1
|
Michael TP. Time of Day Analysis over a Field Grown Developmental Time Course in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 12:166. [PMID: 36616295 PMCID: PMC9823482 DOI: 10.3390/plants12010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plants integrate time of day (TOD) information over an entire season to ensure optimal growth, flowering time, and grain fill. However, most TOD expression studies have focused on a limited number of combinations of daylength and temperature under laboratory conditions. Here, an Oryza sativa (rice) expression study that followed TOD expression in the field over an entire growing season was re-analyzed. Similar to Arabidopsis thaliana, almost all rice genes have a TOD-specific expression over the developmental time course. As has been suggested in other grasses, thermocycles were a stronger cue for TOD expression than the photocycles over the growing season. All the core circadian clock genes display consistent TOD expression over the season with the interesting exception that the two grass paralogs of EARLY FLOWERING 3 (ELF3) display a distinct phasing based on the interaction between thermo- and photo-cycles. The dataset also revealed how specific pathways are modulated to distinct TOD over the season consistent with the changing biology. The data presented here provide a resource for researchers to study how TOD expression changes under natural conditions over a developmental time course, which will guide approaches to engineer more resilient and prolific crops.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Agostino PV, Golombek DA. Into the Wild: Biological Timing in Natural Environments. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Biological timing (including circadian and interval timing) has mainly focused on rigorously controlled laboratory experiments. There are relatively few studies looking into interval timing behaviors in the wild, which could be understandable due to the complexity of the experimental design but are definitely needed in order to comprehend the adaptive value of such behavior. In this opinion paper we review some of the literature regarding timing observations under field conditions, including reports from birds and mammals, and propose a call-to-action to think about the need of a more naturalistic interpretation of time production and perception, as well as the advantage of designing more ‘natural’ settings in the laboratory.
Collapse
Affiliation(s)
- Patricia V. Agostino
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, 1878, Argentina
| | - Diego A. Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, 1878, Argentina
| |
Collapse
|
3
|
Cai Z, Zhang Y, Tang W, Chen X, Lin C, Liu Y, Ye Y, Wu W, Duan Y. LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:853042. [PMID: 35401642 PMCID: PMC8993510 DOI: 10.3389/fpls.2022.853042] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The evening complex (EC) plays a critical role in photoperiod flowering in Arabidopsis. Nevertheless, the underlying functions of individual components and coordinate regulation mechanism of EC genes in rice flowering remain to be elucidated. Here, we characterized the critical role of LUX ARRHYTHMO (LUX) in photoperiod perception and coordinating vegetative growth and flowering in rice. Non-functional alleles of OsLUX extremely extended vegetative phase, leading to photoperiod-insensitive late flowering and great increase of grain yield. OsLUX displayed an obvious diurnal rhythm expression with the peak at dusk and promoted rice flowering via coordinating the expression of genes associated with the circadian clock and the output integrators of photoperiodic flowering. OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering. In addition, OsELF4a was also essential for promoting rice flowering. Unlike OsLUX, loss OsELF4a displayed a marginal influence under short-day (SD) condition, but markedly delayed flowering time under long-day (LD) condition. These results suggest that rice EC genes share the function of promoting flowering. This is agreement with the orthologs of SD plant, but opposite to the counterparts of LD species. Taken together, rice EC genes display similar but not identical function in photoperiodic flowering, probably through regulating gene expression cooperative and independent. These findings facilitate our understanding of photoperiodic flowering in plants, especially the SD crops.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yudan Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuequn Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenchen Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanfang Ye
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanlin Duan
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Gao W, Zhang L, Wang J, Liu Z, Zhang Y, Xue C, Liu M, Zhao J. ZjSEP3 modulates flowering time by regulating the LHY promoter. BMC PLANT BIOLOGY 2021; 21:527. [PMID: 34763664 PMCID: PMC8582215 DOI: 10.1186/s12870-021-03305-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.
Collapse
Affiliation(s)
- Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
5
|
Valim H, Dalton H, Joo Y, McGale E, Halitschke R, Gaquerel E, Baldwin IT, Schuman MC. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress. THE NEW PHYTOLOGIST 2020; 228:1227-1242. [PMID: 32608045 DOI: 10.1111/nph.16784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The circadian clock contextualizes plant responses to environmental signals. Plants use temporal information to respond to herbivory, but many of the functional roles of circadian clock components in these responses, and their contribution to fitness, remain unknown. We investigate the role of the central clock regulator TIMING OF CAB EXPRESSION 1 (TOC1) in Nicotiana attenuata's defense responses to the specialist herbivore Manduca sexta under both field and glasshouse conditions. We utilize 15 N pulse-labeling to quantify nitrogen incorporation into pools of three defense compounds: caffeoylputrescine (CP), dicaffeoyl spermidine (DCS) and nicotine. Nitrogen incorporation was decreased in CP and DCS and increased in nicotine pools in irTOC1 plants compared to empty vector (EV) under control conditions, but these differences were abolished after simulated herbivory. Differences between EV and irTOC1 plants in nicotine, but not phenolamide production, were abolished by treatment with the ethylene agonist 1-methylcyclopropene. Using micrografting, TOC1's effect on nicotine was isolated to the root and did not affect the fitness of heterografts under field conditions. These results suggest that the circadian clock contributes to plant fitness by balancing production of metabolically expensive nitrogen-rich defense compounds and mediating the allocation of resources between vegetative biomass and reproduction.
Collapse
Affiliation(s)
- Henrique Valim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Heidi Dalton
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
- Institute of Plant Molecular Biology, University of Strasbourg, 12 Rue du Général Zimmer, Strasbourg, 67084, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| |
Collapse
|
6
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
7
|
Yan X, Qian C, Yin X, Fan X, Zhao X, Gu M, Wang T, Ma XF. A whole-transcriptome approach to evaluate reference genes for quantitative diurnal gene expression studies under natural field conditions in Tamarix ramosissima leaves. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Amino Acids 2017; 50:149-161. [PMID: 29030729 DOI: 10.1007/s00726-017-2501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/30/2017] [Indexed: 01/20/2023]
Abstract
Maize (Zea mays L.) is a typical short-day plant that is produced as an important food product and industrial material. The photoperiod is one of the most important evolutionary mechanisms enabling the adaptation of plant developmental phases to changes in climate conditions. There are differences in the photoperiod sensitivity of maize inbred lines from tropical to temperate regions. In this study, to identify the maize proteins responsive to a long photoperiod (LP), the photoperiod-insensitive inbred line HZ4 and its near-isogenic line H496, which is sensitive to LP conditions, were analyzed under long-day conditions using isobaric tags for relative and absolute quantitation. We identified 5259 proteins in maize leaves exposed to the LP condition between the vegetative and reproductive stages. These proteins included 579 and 576 differentially accumulated proteins in H496 and HZ4 leaves, respectively. The differentially accumulated proteins (e.g., membrane, defense, and energy- and ribosome-related proteins) exhibited the opposite trends in HZ4 and H496 plants during the transition from the vegetative stage to the reproductive stage. These results suggest that the photoperiod-associated fragment in H496 plants considerably influences various proteins to respond to the photoperiod sensitivity. Overall, our data provide new insights into the effects of long-day treatments on the maize proteome, and may be useful for the development of new germplasm.
Collapse
|
9
|
Joo Y, Fragoso V, Yon F, Baldwin IT, Kim SG. Circadian clock component, LHY, tells a plant when to respond photosynthetically to light in nature. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:572-587. [PMID: 28429400 DOI: 10.1111/jipb.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 05/14/2023]
Abstract
The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light- and dark-adapted photosynthetic rates (Ac ) throughout a 24 h day in empty vector-transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA- and NaPhyB1-silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac . Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark-adapted plants at night; irLHY plants lost these time-dependent responses. The role of NaLHY in gating photosynthesis is independent of the light-dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light-mediated in native tobacco.
Collapse
Affiliation(s)
- Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
10
|
Kudoh H. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. THE NEW PHYTOLOGIST 2016; 210:399-412. [PMID: 26523957 DOI: 10.1111/nph.13733] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology.
Collapse
Affiliation(s)
- Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
11
|
Bendix C, Marshall CM, Harmon FG. Circadian Clock Genes Universally Control Key Agricultural Traits. MOLECULAR PLANT 2015; 8:1135-52. [PMID: 25772379 DOI: 10.1016/j.molp.2015.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/17/2023]
Abstract
Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, including growth, development, and reproduction, primarily through controlling a substantial proportion of transcriptional activity and protein function. This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants. The focus here is on three groups of circadian clock genes essential to clock function in Arabidopsis thaliana: PSEUDO-RESPONSE REGULATORs, GIGANTEA, and the evening complex genes early flowering 3, early flowering 4, and lux arrhythmo. homologous genes from each group underlie quantitative trait loci that have beneficial influences on key agricultural traits, especially flowering time but also yield, biomass, and biennial growth habit. Emerging insights into circadian clock regulation of other fundamental plant processes, including responses to abiotic and biotic stresses, are discussed to highlight promising avenues for further crop improvement.
Collapse
Affiliation(s)
- Claire Bendix
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carine M Marshall
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Izawa T. Deciphering and prediction of plant dynamics under field conditions. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:87-92. [PMID: 25706440 DOI: 10.1016/j.pbi.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 05/18/2023]
Abstract
Elucidation of plant dynamics under fluctuating natural environments is a challenging goal in plant physiology. Recently, using a computer statistics integrating a series of transcriptome data of field-grown rice leaves during an entire crop season and several corresponding environmental data such as solar radiation and ambient temperature, most parts of transcriptome have been modeled. This reveals the detailed contributions of developmental timing, circadian clocks and each environmental factor to transcriptome dynamics in the field and can predict transcriptome dynamics under given environments. Furthermore, some traits such as flowering time in natural environments have been shown to be predicted by mathematical models based on gene-networks parameterized with data obtained in the laboratory, and phenology models refined by knowledge of molecular genetics. New molecular physiology is beginning in plant science.
Collapse
Affiliation(s)
- Takeshi Izawa
- Functional Plant Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
13
|
Nguyen QN, Lee YS, Cho LH, Jeong HJ, An G, Jung KH. Genome-wide identification and analysis of Catharanthus roseus RLK1-like kinases in rice. PLANTA 2015; 241:603-13. [PMID: 25399351 DOI: 10.1007/s00425-014-2203-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/05/2014] [Indexed: 05/22/2023]
Abstract
A genome-wide survey of Catharanthus roseus receptor-like kinase1-like kinases (CrRLK1Ls) in rice revealed that the pattern of expression by some CrRLK1Ls is controlled by drought or circadian rhythms. This is probably accomplished through the functioning of Gigantea ( OsGI ). Such findings provide a novel angle for using CrRLK1Ls to study the drought-stress response and circadian regulation. The 17 CrRLK1L members of a novel RLK family have been identified in Arabidopsis. Each carries a putative extracellular carbohydrate-binding malectin-like domain. However, their roles in rice, a widely consumed staple food, are not well understood. To investigate the functions of CrRLK1Ls in rice, we utilized phylogenomics data obtained through anatomical and diurnal meta-expression analyses. This information was integrated with a large set of public microarray data within the context of the rice CrRLK1L family phylogenic tree. Chromosomal locations indicated that 3 of 16 genes were tandem-duplicated, suggesting possible functional redundancy within this family. However, integrated diurnal expression showed functional divergence between two of three genes, i.e., peak expression was detected during the day for OsCrRLK1L2, but during the night for OsCrRLK1L3. We found it interesting that OsCrRLK1L2 expression was repressed in osgigantea (osgi) mutants, which suggests that it could function downstream of OsGI. Network analysis associated with OsCrRLK1L2 and OsGI suggested a novel circadian regulation mechanism mediated by OsGI. In addition, two of five OsCrRLK1Ls preferentially expressed in the roots were stimulated by drought, suggesting a potential role for this family in water-use efficiency. This preliminary identification of CrRLK1Ls and study of their expression in rice will facilitate further functional classifications and applications in plant production.
Collapse
Affiliation(s)
- Quynh-Nga Nguyen
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Korea
| | | | | | | | | | | |
Collapse
|
14
|
Gulati J, Baldwin IT, Gaquerel E. The roots of plant defenses: integrative multivariate analyses uncover dynamic behaviors of gene and metabolic networks of roots elicited by leaf herbivory. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:880-92. [PMID: 24456376 PMCID: PMC4190575 DOI: 10.1111/tpj.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/11/2013] [Accepted: 01/09/2014] [Indexed: 05/08/2023]
Abstract
High-throughput analyses have frequently been used to characterize herbivory-induced reconfigurations in plant primary and secondary metabolism in above- and below-ground tissues, but the conclusions drawn from these analyses are often limited by the univariate methods used to analyze the data. Here we use our previously described multivariate time-series data analysis to evaluate leaf herbivory-elicited transcriptional and metabolic dynamics in the roots of Nicotiana attenuata. We observed large, but transient, systemic responses in the roots that contrasted with the pattern of co-linearity observed in the up- and downregulation of genes and metabolites across the entire time series in treated and systemic leaves. Using this newly developed approach for the analysis of whole-plant molecular responses in a time-course multivariate data set, we simultaneously analyzed stress responses in leaves and roots in response to the elicitation of a leaf. We found that transient systemic responses in roots resolved into two principal trends characterized by: (i) an inversion of root-specific semi-diurnal (12 h) transcript oscillations and (ii) transcriptional changes with major amplitude effects that translated into a distinct suite of root-specific secondary metabolites (e.g. alkaloids synthesized in the roots of N. attenuata). These findings underscore the importance of understanding tissue-specific stress responses in the correct day-night phase context and provide a holistic framework for the important role played by roots in above-ground stress responses.
Collapse
Affiliation(s)
- Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Zhang M, Huang H, Dai S. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium. Gene 2014; 537:203-13. [PMID: 24434369 DOI: 10.1016/j.gene.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/11/2013] [Accepted: 01/04/2014] [Indexed: 12/19/2022]
Abstract
Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ(1)-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum×morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136-KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development.
Collapse
Affiliation(s)
- Mi Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China; National Engineering Research Centre for Floriculture, Beijing 100083, China; College of Landscape Architecture, Beijing Forestry University,Beijing 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China; National Engineering Research Centre for Floriculture, Beijing 100083, China; College of Landscape Architecture, Beijing Forestry University,Beijing 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing 100083, China; National Engineering Research Centre for Floriculture, Beijing 100083, China; College of Landscape Architecture, Beijing Forestry University,Beijing 100083, China.
| |
Collapse
|
16
|
Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG. The circadian clock-associated gene gigantea1 affects maize developmental transitions. PLANT, CELL & ENVIRONMENT 2013; 36:1379-90. [PMID: 23336247 DOI: 10.1111/pce.12067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 05/08/2023]
Abstract
The circadian clock is an internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. In model plants, circadian clock-associated gigantea (gi) genes are directly involved in control of growth and developmental transitions. The maize gigantea1 (gi1) gene is the more highly expressed of the two gi homeologs, and its function is uncharacterized. To understand the role of gi1 in the regulatory networks of the maize circadian clock system, gi1 mutants were evaluated for changes in flowering time, phase change and growth control. When grown in long-day (LD) photoperiods, gi1 mutants flowered earlier than non-mutant plants, but this difference was not apparent in short-day (SD) photoperiods. Therefore, gi1 participates in a pathway that suppresses flowering in LD photoperiods, but not in SD. Part of the underlying cause of early flowering was up-regulated expression of the FT-like floral activator gene zea mays centroradialis8 (zcn8) and the CONSTANS-like flowering regulatory gene constans of zea mays1 (conz1). gi1 mutants also underwent vegetative phase change earlier and grew taller than non-mutant plants. These findings indicate gi1 has a repressive function in multiple regulatory pathways that govern maize growth and development.
Collapse
Affiliation(s)
- Claire Bendix
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Juan M Mendoza
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Desiree N Stanley
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Robert Meeley
- Crop Genetics Research, Pioneer Hi Bred-A DuPont Business, Johnston, IA, 50130, USA
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| |
Collapse
|
17
|
Itoh H, Izawa T. The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. MOLECULAR PLANT 2013; 6:635-49. [PMID: 23416454 DOI: 10.1093/mp/sst022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The photoperiodic control of flowering time is essential for the adaptation of plants to variable environments and for successful reproduction. The identification of genes encoding florigens, which had been elusive but were supposedly synthesized in leaves and then transmitted to shoot apices to induce floral transitions, has greatly advanced our understanding of the photoperiodic regulation of flowering. Studies on the photoperiodism of Arabidopsis, a model long-day plant, revealed the molecular mechanisms regulating the expression of the Arabidopsis florigen gene FT, which is gradually induced in response to increase in day length. By contrast, in rice, a model short-day plant, the expression of the florigen gene Hd3a (an FT ortholog in rice) is regulated in an on/off fashion, with strong induction under short-day conditions and repression under long-day conditions. This critical day length dependence of Hd3a expression enables rice to recognize a slight change in the photoperiod as a trigger to initiate floral induction. Rice possesses a second florigen gene, RFT1, which can be expressed to induce floral transition under non-inductive long-day conditions. The complex transcriptional regulation of florigen genes and the resulting precise control over flowering time provides rice with the adaptability required for a crop species of increasing global importance.
Collapse
Affiliation(s)
- Hironori Itoh
- National Institute of Agrobiological Sciences, Functional Plant Research Unit, 2-1-2 Kannondai, Tsukuba 305-8602, Japan
| | | |
Collapse
|
18
|
Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 2013; 151:1358-69. [PMID: 23217716 DOI: 10.1016/j.cell.2012.10.048] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/16/2012] [Accepted: 10/23/2012] [Indexed: 11/24/2022]
Abstract
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Collapse
|
19
|
Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. PLANT, CELL & ENVIRONMENT 2012; 35:1707-28. [PMID: 22670814 DOI: 10.1111/j.1365-3040.2012.02552.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In tree species native to temperate and boreal regions, the activity-dormancy cycle is an important adaptive trait both for survival and growth. We discuss recent research on mechanisms controlling the overlapping developmental processes that define the activity-dormancy cycle, including cessation of apical growth, bud development, induction, maintenance and release of dormancy, and bud burst. The cycle involves an extensive reconfiguration of metabolism. Environmental control of the activity-dormancy cycle is based on perception of photoperiodic and temperature signals, reflecting adaptation to prevailing climatic conditions. Several molecular actors for control of growth cessation have been identified, with the CO/FT regulatory network and circadian clock having important coordinating roles in control of growth and dormancy. Other candidate regulators of bud set, dormancy and bud burst have been identified, such as dormancy-associated MADS-box factors, but their exact roles remain to be discovered. Epigenetic mechanisms also appear to factor in control of the activity-dormancy cycle. Despite evidence for gibberellins as negative regulators in growth cessation, and ABA and ethylene in bud formation, understanding of the roles that plant growth regulators play in controlling the activity-dormancy cycle is still very fragmentary. Finally, some of the challenges for further research in bud dormancy are discussed.
Collapse
Affiliation(s)
- Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|