1
|
Wu M, Zhu S, He H, Zhang X, Wang C, Li S, Zhang W, Jansson PE. Modeling the recent drought and thinning impacts on energy, water and carbon fluxes in a boreal forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177187. [PMID: 39490838 DOI: 10.1016/j.scitotenv.2024.177187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Globally, boreal forests act as important carbon sinks, however, drought and forest management could substantially alter the sink strength, though the controlling mechanisms of drought and management remain unclear. In this study, we combined the detailed process-based CoupModel with multiple measurements to study the impacts of recent drought and forest thinning on a boreal forest during 2018-2021. CoupModel after calibration showed high ability to represent the dynamics of long-term net ecosystem exchange and its responses to environmental changes. The model simulation showed that the canopy temperature exacerbated the dominant role in regulating the boreal forest growth during the 2018 extreme drought year with slight increase in the annual mean net carbon uptake by 76.65 g C/m2/yr compared to 2017. The posterior model simulations ensemble suggested that thinning of trees in 2019-2020 caused the boreal forest in 2020 to be a sink to slight source ([-229.95, 94.90] g C/m2/yr, 90 % confidence interval), while the observations depicted a small source (69.35 g C/m2/yr). Moreover, rapid recovery of the boreal forest to a carbon sink was found in 2021, though remaining smaller than the carbon sink in 2017. Overall, the negative impacts from drought and harvest (2018-2021) were found to have offset the positive impacts from climate by 8 % - 92 %, on the net carbon uptake. This study highlights the resilience of boreal forests as carbon sink and provides new insights into the boreal forests' responses to both climate change and management.
Collapse
Affiliation(s)
- Mousong Wu
- International Institute for Earth System Science (ESSI), Nanjing University, Nanjing, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China; McGill University, Montreal, Canada.
| | - Shengnan Zhu
- International Institute for Earth System Science (ESSI), Nanjing University, Nanjing, China
| | | | | | - Chunyu Wang
- China Agricultural University, Beijing, China
| | - Sien Li
- China Agricultural University, Beijing, China
| | | | | |
Collapse
|
2
|
Sun W, Maseyk K, Lett C, Seibt U. Restricted internal diffusion weakens transpiration-photosynthesis coupling during heatwaves: Evidence from leaf carbonyl sulphide exchange. PLANT, CELL & ENVIRONMENT 2024; 47:1813-1833. [PMID: 38321806 DOI: 10.1111/pce.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Increasingly frequent and intense heatwaves threaten ecosystem health in a warming climate. However, plant responses to heatwaves are poorly understood. A key uncertainty concerns the intensification of transpiration when heatwaves suppress photosynthesis, known as transpiration-photosynthesis decoupling. Field observations of such decoupling are scarce, and the underlying physiological mechanisms remain elusive. Here, we use carbonyl sulphide (COS) as a leaf gas exchange tracer to examine potential mechanisms leading to transpiration-photosynthesis decoupling on a coast live oak in a southern California woodland in spring 2013. We found that heatwaves suppressed both photosynthesis and leaf COS uptake but increased transpiration or sustained it at non-heatwave levels throughout the day. Despite statistically significant decoupling between transpiration and photosynthesis, stomatal sensitivity to environmental factors did not change during heatwaves. Instead, midday photosynthesis during heatwaves was restricted by internal diffusion, as indicated by the lower internal conductance to COS. Thus, increased evaporative demand and nonstomatal limitation to photosynthesis act jointly to decouple transpiration from photosynthesis without altering stomatal sensitivity. Decoupling offered limited potential cooling benefits, questioning its effectiveness for leaf thermoregulation in xeric ecosystems. We suggest that adding COS to leaf and ecosystem flux measurements helps elucidate diverse physiological mechanisms underlying transpiration-photosynthesis decoupling.
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Kadmiel Maseyk
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Céline Lett
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Chen B, Wang P, Wang S, Ju W, Liu Z, Zhang Y. Simulating canopy carbonyl sulfide uptake of two forest stands through an improved ecosystem model and parameter optimization using an ensemble Kalman filter. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Kohonen KM, Dewar R, Tramontana G, Mauranen A, Kolari P, Kooijmans LMJ, Papale D, Vesala T, Mammarella I. Intercomparison of methods to estimate gross primary production based on CO 2 and COS flux measurements. BIOGEOSCIENCES (ONLINE) 2022; 19:4067-4088. [PMID: 36171741 PMCID: PMC7613647 DOI: 10.5194/bg-19-4067-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23% and 7% higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20% and 3% higher), as well as a higher cumulative sum over 3 months in all years (on average 25% and 3% higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.
Collapse
Affiliation(s)
- Kukka-Maaria Kohonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Roderick Dewar
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Gianluca Tramontana
- Image Processing Laboratory (IPL), Parc Científic Universitat de València, Universitat de València, Paterna, Spain
- Terrasystem s.r.l, Viterbo, Italy
| | - Aleksanteri Mauranen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Linda M. J. Kooijmans
- Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands
| | - Dario Papale
- DIBAF, Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy
- IAFES, Euro-Mediterranean Center for Climate Change (CMCC), Viterbo, Italy
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Sun W, Berry JA, Yakir D, Seibt U. Leaf relative uptake of carbonyl sulfide to CO 2 seen through the lens of stomatal conductance-photosynthesis coupling. THE NEW PHYTOLOGIST 2022; 235:1729-1742. [PMID: 35478172 DOI: 10.1111/nph.18178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Carbonyl sulfide (COS) has emerged as a multi-scale tracer for terrestrial photosynthesis. To infer ecosystem-scale photosynthesis from COS fluxes often requires knowledge of leaf relative uptake (LRU), the concentration-normalized ratio between leaf COS uptake and photosynthesis. However, current mechanistic understanding of LRU variability remains inadequate for deriving robust COS-based estimates of photosynthesis. We derive a set of closed-form equations to describe LRU responses to light, humidity and CO2 based on the Ball-Berry stomatal conductance model and the biochemical model of photosynthesis. This framework reproduces observed LRU responses: decreasing LRU with increasing light or decreasing humidity; it also predicts that LRU increases with ambient CO2 . By fitting the LRU equations to flux measurements on a C3 reed (Typha latifolia), we obtain physiological parameters that control LRU variability, including an estimate of the Ball-Berry slope of 7.1 without using transpiration measurements. Sensitivity tests reveal that LRU is more sensitive to photosynthetic capacity than to the Ball-Berry slope, indicating stomatal response to photosynthesis. This study presents a simple framework for interpreting observed LRU variability and upscaling LRU. The stoma-regulated LRU response to CO2 suggests that COS may offer a unique window into long-term stomatal acclimation to elevated CO2 .
Collapse
Affiliation(s)
- Wu Sun
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Dan Yakir
- Earth and Planetary Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ulli Seibt
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA, 90095-1565, USA
| |
Collapse
|
6
|
Light and Water Conditions Co-Regulated Stomata and Leaf Relative Uptake Rate (LRU) during Photosynthesis and COS Assimilation: A Meta-Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14052840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As a trace gas involved in hydration during plant photosynthesis, carbonyl sulfide (COS) and its leaf relative uptake rate (LRU) is used to reduce the uncertainties in simulations of gross primary productivity (GPP). In this study, 101 independent observations were collected from 22 studies. We extracted the LRU, stomatal conductance (gs), canopy COS and carbon dioxide (CO2) fluxes, and relevant environmental conditions (i.e., light, temperature, and humidity), as well as the atmospheric COS and CO2 concentrations (Ca,COS and Ca,CO2). Although no evidence was found showing that gs regulates LRU, they responded in opposite ways to diurnal variations of environmental conditions in both mixed forests (LRU: Hedges’d = −0.901, LnRR = −0.189; gs: Hedges’d = 0.785, LnRR = 0.739) and croplands dominated by C3 plants (Hedges’d = −0.491, LnRR = −0.371; gs: Hedges’d = 1.066, LnRR = 0.322). In this process, the stomata play an important role in COS assimilation (R2 = 0.340, p = 0.020) and further influence the interrelationship of COS and CO2 fluxes (R2 = 0.650, p = 0.000). Slight increases in light intensity (R2 = 1, p = 0.002) and atmospheric drought (R2 = 0.885, p = 0.005) also decreased the LRU. The LRU saturation points of Ca,COS and Ca,CO2 were observed when ΔCa,COS ≈ 13 ppt (R2 = 0.580, p = 0.050) or ΔCa,CO2 ≈ −18 ppm (R2 = 0.970, p = 0.003). This study concluded that during plant photosynthesis and COS assimilation, light and water conditions co-regulated the stomata and LRU.
Collapse
|
7
|
Cochavi A, Amer M, Stern R, Tatarinov F, Migliavacca M, Yakir D. Differential responses to two heatwave intensities in a Mediterranean citrus orchard are identified by combining measurements of fluorescence and carbonyl sulfide (COS) and CO 2 uptake. THE NEW PHYTOLOGIST 2021; 230:1394-1406. [PMID: 33525059 DOI: 10.1111/nph.17247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The impact of extreme climate episodes such as heatwaves on plants physiological functioning and survival may depend on the event intensity, which requires quantification. We unraveled the distinct impacts of intense (HW) and intermediate (INT) heatwave days on carbon uptake, and the underlying changes in the photosynthetic system, in a Mediterranean citrus orchard using leaf active (pulse amplitude modulation; PAM) and canopy level passive (sun-induced; SIF) fluorescence measurements, together with CO2 , water vapor, and carbonyl sulfide (COS) exchange measurements. Compared to normal (N) days, gross CO2 uptake fluxes (gross primary production, GPP) were significantly reduced during HW days, but only slightly decreased during INT days. By contrast, COS uptake flux and SIFA (at 760 nm) decreased during both HW and INT days, which was reflected in leaf internal CO2 concentrations and in nonphotochemical quenching, respectively. Intense (HW) heatwave conditions also resulted in a substantial decrease in electron transport rates, measured using leaf-scale fluorescence, and an increase in the fractional energy consumption in photorespiration. Using the combined proxy approach, we demonstrate a differential ecosystem response to different heatwave intensities, which allows the trees to preserve carbon assimilation during INT days but not during HW days.
Collapse
Affiliation(s)
- Amnon Cochavi
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Madi Amer
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rafael Stern
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fyodor Tatarinov
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mirco Migliavacca
- Max Planck Institute for Biogeochemistry, Hans Knoell Straße 10, Jena, D-07745, Germany
| | - Dan Yakir
- Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
8
|
Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. THE NEW PHYTOLOGIST 2021; 229:2413-2445. [PMID: 32789857 DOI: 10.1111/nph.16866] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/06/2020] [Indexed: 05/22/2023]
Abstract
Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Collapse
Affiliation(s)
- Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ana Bastos
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
| | - Soumaya Belmecheri
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Katerina Georgiou
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Ralph F Keeling
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92093, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David J P Moore
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Richard J Norby
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania, Caserta, 81100, Italy
| | | | - Kristine G Cabugao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Maxime Cailleret
- INRAE, UMR RECOVER, Aix-Marseille Université, 3275 route de Cézanne, Aix-en-Provence Cedex 5, 13182, France
- Swiss Federal Institute for Forest Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elliott Campbell
- Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Josep G Canadell
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
| | - Matthew E Craig
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Graham D Farquhar
- Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simone Fatichi
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
- Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, Zurich, 8093, Switzerland
| | - Joshua B Fisher
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
| | - David C Frank
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Heather Graven
- Department of Physics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Kelly Heilman
- Laboratory of Tree Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Martin Heimann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Colleen M Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland
| | - Mingkai Jiang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Jürgen Knauer
- CSIRO Oceans and Atmosphere, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Körner
- Department of Environmental Sciences, Botany, University of Basel, Basel, 4056, Switzerland
| | - Victor O Leshyk
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, Auckland, 1142, New Zealand
| | - Yao Liu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Natasha MacBean
- Department of Geography, Indiana University, Bloomington, IN, 47405, USA
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tim R McVicar
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Climate Extremes, 142 Mills Rd, Australian National University, Canberra, ACT, 2601, Australia
| | - Josep Penuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Julia Pongratz
- Ludwig Maximilians University of Munich, Luisenstr. 37, Munich, 80333, Germany
- Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
| | - A Shafer Powell
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Terhi Riutta
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Manon E B Sabot
- ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Juergen Schleucher
- Department of Medical Biochemistry & Biophysics, Umeå University, Umea, 901 87, Sweden
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, Laver Building, EX4 4QF, UK
| | - William K Smith
- School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ, 85721, USA
| | - Benjamin Sulman
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Benton Taylor
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - César Terrer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Margaret S Torn
- Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anna T Trugman
- Department of Geography, 1832 Ellison Hall, Santa Barbara, CA, 93016, USA
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07745, Germany
| | | | - Steve L Voelker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Mary E Whelan
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, PO Box 47, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
9
|
Chung YS, Kim KS, Hamayun M, Kim Y. Silicon Confers Soybean Resistance to Salinity Stress Through Regulation of Reactive Oxygen and Reactive Nitrogen Species. FRONTIERS IN PLANT SCIENCE 2020; 10:1725. [PMID: 32117330 PMCID: PMC7031409 DOI: 10.3389/fpls.2019.01725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Salt stress is one of the major abiotic stressors that causes huge losses to the agricultural industry worldwide. Different strategies have been adopted over time to mitigate the negative impact of salt stress on plants and reclaim salt-affected lands. In the current study, we used silicon (Si) as a tool for salinity alleviation in soybean and investigated the influence of exogenous Si application on the regulation of reactive oxygen and reactive nitrogen species and other salt stress-related parameters of the treated plants. Our results revealed that the canopy temperature was much higher in sole NaCl-treated plants but declined in Si + NaCl-treated plants. Furthermore, the chlorophyll contents decreased with sole NaCl treatment, whereas Si + NaCl-treated plants showed improved chlorophyll contents. In addition, Si application normalized the photosynthetic responses, such as transpiration rate (E) and net photosynthesis rate (PN ) in salt-treated plants, and reduced the activity of ascorbate peroxidase and glutathione under salt stress. The expression levels of antioxidant-related genes GmCAT1, GmCAT2, and GmAPX1 started to decline at 12 h after addition of Si to NaCl-treated plants. Similarly, the S-nitrosothiol and nitric oxide (NO)-related genes were upregulated in the salt stress condition but reduced after Si supplementation. Si application downregulated genes associated with reactive oxygen species and reactive nitrogen species and reduced enzymatic and non-enzymatic antioxidants of the treated plants. Results of the current study conclude that Si mitigated the adverse effects of NaCl-induced stress by modulating the crosstalk between antioxidants and NO scavengers. It is suggested that Si may be used in agricultural systems for alleviating salt stress.
Collapse
Affiliation(s)
- Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, South Korea
| | | | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Yoonha Kim
- School of Applied Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Belviso S, Lebegue B, Ramonet M, Kazan V, Pison I, Berchet A, Delmotte M, Yver-Kwok C, Montagne D, Ciais P. A top-down approach of sources and non-photosynthetic sinks of carbonyl sulfide from atmospheric measurements over multiple years in the Paris region (France). PLoS One 2020; 15:e0228419. [PMID: 32040521 PMCID: PMC7010246 DOI: 10.1371/journal.pone.0228419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
Carbonyl sulfide (COS) has been proposed as a proxy for carbon dioxide (CO2) taken up by plants at the leaf and ecosystem scales. However, several additional production and removal processes have been identified which could complicate its use at larger scales, among which are soil uptake, dark uptake by plants, and soil and anthropogenic emissions. This study evaluates the significance of these processes at the regional scale through a top-down approach based on atmospheric COS measurements at Gif-sur-Yvette (GIF), a suburban site near Paris (France). Over a period of four and a half years, hourly measurements at 7 m above ground level were performed by gas chromatography and combined with 222Radon measurements to calculate nocturnal COS fluxes using the Radon-Tracer Method. In addition, the vertical distribution of COS was investigated at a second site, 2 km away from GIF, where a fast gas analyzer deployed on a 100 m tower for several months during winter 2015-2016 recorded mixing ratios at 3 heights (15, 60 and 100 m). COS appears to be homogeneously distributed both horizontally and vertically in the sampling area. The main finding is that the area is a persistent COS sink even during wintertime episodes of strong pollution. Nighttime net uptake rates ranged from -1.5 to -32.8 pmol m-2 s-1, with an average of -7.3 ± 4.5 pmol m-2 s-1 (n = 253). However, episodes of biogenic emissions happened each year in June-July (11.9 ± 6.2 pmol m-2 s-1, n = 24). Preliminary analyses of simulated footprints of source areas influencing the recorded COS data suggest that long-range transport of COS from anthropogenic sources located in Benelux, Eastern France and Germany occasionally impacts the Paris area during wintertime. These production and removal processes may limit the use of COS to assess regional-scale CO2 uptake in Europe by plants through inverse modeling.
Collapse
Affiliation(s)
- Sauveur Belviso
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
- * E-mail:
| | - Benjamin Lebegue
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Michel Ramonet
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Victor Kazan
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Isabelle Pison
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Antoine Berchet
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Marc Delmotte
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - Camille Yver-Kwok
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| | - David Montagne
- UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université, Paris-Saclay, UMR8212, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Spielmann FM, Wohlfahrt G, Hammerle A, Kitz F, Migliavacca M, Alberti G, Ibrom A, El‐Madany TS, Gerdel K, Moreno G, Kolle O, Karl T, Peressotti A, Delle Vedove G. Gross Primary Productivity of Four European Ecosystems Constrained by Joint CO 2 and COS Flux Measurements. GEOPHYSICAL RESEARCH LETTERS 2019; 46:5284-5293. [PMID: 31423034 PMCID: PMC6686783 DOI: 10.1029/2019gl082006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Gross primary productivity (GPP), the gross uptake of carbon dioxide (CO2) by plant photosynthesis, is the primary driver of the land carbon sink, which presently removes around one quarter of the anthropogenic CO2 emissions each year. GPP, however, cannot be measured directly and the resulting uncertainty undermines our ability to project the magnitude of the future land carbon sink. Carbonyl sulfide (COS) has been proposed as an independent proxy for GPP as it diffuses into leaves in a fashion very similar to CO2, but in contrast to the latter is generally not emitted. Here we use concurrent ecosystem-scale flux measurements of CO2 and COS at four European biomes for a joint constraint on CO2 flux partitioning. The resulting GPP estimates generally agree with classical approaches relying exclusively on CO2 fluxes but indicate a systematic underestimation under low light conditions, demonstrating the importance of using multiple approaches for constraining present-day GPP.
Collapse
Affiliation(s)
- F. M. Spielmann
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - G. Wohlfahrt
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - A. Hammerle
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - F. Kitz
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - M. Migliavacca
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
| | - G. Alberti
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
- CNR‐IBIMETFirenzeItaly
| | - A. Ibrom
- Department of Environmental EngineeringTechnical University of DenmarkKongens LyngbyDenmark
| | - T. S. El‐Madany
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
| | - K. Gerdel
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - G. Moreno
- INDEHESA‐Forest Research GroupUniversidad de ExtremaduraPlasenciaSpain
| | - O. Kolle
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
| | - T. Karl
- Institute of Atmospheric and Cryospheric SciencesUniversity of InnsbruckInnsbruckAustria
| | - A. Peressotti
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| | - G. Delle Vedove
- Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
| |
Collapse
|
12
|
Kitz F, Gómez-Brandón M, Eder B, Etemadi M, Spielmann FM, Hammerle A, Insam H, Wohlfahrt G. Soil carbonyl sulfide exchange in relation to microbial community composition: insights from a managed grassland soil amendment experiment. SOIL BIOLOGY & BIOCHEMISTRY 2019; 135:28-37. [PMID: 31579268 PMCID: PMC6774760 DOI: 10.1016/j.soilbio.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The viability of carbonyl sulfide (COS) measurements for partitioning ecosystem-scale net carbon dioxide (CO2) fluxes into photosynthesis and respiration critically depends on our knowledge of non-leaf sinks and sources of COS in ecosystems. We combined soil gas exchange measurements of COS and CO2 with next-generation sequencing technology (NGS) to investigate the role of soil microbiota for soil COS exchange. We applied different treatments (litter and glucose addition, enzyme inhibition and gamma sterilization) to soil samples from a temperate grassland to manipulate microbial composition and activity. While untreated soil was characterized by consistent COS uptake, other treatments reduced COS uptake and even turned the soil into a net COS source. Removing biotic processes through sterilization led to positive or zero fluxes. We used NGS to link changes in the COS response to alterations in the microbial community composition, with bacterial data having a higher explanatory power for the measured COS fluxes than fungal data. We found that the genera Arthrobacter and Streptomyces were particularly abundant in samples exhibiting high COS emissions. Our results indicate co-occurring abiotic production and biotic consumption of COS in untreated soil, the latter linked to carbonic anhydrase activity, and a strong dependency of the COS flux on the activity, identity, abundance of and substrate available to microorganisms.
Collapse
Affiliation(s)
- Florian Kitz
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| | - María Gómez-Brandón
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, Austria
| | - Bernhard Eder
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, Austria
| | - Mohammad Etemadi
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, Austria
| | - Felix M. Spielmann
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| | - Albin Hammerle
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, Innsbruck, Austria
| | - Georg Wohlfahrt
- Department of Ecology, University of Innsbruck, Sternwartestraße 15, Innsbruck, Austria
| |
Collapse
|
13
|
Fatichi S, Pappas C, Zscheischler J, Leuzinger S. Modelling carbon sources and sinks in terrestrial vegetation. THE NEW PHYTOLOGIST 2019; 221:652-668. [PMID: 30339280 DOI: 10.1111/nph.15451] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/12/2018] [Indexed: 05/06/2023]
Abstract
Contents Summary 652 I. Introduction 652 II. Discrepancy in predicting the effects of rising [CO2 ] on the terrestrial C sink 655 III. Carbon and nutrient storage in plants and its modelling 656 IV. Modelling the source and the sink: a plant perspective 657 V. Plant-scale water and Carbon flux models 660 VI. Challenges for the future 662 Acknowledgements 663 Authors contributions 663 References 663 SUMMARY: The increase in atmospheric CO2 in the future is one of the most certain projections in environmental sciences. Understanding whether vegetation carbon assimilation, growth, and changes in vegetation carbon stocks are affected by higher atmospheric CO2 and translating this understanding in mechanistic vegetation models is of utmost importance. This is highlighted by inconsistencies between global-scale studies that attribute terrestrial carbon sinks to CO2 stimulation of gross and net primary production on the one hand, and forest inventories, tree-scale studies, and plant physiological evidence showing a much less pronounced CO2 fertilization effect on the other hand. Here, we review how plant carbon sources and sinks are currently described in terrestrial biosphere models. We highlight an uneven representation of complexity between the modelling of photosynthesis and other processes, such as plant respiration, direct carbon sinks, and carbon allocation, largely driven by available observations. Despite a general lack of data on carbon sink dynamics to drive model improvements, ways forward toward a mechanistic representation of plant carbon sinks are discussed, leveraging on results obtained from plant-scale models and on observations geared toward model developments.
Collapse
Affiliation(s)
- Simone Fatichi
- Institute of Environmental Engineering, ETH Zurich, Stefano Franscini Platz 5, 8093, Zurich, Switzerland
| | - Christoforos Pappas
- Département de géographie and Centre d'études nordiques, Université de Montréal, Montreal, QC, H2V 2B8, Canada
| | - Jakob Zscheischler
- Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland
| | - Sebastian Leuzinger
- Institute for Applied Ecology New Zealand, School of Science, Auckland University of Technology, Wakefield Street 46, 1142, Auckland, New Zealand
| |
Collapse
|
14
|
Sun-induced fluorescence and gross primary productivity during a heat wave. Sci Rep 2018; 8:14169. [PMID: 30242255 PMCID: PMC6155073 DOI: 10.1038/s41598-018-32602-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022] Open
Abstract
Remote sensing of sun-induced chlorophyll fluorescence (SIF) has been suggested as a promising approach for probing changes in global terrestrial gross primary productivity (GPP). To date, however, most studies were conducted in situations when/where changes in both SIF and GPP were driven by large changes in the absorbed photosynthetically active radiation (APAR) and phenology. Here we quantified SIF and GPP during a short-term intense heat wave at a Mediterranean pine forest, during which changes in APAR were negligible. GPP decreased linearly during the course of the heat wave, while SIF declined slightly initially and then dropped dramatically during the peak of the heat wave, temporally coinciding with a biochemical impairment of photosynthesis inferred from the increase in the uptake ratio of carbonyl sulfide to carbon dioxide. SIF thus accounted for less than 35% of the variability in GPP and, even though it responded to the impairment of photosynthesis, appears to offer limited potential for quantitatively monitoring GPP during heat waves in the absence of large changes in APAR.
Collapse
|
15
|
Meredith LK, Ogée J, Boye K, Singer E, Wingate L, von Sperber C, Sengupta A, Whelan M, Pang E, Keiluweit M, Brüggemann N, Berry JA, Welander PV. Soil exchange rates of COS and CO 18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes. ISME JOURNAL 2018; 13:290-300. [PMID: 30214028 PMCID: PMC6330096 DOI: 10.1038/s41396-018-0270-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/30/2018] [Accepted: 08/04/2018] [Indexed: 12/29/2022]
Abstract
Differentiating the contributions of photosynthesis and respiration to the global carbon cycle is critical for improving predictive climate models. Carbonic anhydrase (CA) activity in leaves is responsible for the largest biosphere-atmosphere trace gas fluxes of carbonyl sulfide (COS) and the oxygen-18 isotopologue of carbon dioxide (CO18O) that both reflect gross photosynthetic rates. However, CA activity also occurs in soils and will be a source of uncertainty in the use of COS and CO18O as carbon cycle tracers until process-based constraints are improved. In this study, we measured COS and CO18O exchange rates and estimated the corresponding CA activity in soils from a range of biomes and land use types. Soil CA activity was not uniform for COS and CO2, and patterns of divergence were related to microbial community composition and CA gene expression patterns. In some cases, the same microbial taxa and CA classes catalyzed both COS and CO2 reactions in soil, but in other cases the specificity towards the two substrates differed markedly. CA activity for COS was related to fungal taxa and β-D-CA expression, whereas CA activity for CO2 was related to algal and bacterial taxa and α-CA expression. This study integrates gas exchange measurements, enzyme activity models, and characterization of soil taxonomic and genetic diversity to build connections between CA activity and the soil microbiome. Importantly, our results identify kinetic parameters to represent soil CA activity during application of COS and CO18O as carbon cycle tracers.
Collapse
Affiliation(s)
- Laura K Meredith
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA. .,School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA.
| | - Jérôme Ogée
- INRA/Bordeaux Science Agro, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, Bordeaux, 33140, France
| | - Kristin Boye
- SLAC National Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, 94025, USA
| | - Esther Singer
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Lisa Wingate
- INRA/Bordeaux Science Agro, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, Bordeaux, 33140, France
| | - Christian von Sperber
- Institute for Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Bonn, 53115, Germany.,Department of Geography, McGill University, 805 Sherbrooke St. W., Montreal, QC, H3A 0B9, Canada
| | - Aditi Sengupta
- University of Arizona, Biosphere 2, Tucson, AZ, 85721, USA
| | - Mary Whelan
- Department of Global Change Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erin Pang
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Marco Keiluweit
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Nicolas Brüggemann
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Strasse, Jülich, 52428, Germany
| | - Joe A Berry
- Department of Global Change Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Yang F, Qubaja R, Tatarinov F, Rotenberg E, Yakir D. Assessing canopy performance using carbonyl sulfide measurements. GLOBAL CHANGE BIOLOGY 2018; 24:3486-3498. [PMID: 29575496 DOI: 10.1111/gcb.14145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Carbonyl sulfide (COS) is a tracer of ecosystem photosynthesis that can advance carbon cycle research from leaf to global scales; however, a range of newly reported caveats related to sink/source strength of various ecosystem components hinder its application. Using comprehensive eddy-covariance and chamber measurements, we systematically measure ecosystem contributions from leaf, stem, soil, and litter and were able to close the ecosystem COS budget. The relative contributions of nonphotosynthetic components to the overall canopy-scale flux are relatively small (~4% during peak activity season) and can be independently estimated based on their responses to temperature and humidity. Converting COS to photosynthetic CO2 fluxes based on the leaf relative uptake of COS/CO2 , faces challenges due to observed daily and seasonal changes. Yet, this ratio converges around a constant value (~1.6), and the variations, dominated by light intensity, were found unimportant on a flux-weighted daily time-scale, indicating a mean ratio of daytime gross-to-net primary productivity of ~2 in our ecosystem. The seasonal changes in the leaf relative uptake ratio may indicate a reduction in mesophyll conductance in winter, and COS-derived canopy conductance permitted canopy temperature estimate consistent with radiative skin temperature. These results support the feasibility of using COS as a powerful and much-needed means of assessing ecosystem function and its response to change.
Collapse
Affiliation(s)
- Fulin Yang
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Rafat Qubaja
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fyodor Tatarinov
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Rotenberg
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan Yakir
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Gerdel K, Spielmann FM, Hammerle A, Wohlfahrt G. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer. ATMOSPHERIC MEASUREMENT TECHNIQUES 2017; 10:3525-3537. [PMID: 29093762 PMCID: PMC5662146 DOI: 10.5194/amt-10-3525-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes.
Collapse
Affiliation(s)
- Katharina Gerdel
- Institut of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Albin Hammerle
- Institut of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Georg Wohlfahrt
- Institut of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Wohlfahrt G. Bi-directional COS exchange in bryophytes challenges its use as a tracer for gross primary productivity. THE NEW PHYTOLOGIST 2017; 215:923-925. [PMID: 28695681 PMCID: PMC5657470 DOI: 10.1111/nph.14658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Georg Wohlfahrt
- Institut für Ökologie, Universität Innsbruck, Sternwartestr. 15, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Large historical growth in global terrestrial gross primary production. Nature 2017; 544:84-87. [PMID: 28382993 DOI: 10.1038/nature22030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
Abstract
Growth in terrestrial gross primary production (GPP)-the amount of carbon dioxide that is 'fixed' into organic material through the photosynthesis of land plants-may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. As a consequence, modelling estimates of terrestrial carbon storage, and of feedbacks between the carbon cycle and climate, remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century that is based on long-term atmospheric carbonyl sulfide (COS) records, derived from ice-core, firn and ambient air samples. We interpret these records using a model that simulates changes in COS concentration according to changes in its sources and sinks-including a large sink that is related to GPP. We find that the observation-based COS record is most consistent with simulations of climate and the carbon cycle that assume large GPP growth during the twentieth century (31% ± 5% growth; mean ± 95% confidence interval). Although this COS analysis does not directly constrain models of future GPP growth, it does provide a global-scale benchmark for historical carbon-cycle simulations.
Collapse
|
20
|
Kitz F, Gerdel K, Hammerle A, Laterza T, Spielmann FM, Wohlfahrt G. In situ soil COS exchange of a temperate mountain grassland under simulated drought. Oecologia 2017; 183:851-860. [PMID: 28070699 PMCID: PMC5339329 DOI: 10.1007/s00442-016-3805-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022]
Abstract
During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO2), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m-2 s-1) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.
Collapse
Affiliation(s)
- Florian Kitz
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria.
| | - Katharina Gerdel
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria
| | - Albin Hammerle
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria
| | - Tamara Laterza
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria
| | - Felix M Spielmann
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria
| | - Georg Wohlfahrt
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, Tyrol, Austria
| |
Collapse
|
21
|
Wohlfahrt G, Gu L. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. PLANT, CELL & ENVIRONMENT 2015; 38:2500-7. [PMID: 25988305 PMCID: PMC4681079 DOI: 10.1111/pce.12569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 05/18/2023]
Abstract
(1) Gross photosynthesis is a key term in plant biology and carbon cycle science, however has been used with different meanings by different communities (2) We review the history of this term and associated concepts to clarify the terminology and make recommendations about a consistent use of terms in accordance with photosynthetic theory. (3) We show that a widely used eddy covariance CO2 flux partitioning approach yields estimates which are quantitatively closer to the definition of true photosynthesis despite aiming at estimating apparent photosynthesis.
Collapse
Affiliation(s)
- Georg Wohlfahrt
- Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
- European Academy of Bolzano, 39100, Bolzano, Italy
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
22
|
Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. Proc Natl Acad Sci U S A 2014; 111:9064-9. [PMID: 24927594 DOI: 10.1073/pnas.1319132111] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1-6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.
Collapse
|
23
|
PTR-MS in Italy: a multipurpose sensor with applications in environmental, agri-food and health science. SENSORS 2013; 13:11923-55. [PMID: 24021966 PMCID: PMC3821335 DOI: 10.3390/s130911923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022]
Abstract
Proton Transfer Reaction Mass Spectrometry (PTR-MS) has evolved in the last decade as a fast and high sensitivity sensor for the real-time monitoring of volatile compounds. Its applications range from environmental sciences to medical sciences, from food technology to bioprocess monitoring. Italian scientists and institutions participated from the very beginning in fundamental and applied research aiming at exploiting the potentialities of this technique and providing relevant methodological advances and new fundamental indications. In this review we describe this activity on the basis of the available literature. The Italian scientific community has been active mostly in food science and technology, plant physiology and environmental studies and also pioneered the applications of the recently released PTR-ToF-MS (Proton Transfer Reaction-Time of Flight-Mass Spectrometry) in food science and in plant physiology. In the very last years new results related to bioprocess monitoring and health science have been published as well. PTR-MS data analysis, particularly in the case of the ToF based version, and the application of advanced chemometrics and data mining are also aspects characterising the activity of the Italian community.
Collapse
|