1
|
Yang F, Zhang Y, Zhang H, Hu J, Zhu W, Liu L, Liu H, Fahad S, Gao Q. Comparative physiological and transcriptome analysis of leaf nitrogen fluxes in stay-green maize during the vegetative stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108147. [PMID: 37922646 DOI: 10.1016/j.plaphy.2023.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
In maize, nitrogen (N) stored in leaves is an important internal source for supporting subsequent growth and development. However, the regulation of N fluxes and photosynthesis and the molecular and genotypic regulations that modify them are less clear in source leaves during the vegetative stage. This knowledge is crucial for improving N use efficiency (NUE). By using 15N labeling and transcriptome methods, an analysis of the physiological and molecular basis of leaf N import and export processes and photosynthetic N use efficiency (PNUE) was conducted in two maize hybrids (XY335 and XY696) with different stay-green characteristics during the vegetative stage. Leaf N import and export in XY696 were 45% and 33% greater than those in XY335. However, the PNUE in XY335 was 17% greater than that in XY696 due to the higher net photosynthetic rate (A) and lower SLN. Correspondingly, the chlorophyll content and photosynthesis-related enzyme (PEPc, PEPck, PPDK) activities increased by 18∼30% in XY335. Transcriptome analysis indicated that the expression levels of several N and carbon metabolism-related genes encoding Rubisco, PEPc, Nir, GS and AS were significantly increased or decreased in XY696 in parallel with enzyme activities. Moreover, there was a large difference in the expression abundance of genes encoding nitrate/nitrite transporters and transmembrane proteins. Our results suggest that two hybrids modulate leaf N fluxes and photosynthesis differently by altering gene expression and enzyme activities. Our study contributes to understanding leaf N fluxes and PNUE regulation and serves as a crucial reference for NUE improvement in maize breeding research.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yudie Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyi Zhang
- College of Agriculture, Guangxi University, Nanning, 53002, China
| | - Jingwen Hu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Wenjing Zhu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Liu
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Qiang Gao
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
3
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
4
|
Jiang D, Zhang H, Cai H, Gao Z, Chen G. Overexpression of ZmPCK2, a phosphoenolpyruvate carboxykinase gene from maize confers enhanced tolerance to water deficit stress in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111195. [PMID: 35193744 DOI: 10.1016/j.plantsci.2022.111195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Water deficit is one of the major abiotic stresses that limit plant growth and global crop yields. Phosphoenolpyruvate carboxykinase (PCK) plays important roles in regulating plant growth and development, but its role in water-deficit stress remains elusive. In this study, we found that overexpression of ZmPCK2 significantly enhanced the water-deficit tolerance of transgenic rice. The expression level of ZmPCK2 was strongly induced by PEG and ABA treatments. Overexpression of ZmPCK2 in rice increased stomatal closure and water saving by regulating malate metabolism under water-deficit conditions. Moreover, the expression of ZmPCK2 in rice up-regulated ABA biosynthesis and responsive genes under water-deficit stress, and ZmPCK2 transgenic rice showed hypersensitive to exogenous ABA at germination stage, suggesting that ZmPCK2 may be involved in ABA signalling pathway. Under water-deficit stress, the ZmPCK2 transgenic rice showed higher antioxidant enzyme activities and lower accumulation of reactive oxygen species (ROS) compared with non-transgenic (NT) plants, resulting in less oxidative damage. Taken together, we suggest that ZmPCK2 plays multiple roles in response to water-deficit stress by enhancing ABA signalling pathway, regulating malate metabolism, promoting stomatal closure and further activating the ROS-scavenging system.
Collapse
Affiliation(s)
- Dexing Jiang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haizi Zhang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Cai
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhiping Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Washburn JD, Strable J, Dickinson P, Kothapalli SS, Brose JM, Covshoff S, Conant GC, Hibberd JM, Pires JC. Distinct C 4 sub-types and C 3 bundle sheath isolation in the Paniceae grasses. PLANT DIRECT 2021; 5:e373. [PMID: 34988355 PMCID: PMC8711749 DOI: 10.1002/pld3.373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In C4 plants, the enzymatic machinery underpinning photosynthesis can vary, with, for example, three distinct C4 acid decarboxylases being used to release CO2 in the vicinity of RuBisCO. For decades, these decarboxylases have been used to classify C4 species into three biochemical sub-types. However, more recently, the notion that C4 species mix and match C4 acid decarboxylases has increased in popularity, and as a consequence, the validity of specific biochemical sub-types has been questioned. Using five species from the grass tribe Paniceae, we show that, although in some species transcripts and enzymes involved in multiple C4 acid decarboxylases accumulate, in others, transcript abundance and enzyme activity is almost entirely from one decarboxylase. In addition, the development of a bundle sheath isolation procedure for a close C3 species in the Paniceae enables the preliminary exploration of C4 sub-type evolution.
Collapse
Affiliation(s)
- Jacob D. Washburn
- Plant Genetics Research Unit, USDA‐ARSUniversity of MissouriColumbiaMOUSA
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Josh Strable
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Julia M. Brose
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Sarah Covshoff
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Gavin C. Conant
- Program in Genetics, Bioinformatics Research Center, Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | |
Collapse
|
6
|
Liu XC, Lin XH, Liu SC, Zhu CQ, Grierson D, Li SJ, Chen KS. The effect of NH 4+ on phosphoenolpyruvate carboxykinase gene expression, metabolic flux and citrate content of citrus juice sacs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:123-131. [PMID: 34352515 DOI: 10.1016/j.plaphy.2021.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Citrate is one of the most important metabolites determining the flavour of citrus fruit. It has been reported that nitrogen supply may have an impact on acid level of fruit. Here, the relationship between nitrogen metabolism and citrate catabolism was studied in pumelo juice sacs. Differences in metabolites, gene expression and flux distributions were analyzed in juice sacs incubated in medium with and without NH4+. Compared with those incubated with NH4+, juice sacs under nitrogen deficiency exhibited enhanced flux through phosphoenolpyruvate carboxykinase (PEPCK) and accelerated consumption of citrate, while the other two TCA cycle efflux points, through malic enzyme (ME) and glutamate dehydrogenase (GDH), were both repressed. Consistent with the estimated fluxes, the expression of PEPCK1 was upregulated under nitrogen deficiency, while that of GDH1, GDH2, NAD-ME1 and NADP-ME2 were all repressed. Thus, we propose that PEPCK1 contributes to citrate degradation under nitrogen limitation.
Collapse
Affiliation(s)
- Xin-Cheng Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xia-Hui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Sheng-Chao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chang-Qing Zhu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Shao-Jia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
7
|
Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn (Zea mays L.). PLANTS 2021; 10:plants10091845. [PMID: 34579378 PMCID: PMC8466968 DOI: 10.3390/plants10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
Collapse
|
8
|
Walker RP, Chen ZH, Famiani F. Gluconeogenesis in Plants: A Key Interface between Organic Acid/Amino Acid/Lipid and Sugar Metabolism. Molecules 2021; 26:molecules26175129. [PMID: 34500562 PMCID: PMC8434439 DOI: 10.3390/molecules26175129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gluconeogenesis is a key interface between organic acid/amino acid/lipid and sugar metabolism. The aims of this article are four-fold. First, to provide a concise overview of plant gluconeogenesis. Second, to emphasise the widespread occurrence of gluconeogenesis and its utilisation in diverse processes. Third, to stress the importance of the vacuolar storage and release of Krebs cycle acids/nitrogenous compounds, and of the role of gluconeogenesis and malic enzyme in this process. Fourth, to outline the contribution of fine control of enzyme activity to the coordinate-regulation of gluconeogenesis and malate metabolism, and the importance of cytosolic pH in this.
Collapse
Affiliation(s)
- Robert P. Walker
- Independent Researcher, Lancashire, Bolton BL2 3BG, UK
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| | - Zhi-Hui Chen
- School of Life Science, University of Dundee, Dundee DD1 5EH, UK
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, 06123 Perugia, Italy
- Correspondence: (R.P.W.); (Z.-H.C.); (F.F.)
| |
Collapse
|
9
|
Zhang H, Zhou Y, Liu TQ, Yin XJ, Lin L, Lin Q, Wang DZ. Initiation of efficient C 4 pathway in response to low ambient CO 2 during the bloom period of a marine dinoflagellate. Environ Microbiol 2021; 23:3196-3211. [PMID: 33938118 DOI: 10.1111/1462-2920.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13 C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Tian-Qi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xi-Jie Yin
- Laboratory of Marine & Coastal Geology, MNR Third Institute of Oceanology, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Rojas BE, Hartman MD, Figueroa CM, Iglesias AA. Proteolytic cleavage of Arabidopsis thaliana phosphoenolpyruvate carboxykinase-1 modifies its allosteric regulation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2514-2524. [PMID: 33315117 DOI: 10.1093/jxb/eraa583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Matías D Hartman
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
11
|
Min CW, Park J, Bae JW, Agrawal GK, Rakwal R, Kim Y, Yang P, Kim ST, Gupta R. In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells 2020; 9:E1517. [PMID: 32580392 PMCID: PMC7349688 DOI: 10.3390/cells9061517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and hinder the identification of low-abundance proteins. Here, we report a TMT-based quantitative proteome analysis of matured and filling stages seeds of high-protein (Saedanbaek) and low-protein (Daewon) soybean cultivars by application of a two-way pre-fractionation both at the levels of proteins (by PS) and peptides (by basic pH reverse phase chromatography). Interestingly, this approach led to the identification of more than 5900 proteins which is the highest number of proteins reported to date from soybean seeds. Comparative protein profiles of Saedanbaek and Daewon led to the identification of 2200 and 924 differential proteins in mature and filling stages seeds, respectively. Functional annotation of the differential proteins revealed enrichment of proteins related to major metabolism including amino acid, major carbohydrate, and lipid metabolism. In parallel, analysis of free amino acids and fatty acids in the filling stages showed higher contents of all the amino acids in the Saedanbaek while the fatty acids contents were found to be higher in the Daewon. Taken together, these results provide new insights into proteome changes during filling stages in soybean seeds. Moreover, results reported here also provide a framework for systemic and large-scale dissection of seed proteome for the seeds rich in SSPs by two-way pre-fractionation combined with TMT-based quantitative proteome analysis.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Joonho Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Jin Woo Bae
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 3058574, Japan
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
12
|
Famiani F, Bonghi C, Chen ZH, Drincovich MF, Farinelli D, Lara MV, Proietti S, Rosati A, Vizzotto G, Walker RP. Stone Fruits: Growth and Nitrogen and Organic Acid Metabolism in the Fruits and Seeds-A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:572601. [PMID: 33101339 PMCID: PMC7546786 DOI: 10.3389/fpls.2020.572601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
Stone fruits of the Rosaceae family consist of several distinct parts, and these include the flesh, woody endocarp, and seed. To understand the metabolism of these fruits, it is necessary to have knowledge of both their structure and growth characteristics. The nitrogen metabolism of the different tissues of stone fruits is interlinked. For example, there is an import and storage of nitrogenous compounds in the endocarp that are then exported to the seed. Moreover, there are links between the metabolism of nitrogen and that of malic/citric acids. In this article, the structure and growth characteristics, together with the import/export, contents, metabolism, and functions of nitrogenous compounds and organic acids in the different parts of stone fruits and their seeds are reviewed.
Collapse
Affiliation(s)
- Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Franco Famiani, ; Robert P. Walker,
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Zhi-Hui Chen
- College of Life Science, University of Dundee, Dundee, United Kingdom
| | - María F. Drincovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Farinelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María V. Lara
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Simona Proietti
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale delle Ricerche, Porano (TR), Italy
| | - Adolfo Rosati
- CREA Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Spoleto (PG), Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Franco Famiani, ; Robert P. Walker,
| |
Collapse
|
13
|
Walker RP, Benincasa P, Battistelli A, Moscatello S, Técsi L, Leegood RC, Famiani F. Gluconeogenesis and nitrogen metabolism in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:324-333. [PMID: 30041084 DOI: 10.1016/j.plaphy.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 05/23/2023]
Abstract
Two pathways can be used by gluconeogenesis in plants: one employs phosphoenolpyruvate carboxykinase (PEPCK) and the other pyruvate orthophosphate dikinase (PPDK). The occurrence-location of these enzymes was determined in developing kernels of maize. PPDK was much more abundant than PEPCK in extracts of whole kernels. However, their location within the kernel was different. PPDK was particularly abundant in the peripheral endosperm (in which alanine is abundant), whereas PEPCK was localised in the pedicel and basal endosperm transfer cells (where asparagine is metabolised). The abundance of these enzymes was also determined in maize roots where there was a massive increase in abundance of PEPCK and a small increase in abundance of PPDK when they were fed ammonium; PEPCK was located in the pericycle and various cell types associated with the vasculature. On the other hand, there was a large increase in abundance of PPDK in roots subjected to anoxia (which induces an accumulation of alanine), whereas the abundance of PEPCK was decreased. These results show: firstly, that gluconeogenesis can potentially occur in many different tissues of maize. Secondly, within one organ PPDK can be abundant in some tissues and PEPCK in others. Thirdly, the abundance of PPDK and PEPCK is often associated with the metabolism of certain nitrogenous compounds and can be dramatically altered by factors related to nitrogen metabolism. In maize roots and developing kernels PPDK was associated with alanine metabolism. By contrast, the presence of PEPCK in maize roots and kernels was associated with either ammonium or asparagine metabolism. We propose that gluconeogenesis is often a component of a widespread mechanism that is used in coordinating the import/mobilisation of nitrogenous compounds with their utilisation. Further, potentially component of this mechanism may have provided building blocks that were used in the evolution of processes such as C4 photosynthesis, Crassulacean acid metabolism, stomatal metabolism and the biochemical pH stat.
Collapse
Affiliation(s)
- Robert P Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Paolo Benincasa
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Alberto Battistelli
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Viale Marconi 2, 05010, Porano, TR, Italy
| | - Stefano Moscatello
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Viale Marconi 2, 05010, Porano, TR, Italy
| | - László Técsi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Richard C Leegood
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| |
Collapse
|
14
|
Shen Z, Dong XM, Gao ZF, Chao Q, Wang BC. Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:16-22. [PMID: 28285130 DOI: 10.1016/j.jplph.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 05/07/2023]
Abstract
In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants.
Collapse
Affiliation(s)
- Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
15
|
Kumar V, Bansal A, Chauhan RS. Modular Design of Picroside-II Biosynthesis Deciphered through NGS Transcriptomes and Metabolic Intermediates Analysis in Naturally Variant Chemotypes of a Medicinal Herb, Picrorhiza kurroa. FRONTIERS IN PLANT SCIENCE 2017; 8:564. [PMID: 28443130 PMCID: PMC5387076 DOI: 10.3389/fpls.2017.00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Picroside-II (P-II), an iridoid glycoside, is used as an active ingredient of various commercial herbal formulations available for the treatment of liver ailments. Despite this, the knowledge of P-II biosynthesis remains scarce owing to its negligence in Picrorhiza kurroa shoots which sets constant barrier for function validation experiments. In this study, we utilized natural variation for P-II content in stolon tissues of different P. kurroa accessions and deciphered its metabolic route by integrating metabolomics of intermediates with differential NGS transcriptomes. Upon navigating through high vs. low P-II content accessions (1.3-2.6%), we have established that P-II is biosynthesized via degradation of ferulic acid (FA) to produce vanillic acid (VA) which acts as its immediate biosynthetic precursor. Moreover, the FA treatment in vitro at 150 μM concentration provided further confirmation with 2-fold rise in VA content. Interestingly, the cross-talk between different compartments of P. kurroa, i.e., shoots and stolons, resolved spatial complexity of P-II biosynthesis and consequently speculated the burgeoning necessity to bridge gap between VA and P-II production in P. kurroa shoots. This work thus, offers a forward looking strategy to produce both P-I and P-II in shoot cultures, a step toward providing a sustainable production platform for these medicinal compounds via-à-vis relieving pressure from natural habitat of P. kurroa.
Collapse
|
16
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
17
|
Shen W, Ye L, Ma J, Yuan Z, Zheng B, Lv C, Zhu Z, Chen X, Gao Z, Chen G. The existence of C4-bundle-sheath-like photosynthesis in the mid-vein of C3 rice. RICE (NEW YORK, N.Y.) 2016; 9:20. [PMID: 27164981 PMCID: PMC4864733 DOI: 10.1186/s12284-016-0094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/30/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Recent studies have shown that C4-like photosynthetic pathways partly reside in photosynthetic cells surrounding the vascular system of C3 dicots. However, it is still unclear whether this is the case in C3 monocots, especially at the molecular level. RESULTS In order to fill this gap, we investigated several characteristics required for C4 photosynthesis, including C4 pathway enzymes, cyclic/non-cyclic photophosphorylation rates, the levels and assembly state of photosynthetic machineries, in the mid-veins of C3 monocots rice with leaf laminae used as controls. The signature of photosystem photochemistry was also recorded via non-invasive chlorophyll a fluorescence and reflectance changes at 820 nm in vivo. Our results showed that rice mid-veins were photosynthetically active with higher levels of three C4 decarboxylases. Meanwhile, the linear electron transport chain was blocked in mid-veins due to the selective loss of dysfunctional photosystem II subunits. However, photosystem I was sufficient to support cyclic electron flow in mid-veins, reminiscent of the bundle sheath in C4 plants. CONCLUSIONS The photosynthetic attributes required for C4 photosynthesis were identified for the first time in the monocotyledon model crop rice, suggesting that this is likely a general innate characteristic of C3 plants which might be preconditioned for the C4 pathway evolution. Understanding these attributes would provide a base for improved strategies for engineering C4 photosynthetic pathways into rice.
Collapse
Affiliation(s)
- Weijun Shen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Luhuan Ye
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Ma
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhongyuan Yuan
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Baogang Zheng
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Chuangen Lv
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiang Chen
- University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhiping Gao
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Guoxiang Chen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
18
|
Gerivani Z, Vashaee E, Sadeghipour HR, Aghdasi M, Shobbar ZS, Azimmohseni M. Short versus long term effects of cyanide on sugar metabolism and transport in dormant walnut kernels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:193-204. [PMID: 27717454 DOI: 10.1016/j.plantsci.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Tree seed dormancy release by cold stratification accompanies with the embryo increased gluconeogenesis competence. Cyanide also breaks seed dormancy however, integrated information about its effects on carbon metabolism is lacking. Accordingly, the impacts of HCN on germination, lipid gluconeogenesis and sugar transport capacity of walnut (Juglans regia L.) kernels were investigated during 10-days period prior to radicle protrusion. HCN increased walnut kernel germination and within four days of kernel incubation, hastened the decline of starch, reducing and non-reducing sugars and led to greater activities of alkaline invertase and glucose-6-phosphate dehydrogenase. From four days of kernel incubation onwards, starch and non-reducing sugars accumulated only in the HCN treated axes. Cyanide also increased the activities of phosphoenolpyruvate carboxykinase and glyoxysomal succinate oxidase and led to greater acid invertase activity during the aforementioned period. The expressions of both sucrose transporter (JrSUT1) and H+-ATPase (JrAHA1) genes especially in cotyledons and H+-ATPase activity in kernels were significantly enhanced by exposure to cyanide. Thus in short-term HCN led to prevalence of carbohydrate catabolic events such as oxidative pentose phosphate pathway and possibly glycolysis in dormant walnut kernels. Long-term effects however, are increased gluconeogenesis and enhanced sugar transport capacity of kernels as a prerequisite for germination.
Collapse
Affiliation(s)
- Zahra Gerivani
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| | - Elham Vashaee
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| | | | - Mahnaz Aghdasi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| | - Zahra-Sadat Shobbar
- Molecular Physiology Department, Agricultural Biotechnology Research Institute of Iran, (ABRII), AREEO, 3135933151 Karaj, Iran.
| | | |
Collapse
|
19
|
Domínguez S, Rubio MB, Cardoza RE, Gutiérrez S, Nicolás C, Bettiol W, Hermosa R, Monte E. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene. Front Microbiol 2016; 7:1182. [PMID: 27536277 PMCID: PMC4971021 DOI: 10.3389/fmicb.2016.01182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a higher sensitivity to B. cinerea infections in plants treated with amdS transformants as detected in greenhouse assays. These observations suggest that the increased plant development promoted by the amdS transformants was at expense of defenses.
Collapse
Affiliation(s)
- Sara Domínguez
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - M. Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Rosa E. Cardoza
- Area of Microbiology, University School of Agricultural Engineering, University of LeonPonferrada, Spain
| | - Santiago Gutiérrez
- Area of Microbiology, University School of Agricultural Engineering, University of LeonPonferrada, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Wagner Bettiol
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
- Embrapa EnvironmentJaguariúna, Brazil
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research, University of SalamancaSalamanca, Spain
| |
Collapse
|
20
|
Bailey KJ, Leegood RC. Nitrogen recycling from the xylem in rice leaves: dependence upon metabolism and associated changes in xylem hydraulics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2901-11. [PMID: 27053722 PMCID: PMC4861031 DOI: 10.1093/jxb/erw132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Measurements of amino acids in the guttation fluid and in the xylem exudates of cut leaves from intact plants provide evidence of the remarkable efficiency with which these nitrogenous compounds are reabsorbed from the xylem sap. This could be achieved by mechanisms involving intercellular transport and/or metabolism. Developmental changes in transcripts and protein showed that transcripts for phosphoenolpyruvate carboxykinase (PEPCK) increased from the base to the leaf tip, and were markedly increased by supplying asparagine. Supplying amino acids also increased the amounts of protein of PEPCK and, to a lesser extent, of pyruvate, Pi dikinase. PEPCK is present in the hydathodes, stomata and vascular parenchyma of rice leaves. Evidence for the role of PEPCK was obtained by using 3-mercaptopicolinic acid (MPA), a specific inhibitor of PEPCK, and by using an activation-tagged rice line that had an increase in PEPCK activity, to show that activation of PEPCK resulted in a decrease in N in the guttation fluid and that treatment by MPA resulted in an increase in amino acids in the guttation fluid and xylem sap towards the leaf tip. Furthermore, increasing PEPCK activity decreased the amount of guttation fluid, whereas decreasing PEPCK activity increased the amount of xylem sap or guttation fluid towards the leaf tip. The findings suggest the following hypotheses: (i) both metabolism and transport are involved in xylem recycling and (ii) excess N is the signal involved in modulating xylem hydraulics, perhaps via nutrient regulation of water-transporting aquaporins. Water relations and vascular metabolism and transport are thus intimately linked.
Collapse
Affiliation(s)
- Karen J Bailey
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Richard C Leegood
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
21
|
Famiani F, Farinelli D, Moscatello S, Battistelli A, Leegood RC, Walker RP. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:33-42. [PMID: 26852108 DOI: 10.1016/j.plaphy.2016.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 05/23/2023]
Abstract
The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis.
Collapse
Affiliation(s)
- Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Via Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Daniela Farinelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Via Borgo XX Giugno 74, 06121, Perugia, Italy
| | | | | | - Richard C Leegood
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Robert P Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Via Borgo XX Giugno 74, 06121, Perugia, Italy.
| |
Collapse
|
22
|
Ludwig M. The Roles of Organic Acids in C4 Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:647. [PMID: 27242848 PMCID: PMC4868847 DOI: 10.3389/fpls.2016.00647] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/27/2016] [Indexed: 05/05/2023]
Abstract
Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2 assimilation. The results of recent empirical and modeling studies support this suggestion and indicate that a combination of transferred organic acids and decarboxylases is beneficial to C4 plants in different light environments.
Collapse
|
23
|
Walker RP, Battistelli A, Moscatello S, Técsi L, Leegood RC, Famiani F. Phosphoenolpyruvate carboxykinase and gluconeogenesis in grape pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:62-9. [PMID: 26432988 DOI: 10.1016/j.plaphy.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 05/23/2023]
Abstract
Glycolysis from sugars is necessary at all stages of development of grape pericarp, and this raises the question as to why gluconeogenesis from malate occurs. Phosphoenolpyruvate carboxykinase (PEPCK) is required for gluconeogenesis in grape pericarp. In this study we determined the abundance of PEPCK protein and activity in different parts of grape pericarp during its development. Both PEPCK protein and activity were present throughout development, however, in both the skin and the flesh their abundance increased greatly at the start of ripening. This coincided with the onset of the decrease in the malate content of the berry. The location of PEPCK in the pericarp at different stages of development was determined using both immunohistochemistry and dissection. We provide a possible explanation for the occurrence of gluconeogenesis in grape pericarp.
Collapse
Affiliation(s)
- Robert P Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| | - Alberto Battistelli
- Istituto di Biologia Agroambientale e Forestale, CNR, Viale Marconi, 2, 05010, Porano (TR), Italy
| | - Stefano Moscatello
- Istituto di Biologia Agroambientale e Forestale, CNR, Viale Marconi, 2, 05010, Porano (TR), Italy
| | - László Técsi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Richard C Leegood
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2 TN, UK
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy.
| |
Collapse
|
24
|
Choi DS, Kim NH, Hwang BK. The pepper phosphoenolpyruvate carboxykinase CaPEPCK1 is involved in plant immunity against bacterial and oomycete pathogens. PLANT MOLECULAR BIOLOGY 2015; 89:99-111. [PMID: 26233534 DOI: 10.1007/s11103-015-0354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
Phosphoenolpyruvate carboxykinase, a member of the lyase family, is involved in the metabolic pathway of gluconeogenesis in organisms. Although the major function of PEPCK in gluconeogenesis is well established, it is unclear whether this enzyme is involved in plant immunity. Here, we isolated and identified the pepper (Capsicum annuum) PEPCK (CaPEPCK1) gene from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaPEPCK1 was strongly expressed in pepper leaves during the incompatible interaction with avirulent Xcv and in response to environmental stresses, especially salicylic acid (SA) treatment. PEPCK activity was low in healthy leaves but dramatically increased in avirulent Xcv-infected leaves. Knock-down expression of CaPEPCK1 by virus-induced gene silencing resulted in high levels of susceptibility to both virulent and avirulent Xcv infection. CaPEPCK1 silencing in pepper compromised induction of the basal defense-marker genes CaPR1 (pathogenesis-related 1 protein), CaPR10 (pathogenesis-related 10 protein) and CaDEF1 (defensin) during Xcv infection. SA accumulation was also significantly suppressed in the CaPEPCK1-silenced pepper leaves infected with Xcv. CaPEPCK1 in an Arabidopsis overexpression (OX) line inhibited the proliferation of Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis (Hpa). CaPEPCK1-OX plants developed more rapidly, with enlarged leaves, compared to wild-type plants. The T-DNA insertion Arabidopsis orthologous mutants pck1-3 and pck1-4 were more susceptible to the bacterial Pst and oomycete Hpa pathogens than the wild type. Taken together, these results suggest that CaPEPCK positively contributes to plant innate immunity against hemibiotrophic bacterial and obligate biotrophic oomycete pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
25
|
Sallets A, Beyaert M, Boutry M, Champagne A. Comparative proteomics of short and tall glandular trichomes of Nicotiana tabacum reveals differential metabolic activities. J Proteome Res 2014; 13:3386-96. [PMID: 24865179 DOI: 10.1021/pr5002548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leaf glandular trichomes (epidermal hairs) actively synthesize secondary metabolites, many of which are the frontline of plant defense. In Nicotiana tabacum, tall and short glandular trichomes have been identified. While the former have been extensively studied and match the classic picture of trichome function, the short trichomes have remained relatively uncharacterized. We have set up a procedure based on centrifugation on Percoll density gradients to obtain separate tall and short trichome fractions purified to >85%. We then investigated the proteome of both trichome types combining 2D-LC fractionation of tryptic peptides and quantification of a set of 461 protein groups using isobaric tags for relative and absolute quantitation. Almost the entire pathway leading to the synthesis of diterpenes was identified in the tall trichomes. Indications for their key roles in the synthesis of cuticular compounds were also found. Concerning the short glandular trichomes, ribosomal proteins and enzymes such phosphoenolpyruvate carboxykinase and polyphenol oxidase were more abundant than in the tall glandular trichomes. These results are discussed in the frame of several hypotheses regarding the respective roles of short and long glandular trichomes.
Collapse
Affiliation(s)
- Adrienne Sallets
- Institut des Sciences de la Vie, Université catholique de Louvain , Croix du Sud, 4-5, Box L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
26
|
Chao Q, Liu XY, Mei YC, Gao ZF, Chen YB, Qian CR, Hao YB, Wang BC. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. PLANT MOLECULAR BIOLOGY 2014; 85:95-105. [PMID: 24435212 DOI: 10.1007/s11103-014-0171-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 05/21/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.
Collapse
Affiliation(s)
- Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 2014; 46:398-404. [DOI: 10.1038/ng.2923] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/20/2014] [Indexed: 01/07/2023]
|
28
|
Tsiatsiani L, Timmerman E, De Bock PJ, Vercammen D, Stael S, van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F. The Arabidopsis metacaspase9 degradome. THE PLANT CELL 2013; 25:2831-47. [PMID: 23964026 PMCID: PMC3784583 DOI: 10.1105/tpc.113.115287] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of metacaspase9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1'. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Evy Timmerman
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan De Bock
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Dominique Vercammen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Simon Stael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - An Staes
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Marc Goethals
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Tine Beunens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Petra Van Damme
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
29
|
Leegood RC. Strategies for engineering C(4) photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:378-388. [PMID: 23245935 DOI: 10.1016/j.jplph.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
C(3) photosynthesis is an inefficient process, because the enzyme that lies at the heart of the Benson-Calvin cycle, ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) is itself a very inefficient enzyme. The oxygenase activity of Rubisco is an unavoidable side reaction that is a consequence of its reaction mechanism. The product of oxygenation, glycollate 2-P, has to be retrieved by photorespiration, a process which results in the loss of a quarter of the carbon that was originally present in glycollate 2-P. Photorespiration therefore reduces carbon gain. Purely in terms of carbon economy, there is, therefore, a strong selection pressure on plants to reduce the rate of photorespiration so as to increase carbon gain, but it also improves water- and nitrogen-use efficiency. Possibilities for the manipulation of plants to decrease the amount of photorespiration include the introduction of improved Rubisco from other species, reconfiguring photorespiration, or introducing carbon-concentrating mechanisms, such as inorganic carbon transporters, carboxysomes or pyrenoids, or engineering a full C(4) Kranz pathway using the existing evolutionary progression in C(3)-C(4) intermediates as a blueprint. Possible routes and progress to suppressing photorespiration by introducing C(4) photosynthesis in C(3) crop plants will be discussed, including whether single cell C(4) photosynthesis is feasible, how the evolution of C(3)-C(4) intermediates can be used as a blueprint for engineering C(4) photosynthesis, which pathway for the C(4) cycle might be introduced and the extent to which processes and structures in C(3) plant might require optimisation.
Collapse
Affiliation(s)
- Richard C Leegood
- Robert Hill Institute and Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
30
|
Famiani F, Casulli V, Baldicchi A, Battistelli A, Moscatello S, Walker RP. Development and metabolism of the fruit and seed of the Japanese plum Ozark premier (Rosaceae). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:551-60. [PMID: 22317786 DOI: 10.1016/j.jplph.2011.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 05/23/2023]
Abstract
The growth characteristics of some plums and their component parts have been previously studied, as have some aspects of their developmental anatomy and composition. However, little is known about either their metabolism or about the interactions between the metabolism of their component parts. In this study we investigated these aspects in the Japanese plum Ozark Premier. Throughout fruit and seed development, changes in sugar and organic acid contents, protein composition and abundance of selected enzymes were determined. In the stone, there was a transient accumulation of vegetative storage proteins. These were subsequently mobilized and this coincided with the onset of the lignification of the stone and the start of storage protein accumulation in the seed. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was present in the seeds, even though they lacked chlorophyll, and its presence may be related to limited gas exchange. In the flesh of some fruits, phosphoenolpyruvate carboxykinase (PEPCK) and NADP malic enzyme (NADP-ME) are thought to function in the dissimilation of malate and/or citrate during ripening. However, PEPCK and NADP-ME were present in plum flesh for most of its development, although there was no net dissimilation of malate until the latter stages of ripening. There is an interaction between the developing seed and endocarp with respect to the utilization of imported sugars and amino acids. An hypothesis is presented to account for the presence of PEPCK and NADP-ME enzyme in plum flesh when there was no net dissimilation of organic acids.
Collapse
Affiliation(s)
- Franco Famiani
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Penfield S, Clements S, Bailey KJ, Gilday AD, Leegood RC, Gray JE, Graham IA. Expression and manipulation of phosphoenolpyruvate carboxykinase 1 identifies a role for malate metabolism in stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:679-88. [PMID: 22007864 DOI: 10.1111/j.1365-313x.2011.04822.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Malate, along with potassium and chloride ions, is an important solute for maintaining turgor pressure during stomatal opening. Although malate is exported from guard cells during stomatal closure, there is controversy as to whether malate is also metabolised. We provide evidence that phosphoenolpyruvate carboxykinase (PEPCK), an enzyme involved in malate metabolism and gluconeogenesis, is necessary for full stomatal closure in the dark. Analysis of the Arabidopsis PCK1 gene promoter indicated that this PEPCK isoform is specifically expressed in guard cells and trichomes of the leaf. Spatially distinct promoter elements were found to be required for post-germinative, vascular expression and guard cell/trichome expression of PCK1. We show that pck1 mutant plants have reduced drought tolerance, and show increased stomatal conductance and wider stomatal apertures compared with the wild type. During light-dark transients the PEPCK mutant plants show both increased overall stomatal conductance and less responsiveness of the stomata to darkness than the wild type, indicating that stomata get 'jammed' in the open position. These results show that malate metabolism is important during dark-induced stomatal closure and that PEPCK is involved in this process.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Walker RP, Battistelli A, Moscatello S, Chen ZH, Leegood RC, Famiani F. Phosphoenolpyruvate carboxykinase in cherry (Prunus avium L.) fruit during development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5357-65. [PMID: 21908472 DOI: 10.1093/jxb/err189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study the abundance and location of phosphoenolpyruvate carboxykinase (PEPCK) was determined in the flesh and skin of the sweet cherry (Prunus avium L.) cultivar Durone Nero II during development. PEPCK was not present in young fruit but appeared in both tissues as the fruit increased in size. In these there was no net dissimilation of malic acid, which accounts for the bulk of their organic acid contents when PEPCK was present. To assist in understanding the function of PEPCK, the abundance of a number of other enzymes was determined. These enzymes were aspartate aminotransferase (AspAT), glutamine synthetase (GS), phosphoenolpyruvate carboxylase (PEPC), pyruvate, orthophosphate dikinase (PPDK), and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco). A potential role for PEPCK in the regulation of pH and the utilization of malate in gluconeogenesis in the flesh and skin of cherries is presented.
Collapse
Affiliation(s)
- Robert P Walker
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno, 74, I-06121, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Walker RP, Battistelli A, Moscatello S, Chen ZH, Leegood RC, Famiani F. Metabolism of the seed and endocarp of cherry (Prunus avium L.) during development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:923-30. [PMID: 21741262 DOI: 10.1016/j.plaphy.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/07/2011] [Indexed: 05/23/2023]
Abstract
In this study some aspects of organic and amino acid metabolism in cherry endocarp and seed were investigated during their development. The abundance and location of a number of enzymes involved in these processes were investigated. These enzymes were aspartate aminotransferase (AspAT; EC:2.6.1.1), glutamine synthetase (GS; EC:6.3.1.2), phosphoenolpyruvate carboxylase (PEPC; EC:4.1.1.31), phosphoenolpyruvate carboxykinase (PEPCK; EC:4.1.1.49), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC:4.1.1.39). There was a transient and massive accumulation of vegetative storage proteins in the endocarp. These proteins were remobilised as the endocarp lignified and at the same time that proteins were accumulated in the seed. This raised the possibility that a proportion of imported amino acids were temporarily stored in the endocarp as protein, and that these were later utilised by the seed when it started to accumulate storage proteins. Rubisco was present in the embryo and integuments of the seed although no chlorophyll was present. This is the first time that Rubisco has been detected in non-green seeds. The maximum abundance of Rubisco in the seed coincided with the deposition of seed storage proteins. A possible function for Rubisco in cherry seed is discussed. PEPCK was located in the integuments and appeared when seed storage proteins were being accumulated. In the integuments and embryo AspAT, GS, PEPC and Rubisco also appeared, or greatly increased in abundance, when seed storage proteins were being deposited.
Collapse
Affiliation(s)
- Robert P Walker
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Martín M, Rius SP, Podestá FE. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:646-653. [PMID: 21398135 DOI: 10.1016/j.plaphy.2011.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
Two phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.49) isoforms of 74 and 65 kDa were found to coexist in vivo in pineapple leaves, a constitutive Crassulacean Acid Metabolism plant. The 65 kDa form was not the result of proteolytic cleavage of the larger form since extraction methods reported to prevent PEPCK proteolysis in other plant tissues failed to yield a single immunoreactive PEPCK polypeptide in leaf extracts. In this work, the smaller form of 65 kDa was purified to homogeneity and physically and kinetically characterized and showed parameters compatible with a fully active enzyme. The specific activity was nearly twice higher for decarboxylation of oxaloacetate when compared to carboxylation of phosphoenolpyruvate. Kinetic parameters fell within the range of those estimated for other plant PEPCKs. Its activity was affected by several metabolites, as shown by inhibition by 3-phosphoglycerate, citrate, malate, fructose-1,6-bisphosphate, l-asparagine and activation of the decarboxylating activity by succinate. A break in the Arrhenius plot at about 30°C indicates that PEPCK structure is responsive to changes in temperature. The results indicate that pineapple leaves contain two PEPCK forms. The biochemical characterization of the smaller isoform performed in this work suggests that it could participate in both carbon and nitrogen metabolism in vivo by acting as a decarboxylase.
Collapse
Affiliation(s)
- Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | |
Collapse
|
35
|
Fotelli MN, Tsikou D, Kolliopoulou A, Aivalakis G, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E. Nodulation enhances dark CO₂ fixation and recycling in the model legume Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2959-2971. [PMID: 21307384 DOI: 10.1093/jxb/err009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
During symbiotic nitrogen fixation (SNF), the nodule becomes a strong sink for photosynthetic carbon. Here, it was studied whether nodule dark CO(2) fixation could participate in a mechanism for CO(2) recycling through C(4)-type photosynthesis. Differences in the natural δ(13)C abundance between Lotus japonicus inoculated or not with the N-fixing Mesorhizobium loti were assessed. (13)C labelling and gene expression of key enzymes of CO(2) metabolism were applied in plants inoculated with wild-type or mutant fix(-) (deficient in N fixation) strains of M. loti, and in non-inoculated plants. Compared with non-inoculated legumes, inoculated legumes had higher natural δ(13)C abundance and total C in their hypergeous organs and nodules. In stems, (13)C accumulation and expression of genes coding for enzymes of malate metabolism were greater in inoculated compared with non-inoculated plants. Malate-oxidizing activity was localized in stem xylem parenchyma, sieve tubes, and photosynthetic outer cortex parenchyma of inoculated plants. In stems of plants inoculated with fix(-) M. loti strains, (13)C accumulation remained high, while accumulation of transcripts coding for malic enzyme isoforms increased. A potential mechanism is proposed for reducing carbon losses during SNF by the direct reincorporation of CO(2) respired by nodules and the transport and metabolism of C-containing metabolites in hypergeous organs.
Collapse
Affiliation(s)
- Mariangela N Fotelli
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Aubry S, Brown NJ, Hibberd JM. The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3049-59. [PMID: 21321052 DOI: 10.1093/jxb/err012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our most productive crops and native vegetation use a modified version of photosynthesis known as the C(4) pathway. Leaves of C(4) crops have increased nitrogen and water use efficiencies compared with C(3) species. Although the modifications to leaves of C(4) plants are complex, their faster growth led to the proposal that C(4) photosynthesis should be installed in C(3) crops in order to increase yield potential. Typically, a limited set of proteins become restricted to mesophyll or bundle sheath cells, and this allows CO(2) to be concentrated around the primary carboxylase RuBisCO. The role that these proteins play in C(3) species prior to their recruitment into the C(4) pathway is addressed here. Understanding the role of these proteins in C(3) plants is likely to be of use in predicting how the metabolism of a C(3) leaf will alter as components of the C(4) pathway are introduced as part of efforts to install characteristics of C(4) photosynthesis in leaves of C(3) crops.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
37
|
Meitzel T, Radchuk R, Nunes-Nesi A, Fernie AR, Link W, Weschke W, Weber H. Hybrid embryos of Vicia faba develop enhanced sink strength, which is established during early development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:517-31. [PMID: 21235645 DOI: 10.1111/j.1365-313x.2010.04450.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Selfed and crossed seeds of two homozygous Vicia faba lines served as models for the analysis of the physiological and molecular mechanisms underlying embryo heterosis. Profiles of transcripts, metabolites and seed contents of developing embryos were analysed to compare the means of reciprocally crossed and selfed seeds growing on the same mother plants. The mean weight of mature hybrid seeds was demonstrably higher, revealing mid-parent heterosis. Hybrid embryos exhibited a prolonged early phase of development and delayed onset of storage activity. Accordingly, transcript profiling indicates stimulation of cell proliferation, an effect, which is potentially mediated by activation of auxin functions within a framework of growth-related transcription factors. At the transcript level, activated cell proliferation increased assimilate uptake activity and thereby seed sink strength. This situation might finally lead to the increased size of the hybrid seeds. We conclude that hybrid seeds are characterised by accelerated growth during early development, which increases storage capacity and leads to higher metabolic fluxes. These needs are, at least partially, met by increased assimilate uptake capacity. The stimulated growth of hybrid seeds shifted metabolite profiles and potentially depleted available pools. Such metabolic shifts are most likely secondary effects resulting from the higher storage capacity of hybrid seeds, a heterotic feature, which is itself established very early in seed development.
Collapse
Affiliation(s)
- Tobias Meitzel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), D-06466 Gatersleben, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Chapter 14 C4 Decarboxylases: Different Solutions for the Same Biochemical Problem, the Provision of CO2 to Rubisco in the Bundle Sheath Cells. C4 PHOTOSYNTHESIS AND RELATED CO2 CONCENTRATING MECHANISMS 2010. [DOI: 10.1007/978-90-481-9407-0_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Brown NJ, Palmer BG, Stanley S, Hajaji H, Janacek SH, Astley HM, Parsley K, Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG, Hibberd JM. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:122-33. [PMID: 19807880 DOI: 10.1111/j.1365-313x.2009.04040.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells associated with veins of petioles of C(3) tobacco possess high activities of the decarboxylase enzymes required in C(4) photosynthesis. It is not clear whether this is the case in other C(3) species, nor whether these enzymes provide precursors for specific biosynthetic pathways. Here, we investigate the activity of C(4) acid decarboxylases in the mid-vein of Arabidopsis, identify regulatory regions sufficient for this activity, and determine the impact of removing individual isoforms of each protein on mid-vein metabolite profiles. This showed that radiolabelled malate and bicarbonate fed to the xylem stream were incorporated into soluble and insoluble material in the mid-vein of Arabidopsis leaves. Compared with the leaf lamina, mid-veins possessed high activities of NADP-dependent malic enzyme (NADP-ME), NAD-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK). Transcripts derived from both NAD-ME, one PCK and two of the four NADP-ME genes were detectable in these veinal cells. The promoters of each decarboxylase gene were sufficient for expression in mid-veins. Analysis of insertional mutants revealed that cytosolic NADP-ME2 is responsible for 80% of NADP-ME activity in mid-veins. Removing individual decarboxylases affected the abundance of amino acids derived from pyruvate and phosphoenolpyruvate. Reducing cytosolic NADP-ME activity preferentially affected the sugar content, whereas abolishing NAD-ME affected both the amino acid and the glucosamine content of mid-veins.
Collapse
Affiliation(s)
- Naomi J Brown
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Christin PA, Petitpierre B, Salamin N, Büchi L, Besnard G. Evolution of C(4) phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. Mol Biol Evol 2008; 26:357-65. [PMID: 18988688 DOI: 10.1093/molbev/msn255] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
C(4) photosynthesis is an adaptation over the classical C(3) pathway that has evolved multiple times independently. These convergences are accompanied by strong variations among the independent C(4) lineages. The decarboxylating enzyme used to release CO(2) around Rubisco particularly differs between C(4) species, a criterion used to distinguish three distinct biochemical C(4) subtypes. The phosphoenolpyruvate carboxykinase (PCK) serves as a primary decarboxylase in a minority of C(4) species. This enzyme is also present in C(3) plants, where it is responsible for nonphotosynthetic functions. The genetic changes responsible for the evolution of C(4)-specific PCK are still unidentified. Using phylogenetic analyses on PCK sequences isolated from C(3) and C(4) grasses, this study aimed at resolving the evolutionary history of C(4)-specific PCK enzymes. Four independent evolutions of C(4)-PCK were shown to be driven by positive selection, and nine C(4)-adaptive sites underwent parallel genetic changes in different C(4) lineages. C(4)-adaptive residues were also observed in C(4) species from the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) subtype and particularly in all taxa where a PCK shuttle was previously suggested to complement the NADP-ME pathway. Acquisitions of C(4)-specific PCKs were mapped on a species tree, which revealed that the PCK subtype probably appeared at the base of the Chloridoideae subfamily and was then recurrently lost and secondarily reacquired at least three times. Linking the genotype to subtype phenotype shed new lights on the evolutionary transitions between the different C(4) subtypes.
Collapse
|
41
|
Roberts K, Granum E, Leegood RC, Raven JA. C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. PLANT PHYSIOLOGY 2007; 145:230-5. [PMID: 17644625 PMCID: PMC1976569 DOI: 10.1104/pp.107.102616] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 07/09/2007] [Indexed: 05/03/2023]
Abstract
Marine diatoms are responsible for up to 20% of global CO(2) fixation. Their photosynthetic efficiency is enhanced by concentrating CO(2) around Rubisco, diminishing photorespiration, but the mechanism is yet to be resolved. Diatoms have been regarded as C(3) photosynthesizers, but recent metabolic labeling and genome sequencing data suggest that they perform C(4) photosynthesis. We studied the pathways of photosynthetic carbon assimilation in two diatoms by short-term metabolic (14)C labeling. In Thalassiosira weissflogii, both C3 (glycerate-P and triose-P) and C4 (mainly malate) compounds were major initial (2-5 s) products, whereas Thalassiosira pseudonana produced mainly C3 and C6 (hexose-P) compounds. The data provide evidence of C(3)-C(4) intermediate photosynthesis in T. weissflogii, but exclusively C(3) photosynthesis in T. pseudonana. The labeling patterns were the same for cells grown at near-ambient (380 microL L(-1)) and low (100 microL L(-1)) CO(2) concentrations. The lack of environmental modulation of carbon assimilatory pathways was supported in T. pseudonana by measurements of gene transcript and protein abundances of C(4)-metabolic enzymes (phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase) and Rubisco. This study suggests that the photosynthetic pathways of diatoms are diverse, and may involve combined CO(2)-concentrating mechanisms. Furthermore, it emphasizes the requirement for metabolic and functional genetic and enzymic analyses before accepting the presence of C(4)-metabolic enzymes as evidence for C(4) photosynthesis.
Collapse
Affiliation(s)
- Karen Roberts
- Plant Research Unit, University of Dundee at Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | |
Collapse
|
42
|
Malone S, Chen ZH, Bahrami AR, Walker RP, Gray JE, Leegood RC. Phospho enol pyruvate Carboxykinase in Arabidopsis: Changes in Gene Expression, Protein and Activity during Vegetative and Reproductive Development. ACTA ACUST UNITED AC 2007; 48:441-50. [PMID: 17283014 DOI: 10.1093/pcp/pcm014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work was to investigate the occurrence of phosphoenolpyruvate carboxykinase (PEPCK) in different tissues of Arabidopsis thaliana throughout its vegetative and reproductive growth. The A. thaliana genome contains two PEPCK genes (PCK1 and PCK2), and these are predicted to generate 73,404 and 72,891 Da protein products, respectively. Both genes were transcribed in a range of tissues; however, PCK1 mRNA appeared to be more abundant and was present in a wider range of tissues. PEPCK protein was present in flowers, fruit, developing seed, germinating seed, leaves, stems and roots. Two PEPCK polypeptides, of approximately 74 and approximately 73 kDa were detected by immunoblotting, and these may arise from PCK1 and PCK2, respectively. PEPCK was abundant in cotyledons during post-germinative growth, and this is consistent with its well established role in gluconeogenesis. PEPCK was also abundant in sink tissues, such as young leaves, in developing flowers, fruit and seed. Immunohistochemistry and in situ hybridization showed that PEPCK was present in the nectaries, stigma, endocarp of the fruit wall and in tissues involved in the transfer of assimilates to the developing ovules and seeds, such as the vasculature and seed coat. The potential functions of PEPCK in A. thaliana are discussed.
Collapse
Affiliation(s)
- Susan Malone
- Robert Hill Institute, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|