1
|
Al-Khateeb ZF, Henson SM, Tremoleda JL, Michael-Titus AT. The Immune Response in Two Models of Traumatic Injury of the Immature Brain. Cells 2024; 13:1612. [PMID: 39404376 PMCID: PMC11475908 DOI: 10.3390/cells13191612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F. Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Xian L, Xu X, Mai Y, Guo T, Chen Z, Deng X. Dissecting causal relationships between gut microbiome, immune cells, and brain injury: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39740. [PMID: 39312332 PMCID: PMC11419422 DOI: 10.1097/md.0000000000039740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Increasing literature has affirmed that changes in the gut microbiome (GM) composition were linked to distinct brain injury (BI) through the gut-brain axis, but it is uncertain if such links reflect causality. Further, the immune cell changes mediating the impact of GM on BI are not completely understood. We made use of the summary statistics of 211 GM (MiBioGen consortium), 731 immune cells, and 2 different BIs (FinnGen consortium), namely traumatic BI (TBI) and focal BI (FBI), from the extensive genome-wide association studies to date. We executed bidirectional Mendelian randomization (MR) analyses to ascertain the causal relationships between the GM and BI, and 2-step MR to validate possible mediating immune cells. Additionally, thorough sensitivity analyses verified the heterogeneity, robustness, as well as horizontal pleiotropy of the results. Based on the results of inverse-variance weighted (IVW) and sensitivity analyses, in MR analyses, 5 specific GM taxa and 6 specific GM taxa were causally associated with FBI and TBI, respectively; 27 immunophenotypes and 39 immunophenotypes were causally associated with FBI and TBI, respectively. Remarkably, Anaerofilum, LachnospiraceaeNC2004group, RuminococcaceaeUCG004, CCR2 on myeloid dendritic cell (DC), CD123 on CD62L+ plasmacytoid DC, and CD123 on plasmacytoid DC were causally associated with TBI and FBI (all P < .040). However, our reverse MR did not indicate any influence of TBI and FBI on the specific GM. In mediation analysis, we found that the associations between Escherichia.Shigella and FBI were mediated by CD123 on CD62L + plasmacytoid DC in addition to CD123 on plasmacytoid DC, each accounting for 4.21% and 4.21%; the association between FamilyXIIIAD3011group and TBI was mediated by CCR2 on myeloid DC, with mediated proportions of 5.07%. No remarkable horizontal pleiotropy or heterogeneity of instrumental variables was detected. Our comprehensive MR analysis first provides insight into potential causal links between several specific GM taxa with FBI/TBI. Additionally, CD123 on plasmacytoid DC in conjunction with CCR2 on myeloid DC may function in gut microbiota-host crosstalk in FBI and TBI, correspondingly. Further studies are critical to unravel the underlying mechanisms of the links between GM and BI.
Collapse
Affiliation(s)
- Lina Xian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Xiaochen Xu
- Department of Intensive Care Unit, Emergency and Trauma College, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Yongmeng Mai
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Tongwu Guo
- Department of Intensive Care Unit, Emergency and Trauma College, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Zhen Chen
- Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (the First people’s hospital of Shunde), Foshan, Guangdong Province, PR China
| | - Xiaoyan Deng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Unit, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan Province, PR China
| |
Collapse
|
3
|
Ilyas MF, Lado A, Budiono EA, Suryaputra GP, Ramadhana GA, Novika RGH. Platelet-to-lymphocyte ratio as a prognostic predictive marker on adults with traumatic brain injury: Systematic review. Surg Neurol Int 2024; 15:205. [PMID: 38974549 PMCID: PMC11225503 DOI: 10.25259/sni_878_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Background The platelet-to-lymphocyte ratio (PLR) has emerged as a prognostic predictive marker in various diseases, but its role in traumatic brain injury (TBI) has not been fully elucidated. This study aims to evaluate the role of PLR as a prognostic predictive marker in adults with TBI. Methods This systematic review was conducted according to the Preferred Reporting Items in the Systematic Review and Meta-analysis Guidelines 2020. A comprehensive search was performed using PubMed, Google Scholar, Scopus, Crossref, OpenAlex, Semantic Scholar, Library of Congress, and Jisc Library Hub Discover database to identify relevant studies published up to February 2023. Both prospective and retrospective observational studies written in English or Indonesian were included in the study. No restrictions were placed on the year and country of publication and duration of follow-up. Study quality was evaluated using the Newcastle-Ottawa Scale (NOS), and the risk of bias was estimated using the Cochrane Risk of Bias Assessment Tool for Nonrandomized Research (Ro-BANS) tool. A narrative synthesis was also conducted to summarize the findings. Results We retrieved 1644 references using the search strategy, and 1623 references were excluded based on screening the title and abstract. The full text was retrieved for 20 articles and subjected to the eligibility criteria, of which 16 were excluded from the study. Four papers with a total of 1.467 sample sizes were included in the review. The median of NOS for study quality was 8-9, with the risk of selection bias using the Ro-BANS tool being low in all studies except for the blinding outcome assessments, which are all unclear. The study finding suggests that the PLR has the potential as an independent prognostic predictive marker in adult patients with TBI. In three studies, a high level of admission PLR may independently predict an increasing mortality risk in 30 days and adverse outcomes measured by the Glasgow outcome scale in 6 months following TBI. However, one study shows that PLR may have limited value as a predictor of mortality or favorable neurological outcomes compared to other hematological parameters. Further studies were needed to establish the clinical utility of PLR and fill the present gaps. Conclusion This systematic review provides evidence supporting the utilization of PLR as a prognostic predictive marker in adult patients with TBI. The PLR can mainly be utilized, especially in rural practice, as PLR is a simple, low-cost, and routinely performed hematological examination.
Collapse
Affiliation(s)
- Muhana Fawwazy Ilyas
- Department of Neurology, Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Aldebaran Lado
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Enrico Ananda Budiono
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Gregorius Prama Suryaputra
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Geizar Arsika Ramadhana
- Department of Neurosurgery, Dr. Moewardi General Hospital, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Revi Gama Hatta Novika
- Faculty of Medicine, Dr. Moewardi General Hospital, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
4
|
Mokbel AY, Burns MP, Main BS. The contribution of the meningeal immune interface to neuroinflammation in traumatic brain injury. J Neuroinflammation 2024; 21:135. [PMID: 38802931 PMCID: PMC11131220 DOI: 10.1186/s12974-024-03122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, particularly among the elderly, yet our mechanistic understanding of what renders the post-traumatic brain vulnerable to poor outcomes, and susceptible to neurological disease, is incomplete. It is well established that dysregulated and sustained immune responses elicit negative consequences after TBI; however, our understanding of the neuroimmune interface that facilitates crosstalk between central and peripheral immune reservoirs is in its infancy. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in both healthy and disease settings. It has been previously shown that disruption of this system exacerbates neuroinflammation in age-related neurodegenerative disorders such as Alzheimer's disease; however, we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. In this manuscript, we will offer a detailed overview of the holistic nature of neuroinflammatory responses in TBI, including hallmark features observed across clinical and animal models. We will highlight the structure and function of the meningeal lymphatic system, including its role in immuno-surveillance and immune responses within the meninges and the brain. We will provide a comprehensive update on our current knowledge of meningeal-derived responses across the spectrum of TBI, and identify new avenues for neuroimmune modulation within the neurotrauma field.
Collapse
Affiliation(s)
- Alaa Y Mokbel
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Mark P Burns
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Bevan S Main
- Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
5
|
Smith AM, Taylor EB, Brooks RJ, Dos Santos e Santos C, Grayson BE. Cerebral and Peripheral Immune Cell Changes following Rodent Juvenile Traumatic Brain Injury. Brain Sci 2024; 14:398. [PMID: 38672047 PMCID: PMC11048136 DOI: 10.3390/brainsci14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability. TBI is associated with neuroinflammation, but temporal changes in immune and inflammatory signaling following TBI have not been fully elucidated. Furthermore, there have been no previous studies on changes in immune cell populations following TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). The current study aimed to determine the time course changes to inflammatory marker mRNA expression in the acute period following TBI in juvenile rats and to determine acute changes to brain and circulating immune cell populations. For this study, post-natal day (PND)-30 male Long Evans rats sustained a TBI or Sham TBI and were euthanized at 0, 3, 6, 12, 24, or 96 h post-injury. Prefrontal cortex and hippocampus samples were used to determine mRNA expression changes of inflammatory factors. The mRNA expression of the pro-inflammatory cytokine TNF-α was significantly elevated at 6 h post-injury in both regions evaluated. To evaluate immune cell populations, male Long Evans rats were euthanized at 48 h post-injury, and brain and blood samples were used for cell sorting by marker-specific antibodies. In the peripheral blood, there was an elevation in CD3+ total T cells, CD45R+ total B cells, and CD3+CD4+ helper T cells in the TBI subjects. However, there were no changes to natural killer cells or CD3+CD8+ cytotoxic T cell populations. In the brain, there was a reduction in CD11b/c+ monocytes/macrophages, but no changes in other immune cell populations. At 48 h post-injury, the TBI subjects also demonstrated expansion of the thymic medulla. These changes in the cerebral and blood immune cell populations and thymic medulla expansion may implicate the subacute recovery timeframe as a vulnerable window for the immune system in the pediatric population.
Collapse
Affiliation(s)
- Allie M. Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (A.M.S.); (R.J.B.); (C.D.S.e.S.)
| | - Erin B. Taylor
- Department Physiology and Biophysics Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Ruth J. Brooks
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (A.M.S.); (R.J.B.); (C.D.S.e.S.)
| | - Christiano Dos Santos e Santos
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (A.M.S.); (R.J.B.); (C.D.S.e.S.)
| | - Bernadette E. Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (A.M.S.); (R.J.B.); (C.D.S.e.S.)
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
6
|
Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne) 2022; 9:995044. [PMID: 36530909 PMCID: PMC9751027 DOI: 10.3389/fmed.2022.995044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) induces instant activation of innate immunity in brain tissue, followed by a systematization of the inflammatory response. The subsequent response, evolved to limit an overwhelming systemic inflammatory response and to induce healing, involves the autonomic nervous system, hormonal systems, and the regulation of immune cells. This physiological response induces an immunosuppression and tolerance state that promotes to the occurrence of secondary infections. This review describes the immunological consequences of TBI and highlights potential novel therapeutic approaches using immune modulation to restore homeostasis between the nervous system and innate immunity.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| |
Collapse
|
7
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Zhang J, Li Z, Chandrasekar A, Li S, Ludolph A, Boeckers TM, Huber-Lang M, Roselli F, Olde Heuvel F. Fast Maturation of Splenic Dendritic Cells Upon TBI Is Associated With FLT3/FLT3L Signaling. Front Immunol 2022; 13:824459. [PMID: 35281004 PMCID: PMC8907149 DOI: 10.3389/fimmu.2022.824459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
The consequences of systemic inflammation are a significant burden after traumatic brain injury (TBI), with almost all organs affected. This response consists of inflammation and concurrent immunosuppression after injury. One of the main immune regulatory organs, the spleen, is highly interactive with the brain. Along this brain–spleen axis, both nerve fibers as well as brain-derived circulating mediators have been shown to interact directly with splenic immune cells. One of the most significant comorbidities in TBI is acute ethanol intoxication (EI), with almost 40% of patients showing a positive blood alcohol level (BAL) upon injury. EI by itself has been shown to reduce proinflammatory mediators dose-dependently and enhance anti-inflammatory mediators in the spleen. However, how the splenic immune modulatory effect reacts to EI in TBI remains unclear. Therefore, we investigated early splenic immune responses after TBI with and without EI, using gene expression screening of cytokines and chemokines and fluorescence staining of thin spleen sections to investigate cellular mechanisms in immune cells. We found a strong FLT3/FLT3L induction 3 h after TBI, which was enhanced by EI. The FLT3L induction resulted in phosphorylation of FLT3 in CD11c+ dendritic cells, which enhanced protein synthesis, maturation process, and the immunity of dendritic cells, shown by pS6, peIF2A, MHC-II, LAMP1, and CD68 by immunostaining and TNF-α expression by in-situ hybridization. In conclusion, these data indicate that TBI induces a fast maturation and immunity of dendritic cells which is associated with FLT3/FLT3L signaling and which is enhanced by EI prior to TBI.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Akila Chandrasekar
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Shun Li
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany
| | - Tobias Maria Boeckers
- German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE) , Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Florian Olde Heuvel
- Department of Neurology, Center for Biomedical Research (ZBMF), Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
10
|
Exploratory Evaluation of the Relationship Between iNKT Cells and Systemic Cytokine Profiles of Critically Ill Patients with Neurological Injury. Neurocrit Care 2021; 35:617-630. [PMID: 34061312 DOI: 10.1007/s12028-021-01234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Neurological injury can alter the systemic immune system, modifying the functional capacity of immune cells and causing a dysfunctional balance of cytokines, although mechanisms remain incompletely understood. The objective of this study was to assess the temporal relationship between changes in the activation status of circulating invariant natural killer T (iNKT) cells and the balance of plasma cytokines among critically ill patients with neurological injury. METHODS We conducted an exploratory prospective observational study of adult (18 years or older) intensive care unit (ICU) patients with acute neurological injury (n = 20) compared with ICU patients without neurological injury (n = 22) and healthy controls (n = 10). Blood samples were collected on days 1, 2, 4, 7, 14, and 28 following ICU admission to analyze the activation status of circulating iNKT cells by flow cytometry and the plasma concentration of inflammation-relevant immune mediators, including T helper 1 (TH1) and T helper 2 (TH2) cytokines, by multiplex bead-based assay. RESULTS Invariant natural killer T cells were activated in both ICU patient groups compared with healthy controls. Neurological patients had decreased levels of multiple immune mediators, including TH1 cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-12p70), indicative of immunosuppression. This led to a greater than twofold increase in the ratio of TH2/TH1 cytokines early after injury (days 1 - 2) compared with healthy controls, a shift that was also observed for ICU controls. Systemic TH2/TH1 cytokine ratios were positively associated with iNKT cell activation in the neurological patients and negatively associated in ICU controls. These relationships were strongest for the CD4+ iNKT cell subset compared with the CD4- iNKT cell subset. The relationships to individual cytokines similarly differed between patient groups. Forty percent of the neurological patients developed an infection; however, differences for the infection subgroup were not identified. CONCLUSIONS Critically ill patients with neurological injury demonstrated altered systemic immune profiles early after injury, with an association between activated peripheral iNKT cells and elevated systemic TH2/TH1 cytokine ratios. This work provides further support for a brain-immune axis and the ability of neurological injury to have far-reaching effects on the body's immune system.
Collapse
|
11
|
Faden AI, Barrett JP, Stoica BA, Henry RJ. Bidirectional Brain-Systemic Interactions and Outcomes After TBI. Trends Neurosci 2021; 44:406-418. [PMID: 33495023 DOI: 10.1016/j.tins.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a debilitating disorder associated with chronic progressive neurodegeneration and long-term neurological decline. Importantly, there is now substantial and increasing evidence that TBI can negatively impact systemic organs, including the pulmonary, gastrointestinal (GI), cardiovascular, renal, and immune system. Less well appreciated, until recently, is that such functional changes can affect both the response to subsequent insults or diseases, as well as contribute to chronic neurodegenerative processes and long-term neurological outcomes. In this review, we summarize evidence showing bidirectional interactions between the brain and systemic organs following TBI and critically assess potential underlying mechanisms.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Abstract
Traumatic brain injury leads to cellular damage which in turn results in the rapid release of damage-associated molecular patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These in turn rapidly recruit neutrophils, which assist in limiting the spread of injury and removing cellular debris. Microglia continuously survey the CNS (central nervous system) compartment and identify structural abnormalities in neurons contributing to the response. After some days, when neutrophil numbers start to decline, activated microglia and astrocytes assemble at the injury site—segregating injured tissue from healthy tissue and facilitating restorative processes. Monocytes infiltrate the injury site to produce chemokines that recruit astrocytes which successively extend their processes towards monocytes during the recovery phase. In this fashion, monocytes infiltration serves to help repair the injured brain. Neurons and astrocytes also moderate brain inflammation via downregulation of cytotoxic inflammation. Depending on the severity of the brain injury, T and B cells can also be recruited to the brain pathology sites at later time points.
Collapse
|
13
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
14
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
16
|
Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, Bayır H. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 2019; 145:209-219. [PMID: 30009835 PMCID: PMC6309489 DOI: 10.1016/j.neuropharm.2018.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are a keystone of neuronal function, serving a dual role as sustainer of life and harbinger of death. While mitochondria are indispensable for energy production, a dysregulated mitochondrial network can spell doom for both neurons and the functions they provide. Traumatic brain injury (TBI) is a complex and biphasic injury, often affecting children and young adults. The primary pathological mechanism of TBI is mechanical, too rapid to be mitigated by anything but prevention. However, the secondary injury of TBI evolves over hours and days after the initial insult providing a window of opportunity for intervention. As a nexus point of both survival and death during this second phase, targeting mitochondrial pathology in TBI has long been an attractive strategy. Often these attempts are mired by efficacy-limiting unintended off-target effects. Specific delivery to and enrichment of therapeutics at their submitochondrial site of action can reduce deleterious effects and increase potency. Mitochondrial drug localization is accomplished using (1) the mitochondrial membrane potential, (2) affinity of a carrier to mitochondria-specific components (e.g. lipids), (3) piggybacking on the cells own mitochondria trafficking systems, or (4) nanoparticle-based approaches. In this review, we briefly consider the mitochondrial delivery strategies and drug targets that illustrate the promise of these mitochondria-specific approaches in the design of TBI pharmacotherapy. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Andrew M Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M Kenny
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamil S Anthonymuthu
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elif Soysal
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Laboratory of Navigational Redox Lipidomics in Biomedicine, Department of Human Pathology, IM Sechenov First Moscow State Medical University, Russian Federation
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Yang Y, Ye Y, Chen C, Kong C, Su X, Zhang X, Bai W, He X. Acute Traumatic Brain Injury Induces CD4+ and CD8+ T Cell Functional Impairment by Upregulating the Expression of PD-1 via the Activated Sympathetic Nervous System. Neuroimmunomodulation 2019; 26:43-57. [PMID: 30695785 DOI: 10.1159/000495465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Traumatic brain injury (TBI) induces immunosuppression in the acute phase, and the activation of the sympathetic nervous system (SNS) might play a role in this process, but the mechanism involved is unknown. Herein, we explored the impact of acute (a)TBI on the peripheral immune system and its correlation with the SNS and the T cell exhaustion marker, PD-1 (programmed cell death-1). METHODS Flow cytometry (FCM) was performed to analyze the expression of T cell markers and intracellular cytokines, interferon-γ and tumor necrosis factor-α, and the T cell exhaustion marker, PD-1, in the peripheral blood mononuclear cells (PBMCs) of TBI rats. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze the concentration of norepinephrine (NE) in the serum. Propranolol was administrated to block the SNS in vivo and NE stimulation was used to imitate the activation of the SNS in vitro. RESULTS We found that the concentration of NE was significantly elevated after TBI, and the dysfunction of CD4+ and CD8+ T cells was reversed by the SNS blocker propranolol in vivo and imitated by the SNS neurotransmitter NE in vitro. The expression of PD-1 on CD4+ and CD8+ T cells was upregulated after aTBI, which was reversed by propranolol administration in vivo and imitated by NE stimulation in vitro. Furthermore, the PD-1 blocker reversed the dysfunction of CD4+ and CD8+T cells in vitro. CONCLUSION Our findings demonstrated that aTBI activated the SNS, and further upregulated the expression of PD-1 on CD4+ and CD8+ T cells, which, in turn, impaired their function and contributed to immunosuppression.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
- Department of Neurosurgery, PLA 422nd Hospital, Zhanjiang, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
- Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Chen Chen
- Institute of Psychology, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Chuiguang Kong
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xinhong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Wei Bai
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China,
| |
Collapse
|
18
|
Jiang C, Kong W, Wang Y, Ziai W, Yang Q, Zuo F, Li F, Wang Y, Xu H, Li Q, Yang J, Lu H, Zhang J, Wang J. Changes in the cellular immune system and circulating inflammatory markers of stroke patients. Oncotarget 2018; 8:3553-3567. [PMID: 27682880 PMCID: PMC5356903 DOI: 10.18632/oncotarget.12201] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/16/2016] [Indexed: 01/09/2023] Open
Abstract
This study was designed to investigate dynamic changes in the cellular immune system and circulating inflammatory markers after ischemic stroke. Blood was collected from 96 patients and 99 age-matched control subjects for detection of lymphocyte subpopulations and inflammatory markers. We observed decreases in B cells, Th cells, cytotoxic T cells, and NK cells and an increase in regulatory T (Treg) cells in stroke patients on days 1, 3, and 7. Serum levels of TNF-α, C-reactive protein (CRP), IL-4, IL-6, IL-10, IL-17, IL-23, and TGF-β increased, whereas serum level of IFN-γ decreased at all time points after stroke. Stroke patients with infection exhibited a similar tendency toward changes in some lymphocyte subpopulations and inflammatory markers as stroke patients without infection. After controlling for NIH Stroke Scale (NIHSS), we observed no differences in lymphocyte subpopulations between patients with anterior circulation stroke and those with posterior circulation stroke at any time point. The splenic volume correlated positively with the percentages of B cells, Th cells, and cytotoxic T cells, but negatively with Treg cells on day 3 after stroke. Infections were associated with splenic volume, leukocyte counts, percentage of Treg cells, and serum levels of CRP, IL-10, and IFN-γ on day 3. Lesion volume correlated positively with CRP, IL-6, and IL-23, but negatively with IFN-γ on day 3. The NIHSS showed a positive relation with IL-6 and IL-10 on day 3. Ischemic stroke has a profound effect on the systemic immune system that might explain the increased susceptibility of stroke patients to infection.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Weixia Kong
- Department of Ultrasonography, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wendy Ziai
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Li
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yali Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwei Xu
- Department of Radiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Li
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jie Yang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Thelin EP, Tajsic T, Zeiler FA, Menon DK, Hutchinson PJA, Carpenter KLH, Morganti-Kossmann MC, Helmy A. Monitoring the Neuroinflammatory Response Following Acute Brain Injury. Front Neurol 2017; 8:351. [PMID: 28775710 PMCID: PMC5517395 DOI: 10.3389/fneur.2017.00351] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are major contributors to morbidity and mortality. Following the initial insult, patients may deteriorate due to secondary brain damage. The underlying molecular and cellular cascades incorporate components of the innate immune system. There are different approaches to assess and monitor cerebral inflammation in the neuro intensive care unit. The aim of this narrative review is to describe techniques to monitor inflammatory activity in patients with TBI and SAH in the acute setting. The analysis of pro- and anti-inflammatory cytokines in compartments of the central nervous system (CNS), including the cerebrospinal fluid and the extracellular fluid, represent the most common approaches to monitor surrogate markers of cerebral inflammatory activity. Each of these compartments has a distinct biology that reflects local processes and the cross-talk between systemic and CNS inflammation. Cytokines have been correlated to outcomes as well as ongoing, secondary injury progression. Alongside the dynamic, focal assay of humoral mediators, imaging, through positron emission tomography, can provide a global in vivo measurement of inflammatory cell activity, which reveals long-lasting processes following the initial injury. Compared to the innate immune system activated acutely after brain injury, the adaptive immune system is likely to play a greater role in the chronic phase as evidenced by T-cell-mediated autoreactivity toward brain-specific proteins. The most difficult aspect of assessing neuroinflammation is to determine whether the processes monitored are harmful or beneficial to the brain as accumulating data indicate a dual role for these inflammatory cascades following injury. In summary, the inflammatory component of the complex injury cascade following brain injury may be monitored using different modalities. Using a multimodal monitoring approach can potentially aid in the development of therapeutics targeting different aspects of the inflammatory cascade and improve the outcome following TBI and SAH.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Rady Faculty of Health Sciences, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada.,Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Cristina Morganti-Kossmann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Child Health, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, United States
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Hazeldine J, Hampson P, Lord JM. The diagnostic and prognostic value of systems biology research in major traumatic and thermal injury: a review. BURNS & TRAUMA 2016; 4:33. [PMID: 27672669 PMCID: PMC5030723 DOI: 10.1186/s41038-016-0059-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
As secondary complications remain a significant cause of morbidity and mortality amongst hospitalised trauma patients, the need to develop novel approaches by which to identify patients at risk of adverse outcome is becoming increasingly important. Centred on the idea that patients who experience “poor” outcome post trauma elicit a response to injury that is distinct from those who experience “good” outcome, tailored therapeutics is an emerging concept aimed at improving current treatment regimens by promoting patient-specific therapies. Making use of recent advancements in the fields of genomics, proteomics and metabolomics, numerous groups have undertaken a systems-based approach to analysing the acute immune and inflammatory response to major traumatic and thermal injury in an attempt to uncover a single or combination of biomarkers that can identify patients at risk of adverse outcome. Early results are encouraging, with all three approaches capable of discriminating patients with “good” outcome from those who develop nosocomial infections, sepsis and multiple organ failure, with differences apparent in blood samples acquired as early as 2 h post injury. In particular, genomic data is proving to be highly informative, identifying patients at risk of “poor” outcome with a higher degree of sensitivity and specificity than statistical models built upon data obtained from existing anatomical and physiological scoring systems. Here, focussing predominantly upon human-based research, we provide an overview of the findings of studies that have investigated the immune and inflammatory response to major traumatic and thermal injury at the genomic, protein and metabolite level, and consider both the diagnostic and prognostic potential of these approaches.
Collapse
Affiliation(s)
- Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Peter Hampson
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK ; Healing Foundation Centre for Burns Research, Queen Elizabeth Hospital, Birmingham, B15 2WB UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| |
Collapse
|
21
|
Laginha I, Kopp MA, Druschel C, Schaser KD, Brommer B, Hellmann RC, Watzlawick R, Ossami-Saidi RR, Prüss H, Failli V, Meisel C, Liebscher T, Prilipp E, Niedeggen A, Ekkernkamp A, Grittner U, Piper SK, Dirnagl U, Killig M, Romagnani C, Schwab JM. Natural Killer (NK) Cell Functionality after human Spinal Cord Injury (SCI): protocol of a prospective, longitudinal study. BMC Neurol 2016; 16:170. [PMID: 27618987 PMCID: PMC5020484 DOI: 10.1186/s12883-016-0681-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/26/2016] [Indexed: 12/28/2022] Open
Abstract
Background Natural killer (NK) cells comprise the main components of lymphocyte-mediated nonspecific immunity. Through their effector function they play a crucial role combating bacterial and viral challenges. They are also thought to be key contributors to the systemic spinal cord injury-induced immune-deficiency syndrome (SCI-IDS). SCI-IDS increases susceptibility to infection and extends to the post-acute and chronic phases after SCI. Methods and design The prospective study of NK cell function after traumatic SCI was carried out in two centers in Berlin, Germany. SCI patients and control patients with neurologically silent vertebral fracture also undergoing surgical stabilization were enrolled. Furthermore healthy controls were included to provide reference data. The NK cell function was assessed at 7 (5–9) days, 14 days (11–28) days, and 10 (8–12) weeks post-trauma. Clinical documentation included the American Spinal Injury Association (ASIA) impairment scale (AIS), neurological level of injury, infection status, concomitant injury, and medications. The primary endpoint of the study is CD107a expression by NK cells (cytotoxicity marker) 8–12 weeks following SCI. Secondary endpoints are the NK cell’s TNF-α and IFN-γ production by the NK cells 8–12 weeks following SCI. Discussion The protocol of this study was developed to investigate the hypotheses whether i) SCI impairs NK cell function throughout the post-acute and sub-acute phases after SCI and ii) the degree of impairment relates to lesion height and severity. A deeper understanding of the SCI-IDS is crucial to enable strategies for prevention of infections, which are associated with poor neurological outcome and elevated mortality. Trial registration DRKS00009855.
Collapse
Affiliation(s)
- Inês Laginha
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcel A Kopp
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudia Druschel
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus-Dieter Schaser
- Department of Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,F.M.Kirby Neurobiology Center, Childrens's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rick C Hellmann
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ramin-Raul Ossami-Saidi
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Vieri Failli
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Erik Prilipp
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Andreas Niedeggen
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Axel Ekkernkamp
- Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Ulrike Grittner
- Department for Biostatistics and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany.,Department of Neurology, Spinal Cord Injury Division, The Neuroscience Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sophie K Piper
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Monica Killig
- Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,Treatment Centre for Spinal Cord Injuries, Trauma Hospital Berlin, Warener Straße 7, 12683, Berlin, Germany. .,Department of Neurology, Spinal Cord Injury Division, The Neuroscience Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA. .,Department of Neuroscience and Center for Brain and Spinal Cord Repair, Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA. .,Head Spinal Cord Injury Division, Department Neurology, The William E. Hunt and Charlotte M. Curtis Chair in Neuroscience, The Neurological Institute, The Ohio State University - Wexner Medical Center, 395 W. 12th Ave, 7th Floor, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Hazeldine J, Lord JM, Belli A. Traumatic Brain Injury and Peripheral Immune Suppression: Primer and Prospectus. Front Neurol 2015; 6:235. [PMID: 26594196 PMCID: PMC4633482 DOI: 10.3389/fneur.2015.00235] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Nosocomial infections are a common occurrence in patients following traumatic brain injury (TBI) and are associated with an increased risk of mortality, longer length of hospital stay, and poor neurological outcome. Systemic immune suppression arising as a direct result of injury to the central nervous system (CNS) is considered to be primarily responsible for this increased incidence of infection, a view strengthened by recent studies that have reported novel changes in the composition and function of the innate and adaptive arms of the immune system post-TBI. However, our knowledge of the mechanisms that underlie TBI-induced immune suppression is equivocal at best. Here, after summarizing our current understanding of the impact of TBI on peripheral immunity and discussing CNS-mediated regulation of immune function, we propose roles for a series of novel mechanisms in driving the immune suppression that is observed post-TBI. These mechanisms, which have never been considered before in the context of TBI-induced immune paresis, include the CNS-driven emergence into the circulation of myeloid-derived suppressor cells and suppressive neutrophil subsets, and the release from injured tissue of nuclear and mitochondria-derived damage associated molecular patterns. Moreover, in an effort to further our understanding of the mechanisms that underlie TBI-induced changes in immunity, we pose throughout the review a series of questions, which if answered would address a number of key issues, such as establishing whether manipulating peripheral immune function has potential as a future therapeutic strategy by which to treat and/or prevent infections in the hospitalized TBI patient.
Collapse
Affiliation(s)
- Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Janet M Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham , Birmingham , UK ; Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
23
|
Alterations of natural killer cells in traumatic brain injury. Neurosci Bull 2014; 30:903-912. [PMID: 25446874 DOI: 10.1007/s12264-014-1481-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022] Open
Abstract
To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we tracked an established phenotype of circulating NK cells at several time points in patients with different grades of TBI. In serial peripheral blood samples, NK cells were prospectively measured by flow cytometry of CD3(-) CD56(+) lymphocytes. Compared to healthy controls, TBI patients had reductions in both the percentage and the absolute number of NK cells. Furthermore, the magnitude of NK cell reduction correlated with the degree of TBI severity at several time points. That is, NK cell population size was independently associated with lower Glasgow Coma Scale scores. In addition, at some time points, a positive correlation was found between the NK cell counts and Glasgow Outcome Scale scores. Our results indicate that TBI induces a reduction in the number of NK cells, and the magnitude of the reduction appears to parallel the severity of TBI.
Collapse
|
24
|
Abstract
OBJECTIVES Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. DESIGN Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. SETTING Academic medical centers in Cincinnati, OH, and Boston, MA. PATIENTS/SUBJECTS Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. INTERVENTIONS Administration of a substance P receptor antagonist in mice. MEASUREMENTS AND MAIN RESULTS Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. CONCLUSIONS The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury-induced release of substance P, which improves innate immunity to decrease pneumonia.
Collapse
|
25
|
Hua R, Mao SS, Zhang YM, Chen FX, Zhou ZH, Liu JQ. Effects of pituitary adenylate cyclase activating polypeptide on CD4(+)/CD8(+) T cell levels after traumatic brain injury in a rat model. World J Emerg Med 2014; 3:294-8. [PMID: 25215080 DOI: 10.5847/wjem.j.issn.1920-8642.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 11/03/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The effect of pituitary adenylate cyclase activating polypeptide (PACAP) during traumatic brain injury (TBI) and whether it can modulate secondary injury has not been reported previously. The present study evaluated the potential protective effects of ventricular infusion of PACAP in a rat model of TBI. METHODS Male Sprague Dawley rats were randomly divided into 3 treatment groups (n=6, each): sham-operated, vehicle (normal saline)+TBI, and PACAP+TBI. Normal saline or PACAP (1 μg/5 μL) was administered intracerebroventricularly 20 minutes before TBI. Right parietal cortical contusion was produced via a weight-dropping method. Brains were extracted 24 hours after trauma. Histological changes in brains were examined by HE staining. The numbers of CD4(+) and CD8(+) T cells in blood and the spleen were detected via flow cytometry. RESULTS In injured brain regions, edema, hemorrhage, inflammatory cell infiltration, and swollen and degenerated neurons were observed under a light microscope, and the neurons were disorderly arrayed in the hippocampi. Compared to the sham group, average CD4(+) CD8(-) lymphocyte counts in blood and the spleen were significantly decreased in rats that received TBI+vehicle, and CD4(-) CD8(+) were increased. In rats administered PACAP prior to TBI, damage was attenuated as evidenced by significantly increased CD4(+), and decreased CD8(+), T lymphocytes in blood and the spleen. CONCLUSION Pretreatment with PACAP may protect against TBI by influencing periphery T cellular immune function.
Collapse
Affiliation(s)
- Rong Hua
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| | - Shan-Shan Mao
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| | - Yong-Mei Zhang
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| | - Fu-Xing Chen
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| | - Zhong-Hai Zhou
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| | - Jun-Quan Liu
- Department of Emergency Medicine, the 97th Hospital of PLA, Xuzhou 221000, China
| |
Collapse
|
26
|
The quantitative and functional changes of NK cells in mice infected with Angiostrongylus cantonensis. Parasitol Res 2014; 113:2087-94. [PMID: 24667973 DOI: 10.1007/s00436-014-3858-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Angiostrongylus cantonensis is a neurotropic parasite which can cause injury to central nervous system and eosinophilic meningitis to human. Natural killer (NK) cells are specialized innate lymphocytes important in early defense against pathogens as in a variety of intracellular bacterial, viral, and protozoan infections. However, the number and function of NK cells in extracellular parasitic infection of A. cantonensis are unclear. In this study, on A. cantonensis infected mice which may mimic the human's infection, we found that the percentage of splenic NK cells and the absolute number of peripheral blood NK cells were decreased at 21-day post infection compared with that of controls. When administrating with albendazole treatment at early stage of the infection, the changes of NK cells could be avoided. Further analysis confirmed that the reduction of NK cells was due to their apoptosis manifested as increased expressions of annexin V and activated caspase-3 after 16-day post infection. Moreover, both activated and inhibitory receptors such as CD16, CD69, NKG2D, and Ly49a on NK cells were down-regulated after 16-day post infection. Interestingly, NK cells isolated from mice of 21-day post infection showed enhanced IFN-γ production when stimulated with IL-12 for 24 h and cytotoxicity to YAC-1 cells, as well as elevated CD107a expression. It is evident that NK cell population and its function were changed in A. cantonensis infected mice, suggesting their involvement in pathogenesis of the infection.
Collapse
|
27
|
Abstract
BACKGROUND The complex alterations that occur in peripheral immunity after traumatic brain injury (TBI) have been poorly characterized to date. The purpose of this study was to determine the temporal changes in the peripheral immune response after TBI in a murine model of closed head injury. METHODS C57Bl/6 mice underwent closed head injury via a weight drop technique (n = 5) versus sham injury (n = 3) per time point. Blood, spleen, and thymus were collected, and immune phenotype, cytokine expression, and antibody production were determined via flow cytometry and multiplex immunoassays at 1, 3, 7, 14, 30, and 60 days after injury. RESULTS TBI results in acute and chronic changes in both the innate and adaptive immune response. TBI resulted in a striking loss of thymocytes as early as 3 days after injury (2.1 × 10 TBI vs. 5.6 × 10 sham, p = 0.001). Similarly, blood monocyte counts were markedly diminished as early as 24 hours after TBI (372 per deciliter TBI vs. 1359 per deciliter sham, p = 0.002) and remained suppressed throughout the first month after injury. At 60 days after injury, monocytes were polarized toward an anti-inflammatory (M2) phenotype. TBI also resulted in diminished interleukin 12 expression from Day 14 after injury throughout the remainder of the observation period. CONCLUSION TBI results in temporal changes in both the peripheral and the central immune systems culminating in an overall immune suppressed phenotype and anti-inflammatory milieu.
Collapse
|