphere and the factors promoting them because achieving high-resolution quantitative imaging of phyllosphere pH is a great challenge. Here, new ratiometric pH nano-optodes were prepared by firstly encapsulating the self-synthesized lipophilic dyes (8-acetoxypyrene-N1, N3, N6-trioctadecyl-1, 3, 6-tri-trisulfonamide) to poly(1-vinylpyrrolidone-co-styrene) nanoparticles, and then immobilizing the resulting nanoparticles in polyurethane hydrogel on transparent foils. The nano-optodes presented reversible and fast response (t95 < 80 s) to the pH range from 7.0 to 11.0, with merits of good spatial resolution, photobleaching/leaching resistance and negligible cross-sensitives toward temperature, O2 and ionic strength (< 100 mM). The nano-optodes together with a self-designed phyllosphere chamber were further applied to directly measure the pH distributions at a microscale around single leaves of V. spiralis grown in natural sediment. The pronounced pH microheterogeneity and leaf basification within the V. spiralis phyllosphere were quantitatively visualized. We also provided direct empirical evidence that the dynamic of the phyllosphere pH at high resolution was significantly controlled by the shifting light intensity and temperature. Implementation of the nano-optodes holds great potential for various laboratory applications, which will provide an in-depth insight into phyllosphere activities on the microscale.
Collapse
Affiliation(s)
- Jianyu Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yaling Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Hu X, Yue J, Yao D, Zhang X, Li Y, Hu Z, Liang S, Wu H, Xie H, Zhang J. Plant development alters the nitrogen cycle in subsurface flow constructed wetlands: Implications to the strategies for intensified treatment performance. WATER RESEARCH 2023; 246:120750. [PMID: 37866244 DOI: 10.1016/j.watres.2023.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Plant development greatly influences the composition structure and functions of microbial community in constructed wetlands (CWs) via plant root activities. However, our knowledge of the effect of plant development on microbial nitrogen (N) cycle is poorly understood. Here, we investigated the N removal performance and microbial structure in subsurface flow CWs at three time points corresponding to distinct stages of plant development: seedling, mature and wilting. Overall, the water parameters were profoundly affected by plant development with the increased root activities including radial oxygen loss (ROL) and root exudates (REs). The removal efficiency of NH4+-N was significantly highest at the mature stage (p < 0.01), while the removal performance of NO3--N at the seedling stage. The highest relative abundances of nitrification- and anammox-related microbes (Nitrospira, Nitrosomonas, and Candidatus Brocadia, etc.) and functional genes (Amo, Hdh, and Hzs) were observed in CWs at the mature stage, which can be attributed to the enhanced intensity of ROL, creating micro-habitat with high DO concentration. On the other hand, the highest relative abundances of denitrification- and DNRA-related microbes (Petrimonas, Geobacter, and Pseudomonas, etc.) and functional genes (Nxr, Nir, and Nar, etc.) were observed in CWs at the seedling and wilting stages, which can be explained by the absence of ROL and biological denitrification inhibitor derived from REs. Results give insights into microbial N cycle in CWs with different stages of plant development. More importantly, a potential solution for intensified N removal via the combination of practical operation and natural regulation is proposed.
Collapse
Affiliation(s)
- Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jingyuan Yue
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xin Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yunkai Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
4
|
He Y, Ding N, Yu G, Sunahara GI, Lin H, Zhang X, Ullah H, Liu J. High-resolution imaging of O 2 dynamics and metal solubilization in the rhizosphere of the hyperaccumulator Leersia hexandra Swartz. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131580. [PMID: 37167872 DOI: 10.1016/j.jhazmat.2023.131580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The mobilization of trace metals in the rhizosphere can be affected by the redox potential, which is closely related to the O2 dynamics. This study examined the distributions of O2 and trace metals in the rhizosphere of the subaquatic hyperaccumulator Leersia hexandra Swartz under chromium (Cr) stress using planar optodes and the diffusive gradients in thin films technique coupled with laser ablation inductively coupled plasma mass spectrometry. The O2 concentrations and oxidized areas in the rhizosphere significantly increased with increases in the light intensity, air humidity, and atmospheric CO2 concentrations (p < 0.05). The O2 concentration first increased with increasing ambient temperatures, then decreased when the temperature increased from 25 to 32 ℃. The O2 concentration in the rhizosphere was significantly decreased under Cr stress (p < 0.05), with a prolonged response time to the altered ambient temperature. Cr stress led to decreased mobilities of As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Sb, V, W, and Zn in the rhizosphere, which were negatively correlated with the concentrations of O2. These results provide new insights into the role of changes in the O2 concentration induced by the roots of hyperaccumulator plants in controlling the mobility of trace metals in soils.
Collapse
Affiliation(s)
- Yao He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Na Ding
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, Guilin University of Technology, 541000 Guilin, China
| |
Collapse
|
5
|
Li Q, Philp J, Denton MD, Huang Y, Wei J, Sun H, Li Y, Zhao Q. Stoichiometric homeostasis of N:P ratio drives species-specific symbiotic N fixation inhibition under N addition. FRONTIERS IN PLANT SCIENCE 2023; 14:1076894. [PMID: 38487209 PMCID: PMC10938344 DOI: 10.3389/fpls.2023.1076894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 03/17/2024]
Abstract
Introduction Symbiotic N fixation inhibition induced by N supply to legumes is potentially regulated by the relative N and P availability in soil. However, the specific responses of different legume species to changes in N:P availability remain unclear, and must be better understood to optimize symbiotic N fixation inputs under N enrichment. This study investigated mechanisms by which soil N and P supply influence the symbiotic N fixation of eight legume species, to quantify the inter-specific differences, and to demonstrate how these differences can be determined by the stoichiometric homeostasis in N:P ratios (HN:P). Methods Eight herbaceous legume species were grown separately in outdoor pots and treated with either no fertilizer (control), N fertilizer (14 g N m-2), P fertilizer (3.5 g P m-2) or both N and P fertilizer. Plant nutrients, stoichiometric characteristics, root biomass, non-structural carbohydrates (NSC), rhizosphere chemistry, P mobilization, root nodulation and symbiotic N fixation were measured. Results N addition enhanced rhizosphere P mobilization but drove a loss of root biomass and root NSC via exudation of P mobilization compound (organic acid), especially so in treatments without P addition. N addition also induced a 2-14% or 14-36% decline in symbiotic N fixation per plant biomass by legumes in treatments with or without P addition, as a result of decreasing root biomass and root NSC. The changes in symbiotic N fixation were positively correlated with stoichiometric homeostasis of N:P ratios in intact plants without root nodules, regardless of P additions. Discussion This study indicates that N addition can induce relative P limitations for growth, which can stimulate rhizosphere P mobilization at the expense of root biomass and carbohydrate concentrations, reducing symbiotic N fixation in legumes. Legume species that had less changes in plant N:P ratio, such as Lespedeza daurica and Medicago varia maintained symbiotic N fixation to a greater extent under N addition.
Collapse
Affiliation(s)
- Qiang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Jilin Provincial Key Laboratory of Grassland Farming, Science and Technology Department of Jilin Province, Changchun, China
| | - Joshua Philp
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Matthew D. Denton
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Yingxin Huang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Jilin Provincial Key Laboratory of Grassland Farming, Science and Technology Department of Jilin Province, Changchun, China
| | - Jian Wei
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Huijuan Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Jilin Provincial Key Laboratory of Grassland Farming, Science and Technology Department of Jilin Province, Changchun, China
| | - Yang Li
- Jilin Provincial Key Laboratory of Grassland Farming, Science and Technology Department of Jilin Province, Changchun, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Qian Zhao
- College of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
6
|
Xu P, Stirling E, Xie H, Li W, Lv X, Matsumoto H, Cheng H, Xu A, Lai W, Wang Y, Zheng Z, Wang M, Liu X, Ma B, Xu J. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant. J Adv Res 2023; 44:13-22. [PMID: 36725184 PMCID: PMC9936419 DOI: 10.1016/j.jare.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Assembly and co-occurrence of the host co-evolved microbiota are essential ecological and evolutionary processes, which is not only crucial for managing individual plant fitness but also ecological function. However, understanding of the microbiome assembly and co-occurrence in higher plants is not well understood. The tea plant was shown to contribute the forest fitness due to the microbiome assembled in the phyllosphere; the landscape of microbiome assembly in the tea plants and its potential implication on phyllosphere homestasis still remains untangled. OBJECTIVES This study aimed to deciphering of the microbiome networks of the tea plants at a continental scale. It would provide fundamental insights into the factors driving the microbiome assembly, with an extended focus on the resilience towards the potential pathogen in the phyllosphere. METHODS We collected 225 samples from 45 locations spanning approximately 2000-km tea growing regions across China. By integration of high-throughput sequencing data, physicochemical properties profiling and bioinformatics analyses, we investigated continental scale microbiome assembly and co-occurrence in the tea plants. Synthetic assemblages, interaction assay and RT-qPCR were further implemented to analyze the microbial interaction indexed in phyllosphere. RESULTS A trade-off between stochastic and deterministic processes in microbiomes community assembly was highlighted. Assembly processes were dominated by deterministic processes in bulk and rhizosphere soils, and followed by stochastic processes in roots and leaves with amino acids as critical drivers for environmental selection. Sphingobacteria and Proteobacteria ascended from soils to leaves to sustain a core leaf taxa. The core taxa formed a close association with a prevalent foliar pathogen in the co-occurrence network and significantly attenuated the expression of a set of essential virulence genes in pathogen. CONCLUSION Our study unveils the mechanism underpinning microbiome assembly in the tea plants, and a potential implication of the microbiome-mediated resilience framework on the phyllosphere homeostasis.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Erinne Stirling
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Hengtong Xie
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Wenbing Li
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Haruna Matsumoto
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Cheng
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Wanyi Lai
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Zuntao Zheng
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Xingmei Liu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China.
| | - Jianming Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Wei L, Zhu Z, Razavi BS, Xiao M, Dorodnikov M, Fan L, Yuan H, Yurtaev A, Luo Y, Cheng W, Kuzyakov Y, Wu J, Ge T. Visualization and quantification of carbon "rusty sink" by rice root iron plaque: Mechanisms, functions, and global implications. GLOBAL CHANGE BIOLOGY 2022; 28:6711-6727. [PMID: 35986445 DOI: 10.1111/gcb.16372] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Paddies contain 78% higher organic carbon (C) stocks than adjacent upland soils, and iron (Fe) plaque formation on rice roots is one of the mechanisms that traps C. The process sequence, extent and global relevance of this C stabilization mechanism under oxic/anoxic conditions remains unclear. We quantified and localized the contribution of Fe plaque to organic matter stabilization in a microoxic area (rice rhizosphere) and evaluated roles of this C trap for global C sequestration in paddy soils. Visualization and localization of pH by imaging with planar optodes, enzyme activities by zymography, and root exudation by 14 C imaging, as well as upscale modeling enabled linkage of three groups of rhizosphere processes that are responsible for C stabilization from the micro- (root) to the macro- (ecosystem) levels. The 14 C activity in soil (reflecting stabilization of rhizodeposits) with Fe2+ addition was 1.4-1.5 times higher than that in the control and phosphate addition soils. Perfect co-localization of the hotspots of β-glucosidase activity (by zymography) with root exudation (14 C) showed that labile C and high enzyme activities were localized within Fe plaques. Fe2+ addition to soil and its microbial oxidation to Fe3+ by radial oxygen release from rice roots increased Fe plaque (Fe3+ ) formation by 1.7-2.5 times. The C amounts trapped by Fe plaque increased by 1.1 times after Fe2+ addition. Therefore, Fe plaque formed from amorphous and complex Fe (oxyhydr)oxides on the root surface act as a "rusty sink" for organic matter. Considering the area of coverage of paddy soils globally, upscaling by model revealed the radial oxygen loss from roots and bacterial Fe oxidation may trap up to 130 Mg C in Fe plaques per rice season. This represents an important annual surplus of new and stable C to the existing C pool under long-term rice cropping.
Collapse
Affiliation(s)
- Liang Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, Tyumen, Russia
| | - Lichao Fan
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Andrey Yurtaev
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, Tyumen, Russia
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Yakov Kuzyakov
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Liu Z, Williams PN, Fang W, Ji R, Han C, Ren J, Li H, Yin D, Fan J, Xu H, Luo J. Enhanced mobilization of Cd from commercial pigments in the rhizosphere of flooded lowland rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151032. [PMID: 34695462 DOI: 10.1016/j.scitotenv.2021.151032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Although yellow Cd pigments (Cd-YP), widely used in industrial colorants, are considered inert, increasing evidence suggests once released into the environment, photobleaching/weathering mobilizes Cd from these pigments posing a pollution threat. Although general redox conditions and biotic/microbial activity are known to be important factors in determining Cd release, how spatial trends and specific soil processes regulate the Cd-YP behavior are poorly understood. Using plant rhizotrons in controlled environmental conditions, this study investigated the behavior of Cd-YP amendments matched to levels (15 mg kg-1) representative of contaminated soils in Yixing, China. Using high-resolution two-dimensional diffusive-gradient-in-thin-films (HR-2D-DGT), planar-optode (PO) multilayer systems alongside targeted soil and porewater sampling for chemical analysis the biogeochemistry associated with Cd mobilization from Cd-YP rice rhizospheres were determined. The results showed that there was a significant release of Cd into soil porewaters (51.5 μg L-1), but this reduced by 90.9% and stabilized over time (after 6-days). HR-2D-DGT ion-maps revealed pronounced spatial variances. The flux-maxima for Cd, which located within aerobic-rhizosphere zones, was 9 to 19-fold higher than in associated anoxic bulk soil. In general, zones of radial O2 loss (ROL)/higher redox conditions and lower pH were associated with Cd release, with S2- to SO42- transitions marking the boundaries of high-flux areas. Some isolated colocalization of Fe and Cd hotspots were observed in lateral root regions, but on-the-whole Fe/Mn and Cd release were not linked. In addition, microniche development was also an important feature of Cd mobilization due to soil heterogeneity.
Collapse
Affiliation(s)
- Zhaodong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Paul N Williams
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, United Kingdom
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jinghua Ren
- Technology Innovation Center of Ecological Monitoring & Restoration Project on Land (arable), MNR Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Hanbing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Daixia Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Fan
- Technology Innovation Center of Ecological Monitoring & Restoration Project on Land (arable), MNR Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Hongting Xu
- Technology Innovation Center of Ecological Monitoring & Restoration Project on Land (arable), MNR Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Blagodatskaya E, Tarkka M, Knief C, Koller R, Peth S, Schmidt V, Spielvogel S, Uteau D, Weber M, Razavi BS. Bridging Microbial Functional Traits With Localized Process Rates at Soil Interfaces. Front Microbiol 2021; 12:625697. [PMID: 34777265 PMCID: PMC8581545 DOI: 10.3389/fmicb.2021.625697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we introduce microbially-mediated soil processes, players, their functional traits, and their links to processes at biogeochemical interfaces [e.g., rhizosphere, detritusphere, (bio)-pores, and aggregate surfaces]. A conceptual view emphasizes the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering biotic and abiotic dynamic drivers. We discuss the applicability of three groups of traits based on microbial physiology, activity state, and genomic functional traits to reflect microbial growth in soil. The sensitivity and credibility of modern molecular approaches to estimate microbial-specific growth rates require further development. A link between functional traits determined by physiological (e.g., respiration, biomarkers) and genomic (e.g., genome size, number of ribosomal gene copies per genome, expression of catabolic versus biosynthetic genes) approaches is strongly affected by environmental conditions such as carbon, nutrient availability, and ecosystem type. Therefore, we address the role of soil physico-chemical conditions and trophic interactions as drivers of microbially-mediated soil processes at relevant scales for process localization. The strengths and weaknesses of current approaches (destructive, non-destructive, and predictive) for assessing process localization and the corresponding estimates of process rates are linked to the challenges for modeling microbially-mediated processes in heterogeneous soil microhabitats. Finally, we introduce a conceptual self-regulatory mechanism based on the flexible structure of active microbial communities. Microbial taxa best suited to each successional stage of substrate decomposition become dominant and alter the community structure. The rates of decomposition of organic compounds, therefore, are dependent on the functional traits of dominant taxa and microbial strategies, which are selected and driven by the local environment.
Collapse
Affiliation(s)
- Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, Leipzig, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Peth
- Institute of Soil Science, University of Hannover, Hanover, Germany
| | | | - Sandra Spielvogel
- Department Soil Science, Institute for Plant Nutrition and Soil Science, Christian-Albrechts University Kiel, Kiel, Germany
| | - Daniel Uteau
- Department of Soil Science, Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany
| | | | - Bahar S. Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Smercina DN, Bailey VL, Hofmockel KS. Micro on a macroscale: relating microbial-scale soil processes to global ecosystem function. FEMS Microbiol Ecol 2021; 97:6315324. [PMID: 34223869 DOI: 10.1093/femsec/fiab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms play a key role in driving major biogeochemical cycles and in global responses to climate change. However, understanding and predicting the behavior and function of these microorganisms remains a grand challenge for soil ecology due in part to the microscale complexity of soils. It is becoming increasingly clear that understanding the microbial perspective is vital to accurately predicting global processes. Here, we discuss the microbial perspective including the microbial habitat as it relates to measurement and modeling of ecosystem processes. We argue that clearly defining and quantifying the size, distribution and sphere of influence of microhabitats is crucial to managing microbial activity at the ecosystem scale. This can be achieved using controlled and hierarchical sampling designs. Model microbial systems can provide key data needed to integrate microhabitats into ecosystem models, while adapting soil sampling schemes and statistical methods can allow us to collect microbially-focused data. Quantifying soil processes, like biogeochemical cycles, from a microbial perspective will allow us to more accurately predict soil functions and address long-standing unknowns in soil ecology.
Collapse
Affiliation(s)
- Darian N Smercina
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA.,Department of Agronomy, Iowa State University, 716 Farm House Ln, Ames, IA 50011, USA
| |
Collapse
|
11
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
12
|
Rahman G, Sohag H, Chowdhury R, Wahid KA, Dinh A, Arcand M, Vail S. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E787. [PMID: 32023975 PMCID: PMC7038518 DOI: 10.3390/s20030787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
A minirhizotron is an in situ root imaging system that captures components of root system architecture dynamics over time. Commercial minirhizotrons are expensive, limited to white-light imaging, and often need human intervention. The implementation of a minirhizotron needs to be low cost, automated, and customizable to be effective and widely adopted. We present a newly designed root imaging system called SoilCam that addresses the above mentioned limitations. The imaging system is multi-modal, i.e., it supports both conventional white-light and multispectral imaging, with fully automated operations for long-term in-situ monitoring using wireless control and access. The system is capable of taking 360° images covering the entire area surrounding the tube. The image sensor can be customized depending on the spectral imaging requirements. The maximum achievable image quality of the system is 8 MP (Mega Pixel)/picture, which is equivalent to a 2500 DPI (dots per inch) image resolution. The length of time in the field can be extended with a rechargeable battery and solar panel connectivity. Offline image-processing software, with several image enhancement algorithms to eliminate motion blur and geometric distortion and to reconstruct the 360° panoramic view, is also presented. The system is tested in the field by imaging canola roots to show the performance advantages over commercial systems.
Collapse
Affiliation(s)
- Gazi Rahman
- Department of Electrical and Computer Engineering, University of Saskatchewan, SK, S7N 5A9, Canada; (H.S.); (R.C.); (K.A.W.); (A.D.)
| | - Hanif Sohag
- Department of Electrical and Computer Engineering, University of Saskatchewan, SK, S7N 5A9, Canada; (H.S.); (R.C.); (K.A.W.); (A.D.)
| | - Rakibul Chowdhury
- Department of Electrical and Computer Engineering, University of Saskatchewan, SK, S7N 5A9, Canada; (H.S.); (R.C.); (K.A.W.); (A.D.)
| | - Khan A. Wahid
- Department of Electrical and Computer Engineering, University of Saskatchewan, SK, S7N 5A9, Canada; (H.S.); (R.C.); (K.A.W.); (A.D.)
| | - Anh Dinh
- Department of Electrical and Computer Engineering, University of Saskatchewan, SK, S7N 5A9, Canada; (H.S.); (R.C.); (K.A.W.); (A.D.)
| | - Melissa Arcand
- Department of Soil Science, University of Saskatchewan, SK, S7N 5A8, Canada;
| | - Sally Vail
- Research Scientist, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SK S7N 0X2, Canada;
| |
Collapse
|
13
|
Cooney AL, Thornell IM, Singh BK, Shah VS, Stoltz DA, McCray PB, Zabner J, Sinn PL. A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. Am J Respir Cell Mol Biol 2019; 61:747-754. [PMID: 31184507 PMCID: PMC6890402 DOI: 10.1165/rcmb.2019-0006oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Ian M. Thornell
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Viral S. Shah
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - David A. Stoltz
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Joseph Zabner
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| |
Collapse
|
14
|
Moßhammer M, Brodersen KE, Kühl M, Koren K. Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review. Mikrochim Acta 2019; 186:126. [PMID: 30680465 DOI: 10.1007/s00604-018-3202-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
Abstract
Most aquatic systems rely on a multitude of biogeochemical processes that are coupled with each other in a complex and dynamic manner. To understand such processes, minimally invasive analytical tools are required that allow continuous, real-time measurements of individual reactions in these complex systems. Optical chemical sensors can be used in the form of fiber-optic sensors, planar sensors, or as micro- and nanoparticles (MPs and NPs). All have their specific merits, but only the latter allow for visualization and quantification of chemical gradients over 3D structures. This review (with 147 references) summarizes recent developments mainly in the field of optical NP sensors relevant for chemical imaging in aquatic science. The review encompasses methods for signal read-out and imaging, preparation of NPs and MPs, and an overview of relevant MP/NP-based sensors. Additionally, examples of MP/NP-based sensors in aquatic systems such as corals, plant tissue, biofilms, sediments and water-sediment interfaces, marine snow and in 3D bioprinting are given. We also address current challenges and future perspectives of NP-based sensing in aquatic systems in a concluding section. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Maria Moßhammer
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Kasper Elgetti Brodersen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark.
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Klaus Koren
- Aarhus University Center for Water Technology, Department of Bioscience - Microbiology, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
15
|
Reznikov LR, Liao YSJ, Gu T, Davis KM, Kuan SP, Atanasova KR, Dadural JS, Collins EN, Guevara MV, Vogt K. Sex-specific airway hyperreactivity and sex-specific transcriptome remodeling in neonatal piglets challenged with intra-airway acid. Am J Physiol Lung Cell Mol Physiol 2018; 316:L131-L143. [PMID: 30407862 DOI: 10.1152/ajplung.00417.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute airway acidification is a potent stimulus of sensory nerves and occurs commonly with gastroesophageal reflux disease, cystic fibrosis, and asthma. In infants and adults, airway acidification can acutely precipitate asthma-like symptoms, and treatment-resistant asthma can be associated with gastroesophageal reflux disease. Airway protective behaviors, such as mucus secretion and airway smooth muscle contraction, are often exaggerated in asthma. These behaviors are manifested through activation of neural circuits. In some populations, the neural response to acid might be particularly important. For example, the immune response in infants is relatively immature compared with adults. Infants also have a high frequency of gastroesophageal reflux. Thus, in the current study, we compared the transcriptomes of an airway-nervous system circuit (e.g., tracheal epithelia, nodose ganglia, and brain stem) in neonatal piglets challenged with intra-airway acid. We hypothesized that the identification of parallel changes in the transcriptomes of two neutrally connected tissues might reveal the circuit response, and, hence, molecules important for the manifestation of asthma-like features. Intra-airway acid induced airway hyperreactivity and airway obstruction in male piglets. In contrast, female piglets displayed airway obstruction without airway hyperreactivity. Pairwise comparisons revealed parallel changes in genes directly implicated in airway hyperreactivity ( scn10a) in male acid-challenged piglets, whereas acid-challenged females exhibited parallel changes in genes associated with mild asthma ( stat 1 and isg15). These findings reveal sex-specific responses to acute airway acidification and highlight distinct molecules within a neural circuit that might be critical for the manifestation of asthma-like symptoms in pediatric populations.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Yan Shin J Liao
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida , Gainesville, Florida
| | - Katelyn M Davis
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Shin Ping Kuan
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Joshua S Dadural
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Maria V Guevara
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Kevin Vogt
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| |
Collapse
|
16
|
Han C, Ren J, Wang Z, Yang S, Ke F, Xu D, Xie X. Characterization of phosphorus availability in response to radial oxygen losses in the rhizosphere of Vallisneria spiralis. CHEMOSPHERE 2018; 208:740-748. [PMID: 29902758 DOI: 10.1016/j.chemosphere.2018.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The viewpoint that radial oxygen loss (ROL) of submerged macrophytes induces changes in redox conditions and the associated phosphorus (P) availability has been indirectly confirmed at larger spatial scales using conventional, destructive techniques. However, critical information about microniches has largely been overlooked due to the lack of satisfactory in situ mapping technologies. In this study, we deployed a recently developed hybrid sensor in the rhizosphere of Vallisneria spiralis (V. spiralis) during two vegetation periods to provide 2-D imaging of the spatiotemporal co-distribution of oxygen (O2) and P from a fixed observation point. Overall, the images of O2 and P showed a high degree of spatiotemporal heterogeneity throughout the rhizosphere at the sub-mm scale. A clear decrease in the P mobilization corresponded well to the steep O2 enhancement within a 2-mm-thick zone around younger V. spiralis root, indicating a significant coupling relationship between ROL and P availability. Surprisingly, despite significant diurnal shifts in ROL along the older V. spiralis roots, P availability did not fluctuate in a substantial part of the rhizosphere throughout the day; however, ROL increased the P immobilization significantly by changing the redox gradients at the outer rhizosphere. This study clearly demonstrates how continuous ROL of V. spiralis can play a major role in regulating P availability within the rhizosphere. The premise behind this statement is the discovery of how this continuous ROL can lead to the formation of three distinctive redox landscapes in the rooting sediment (oxic, suboxic, or anaerobic layers).
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jinghua Ren
- Geological Survey of Jiangsu Province, Nanjing, 210018, China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Shika Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fan Ke
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Di Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
17
|
Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, Sinn PL, McCray PB. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 2018; 1:88730. [PMID: 27656681 DOI: 10.1172/jci.insight.88730] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.
Collapse
Affiliation(s)
- Ashley L Cooney
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology
| | - Mahmoud H Abou Alaiwa
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Viral S Shah
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Molecular Physiology and Biophysics
| | - Drake C Bouzek
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Mallory R Stroik
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Linda S Powers
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Nick D Gansemer
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - David K Meyerholz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pathology
| | - Michael J Welsh
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Howard Hughes Medical Institute.,Molecular Physiology and Biophysics
| | - David A Stoltz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Patrick L Sinn
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B McCray
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Bargrizan S, Smernik RJ, Fitzpatrick RW, Mosley LM. The application of a spectrophotometric method to determine pH in acidic (pH<5) soils. Talanta 2018; 186:421-426. [DOI: 10.1016/j.talanta.2018.04.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
19
|
Koop-Jakobsen K, Mueller P, Meier RJ, Liebsch G, Jensen K. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O 2, pH, and CO 2 Gradients in the Rhizosphere. FRONTIERS IN PLANT SCIENCE 2018; 9:541. [PMID: 29774037 PMCID: PMC5943611 DOI: 10.3389/fpls.2018.00541] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/06/2018] [Indexed: 05/26/2023]
Abstract
In many wetland plants, belowground transport of O2 via aerenchyma tissue and subsequent O2 loss across root surfaces generates small oxic root zones at depth in the rhizosphere with important consequences for carbon and nutrient cycling. This study demonstrates how roots of the intertidal salt-marsh plant Spartina anglica affect not only O2, but also pH and CO2 dynamics, resulting in distinct gradients of O2, pH, and CO2 in the rhizosphere. A novel planar optode system (VisiSens TD®, PreSens GmbH) was used for taking high-resolution 2D-images of the O2, pH, and CO2 distribution around roots during alternating light-dark cycles. Belowground sediment oxygenation was detected in the immediate vicinity of the roots, resulting in oxic root zones with a 1.7 mm radius from the root surface. CO2 accumulated around the roots, reaching a concentration up to threefold higher than the background concentration, and generally affected a larger area within a radius of 12.6 mm from the root surface. This contributed to a lowering of pH by 0.6 units around the roots. The O2, pH, and CO2 distribution was recorded on the same individual roots over diurnal light cycles in order to investigate the interlinkage between sediment oxygenation and CO2 and pH patterns. In the rhizosphere, oxic root zones showed higher oxygen concentrations during illumination of the aboveground biomass. In darkness, intraspecific differences were observed, where some plants maintained oxic root zones in darkness, while others did not. However, the temporal variation in sediment oxygenation was not reflected in the temporal variations of pH and CO2 around the roots, which were unaffected by changing light conditions at all times. This demonstrates that plant-mediated sediment oxygenation fueling microbial decomposition and chemical oxidation has limited impact on the dynamics of pH and CO2 in S. anglica rhizospheres, which may in turn be controlled by other processes such as root respiration and root exudation.
Collapse
Affiliation(s)
- Ketil Koop-Jakobsen
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Peter Mueller
- Applied Plant Ecology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | | | | | - Kai Jensen
- Applied Plant Ecology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Kreuzeder A, Santner J, Scharsching V, Oburger E, Hoefer C, Hann S, Wenzel WW. In situ observation of localized, sub-mm scale changes of phosphorus biogeochemistry in the rhizosphere. PLANT AND SOIL 2018; 424:573-589. [PMID: 29706670 PMCID: PMC5902520 DOI: 10.1007/s11104-017-3542-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/19/2017] [Indexed: 05/19/2023]
Abstract
AIMS We imaged the sub-mm distribution of labile P and pH in the rhizosphere of three plant species to localize zones and hot spots of P depletion and accumulation along individual root axes and to relate our findings to nutrient acquisition / root exudation strategies in P-limited conditions at different soil pH, and to mobilization pattern of other elements (Al, Fe, Ca, Mg, Mn) in the rhizosphere. METHODS Sub-mm distributions of labile elemental patterns were sampled using diffusive gradients in thin films and analysed using laser ablation inductively coupled plasma mass spectrometry. pH images were taken using planar optodes. RESULTS We found distinct patterns of highly localized labile P depletion and accumulation reflecting the complex interaction of plant P acquisition strategies with soil pH, fertilizer treatment, root age, and elements (Al, Fe, Ca) that are involved in P biogeochemistry in soil. We show that the plants respond to P deficiency either by acidification or alkalization, depending on initial bulk soil pH and other factors of P solubility. CONCLUSIONS P solubilization activities of roots are highly localized, typically around root apices, but may also extend towards the extension / root hair zone.
Collapse
Affiliation(s)
- Andreas Kreuzeder
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
- Land Salzburg, Natur- und Umweltschutz, Gewerbe (Abteilung 5), Michael-Pacher-Straße 36, A-5020 Salzburg, Austria
| | - Jakob Santner
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
- Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Vanessa Scharsching
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Christoph Hoefer
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Stephan Hann
- Department of Chemistry, Vienna, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 18, 1190 Vienna, Austria
| | - Walter W. Wenzel
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| |
Collapse
|
21
|
Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, Powers LS, Gansemer ND, Ostedgaard LS, Engelhardt JF, Stoltz DA, Welsh MJ, Sinn PL, Schaffer DV, Zabner J. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight 2016; 1:e88728. [PMID: 27699238 DOI: 10.1172/jci.insight.88728] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl- transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways.
Collapse
Affiliation(s)
- Benjamin Steines
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David D Dickey
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and
| | - Jamie Bergen
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | - John R Weinstein
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Xiaopeng Li
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Viral S Shah
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Lynda S Ostedgaard
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | - David A Stoltz
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Michael J Welsh
- Department of Internal Medicine.,Molecular and Cellular Biology Program, and.,Molecular Physiology and Biophysics
| | - Patrick L Sinn
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Howard Hughes Medical Institute, and
| | - David V Schaffer
- Departments of Chemical and Biomolecular Engineering, Bioengineering, The Helen Wills Neuroscience Institute, Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | - Joseph Zabner
- Department of Internal Medicine.,Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Plant-Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:1-67. [PMID: 27261781 DOI: 10.1016/bs.aambs.2016.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major challenge facing agriculture in the 21st century is the need to increase the productivity of cultivated land while reducing the environmentally harmful consequences of mineral fertilization. The microorganisms thriving in association and interacting with plant roots, the plant microbiota, represent a potential resource of plant probiotic function, capable of conjugating crop productivity with sustainable management in agroecosystems. However, a limited knowledge of the organismal interactions occurring at the root-soil interface is currently hampering the development and use of beneficial plant-microbiota interactions in agriculture. Therefore, a comprehensive understanding of the recruitment cues of the plant microbiota and the molecular basis of nutrient turnover in the rhizosphere will be required to move toward efficient and sustainable crop nutrition. In this chapter, we will discuss recent insights into plant-microbiota interactions at the root-soil interface, illustrate the processes driving mineral dynamics in soil, and propose experimental avenues to further integrate the metabolic potential of the plant microbiota into crop management and breeding strategies for sustainable agricultural production.
Collapse
|
23
|
A nitrate sensitive planar optode; performance and interferences. Talanta 2015; 144:933-7. [DOI: 10.1016/j.talanta.2015.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/06/2015] [Accepted: 07/14/2015] [Indexed: 11/19/2022]
|
24
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
25
|
Santner J, Larsen M, Kreuzeder A, Glud RN. Two decades of chemical imaging of solutes in sediments and soils--a review. Anal Chim Acta 2015; 878:9-42. [PMID: 26002324 DOI: 10.1016/j.aca.2015.02.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 01/08/2023]
Abstract
The increasing appreciation of the small-scale (sub-mm) heterogeneity of biogeochemical processes in sediments, wetlands and soils has led to the development of several methods for high-resolution two-dimensional imaging of solute distribution in porewaters. Over the past decades, localised sampling of solutes (diffusive equilibration in thin films, diffusive gradients in thin films) followed by planar luminescent sensors (planar optodes) have been used as analytical tools for studies on solute distribution and dynamics. These approaches have provided new conceptual and quantitative understanding of biogeochemical processes regulating the distribution of key elements and solutes including O2, CO2, pH, redox conditions as well as nutrient and contaminant ion species in structurally complex soils and sediments. Recently these methods have been applied in parallel or integrated as so-called sandwich sensors for multianalyte measurements. Here we review the capabilities and limitations of the chemical imaging methods that are currently at hand, using a number of case studies, and provide an outlook on potential future developments for two-dimensional solute imaging in soils and sediments.
Collapse
Affiliation(s)
- Jakob Santner
- Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 24, 3430 Tulln, Austria.
| | - Morten Larsen
- Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Andreas Kreuzeder
- Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ronnie N Glud
- Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; Scottish Marine Institute, Scottish Association for Marine Science, Oban, Scotland, PA37 1QA, UK; Greenland Climate Research Centre (CO Greenland Institute of Natural Resources), Kivioq 2, Box 570, 3900 Nuuk, Greenland; Arctic Research Centre, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
26
|
Rudolph-Mohr N, Vontobel P, Oswald SE. A multi-imaging approach to study the root-soil interface. ANNALS OF BOTANY 2014; 114:1779-87. [PMID: 25344936 PMCID: PMC4649689 DOI: 10.1093/aob/mcu200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/26/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Dynamic processes occurring at the soil-root interface crucially influence soil physical, chemical and biological properties at a local scale around the roots, and are technically challenging to capture in situ. This study presents a novel multi-imaging approach combining fluorescence and neutron radiography that is able to simultaneously monitor root growth, water content distribution, root respiration and root exudation. METHODS Germinated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography. KEY RESULTS The interrelated patterns of root growth and distribution in the soil, root respiration, exudation and water uptake could all be studied non-destructively and at high temporal and spatial resolution. The older parts of the root system with greater root-length density were associated with fast decreases of water content and rapid changes in oxygen concentration. pH values around the roots located in areas with low soil water content were significantly lower than the rest of the root system. CONCLUSIONS The results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system.
Collapse
Affiliation(s)
- Nicole Rudolph-Mohr
- Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | - Sascha E Oswald
- Institute of Earth and Environmental Science, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
27
|
Williams PN, Santner J, Larsen M, Lehto N, Oburger E, Wenzel W, Glud RN, Davison W, Zhang H. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8498-506. [PMID: 24967508 PMCID: PMC4124062 DOI: 10.1021/es501127k] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 05/21/2023]
Abstract
In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.
Collapse
Affiliation(s)
- Paul N. Williams
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
- Institute
for Global Food Security, Queen’s
University Belfast, Belfast BT9 5HN, United Kingdom
| | - Jakob Santner
- Rhizosphere
Ecology and Biogeochemistry Group, Institute of Soil Science, Department
of Forest and Soil Sciences, University
of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Morten Larsen
- Institute
of Biology and Nordic Centre for Earth Evolution (NordCEE), University of Southern Denmark, 5230 Odense M, Denmark
- Greenland
Climate Research Centre, Greenland Institute
of National Resources, Kivioq 2, Post Office Box 570, 3900 Nuuk, Greenland
- Scottish
Marine Institute, Scottish Association for
Marine Science, Oban PA37 1QA, United Kingdom
| | - Niklas
J. Lehto
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
- Faculty
of Agriculture and Life Sciences, Lincoln
University, Post Office Box 84, Lincoln 7647, New Zealand
| | - Eva Oburger
- Rhizosphere
Ecology and Biogeochemistry Group, Institute of Soil Science, Department
of Forest and Soil Sciences, University
of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Walter Wenzel
- Rhizosphere
Ecology and Biogeochemistry Group, Institute of Soil Science, Department
of Forest and Soil Sciences, University
of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Ronnie N. Glud
- Institute
of Biology and Nordic Centre for Earth Evolution (NordCEE), University of Southern Denmark, 5230 Odense M, Denmark
- Greenland
Climate Research Centre, Greenland Institute
of National Resources, Kivioq 2, Post Office Box 570, 3900 Nuuk, Greenland
- Scottish
Marine Institute, Scottish Association for
Marine Science, Oban PA37 1QA, United Kingdom
- Arctic
Research Center, Arhus University, 8000 Aarhus C, Denmark
| | - William Davison
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster
Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
28
|
Wenlin W, Ruiming H, Yinjing W, Bo L, Xiaoyan T, Bin L, Guoxiang W. Spatio-temporal patterns in rhizosphere oxygen profiles in the emergent plant species Acorus calamus. PLoS One 2014; 9:e98457. [PMID: 24866504 PMCID: PMC4035344 DOI: 10.1371/journal.pone.0098457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Rhizosphere oxygen profiles are the key to understanding the role of wetland plants in ecological remediation. Though in situ determination of the rhizosphere oxygen profiles has been performed occasionally at certain growing stages within days, comprehensive study on individual roots during weeks is still missing. Seedlings of Acorus calamus, a wetland monocot, were cultivated in silty sediment and the rhizosphere oxygen profiles were characterized at regular intervals, using micro-optodes to examine the same root at four positions along the root axis. The rhizosphere oxygen saturation culminated at 42.9% around the middle part of the root and was at its lowest level, 3.3%, at the basal part of the root near the aboveground portion. As the plant grew, the oxygen saturation at the four positions remained nearly constant until shoot height reached 15 cm. When shoot height reached 60 cm, oxygen saturation was greatest at the point halfway along the root, followed by the point three-quarters of the way down the root, the tip of the root, and the point one-quarter of the way down. Both the internal and rhizosphere oxygen saturation steadily increased, as did the thickness of stably oxidized microzones, which ranged from 20 µm in younger seedlings to a maximum of 320 µm in older seedlings. The spatial patterns of rhizosphere oxygen profiles in sediment contrast with those from previous studies on radial oxygen loss in A. calamus that used conventional approaches. Rhizosphere oxygen saturation peaked around the middle part of roots and the thickness of stably oxidized zones increased as the roots grew.
Collapse
Affiliation(s)
- Wang Wenlin
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, College of Geographical Science, Nanjing Normal University, Nanjing, China
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Han Ruiming
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, College of Geographical Science, Nanjing Normal University, Nanjing, China
| | - Wan Yinjing
- Jiangsu Environmental Engineering Consulting Center, Nanjing, China
| | - Liu Bo
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, College of Geographical Science, Nanjing Normal University, Nanjing, China
- School of Geography Science, Nantong University, Nantong, China
| | - Tang Xiaoyan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Liang Bin
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Wang Guoxiang
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, College of Geographical Science, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
29
|
Faget M, Blossfeld S, von Gillhaussen P, Schurr U, Temperton VM. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques. FRONTIERS IN PLANT SCIENCE 2013; 4:392. [PMID: 24137168 PMCID: PMC3797519 DOI: 10.3389/fpls.2013.00392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/13/2013] [Indexed: 05/04/2023]
Abstract
Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions.
Collapse
Affiliation(s)
- Marc Faget
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH Jülich, Germany
| | | | | | | | | |
Collapse
|
30
|
Postma JA, Schurr U, Fiorani F. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. Biotechnol Adv 2013; 32:53-65. [PMID: 24012600 DOI: 10.1016/j.biotechadv.2013.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022]
Abstract
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.
Collapse
Affiliation(s)
- Johannes A Postma
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | - Ulrich Schurr
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo Brandt Strasse, 52425 Jülich, Germany.
| |
Collapse
|
31
|
Blossfeld S, Schreiber CM, Liebsch G, Kuhn AJ, Hinsinger P. Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. ANNALS OF BOTANY 2013; 112:267-76. [PMID: 23532048 PMCID: PMC3698388 DOI: 10.1093/aob/mct047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/16/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Live imaging methods have become extremely important for the exploration of biological processes. In particular, non-invasive measurement techniques are key to unravelling organism-environment interactions in close-to-natural set-ups, e.g. in the highly heterogeneous and difficult-to-probe environment of plant roots: the rhizosphere. pH and CO2 concentration are the main drivers of rhizosphere processes. Being able to monitor these parameters at high spatio-temporal resolution is of utmost importance for relevant interpretation of the underlying processes, especially in the complex environment of non-sterile plant-soil systems. This study introduces the application of easy-to-use planar optode systems in different set-ups to quantify plant root-soil interactions. METHODS pH- and recently developed CO2-sensors were applied to rhizobox systems to investigate roots with different functional traits, highlighting the potential of these tools. Continuous and highly resolved real-time measurements were made of the pH dynamics around Triticum turgidum durum (durum wheat) roots, Cicer arietinum (chickpea) roots and nodules, and CO2 dynamics in the rhizosphere of Viminaria juncea. KEY RESULTS Wheat root tips acidified slightly, while their root hair zone alkalized their rhizosphere by more than 1 pH unit and the effect of irrigation on soil pH could be visualized as well. Chickpea roots and nodules acidified the surrounding soil during N2 fixation and showed diurnal changes in acidification activity. A growing root of V. juncea exhibited a large zone of influence (mm) on soil CO2 content and therefore on its biogeochemical surrounding, all contributing to the extreme complexity of the root-soil interactions. CONCLUSIONS This technique provides a unique tool for future root research applications and overcomes limitations of previous systems by creating quantitative maps without, for example, interpolation and time delays between single data points.
Collapse
Affiliation(s)
- Stephan Blossfeld
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, IBG-2: Plant sciences, Jülich, Germany.
| | | | | | | | | |
Collapse
|
32
|
Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Bánfi B, Horswill AR, Stoltz DA, McCray PB, Welsh MJ, Zabner J. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 2012; 487:109-13. [PMID: 22763554 PMCID: PMC3390761 DOI: 10.1038/nature11130] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene 1. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how loss of CFTR first disrupts airway host defense has remained uncertain 2–6. We asked what abnormalities impair eradication when a bacterium lands on the pristine surface of a newborn CF airway? To investigate these defects, we interrogated the viability of individual bacteria immobilized on solid grids and placed on the airway surface. As a model we studied CF pigs, which spontaneously develop hallmark features of CF lung disease 7,8. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria 8. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly killed bacteria in vivo, when removed from the lung, and in primary epithelial cultures. Lack of CFTR reduced bacterial killing. We found that ASL pH was more acidic in CF, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defense defect to loss of CFTR, an anion channel that facilitates HCO3− transport 9–13. Without CFTR, airway epithelial HCO3− secretion is defective, ASL pH falls and inhibits antimicrobial function, and thereby impairs killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF and that assaying bacterial killing could report on the benefit of therapeutic interventions.
Collapse
Affiliation(s)
- Alejandro A Pezzulo
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lager I, Andréasson O, Dunbar T, Andreasson E, Escobar MA, Rasmusson AG. Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses. PLANT, CELL & ENVIRONMENT 2010; 33:1513-28. [PMID: 20444216 PMCID: PMC2920358 DOI: 10.1111/j.1365-3040.2010.02161.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
pH is a highly variable environmental factor for the root, and plant cells can modify apoplastic pH for nutrient acquisition and in response to extracellular signals. Nevertheless, surprisingly few effects of external pH on plant gene expression have been reported. We have used microarrays to investigate whether external pH affects global gene expression. In Arabidopsis thaliana roots, 881 genes displayed at least twofold changes in transcript abundance 8 h after shifting medium pH from 6.0 to 4.5, identifying pH as a major affector of global gene expression. Several genes responded within 20 min, and gene responses were also observed in leaves of seedling cultures. The pH 4.5 treatment was not associated with abiotic stress, as evaluated from growth and transcriptional response. However, the observed patterns of global gene expression indicated redundancies and interactions between the responses to pH, auxin and pathogen elicitors. In addition, major shifts in gene expression were associated with cell wall modifications and Ca(2+) signalling. Correspondingly, a marked overrepresentation of Ca(2+)/calmodulin-associated motifs was observed in the promoters of pH-responsive genes. This strongly suggests that plant pH recognition involves intracellular Ca(2+). Overall, the results emphasize the previously underappreciated role of pH in plant responses to the environment.
Collapse
Affiliation(s)
- Ida Lager
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Ola Andréasson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Tiffany Dunbar
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Erik Andreasson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Matthew A. Escobar
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| | - Allan G. Rasmusson
- Department of Biology, Lund University, SE-22362, Lund, Sweden (I.L., O.A., E.A., A.G.R.); Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA (T.B., M.A.E.)
| |
Collapse
|
34
|
Colburn-Clifford J, Allen C. A cbb(3)-type cytochrome C oxidase contributes to Ralstonia solanacearum R3bv2 growth in microaerobic environments and to bacterial wilt disease development in tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1042-52. [PMID: 20615115 DOI: 10.1094/mpmi-23-8-1042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum race 3 biovar 2 (R3bv2) is an economically important soilborne plant pathogen that causes bacterial wilt disease by infecting host plant roots and colonizing the xylem vessels. Little is known about R3bv2 behavior in the host rhizosphere and early in bacterial wilt pathogenesis. To explore this part of the disease cycle, we used a novel taxis-based promoter-trapping strategy to identify pathogen genes induced in the plant rhizosphere. This screen identified several rex (root exudate expressed) genes whose promoters were upregulated in the presence of tomato root exudates. One rex gene encodes an assembly protein for a high affinity cbb(3)-type cytochrome c oxidase (cbb(3)-cco) that enables respiration in low-oxygen conditions in other bacteria. R3bv2 cbb(3)-cco gene expression increased under low-oxygen conditions, and a cbb(3)-cco mutant strain grew more slowly in a microaerobic environment (0.5% O(2)). Although the cco mutant could still wilt tomato plants, symptom onset was significantly delayed relative to the wild-type parent strain. Further, the cco mutant did not colonize host stems or adhere to roots as effectively as wild type. These results suggest that R3bv2 encounters low-oxygen environments during its interactions with host plants and that the pathogen depends on this oxidase to help it succeed in planta.
Collapse
|
35
|
Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:279-304. [PMID: 19575584 DOI: 10.1146/annurev.arplant.59.032607.092819] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Leaves and roots live in dramatically different habitats, but are parts of the same organism. Automated image processing of time-lapse records of these organs has led to understanding of spatial and temporal patterns of growth on time scales from minutes to weeks. Growth zones in roots and leaves show distinct patterns during a diel cycle (24 h period). In dicot leaves under nonstressful conditions these patterns are characterized by endogenous rhythms, sometimes superimposed upon morphogenesis driven by environmental variation. In roots and monocot leaves the growth patterns depend more strongly on environmental fluctuations. Because the impact of spatial variations and temporal fluctuations of above- and belowground environmental parameters must be processed by the plant body as an entire system whose individual modules interact on different levels, growth reactions of individual modules are often highly nonlinear. A mechanistic understanding of plant resource use efficiency and performance in a dynamically fluctuating environment therefore requires an accurate analysis of leaf and root growth patterns in conjunction with knowledge of major intraplant communication systems and metabolic pathways.
Collapse
Affiliation(s)
- Achim Walter
- Institute of Chemistry and Dynamics of Geosphere ICG-3: Phytosphere Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
36
|
|