1
|
Shammi T, Lee Y, Trivedi J, Sierras D, Mansoor A, Maxwell JM, Williamson M, McMillan M, Chakravarty I, Uhde-Stone C. Transcriptomics Provide Insights into Early Responses to Sucrose Signaling in Lupinus albus, a Model Plant for Adaptations to Phosphorus and Iron Deficiency. Int J Mol Sci 2024; 25:7692. [PMID: 39062943 PMCID: PMC11277447 DOI: 10.3390/ijms25147692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (T.S.)
| |
Collapse
|
2
|
Zhu X, Xu W, Liu B, Zhan Y, Xia T. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. PHYSIOLOGIA PLANTARUM 2023; 175:e13976. [PMID: 37616014 DOI: 10.1111/ppl.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023]
Abstract
White lupin (Lupinus albus L.) is an important crop with high phosphorus (P) use efficiency; however, technologies for its functional genomic and molecular analyses are limited. Cluster regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been applied to gene editing and function genomics in many crops, but its application in white lupin has not been well documented. Here, we adapted the CRISPR/Cas9-based multiplex genome editing system by using the native U3/U6 and ubiquitin (UBQ) promoters to drive sgRNAs and Cas9. Two target sites (T1 and T2) within the Lalb_Chr05g0223881 gene, encoding a putative trehalase, were selected to validate its efficacy in white lupin based on the Agrobacterium rhizogenes-mediated transformation. We found that the T0 hairy roots were efficiently mutated at T1 and T2 with a frequency of 6.25%-35% and 50%-92.31%, respectively. The mutation types include nucleotide insertion, deletion, substitution, and complicated variant. Simultaneous mutations of the two targets were also observed with a range of 6.25%-35%. The combination of LaU6.6 promoter for sgRNA and LaUBQ12 promoter for Cas9 generated the highest frequency of homozygous/biallelic mutations at 38.46%. In addition, the target-sgRNA sequence also contributes to the editing efficiency of the CRISPR/Cas9 system in white lupin. In conclusion, our results expand the toolbox of the CRISPR/Cas9 system and benefit the basic research in white lupin.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Liu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujie Zhan
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Xia
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Aslam MM, Pueyo JJ, Pang J, Yang J, Chen W, Chen H, Waseem M, Li Y, Zhang J, Xu W. Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition. PLANT PHYSIOLOGY 2022; 190:2449-2465. [PMID: 36066452 PMCID: PMC9706455 DOI: 10.1093/plphys/kiac418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 05/11/2023]
Abstract
The rhizosheath is a belowground area that acts as a communication hub at the root-soil interface to promote water and nutrient acquisition. Certain crops, such as white lupin (Lupinus albus), acquire large amounts of phosphorus (P), owing partially to exudation of acid phosphatases (APases). Plant growth-promoting rhizobacteria also increase soil P availability. However, potential synergistic effects of root APases and rhizosheath-associated microbiota on P acquisition require further research. In this study, we investigated the roles of root purple APases (PAPs) and plant growth-promoting rhizobacteria in rhizosheath formation and P acquisition under conditions of soil drying (SD) and P treatment (+P: soil with P fertilizer; -P: soil without fertilizer). We expressed purple acid phosphatase12 (LaPAP12) in white lupin and rice (Oryza sativa) plants and analyzed the rhizosheath-associated microbiome. Increased or heterologous LaPAP12 expression promoted APase activity and rhizosheath formation, resulting in increased P acquisition mainly under SD-P conditions. It also increased the abundance of members of the genus Bacillus in the rhizosheath-associated microbial communities of white lupin and rice. We isolated a phosphate-solubilizing, auxin-producing Bacillus megaterium strain from the rhizosheath of white lupin and used this to inoculate white lupin and rice plants. Inoculation promoted rhizosheath formation and P acquisition, especially in plants with increased LaPAP12 expression and under SD-P conditions, suggesting a functional role of the bacteria in alleviating P deficit stress via rhizosheath formation. Together, our results suggest a synergistic enhancing effect of LaPAP12 and plant growth-promoting rhizobacteria on rhizosheath formation and P acquisition under SD-P conditions.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Hong Kong Baptist University, Hong Kong
- State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | - José J Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid 28006, Spain
| | - Jiayin Pang
- School of Agriculture and Environment, UWA Institute of Agriculture, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinyong Yang
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiguo Chen
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hao Chen
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong
- State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Haixia Institute of Ecology and Environmental Engineering, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Islam NS, Duwadi K, Chen L, Pajak A, McDowell T, Marsolais F, Dhaubhadel S. Global analysis of common bean multidrug and toxic compound extrusion transporters (PvMATEs): PvMATE8 and pinto bean seed coat darkening. FRONTIERS IN PLANT SCIENCE 2022; 13:1046597. [PMID: 36438155 PMCID: PMC9686396 DOI: 10.3389/fpls.2022.1046597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
In common bean (Phaseolus vulgaris L.), postharvest seed coat darkening is an undesirable trait that affects crop value. The increased accumulation of proanthocyanidins (PAs) in the seed coat results in darker seeds in many market classes of colored beans after harvest. The precursors of PAs are synthesized in the cytoplasm, and subsequently get glycosylated and then transported to the vacuoles where polymerization occurs. Thus, vacuolar transporters play an important role in the accumulation of PAs. Here, we report that common bean genome contains 59 multidrug and toxic compound extrusion genes (PvMATEs). Phylogenetic analysis of putative PvMATEs with functionally characterized MATEs from other plant species categorized them into substrate-specific clades. Our data demonstrate that a vacuolar transporter PvMATE8 is expressed at a higher level in the pinto bean cultivar CDC Pintium (regular darkening) compared to 1533-15 (slow darkening). PvMATE8 localizes in the vacuolar membrane and rescues the PA deficient (tt12) mutant phenotype in Arabidopsis thaliana. Analysis of PA monomers in transgenic seeds together with wild-type and mutants suggests a possible feedback regulation of PA biosynthesis and accumulation. Identification of PvMATE8 will help better understand the mechanism of PA accumulation in common bean.
Collapse
Affiliation(s)
- Nishat S. Islam
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Kishor Duwadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ling Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aga Pajak
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Frédéric Marsolais
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Osorio CE, Till BJ. A Bitter-Sweet Story: Unraveling the Genes Involved in Quinolizidine Alkaloid Synthesis in Lupinus albus. FRONTIERS IN PLANT SCIENCE 2022; 12:795091. [PMID: 35154186 PMCID: PMC8826574 DOI: 10.3389/fpls.2021.795091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/05/2023]
Abstract
Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-containing secondary metabolites that are found in over 20% of plant species. Lupinus albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions containing up to 11% of QA in seeds. Notwithstanding their clear advantages as a natural protecting system, lupin-breeding programs have selected against QA content without proper understanding of quinolizidine alkaloid biosynthetic pathway. This review summarizes the current status in this field, with focus on the utilization of natural mutations such as the one contained in pauper locus, and more recently the development of molecular markers, which along with the advent of sequencing technology, have facilitated the identification of candidate genes located in the pauper region. New insights for future research are provided, including the utilization of differentially expressed genes located on the pauper locus, as candidates for genome editing. Identification of the main genes involved in the biosynthesis of QA will enable precision breeding of low-alkaloid, high nutrition white lupin. This is important as plant based high quality protein for food and feed is an essential for sustainable agricultural productivity.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Instituto de Investigaciones Agropecuarias, INIA Carillanca, Temuco, Chile
| | - Bradley J. Till
- Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Xiong C, Li X, Wang X, Wang J, Lambers H, Vance CP, Shen J, Cheng L. Flavonoids are involved in phosphorus-deficiency-induced cluster-root formation in white lupin. ANNALS OF BOTANY 2022; 129:101-112. [PMID: 34668958 PMCID: PMC8829899 DOI: 10.1093/aob/mcab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/16/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Initiation of cluster roots in white lupin (Lupinus albus) under phosphorus (P) deficiency requires auxin signalling, whereas flavonoids inhibit auxin transport. However, little information is available about the interactions between P deficiency and flavonoids in terms of cluster-root formation in white lupin. METHODS Hydroponic and aeroponic systems were used to investigate the role of flavonoids in cluster-root formation, with or without 75 μm P supply. KEY RESULTS Phosphorus-deficiency-induced flavonoid accumulation in cluster roots depended on developmental stage, based on in situ determination of fluorescence of flavonoids and flavonoid concentration. LaCHS8, which codes for a chalcone synthase isoform, was highly expressed in cluster roots, and silencing LaCHS8 reduced flavonoid production and rootlet density. Exogenous flavonoids suppressed cluster-root formation. Tissue-specific distribution of flavonoids in roots was altered by P deficiency, suggesting that P deficiency induced flavonoid accumulation, thus fine-tuning the effect of flavonoids on cluster-root formation. Furthermore, naringenin inhibited expression of an auxin-responsive DR5:GUS marker, suggesting an interaction of flavonoids and auxin in regulating cluster-root formation. CONCLUSIONS Phosphorus deficiency triggered cluster-root formation through the regulation of flavonoid distribution, which fine-tuned an auxin response in the early stages of cluster-root development. These findings provide valuable insights into the mechanisms of cluster-root formation under P deficiency.
Collapse
Affiliation(s)
- Chuanyong Xiong
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaoqing Li
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingxin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Hans Lambers
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- School of Biological Sciences and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota and United States Department of Agriculture Agricultural Research Service, St. Paul, MN, USA
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| | - Lingyun Cheng
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Academy of National Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- For correspondence. E-mail ;
| |
Collapse
|
7
|
Mancinotti D, Rodriguez MC, Frick KM, Dueholm B, Jepsen DG, Agerbirk N, Geu-Flores F. Development and application of a virus-induced gene silencing protocol for the study of gene function in narrow-leafed lupin. PLANT METHODS 2021; 17:131. [PMID: 34963500 PMCID: PMC8714437 DOI: 10.1186/s13007-021-00832-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lupins are promising protein crops with an increasing amount of genomic and transcriptomic resources. The new resources facilitate the in silico identification of candidate genes controlling important agronomic traits. However, a major bottleneck for lupin research and crop improvement is the in planta characterization of gene function. Here, we present an efficient protocol for virus-induced gene silencing (VIGS) to down-regulate endogenous genes in narrow-leafed lupin (NLL) using the apple latent spherical virus (ALSV). RESULTS We identified ALSV as an appropriate VIGS vector able to infect NLL without causing a discernible phenotype. We created improved ALSV vectors to allow for efficient cloning of gene fragments into the viral genome and for easier viral propagation via agroinfiltration of Nicotiana benthamiana. Using this system, we silenced the visual marker gene phytoene desaturase (PDS), which resulted in systemic, homogenous silencing as indicated by bleaching of newly produced tissues. Furthermore, by silencing lysine decarboxylase (LaLDC)-a gene likely to be involved in toxic alkaloid biosynthesis-we demonstrate the applicability of our VIGS method to silence a target gene alone or alongside PDS in a 'PDS co-silencing' approach. The co-silencing approach allows the visual identification of tissues where silencing is actively occurring, which eases tissue harvesting and downstream analysis, and is useful where the trait under study is not affected by PDS silencing. Silencing LaLDC resulted in a ~ 61% or ~ 67% decrease in transcript level, depending on whether LaLDC was silenced alone or alongside PDS. Overall, the silencing of LaLDC resulted in reduced alkaloid levels, providing direct evidence of its involvement in alkaloid biosynthesis in NLL. CONCLUSIONS We provide a rapid and efficient VIGS method for validating gene function in NLL. This will accelerate the research and improvement of this underutilized crop.
Collapse
Affiliation(s)
- Davide Mancinotti
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Cecilia Rodriguez
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karen Michiko Frick
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bjørn Dueholm
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ditte Goldschmidt Jepsen
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Agerbirk
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Fernando Geu-Flores
- Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
8
|
Zhou Y, Olt P, Neuhäuser B, Moradtalab N, Bautista W, Uhde-Stone C, Neumann G, Ludewig U. Loss of LaMATE impairs isoflavonoid release from cluster roots of phosphorus-deficient white lupin. PHYSIOLOGIA PLANTARUM 2021; 173:1207-1220. [PMID: 34333765 DOI: 10.1111/ppl.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
White lupin (Lupinus albus L.) forms brush-like root structures called cluster roots under phosphorus-deficient conditions. Clusters secrete citrate and other organic compounds to mobilize sparingly soluble soil phosphates. In the context of aluminum toxicity tolerance mechanisms in other species, citrate is released via a subgroup of MATE/DTX proteins (multidrug and toxic compound extrusion/detoxification). White lupin contains 56 MATE/DTX genes. Many of these are closely related to gene orthologs with known substrates in other species. LaMATE is a marker gene for functional, mature clusters and is, together with its close homolog LaMATE3, a candidate for the citrate release. Both were highest expressed in mature clusters and when expressed in oocytes, induced inward-rectifying currents that were likely carried by endogenous channels. No citrate efflux was associated with LaMATE and LaMATE3 expression in oocytes. Furthermore, citrate secretion was largely unaffected in P-deficient composite mutant plants with genome-edited or RNAi-silenced LaMATE in roots. Moderately lower concentrations of citrate and malate in the root tissue and consequently less organic acid anion secretion and lower malate in the xylem sap were identified. Interestingly, however, less genistein was consistently found in mutant exudates, opening the possibility that LaMATE is involved in isoflavonoid release.
Collapse
Affiliation(s)
- Yaping Zhou
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Philipp Olt
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Narges Moradtalab
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - William Bautista
- Department of Biological Sciences, California State University, Hayward, California, USA
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, Hayward, California, USA
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Biała-Leonhard W, Zanin L, Gottardi S, de Brito Francisco R, Venuti S, Valentinuzzi F, Mimmo T, Cesco S, Bassin B, Martinoia E, Pinton R, Jasiński M, Tomasi N. Identification of an Isoflavonoid Transporter Required for the Nodule Establishment of the Rhizobium- Fabaceae Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:758213. [PMID: 34745190 PMCID: PMC8570342 DOI: 10.3389/fpls.2021.758213] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) as well as Phosphorus (P) are key nutrients determining crop productivity. Legumes have developed strategies to overcome nutrient limitation by, for example, forming a symbiotic relationship with N-fixing rhizobia and the release of P-mobilizing exudates and are thus able to grow without supply of N or P fertilizers. The legume-rhizobial symbiosis starts with root release of isoflavonoids that act as signaling molecules perceived by compatible bacteria. Subsequently, bacteria release nod factors, which induce signaling cascades allowing the formation of functional N-fixing nodules. We report here the identification and functional characterization of a plasma membrane-localized MATE-type transporter (LaMATE2) involved in the release of genistein from white lupin roots. The LaMATE2 expression in the root is upregulated under N deficiency as well as low phosphate availability, two nutritional deficiencies that induce the release of this isoflavonoid. LaMATE2 silencing reduced genistein efflux and even more the formation of symbiotic nodules, supporting the crucial role of LaMATE2 in isoflavonoid release and nodulation. Furthermore, silencing of LaMATE2 limited the P-solubilization activity of lupin root exudates. Transport assays in yeast vesicles demonstrated that LaMATE2 acts as a proton-driven isoflavonoid transporter.
Collapse
Affiliation(s)
- Wanda Biała-Leonhard
- Department of Plant Molecular Physiology, Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznań, Poland
| | - Laura Zanin
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Stefano Gottardi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | | | - Silvia Venuti
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Fabio Valentinuzzi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen Bolzano, Bolzano, Italy
| | - Barbara Bassin
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Enrico Martinoia
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Roberto Pinton
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Polish Academy of Sciences, Institute of Bioorganic Chemistry, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Nicola Tomasi
- Dipartimento di Scienze Agro-Alimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
10
|
Aslam MM, Karanja JK, Yuan W, Zhang Q, Zhang J, Xu W. Phosphorus uptake is associated with the rhizosheath formation of mature cluster roots in white lupin under soil drying and phosphorus deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:531-539. [PMID: 34174658 DOI: 10.1016/j.plaphy.2021.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency largely restricts plant growth and lead to severe yield losses. Therefore, identification of novel root traits to improve P uptake is needed to circumvent yield losses. White lupin (Lupinus albus) is a legume crop that develops cluster roots and has the high phosphorus use efficiency in low P soils. We aimed to investigate the association between cluster roots (CR) rhizosheath formation and P uptake in white lupin. Rhizosheath formation and P concentration were evaluated under four soil treatments. CR increased up to 2.5-fold of overall plant dry weight under SD-P compared to WW + P (control), partly attributable to variations in CR development. Our data showed that SD-P significantly increase rhizosheath weight in white lupin. Among the root segments, MCR showed improved P accumulation in the root which is associated with increased MCR rhizosheath weight. Additionally, a positive correlation was observed between MCR rhizosheath weight and P uptake. Moreover, high sucrose content was recorded in MCR, which may contribute in CR growth under SD-P. Expression analysis of genes related to sucrose accumulation (LaSUC1, LaSUC5, and LaSUC9) and phosphorus uptake (LaSPX3, LaPHO1, and LaPHT1) exhibited peaked expression in MCR under SD-P. This indicate that root sucrose status may facilitate P uptake under P starvation. Together, the ability to enhance P uptake of white lupin is largely associated with MCR rhizosheath under SD-P. Our results showed that gene expression modulation of CR forming plant species, demonstrating that these novel root structures may play crucial role in P acquisition from the soil. Our findings could be implicated for developing P and water efficient crop via CR development in sustainable agriculture.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Joseph K Karanja
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- State Key Laboratory of Agro-biotechnology in Chinese University of Hong Kong, Hong Kong Baptist University, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Nakano Y, Kusunoki K, Maruyama H, Enomoto T, Tokizawa M, Iuchi S, Kobayashi M, Kochian LV, Koyama H, Kobayashi Y. A single-population GWAS identified AtMATE expression level polymorphism caused by promoter variants is associated with variation in aluminum tolerance in a local Arabidopsis population. PLANT DIRECT 2020; 4:e00250. [PMID: 32793853 PMCID: PMC7419912 DOI: 10.1002/pld3.250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 05/14/2023]
Abstract
Organic acids (OA) are released from roots in response to aluminum (Al), conferring an Al tolerance to plants that is regulated by OA transporters such as ALMT (Al-activated malate transporter) and multi-drug and toxic compound extrusion (MATE). We have previously reported that the expression level polymorphism (ELP) of AtALMT1 is strongly associated with variation in Al tolerance among natural accessions of Arabidopsis. However, although AtMATE is also expressed following Al exposure and contributes to Al tolerance, whether AtMATE contributes to the variation of Al tolerance and the molecular mechanisms of ELP remains unclear. Here, we dissected the natural variation in AtMATE expression level in response to Al at the root using diverse natural accessions of Arabidopsis. Phylogenetic analysis revealed that more than half of accessions belonging to the Central Asia (CA) population show markedly low AtMATE expression levels, while the majority of European populations show high expression levels. The accessions of the CA population with low AtMATE expression also show significantly weakened Al tolerance. A single-population genome-wide association study (GWAS) of AtMATE expression in the CA population identified a retrotransposon insertion in the AtMATE promoter region associated with low gene expression levels. This may affect the transcriptional regulation of AtMATE by disrupting the effect of a cis-regulatory element located upstream of the insertion site, which includes AtSTOP1 (sensitive to proton rhizotoxicity 1) transcription factor-binding sites revealed by chromatin immunoprecipitation-qPCR analysis. Furthermore, the GWAS performed without the accessions expressing low levels of AtMATE, excluding the effect of AtMATE promoter polymorphism, identified several candidate genes potentially associated with AtMATE expression.
Collapse
Affiliation(s)
- Yuki Nakano
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | | | - Haruka Maruyama
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Mutsutomo Tokizawa
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Yuriko Kobayashi
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| |
Collapse
|
12
|
Zhou Y, Neuhäuser B, Neumann G, Ludewig U. LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation. PLANT, CELL & ENVIRONMENT 2020; 43:1691-1706. [PMID: 32239684 DOI: 10.1111/pce.13762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 05/29/2023]
Abstract
Under phosphorus (P) deficiency, Lupinus albus (white lupin) releases large amounts of organic acid anions from specialized root structures, so-called cluster or proteoid roots, to mobilize and acquire sparingly soluble phosphates from a restricted soil volume. The molecular mechanisms underlying this release and its regulation are, however, poorly understood. Here, we identified a gene belonging to the aluminium (Al)-activated malate transporter (ALMT) family that specifically contributes to malate, but not citrate release. This gene, LaALMT1, was most prominently expressed in the root apices under P deficiency, including those of cluster roots and was also detected in the root stele. Contrary to several ALMT homologs in other species, the expression was not stimulated, but moderately repressed by Al. Aluminium-independent malate currents were recorded from the plasma membrane localized LaALMT1 expressed in Xenopus oocytes. In composite lupins with transgenic roots, LaALMT1 was efficiently mutated by CRISPR-Cas9, leading to diminished malate efflux and lower xylem sap malate concentrations. When grown in an alkaline P-deficient soil, mutant shoot phosphate concentrations were similar, but iron and potassium concentrations were diminished in old leaves, suggesting a role for ALMT1 in metal root to shoot translocation, a function that was also supported by growth in hydroponics.
Collapse
Affiliation(s)
- Yaping Zhou
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Aslam MM, Karanja JK, Zhang Q, Lin H, Xia T, Akhtar K, Liu J, Miao R, Xu F, Xu W. In Vitro Regeneration Potential of White Lupin (Lupinus albus) from Cotyledonary Nodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E318. [PMID: 32138269 PMCID: PMC7154923 DOI: 10.3390/plants9030318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/11/2023]
Abstract
The tissue culture regeneration system of Lupinus albus has always been considered as recalcitrant material due to its genotype-dependent response and low regeneration efficiency that hamper the use of genetic engineering. Establishment of repeatable plant regeneration protocol is a prerequisite tool for successful application of genetic engineering. This aim of this study was to develop standardized, efficient protocol for successful shoot induction from cotyledonary node of white lupin. In this study, 5 day old aseptically cultured seedlings were used to prepare three explants (half cotyledonary node, HCN; whole cotyledonary node, WCN; and traditional cotyledonary node, TCN), cultured on four concentrations of M519 medium (M519, ½ M519, 1/3 M519, and ¼ M519), containing four carbohydrate sources (sucrose, fructose, maltose, and glucose), and stimulated with various combinations of KT (kinetin), and NAA (naphthalene acetic acid) for direct shoot regeneration. High frequency of 80% shoot regeneration was obtained on ½ M519 medium (KT 4.0 mg L-1 + NAA 0.1 mg L-1) by using HCN as an explant. Interestingly, combinations of (KT 4.0 mg L-1 + NAA 0.1 mg L-1 + BAP 1.67 mg L-1), and (KT 2.0 mg L-1 + NAA 0.1 mg L-1) showed similar shoot regeneration frequency of 60%. Augmentation of 0.25 g L-1 activated charcoal (AC) not only reduced browning effect but also improved shoot elongation. Among the all carbohydrate sources, sucrose showed the highest regeneration frequency with HCN. Additionally, 80% rooting frequency was recorded on ½ M519 containing IAA 1.0 mg L-1 + KT 0.1 mg L-1 (indole acetic acid) after 28 days of culturing. The present study describes establishment of an efficient and successful protocol for direct plant regeneration of white lupin from different cotyledonary nodes.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Joseph K. Karanja
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Qian Zhang
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Huifeng Lin
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
- Sanming Academy of Agriculture Sciences, Sanming, Fujian 350002, China
| | - Tianyu Xia
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China;
| | - Jianping Liu
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Rui Miao
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Cops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (M.M.A.); (J.K.K.); (H.L.); (T.X.); (J.L.); (R.M.); (F.X.)
| |
Collapse
|
14
|
Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S. The multitasking abilities of MATE transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4643-4656. [PMID: 31106838 DOI: 10.1093/jxb/erz246] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
As sessile organisms, plants constantly monitor environmental cues and respond appropriately to modulate their growth and development. Membrane transporters act as gatekeepers of the cell regulating both the inflow of useful materials as well as exudation of harmful substances. Members of the multidrug and toxic compound extrusion (MATE) family of transporters are ubiquitously present in almost all forms of life including prokaryotes and eukaryotes. In bacteria, MATE proteins were originally characterized as efflux transporters conferring drug resistance. There are 58 MATE transporters in Arabidopsis thaliana, which are also known as DETOXIFICATION (DTX) proteins. In plants, these integral membrane proteins are involved in a diverse array of functions, encompassing secondary metabolite transport, xenobiotic detoxification, aluminium tolerance, and disease resistance. MATE proteins also regulate overall plant development by controlling phytohormone transport, tip growth processes, and senescence. While most of the functional characterizations of MATE proteins have been reported in Arabidopsis, recent reports suggest that their diverse roles extend to numerous other plant species. The wide array of functions exhibited by MATE proteins highlight their multitasking ability. In this review, we integrate information related to structure and functions of MATE transporters in plants. Since these transporters are central to mechanisms that allow plants to adapt to abiotic and biotic stresses, their study can potentially contribute to improving stress tolerance under changing climatic conditions.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Debojyoti Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagyashri Deepak Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Cellular Organization and Signalling, National Centre for Biological Sciences (NCBS), Bengaluru, India
| | - Sanchali Nanda
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Rini Rahiman
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Nimisha Panchakshari
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
- Department of Genetics, Ludwig Maximilians Universität, Biocenter, Germany
| | - Lavanya Bhagavatula
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
15
|
FePO 4 nanoparticles produced by an industrially scalable continuous-flow method are an available form of P and Fe for cucumber and maize plants. Sci Rep 2019; 9:11252. [PMID: 31375707 PMCID: PMC6677738 DOI: 10.1038/s41598-019-47492-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 11/08/2022] Open
Abstract
Nanomaterials are widely used in medical and pharmaceutical fields, but their application in plant nutrition is at its infancy. Phosphorous (P) and iron (Fe) are essential mineral nutrients limiting in a wide range of conditions the yield of crops. Phosphate and Fe fertilizers to-date on the market display low efficiency (P fertilizers) and low persistence in soil (Fe fertilizers) and negatively affect the environment. In the tentative to overcome these problems, we developed a continuous industrially scalable method to produce FePO4 NPs based on the rapid mixing of salt solutions in a mixing chamber. The process, that included the addition of citrate as capping agent allowed to obtain a stable suspension of NPs over the time. The NPs were tested for their effectiveness as P and Fe sources on two hydroponically grown crop species (cucumber and maize) comparing their effects to those exerted by non-nanometric FePO4 (bulk FePO4). The results showed that FePO4 NPs improved the availability of P and Fe, if compared to the non-nano counterpart, as demonstrated by leaf SPAD indexes, fresh biomasses and P and Fe contents in tissues. The results open a new avenue in the application of nanosized material in the field of plant nutrition and fertilization.
Collapse
|
16
|
Zhou Y, Sarker U, Neumann G, Ludewig U. The LaCEP1 peptide modulates cluster root morphology in Lupinus albus. PHYSIOLOGIA PLANTARUM 2019; 166:525-537. [PMID: 29984412 DOI: 10.1111/ppl.12799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 05/26/2023]
Abstract
White lupin cluster roots are specialized brush-like root structures that are formed in some species under phosphorus (P)-deficient conditions. They intensely secrete protons and organic acid anions for solubilization and acquisition of sparingly soluble phosphates. Phytohormones and sucrose modulate cluster root number, but the molecular mechanisms of cluster root formation have been elusive. Here, a novel peptide phytohormone was identified that affects cluster root development. It belongs to the C-TERMINALLY-ENCODED PEPTIDE (CEP) family. Members of that family arrest root growth and modulate branching in model species. LaCEP1 was highly expressed in the pre-emergence zone of clusters. Over-expression of the gene encoding the LaCEP1 propeptide resulted in moderate inhibition of cluster root formation. The primary and lateral root lengths of lupin were little affected by the overexpression, but LaCEP1 reduced cluster rootlet and root hair elongation. Addition of a 15-mer core peptide derived from LaCEP1 similarly altered root morphology and modified cluster activity, suggesting that a core sequence of the propeptide is functionally sufficient. Stable overexpression in Arabidopsis confirmed the LaCEP1 function in root growth inhibition across species. Taken together, the root inhibitory effects of the LaCEP1 phytohormone suggest a role as of a regulatory module involved in cluster root development in white lupin.
Collapse
Affiliation(s)
- Yaping Zhou
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Upama Sarker
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| |
Collapse
|
17
|
Qiu W, Wang N, Dai J, Wang T, Kochian LV, Liu J, Zuo Y. AhFRDL1-mediated citrate secretion contributes to adaptation to iron deficiency and aluminum stress in peanuts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2873-2886. [PMID: 30825369 DOI: 10.1093/jxb/erz089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/17/2019] [Indexed: 05/22/2023]
Abstract
Although citrate transporters are involved in iron (Fe) translocation and aluminum (Al) tolerance in plants, to date none of them have been shown to confer both biological functions in plant species that utilize Fe-absorption Strategy I. In this study, we demonstrated that AhFRDL1, a citrate transporter gene from peanut (Arachis hypogaea) that is induced by both Fe-deficiency and Al-stress, participates in both root-to-shoot Fe translocation and Al tolerance. Expression of AhFRDL1 induced by Fe deficiency was located in the root stele, but under Al-stress expression was observed across the entire root-tip cross-section. Overexpression of AhFRDL1 restored efficient Fe translocation in Atfrd3 mutants and Al resistance in AtMATE-knockout mutants. Knocking down AhFRDL1 in the roots resulted in reduced xylem citrate and reduced concentrations of active Fe in young leaves. Furthermore, AhFRDL1-knockdown lines had reduced root citrate exudation and were more sensitive to Al toxicity. Compared to an Al-sensitive variety, enhanced AhFRDL1 expression in an Fe-efficient variety contributed to higher levels of Al tolerance and Fe translocation by promoting citrate secretion. These results indicate that AhFRDL1 plays a significant role in Fe translocation and Al tolerance in Fe-efficient peanut varieties under different soil-stress conditions. Given its dual biological functions, AhFRDL1 may serve as a useful genetic marker for breeding for high Fe efficiency and Al tolerance.
Collapse
Affiliation(s)
- Wei Qiu
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Nanqi Wang
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Dai
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Tianqi Wang
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Leon V Kochian
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Jiping Liu
- Robert W. Holley Center, US Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| | - Yuanmei Zuo
- Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Gallardo C, Hufnagel B, Casset C, Alcon C, Garcia F, Divol F, Marquès L, Doumas P, Péret B. Anatomical and hormonal description of rootlet primordium development along white lupin cluster root. PHYSIOLOGIA PLANTARUM 2019; 165:4-16. [PMID: 29493786 DOI: 10.1111/ppl.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 05/29/2023]
Abstract
Cluster root (CR) is one of the most spectacular plant developmental adaptations to hostile environment. It can be found in a few species from a dozen botanical families, including white lupin (Lupinus albus) in the Fabaceae family. These amazing structures are produced in phosphate-deprived conditions and are made of hundreds of short roots also known as rootlets. White lupin is the only crop bearing CRs and is considered as the model species for CR studies. However, little information is available on CRs atypical development, including the molecular events that trigger their formation. To provide insights on CR formation, we performed an anatomical and cellular description of rootlet development in white lupin. Starting with a classic histological approach, we described rootlet primordium development and defined eight developmental stages from rootlet initiation to their emergence. Due to the major role of hormones in the developmental program of root system, we next focussed on auxin-related mechanisms. We observed the establishment of an auxin maximum through rootlet development in transgenic roots expressing the DR5:GUS auxin reporter. Expression analysis of the main auxin-related genes [TIR, Auxin Response Factor (ARF) and AUX/IAA] during a detailed time course revealed specific expression associated with the formation of the rootlet primordium. We showed that L. albus TRANSPORT INHIBITOR RESPONSE 1b is expressed during rootlet primordium formation and that L. albus AUXIN RESPONSE FACTOR 5 is expressed in the vasculature but absent in the primordium itself. Altogether, our results describe the very early cellular events leading to CR formation and reveal some of the auxin-related mechanisms.
Collapse
Affiliation(s)
- Cécilia Gallardo
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Bárbara Hufnagel
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Célia Casset
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Carine Alcon
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Fanny Garcia
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Fanchon Divol
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Laurence Marquès
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Patrick Doumas
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Benjamin Péret
- BPMP, University of Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| |
Collapse
|
19
|
Santos ALD, Chaves-Silva S, Yang L, Maia LGS, Chalfun-Júnior A, Sinharoy S, Zhao J, Benedito VA. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC PLANT BIOLOGY 2017; 17:185. [PMID: 29084510 PMCID: PMC5663081 DOI: 10.1186/s12870-017-1115-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Species in the Solanaceae family are known for producing plethora of specialized metabolites. In addition to biosynthesis pathways, a full comprehension of secondary metabolism must also take into account the transport and subcellular compartmentalization of substances. Here, we examined the MATE (Multidrug and Toxic Compound Extrusion, or Multi-Antimicrobial Extrusion) gene family in the tomato (Solanum lycopersicum) genome with the objective of better understanding the transport of secondary metabolites in this model species. MATE membrane effluxers encompass an ancient gene family of secondary transporters present in all kingdoms of life, but with a remarkable expansion in plants. They mediate the transport of primary and secondary metabolites using the proton motive force through several membrane systems of the cell. RESULTS We identified 67 genes coding for MATE transporters in the tomato genome, 33 of which are expressed constitutively whereas 34 are expressed in specific cell types or environmental conditions. Synteny analyses revealed bona fide paralogs and Arabidopsis orthologs. Co-expression analysis between MATE and regulatory genes revealed 78 positive and 8 negative strong associations (ρ≥|0.8|). We found no evidence of MATE transporters belonging to known metabolic gene clusters in tomato. CONCLUSIONS Altogether, our expression data, phylogenetic analyses, and synteny study provide strong evidence of functional homologies between MATE genes of tomato and Arabidopsis thaliana. Our co-expression study revealed potential transcriptional regulators of MATE genes that warrant further investigation. This work sets the stage for genome-wide functional analyses of MATE transporters in tomato and other Solanaceae species of economic relevance.
Collapse
Affiliation(s)
- Adolfo Luís Dos Santos
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Samuel Chaves-Silva
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Lina Yang
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
| | - Lucas Gontijo Silva Maia
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA
| | - Antonio Chalfun-Júnior
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Senjuti Sinharoy
- Department of Biotechnology, University of Calcutta, Kolkata, India
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Vagner Augusto Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 New Agricultural Sciences Building, Morgantown, WV, 26506-6108, USA.
| |
Collapse
|
20
|
Frick KM, Kamphuis LG, Siddique KHM, Singh KB, Foley RC. Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2017; 8:87. [PMID: 28197163 PMCID: PMC5281559 DOI: 10.3389/fpls.2017.00087] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/16/2017] [Indexed: 05/21/2023]
Abstract
Quinolizidine alkaloids (QAs) are toxic secondary metabolites found within the genus Lupinus, some species of which are commercially important grain legume crops including Lupinus angustifolius (narrow-leafed lupin, NLL), L. luteus (yellow lupin), L. albus (white lupin), and L. mutabilis (pearl lupin), with NLL grain being the most largely produced of the four species in Australia and worldwide. While QAs offer the plants protection against insect pests, the accumulation of QAs in lupin grain complicates its use for food purposes as QA levels must remain below the industry threshold (0.02%), which is often exceeded. It is not well understood what factors cause grain QA levels to exceed this threshold. Much of the early work on QA biosynthesis began in the 1970-1980s, with many QA chemical structures well-characterized and lupin cell cultures and enzyme assays employed to identify some biosynthetic enzymes and pathway intermediates. More recently, two genes associated with these enzymes have been characterized, however, the QA biosynthetic pathway remains only partially elucidated. Here, we review the research accomplished thus far concerning QAs in lupin and consider some possibilities for further elucidation and manipulation of the QA pathway in lupin crops, drawing on examples from model alkaloid species. One breeding strategy for lupin is to produce plants with high QAs in vegetative tissues while low in the grain in order to confer insect resistance to plants while keeping grain QA levels within industry regulations. With the knowledge achieved on alkaloid biosynthesis in other plant species in recent years, and the recent development of genomic and transcriptomic resources for NLL, there is considerable scope to facilitate advances in our knowledge of QAs, leading to the production of improved lupin crops.
Collapse
Affiliation(s)
- Karen M. Frick
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- School of Plant Biology, The University of Western AustraliaCrawley, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Lars G. Kamphuis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | | | - Karam B. Singh
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
- The UWA Institute of Agriculture, The University of Western AustraliaPerth, WA, Australia
| | - Rhonda C. Foley
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Commonwealth Scientific and Industrial Research OrganisationFloreat, WA, Australia
| |
Collapse
|
21
|
Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q. Nitrate Protects Cucumber Plants Against Fusarium oxysporum by Regulating Citrate Exudation. PLANT & CELL PHYSIOLOGY 2016; 57:2001-12. [PMID: 27481896 DOI: 10.1093/pcp/pcw124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 05/25/2023]
Abstract
Fusarium wilt causes severe yield losses in cash crops. Nitrogen plays a critical role in the management of plant disease; however, the regulating mechanism is poorly understood. Using biochemical, physiological, bioinformatic and transcriptome approaches, we analyzed how nitrogen forms regulate the interactions between cucumber plants and Fusarium oxysporum f. sp. cucumerinum (FOC). Nitrate significantly suppressed Fusarium wilt compared with ammonium in both pot and hydroponic experiments. Fewer FOC colonized the roots and stems under nitrate compared with ammonium supply. Cucumber grown with nitrate accumulated less fusaric acid (FA) after FOC infection and exhibited increased tolerance to chemical FA by decreasing FA absorption and transportation in shoots. A lower citrate concentration was observed in nitrate-grown cucumbers, which was associated with lower MATE (multidrug and toxin compound extrusion) family gene and citrate synthase (CS) gene expression, as well as lower CS activity. Citrate enhanced FOC spore germination and infection, and increased disease incidence and the FOC population in ammonium-treated plants. Our study provides evidence that nitrate protects cucumber plants against F. oxysporum by decreasing root citrate exudation and FOC infection. Citrate exudation is essential for regulating disease development of Fusarium wilt in cucumber plants.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Yuming Sun
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Zechen Gu
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Ruirui Wang
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Guomei Sun
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Chen Zhu
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095, China
| |
Collapse
|
22
|
Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF. Functional Analysis of a MATE Gene OsFRDL2 Revealed its Involvement in Al-Induced Secretion of Citrate, but a Lower Contribution to Al Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:976-85. [PMID: 26872836 DOI: 10.1093/pcp/pcw026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 05/22/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) transporters represent a large transporter family in plants, but the role of most genes in this family has not been examined. We functionally characterized a MATE family member, OsFRDL2, in rice (Oryza sativa). OsFRDL2 showed an efflux transport activity for citrate when it was expressed in both Xenopus oocytes and cultured tobacco cells. OsFRDL2 was mainly expressed in the roots and its expression was not induced by iron (Fe) deficiency, but it was rapidly up-regulated by aluminum (Al). Furthermore, the expression of OsFRDL2 was regulated by ART1, a C2H2-type zinc-finger transcription factor for Al tolerance. OsFRDL2 protein was localized at unidentified vesicles in the cytosol, but not co-localized with either mitochondria or peroxisomes when expressed in both onion epidermal cells and cultured tobacco cells. Knockout of OsFRDL2 decreased Al-induced secretion of citrate from the roots, but did not affect the internal citrate concentration. The Al-induced inhibition of root elongation was similar between the OsFRDL2 knockout line and its wild-type rice. Knockout of OsFRDL2 did not affect the translocation of Fe from the roots to the shoots. A double mutant between osfrdl2 and osfrdl4 or osfrdl1 did not further decrease the Al-induced citrate secretion and Fe translocation compared with the single mutant. Collectively, our results indicate that although OsFRDL2 is involved in the Al-induced secretion of citrate, its contribution to high Al tolerance is relatively small in rice.
Collapse
Affiliation(s)
- Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Miho Fujii-Kashino
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046 Japan
| |
Collapse
|
23
|
Samac DA, Bucciarelli B, Miller SS, Yang SS, O'Rourke JA, Shin S, Vance CP. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis. BMC PLANT BIOLOGY 2015; 15:283. [PMID: 26627884 PMCID: PMC4666122 DOI: 10.1186/s12870-015-0649-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/20/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. RESULTS Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. CONCLUSIONS These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.
Collapse
Affiliation(s)
- Deborah A Samac
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | | | - Susan S Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - S Samuel Yang
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
- Present address: Monsanto Company, Chesterfield, MO, 63017, USA.
| | - Jamie A O'Rourke
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
- Present address: USDA-ARS-Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | - Sanghyun Shin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
- Present address: National Institute of Crop Science, Iksan, 570-080, Korea.
| | - Carroll P Vance
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
24
|
Valentinuzzi F, Pii Y, Vigani G, Lehmann M, Cesco S, Mimmo T. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6483-95. [PMID: 26188206 DOI: 10.1093/jxb/erv364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Strawberries are a very popular fruit among berries, for both their commercial and economic importance, but especially for their beneficial effects for human health. However, their bioactive compound content is strictly related to the nutritional status of the plant and might be affected if nutritional disorders (e.g. Fe or P shortage) occur. To overcome nutrient shortages, plants evolved different mechanisms, which often involve the release of root exudates. The biochemical and molecular mechanisms underlying root exudation and its regulation are as yet still poorly known, in particular in woody crop species. The aim of this work was therefore to characterize the pattern of root exudation of strawberry plants grown in either P or Fe deficiency, by investigating metabolomic changes of root tissues and the expression of genes putatively involved in exudate extrusion. Although P and Fe deficiencies differentially affected the total metabolism, some metabolites (e.g. raffinose and galactose) accumulated in roots similarly under both conditions. Moreover, P deficiency specifically affected the content of galactaric acid, malic acid, lysine, proline, and sorbitol-6-phosphate, whereas Fe deficiency specifically affected the content of sucrose, dehydroascorbic acid, galactonate, and ferulic acid. At the same time, the citrate content did not change in roots under both nutrient deficiencies with respect to the control. However, a strong release of citrate was observed, and it increased significantly with time, being +250% and +300% higher in Fe- and P-deficient plants, respectively, compared with the control. Moreover, concomitantly, a significant acidification of the growth medium was observed in both treatments. Gene expression analyses highlighted for the first time that at least two members of the multidrug and toxic compound extrusion (MATE) transporter family and one member of the plasma membrane H(+)-ATPase family are involved in the response to both P and Fe starvation in strawberry plants.
Collapse
Affiliation(s)
- Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia; Università degli Studi di Milano; Via Giovanni Celoria 2, 20133 Milano, Italy
| | - Martin Lehmann
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
25
|
Lambers H, Martinoia E, Renton M. Plant adaptations to severely phosphorus-impoverished soils. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:23-31. [PMID: 25912783 DOI: 10.1016/j.pbi.2015.04.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 05/22/2023]
Abstract
Mycorrhizas play a pivotal role in phosphorus (P) acquisition of plant roots, by enhancing the soil volume that can be explored. Non-mycorrhizal plant species typically occur either in relatively fertile soil or on soil with a very low P availability, where there is insufficient P in the soil solution for mycorrhizal hyphae to be effective. Soils with a very low P availability are either old and severely weathered or relatively young with high concentrations of oxides and hydroxides of aluminium and iron that sorb P. In such soils, cluster roots and other specialised roots that release P-mobilising carboxylates are more effective than mycorrhizas. Cluster roots are ephemeral structures that release carboxylates in an exudative burst. The carboxylates mobilise sparingly-available sources of soil P. The relative investment of biomass in cluster roots and the amount of carboxylates that are released during the exudative burst differ between species on severely weathered soils with a low total P concentration and species on young soils with high total P concentrations but low P availability. Taking a modelling approach, we explore how the optimal cluster-root strategy depends on soil characteristics, thus offering insights for plant breeders interested in developing crop plants with optimal cluster-root strategies.
Collapse
Affiliation(s)
- Hans Lambers
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Michael Renton
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley (Perth), Western Australia 6009, Australia
| |
Collapse
|
26
|
Li C, Zhang H, Wang X, Liao H. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean. PLANT CELL REPORTS 2014; 33:1921-32. [PMID: 25097075 DOI: 10.1007/s00299-014-1669-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/29/2014] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean. An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.
Collapse
Affiliation(s)
- Caifeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | |
Collapse
|
27
|
Bohra A, Jha UC, Kishor PBK, Pandey S, Singh NP. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 2014; 32:1410-28. [PMID: 25196916 DOI: 10.1016/j.biotechadv.2014.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India.
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500007, India
| | | | - Narendra P Singh
- Indian Institute of Pulses Research (IIPR), Kanpur 208024, India
| |
Collapse
|
28
|
Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. PLANT CELL REPORTS 2014; 33:1147-59. [PMID: 24700246 DOI: 10.1007/s00299-014-1604-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/17/2014] [Indexed: 05/18/2023]
Abstract
VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important quality components of many fruits. PAs biosynthesis is part of the flavonoid pathway that also produces anthocyanins and flavonols. In grape fruits, PAs are present in seeds and skin tissues. PAs are synthesized in the cytoplasm and accumulated into the vacuole and apoplast; however, little is known about the mechanisms involved in the transport of these compounds to such cellular compartments. A gene encoding a Multidrug And Toxic compound Extrusion (MATE) family protein suggested to transport anthocyanins-named VvMATE1-was used to identify a second gene of the MATE family, VvMATE2. Analysis of their deduced amino acid sequences and the phylogenetic relationship with other MATE-like proteins indicated that VvMATE1 and VvMATE2 encode putative PA transporters. Subcellular localization assays in Arabidopsis protoplasts transformed with VvMATE-GFP fusion constructs along with organelle-specific markers revealed that VvMATE1 is localized in the tonoplast whereas VvMATE2 is localized in the Golgi complex. Major expression of both genes occurs during the early stages of seed development concomitant with the accumulation of PAs. Both genes are poorly expressed in the skin of berries while VvMATE2 is also expressed in leaves. The presence of putative cis-acting elements in the promoters of VvMATE1 and VvMATE2 may explain the differential transcriptional regulation of these genes in grapevine. Altogether, these results suggest that these MATE proteins could mediate the transport and accumulation of PAs in grapevine through different routes and cellular compartments.
Collapse
Affiliation(s)
- Ricardo Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
29
|
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. ANNALS OF BOTANY 2013; 112:391-408. [PMID: 23267006 PMCID: PMC3698383 DOI: 10.1093/aob/mcs285] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/14/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources. SCOPE This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots. CONCLUSIONS The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
Collapse
Affiliation(s)
- Yao Fang Niu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Shan Chai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gu Lei Jin
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huan Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- Centre for AgriBioscience/Department of Agricultural Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
30
|
Lambers H, Clements JC, Nelson MN. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:263-88. [PMID: 23347972 DOI: 10.3732/ajb.1200474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lupines (Lupinus species; Fabaceae) are an ancient crop with great potential to be developed further for high-protein feed and food, cover crops, and phytoremediation. Being legumes, they are capable of symbiotically fixing atmospheric nitrogen. However, Lupinus species appear to be nonmycorrhizal or weakly mycorrhizal at most; instead some produce cluster roots, which release vast amounts of phosphate-mobilizing carboxylates (inorganic anions). Other lupines produce cluster-like roots, which function in a similar manner, and some release large amounts of carboxylates without specialized roots. These traits associated with nutrient acquisition make lupines ideally suited for either impoverished soils or soils with large amounts of phosphorus that is poorly available for most plants, e.g., acidic or alkaline soils. Here we explore how common the nonmycorrhizal phosphorus-acquisition strategy based on exudation of carboxylates is in the genus Lupinus, concluding it is very likely more widespread than generally acknowledged. This trait may partly account for the role of lupines as pioneers or invasive species, but also makes them suitable crop plants while we reach "peak phosphorus".
Collapse
Affiliation(s)
- Hans Lambers
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
31
|
O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. PLANT PHYSIOLOGY 2013; 161:705-24. [PMID: 23197803 PMCID: PMC3561014 DOI: 10.1104/pp.112.209254] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/21/2012] [Indexed: 05/18/2023]
Abstract
Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - S. Samuel Yang
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Susan S. Miller
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Bruna Bucciarelli
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Junqi Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Ariel Rydeen
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Zoltan Bozsoki
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Claudia Uhde-Stone
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | | | - Deborah Allan
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - John W. Gronwald
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| | - Carroll P. Vance
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, St. Paul, Minnesota 55108 (J.A.O., S.S.Y., S.S.M., B.B., J.W.G., C.P.V.); Department of Agronomy and Plant Genetics (J.A.O., S.S.M., B.B., J.L., A.R., J.W.G., C.P.V.), Supercomputing Institute for Advanced Computational Research (Z.J.T.), and Department Soil Water and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.B.); and Department of Biological Sciences, California State University, East Bay, Hayward, California 94542 (C.U.-S.)
| |
Collapse
|
32
|
Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ. Gene Transfer in Legumes. PROGRESS IN BOTANY 2013. [DOI: 10.1007/978-3-642-30967-0_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Meng ZB, Chen LQ, Suo D, Li GX, Tang CX, Zheng SJ. Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). ANNALS OF BOTANY 2012; 109:1055-64. [PMID: 22351487 PMCID: PMC3336943 DOI: 10.1093/aob/mcs024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/16/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. METHODS Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (-P + Fe); (3) 50 µm P and 0 Fe (+P-Fe); and (4) 0 P and 0 Fe (-P-Fe), and these were examined in relation to the formation of cluster roots. KEY RESULTS The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under -P + Fe, +P-Fe and -P-Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under -P or -Fe conditions. CONCLUSIONS NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin.
Collapse
Affiliation(s)
- Zhi Bin Meng
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Li Qian Chen
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong Suo
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- School of Life Sciences, La Trobe University, Bundoora (Melbourne), Vic 3086, Australia
| | - Shao Jian Zheng
- College of Life Sciences, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- For correspondence. E-mail
| |
Collapse
|
34
|
Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP. Update on lupin cluster roots. Update on white lupin cluster root acclimation to phosphorus deficiency. PLANT PHYSIOLOGY 2011; 156:1025-32. [PMID: 21464472 PMCID: PMC3135949 DOI: 10.1104/pp.111.175174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/25/2011] [Indexed: 05/20/2023]
Affiliation(s)
| | | | | | | | - Carroll P. Vance
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, People’s Republic of China (L.C., J.S.); Department of Agronomy and Plant Genetics (L.C., B.B., C.P.V.) and Department of Soil, Water, and Climate (D.A.), University of Minnesota, St. Paul, Minnesota 55108; United States Department of Agriculture Agricultural Research Service, St. Paul, Minnesota 55108 (B.B., C.P.V.)
| |
Collapse
|
35
|
Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. PLANT PHYSIOLOGY 2011; 156:1131-48. [PMID: 21464471 PMCID: PMC3135957 DOI: 10.1104/pp.111.173724] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/29/2011] [Indexed: 05/18/2023]
Abstract
White lupin (Lupinus albus) is a legume that is very efficient in accessing unavailable phosphorus (Pi). It develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report, we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and GPX-PDE2) from white lupin and propose a role for these two GPX-PDEs in root hair growth and development and in a Pi stress-induced phospholipid degradation pathway in cluster roots. Both GPX-PDE1 and GPX-PDE2 are highly expressed in Pi-deficient cluster roots, particularly in root hairs, epidermal cells, and vascular bundles. Expression of both genes is a function of both Pi availability and photosynthate. GPX-PDE1 Pi deficiency-induced expression is attenuated as photosynthate is deprived, while that of GPX-PDE2 is strikingly enhanced. Yeast complementation assays and in vitro enzyme assays revealed that GPX-PDE1 shows catalytic activity with glycerophosphocholine while GPX-PDE2 shows highest activity with glycerophosphoinositol. Cell-free protein extracts from Pi-deficient cluster roots display GPX-PDE enzyme activity for both glycerophosphocholine and glycerophosphoinositol. Knockdown of expression of GPX-PDE through RNA interference resulted in impaired root hair development and density. We propose that white lupin GPX-PDE1 and GPX-PDE2 are involved in the acclimation to Pi limitation by enhancing glycerophosphodiester degradation and mediating root hair development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carroll P. Vance
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, People’s Republic of China (L.C., J.S.); Department of Agronomy and Plant Genetics (L.C., B.B., J.L., S.M., C.P.V.) and Department of Soil, Water, and Climate (J.L., K.Z., D.A.), University of Minnesota, St. Paul, Minnesota 55108; United States Department of Agriculture Agricultural Research Service, St. Paul, Minnesota 55108 (B.B., S.M., C.P.V.); Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 (J.P.-V.)
| |
Collapse
|
36
|
Magalhaes JV. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. ANNALS OF BOTANY 2010; 106:199-203. [PMID: 20511585 PMCID: PMC2889808 DOI: 10.1093/aob/mcq115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Aluminium (Al) toxicity is a major agricultural constraint for crop cultivation on acid soils, which comprise a large portion of the world's arable land. One of the most widely accepted mechanisms of Al tolerance in plants is based on Al-activated organic acid release into the rhizosphere, with organic acids forming stable, non-toxic complexes with Al. This mechanism has recently been validated by the isolation of bona-fide Al-tolerance genes in crop species, which encode membrane transporters that mediate Al-activated organic acid release leading to Al exclusion from root apices. In crop species such as sorghum and barley, members in the multidrug and toxic compound extrusion (MATE) family underlie Al tolerance by a mechanism based on Al-activated citrate release. SCOPE AND CONCLUSIONS The study of Al tolerance in plants as conferred by MATE family members is in its infancy. Therefore, much is yet to be discovered about the functional diversity and evolutionary dynamics that led MATE proteins to acquire transport properties conducive to Al tolerance in plants. In this paper we review the major characteristics of transporters in the MATE family and will relate this knowledge to Al tolerance in plants. The MATE family is clearly extremely flexible with respect to substrate specificity, which raises the possibility that Al tolerance as encoded by MATE proteins may not be restricted to Al-activated citrate release in plant species. There are also indications that regulatory loci may be of pivotal importance to fully explore the potential for Al-tolerance improvement based on MATE genes.
Collapse
|
37
|
Zhang J, Yin Y, Wang Y, Peng X. Identification of rice Al-responsive genes by semi-quantitative polymerase chain reaction using sulfite reductase as a novel endogenous control. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:505-514. [PMID: 20537046 DOI: 10.1111/j.1744-7909.2010.00931.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Based on the evidence that Al resistance is an inducible process and rice is an Al-resistant crop, identification of Al-responsive genes from rice may help to further clone Al-resistant genes in plants. Semi-quantitative and real-time polymerase chain reaction (PCR) is widely applied in gene transcriptional analyses, particularly for those genes with low transcript abundance. Normalization with proper endogenous control (EC) genes is critical for these two approaches in terms of reliability and precision. We first noticed that the expression of several commonly-used EC genes was depressed under Al stress, while sulfite reductase gene (SR) was stable throughout the Al treatment. The reliability of SR as an EC gene was further tested by analyzing the expression of a number of genes in response to Al challenge. Except for the consistent results obtained for the four previously-identified genes, nine additional genes were newly defined as Al-responsive in this study. Collectively, our results suggest that SR can be used as a novel EC gene for semi-quantitative and real-time PCR analysis of Al responsive genes, and that activated transport of silicon and stimulated metabolism of carotenoid and terpenoid could be involved in Al resistance in rice plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- Laboratory of Molecular Plant Physiology, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | | | | | | |
Collapse
|
38
|
Sbabou L, Bucciarelli B, Miller S, Liu J, Berhada F, Filali-Maltouf A, Allan D, Vance C. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1351-63. [PMID: 20167612 PMCID: PMC2837254 DOI: 10.1093/jxb/erp400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 05/21/2023]
Abstract
The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.
Collapse
Affiliation(s)
- Laila Sbabou
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Bruna Bucciarelli
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Susan Miller
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Fatiha Berhada
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Deborah Allan
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| | - Carroll Vance
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108, USA
- USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St Paul, MN 55108, USA
| |
Collapse
|
39
|
Thompson EP, Wilkins C, Demidchik V, Davies JM, Glover BJ. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:439-51. [PMID: 19995827 PMCID: PMC2803208 DOI: 10.1093/jxb/erp312] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 05/17/2023]
Abstract
FLOWER FLAVONOID TRANSPORTER (FFT) encodes a multidrug and toxin efflux family transporter in Arabidopsis thaliana. FFT (AtDTX35) is highly transcribed in floral tissues, the transcript being localized to epidermal guard cells, including those of the anthers, stigma, siliques and nectaries. Mutant analysis demonstrates that the absence of FFT transcript affects flavonoid levels in the plant and that the altered flavonoid metabolism has wide-ranging consequences. Root growth, seed development and germination, and pollen development, release and viability are all affected. Spectrometry of mutant versus wild-type flowers shows altered levels of a glycosylated flavonol whereas anthocyanin seems unlikely to be the substrate as previously speculated. Thus, as well as adding FFT to the incompletely described flavonoid transport network, it is found that correct reproductive development in Arabidopsis is perturbed when this particular transporter is missing.
Collapse
|
40
|
Tian L, Peel GJ, Lei Z, Aziz N, Dai X, He J, Watson B, Zhao PX, Sumner LW, Dixon RA. Transcript and proteomic analysis of developing white lupin (Lupinus albus L.) roots. BMC PLANT BIOLOGY 2009; 9:1. [PMID: 19123941 PMCID: PMC2630931 DOI: 10.1186/1471-2229-9-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 01/05/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation. RESULTS A cDNA library was constructed from roots of white lupin seedlings. Eight thousand clones were randomly sequenced and assembled into 2,455 unigenes, which were annotated based on homologous matches in the NCBInr protein database. A reference map of developing white lupin root proteins was established through 2-D gel electrophoresis and peptide mass fingerprinting. High quality peptide mass spectra were obtained for 170 proteins. Microsomal membrane proteins were separated by 1-D gel electrophoresis and identified by LC-MS/MS. A total of 74 proteins were putatively identified by the peptide mass fingerprinting and the LC-MS/MS methods. Genomic and proteomic analyses identified candidate genes and proteins encoding metal binding and/or transport proteins, transcription factors, ABC transporters and phenylpropanoid biosynthetic enzymes. CONCLUSION The combined EST and protein datasets will facilitate the understanding of white lupin's response to biotic and abiotic stresses and its utility for phytoremediation. The root ESTs provided 82 perfect simple sequence repeat (SSR) markers with potential utility in breeding white lupin for enhanced agronomic traits.
Collapse
Affiliation(s)
- Li Tian
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gregory J Peel
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Zhentian Lei
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Naveed Aziz
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
- CNAP, Department of Biology, University of York, York, YO 10 5YW, UK
| | - Xinbin Dai
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Ji He
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Bonnie Watson
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Patrick X Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Lloyd W Sumner
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
41
|
Chandran D, Sharopova N, VandenBosch KA, Garvin DF, Samac DA. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. BMC PLANT BIOLOGY 2008; 8:89. [PMID: 18713465 PMCID: PMC2533010 DOI: 10.1186/1471-2229-8-89] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 08/19/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aluminum (Al) toxicity is an important factor limiting crop production on acid soils. However, little is known about the mechanisms by which legumes respond to and resist Al stress. To explore the mechanisms of Al toxicity and resistance in legumes, we compared the impact of Al stress in Al-resistant and Al-sensitive lines of the model legume, Medicago truncatula Gaertn. RESULTS A screen for Al resistance in 54 M. truncatula accessions identified eight Al-resistant and eight Al-sensitive lines. Comparisons of hydroponic root growth and root tip hematoxylin staining in an Al-resistant line, T32, and an Al-sensitive line, S70, provided evidence that an inducible Al exclusion mechanism occurs in T32. Transcriptional events associated with the Al resistance response were analyzed in T32 and S70 after 12 and 48 h Al treatment using oligonucleotide microarrays. Fewer genes were differentially regulated in response to Al in T32 compared to S70. Expression patterns of oxidative stress-related genes, stress-response genes and microscopic examination of Al-treated root tips suggested a lower degree of Al-induced oxidative damage to T32 root tips compared to S70. Furthermore, genes associated with cell death, senescence, and cell wall degradation were induced in both lines after 12 h of Al treatment but preferentially in S70 after 48 h of Al treatment. A multidrug and toxin efflux (MATE) transporter, previously shown to exude citrate in Arabidopsis, showed differential expression patterns in T32 and S70. CONCLUSION Our results identified novel genes induced by Al in Al-resistant and sensitive M. truncatula lines. In T32, transcription levels of genes related to oxidative stress were consistent with reactive oxygen species production, which would be sufficient to initiate cell death of Al-accumulating cells thereby contributing to Al exclusion and root growth recovery. In contrast, transcriptional levels of oxidative stress-related genes were consistent with excessive reactive oxygen species accumulation in S70 potentially resulting in necrosis and irreversible root growth inhibition. In addition, a citrate-exuding MATE transporter could function in Al exclusion and/or internal detoxification in T32 based on Al-induced transcript localization studies. Together, our findings indicate that multiple responses likely contribute to Al resistance in M. truncatula.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, St. Paul, MN 55108, USA
| | - Natasha Sharopova
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, St. Paul, MN 55108, USA
| | - Kathryn A VandenBosch
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, St. Paul, MN 55108, USA
- Center for Microbial and Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - David F Garvin
- USDA-ARS-Plant Science Research, St. Paul, MN 55108, USA
- Center for Microbial and Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall St. Paul, MN 55108, USA
| | - Deborah A Samac
- USDA-ARS-Plant Science Research, St. Paul, MN 55108, USA
- Center for Microbial and Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall, St. Paul, MN 55108, USA
| |
Collapse
|
42
|
Zhou K, Yamagishi M, Osaki M, Masuda K. Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2749-56. [PMID: 18487637 PMCID: PMC2486467 DOI: 10.1093/jxb/ern130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 05/20/2023]
Abstract
Cluster root (CR) formation contributes much to the adaptation to phosphorus (P) deficiency. CR formation by white lupin (Lupinus albus L.) is affected by the P-limiting level in shoots, but not in roots. Thus, shoot-derived signals have been expected to transmit the message of P-deficiency to stimulate CR formation. In this study, it is shown that sugars are required for a response to P starvation including CR formation and the expression of P starvation-induced genes. White lupin plants were grown in vitro on P-sufficient or P-deficient media supplemented with sucrose for 4 weeks. Sucrose supply stimulated CR formation in plants on both P-sufficient and P-deficient media, but no CR appeared on the P-sufficient medium without sucrose. Glucose and fructose also stimulated CR formation on the P-sufficient medium. On the medium with sucrose, a high concentration of inorganic phosphate in leaves did not suppress CR formation. Because sorbitol or organic acid in the media did not stimulate CR formation, the sucrose effect was not due to increased osmotic pressure or enriched energy source, that is, sucrose acted as a signal. Gene transcription induced by P starvation, LaPT1 and LaPEPC3, was magnified by the combination of P limitation and sucrose feeding, and that of LaSAP was stimulated by sucrose supply independently of P supply. These results suggest that at least two sugar-signalling mediating systems control P starvation responses in white lupin roots. One system regulates CR formation and LaSAP expression, which acts even when P is sufficient if roots receive sugar as a signal. The other system controls LaPT1 and LaPEPC3 expression, which acts when P is insufficient.
Collapse
Affiliation(s)
- Keqin Zhou
- Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Mitsuru Osaki
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Kiyoshi Masuda
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
43
|
|
44
|
Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 2007; 39:1156-61. [PMID: 17721535 DOI: 10.1038/ng2074] [Citation(s) in RCA: 396] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 05/24/2007] [Indexed: 12/15/2022]
Abstract
Crop yields are significantly reduced by aluminum toxicity on highly acidic soils, which comprise up to 50% of the world's arable land. Candidate aluminum tolerance proteins include organic acid efflux transporters, with the organic acids forming non-toxic complexes with rhizosphere aluminum. In this study, we used positional cloning to identify the gene encoding a member of the multidrug and toxic compound extrusion (MATE) family, an aluminum-activated citrate transporter, as responsible for the major sorghum (Sorghum bicolor) aluminum tolerance locus, Alt(SB). Polymorphisms in regulatory regions of Alt(SB) are likely to contribute to large allelic effects, acting to increase Alt(SB) expression in the root apex of tolerant genotypes. Furthermore, aluminum-inducible Alt(SB) expression is associated with induction of aluminum tolerance via enhanced root citrate exudation. These findings will allow us to identify superior Alt(SB) haplotypes that can be incorporated via molecular breeding and biotechnology into acid soil breeding programs, thus helping to increase crop yields in developing countries where acidic soils predominate.
Collapse
Affiliation(s)
- Jurandir V Magalhaes
- Embrapa Maize and Sorghum, Rod. MG 424, Km 65, 35701-970, Sete Lagoas, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF. An aluminum-activated citrate transporter in barley. PLANT & CELL PHYSIOLOGY 2007; 48:1081-91. [PMID: 17634181 DOI: 10.1093/pcp/pcm091] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soluble ionic aluminum (Al) inhibits root growth and reduces crop production on acid soils. Al-resistant cultivars of barley (Hordeum vulgare L.) detoxify Al by secreting citrate from the roots, but the responsible gene has not been identified yet. Here, we identified a gene (HvAACT1) responsible for the Al-activated citrate secretion by fine mapping combined with microarray analysis, using an Al-resistant cultivar, Murasakimochi, and an Al-sensitive cultivar, Morex. This gene belongs to the multidrug and toxic compound extrusion (MATE) family and was constitutively expressed mainly in the roots of the Al-resistant barley cultivar. Heterologous expression of HvAACT1 in Xenopus oocytes showed efflux activity for (14)C-labeled citrate, but not for malate. Two-electrode voltage clamp analysis also showed transport activity of citrate in the HvAACT1-expressing oocytes in the presence of Al. Overexpression of this gene in tobacco enhanced citrate secretion and Al resistance compared with the wild-type plants. Transiently expressed green fluorescent protein-tagged HvAACT1 was localized at the plasma membrane of the onion epidermal cells, and immunostaining showed that HvAACT1 was localized in the epidermal cells of the barley root tips. A good correlation was found between the expression of HvAACT1 and citrate secretion in 10 barley cultivars differing in Al resistance. Taken together, our results demonstrate that HvAACT1 is an Al-activated citrate transporter responsible for Al resistance in barley.
Collapse
Affiliation(s)
- Jun Furukawa
- Research Institute for Bioresources, Okayama University, Chuo, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tesfaye M, Liu J, Allan DL, Vance CP. Genomic and genetic control of phosphate stress in legumes. PLANT PHYSIOLOGY 2007; 144:594-603. [PMID: 17556523 PMCID: PMC1914184 DOI: 10.1104/pp.107.097386] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/10/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Mesfin Tesfaye
- United States Department of Agriculture Agricultural Research Service , University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
47
|
Atkins CA, Smith PMC. Translocation in legumes: assimilates, nutrients, and signaling molecules. PLANT PHYSIOLOGY 2007; 144:550-61. [PMID: 17556518 PMCID: PMC1914204 DOI: 10.1104/pp.107.098046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/03/2007] [Indexed: 05/15/2023]
Affiliation(s)
- Craig Anthony Atkins
- School of Plant Biology M090, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | |
Collapse
|
48
|
Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E. Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. THE NEW PHYTOLOGIST 2006; 171:657-68. [PMID: 16866966 DOI: 10.1111/j.1469-8137.2006.01776.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The internal concentration of isoflavonoids in white lupin (Lupinus albus) cluster roots and the exudation of isoflavonoids by these roots were investigated with respect to the effects of phosphorus (P) supply, root type and cluster-root developmental stage. To identify and quantify the major isoflavonoids exuded by white lupin roots, we used high-pressure liquid chromatography (HPLC) coupled to electrospray ionization (ESI) in mass spectrometry (MS). The major exuded isoflavonoids were identified as genistein and hydroxygenistein and their corresponding mono- and diglucoside conjugates. Exudation of isoflavonoids during the incubation period used was higher in P-deficient than in P-sufficient plants and higher in cluster roots than in noncluster roots. The peak of exudation occurred in juvenile and immature cluster roots, while exudation decreased in mature cluster roots.Cluster-root exudation activity was characterized by a burst of isoflavonoids at the stage preceding the peak of organic acid exudation. The potential involvement of ATP-citrate lyase in controlling citrate and isoflavonoid exudation is discussed, as well as the possible impact of phenolics in repelling rhizosphere microbial citrate consumers.
Collapse
Affiliation(s)
- Laure Weisskopf
- Laboratory of Molecular Plant Physiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|