1
|
Gu T, Qi Z, Wang Y, Chen S, Yan J, Qiu H, Yu Y, Fang Z, Wang J, Gong J. An endophytic fungus interacts with the defensin-like protein OsCAL1 to regulate cadmium allocation in rice. MOLECULAR PLANT 2024; 17:312-324. [PMID: 38160253 DOI: 10.1016/j.molp.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Defensin-like proteins are conserved in multicellular organisms and contribute to innate immune responses against fungal pathogens. In rice, defensins play a novel role in regulating cadmium (Cd) efflux from the cytosol. However, whether the antifungal activity of defensins correlates with Cd-efflux function remains unknown. In this study, we isolated an endophytic Fusarium, designed Fo10, by a comparative microbiome analysis of rice plants grown in a paddy contaminated with Cd. Fo10 is tolerant to high levels of Cd, but is sensitive to the defensin-like protein OsCAL1, which mediates Cd efflux to the apoplast. We found that Fo10 symbiosis in rice is regulated by OsCAL1 dynamics, and Fo10 coordinates multiple plant processes, including Cd uptake, vacuolar sequestration, efflux to the environment, and formation of Fe plaques in the rhizosphere. These processes are dependent on the salicylic acid signaling pathway to keep Cd levels low in the cytosol of rice cells and to decrease Cd levels in rice grains without any yield penalty. Fo10 also plays a role in Cd tolerance in the poaceous crop maize and wheat, but has no observed effects in the eudicot plants Arabidopsis and tomato. Taken together, these findings provide insights into the mechanistic basis underlying how a fungal endophyte and host plant interact to control Cd accumulation in host plants by adapting defense responses to promote the establishment of a symbiosis that permits adaptation to high-Cd environments.
Collapse
Affiliation(s)
- Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ziai Qi
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siying Chen
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, College of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Yan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huapeng Qiu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxuan Yu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zijun Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junmin Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiming Gong
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Nguyen NN, Lamotte O, Alsulaiman M, Ruffel S, Krouk G, Berger N, Demolombe V, Nespoulous C, Dang TMN, Aimé S, Berthomieu P, Dubos C, Wendehenne D, Vile D, Gosti F. Reduction in PLANT DEFENSIN 1 expression in Arabidopsis thaliana results in increased resistance to pathogens and zinc toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5374-5393. [PMID: 37326591 DOI: 10.1093/jxb/erad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
Ectopic expression of defensins in plants correlates with their increased capacity to withstand abiotic and biotic stresses. This applies to Arabidopsis thaliana, where some of the seven members of the PLANT DEFENSIN 1 family (AtPDF1) are recognised to improve plant responses to necrotrophic pathogens and increase seedling tolerance to excess zinc (Zn). However, few studies have explored the effects of decreased endogenous defensin expression on these stress responses. Here, we carried out an extensive physiological and biochemical comparative characterization of (i) novel artificial microRNA (amiRNA) lines silenced for the five most similar AtPDF1s, and (ii) a double null mutant for the two most distant AtPDF1s. Silencing of five AtPDF1 genes was specifically associated with increased aboveground dry mass production in mature plants under excess Zn conditions, and with increased plant tolerance to different pathogens - a fungus, an oomycete and a bacterium, while the double mutant behaved similarly to the wild type. These unexpected results challenge the current paradigm describing the role of PDFs in plant stress responses. Additional roles of endogenous plant defensins are discussed, opening new perspectives for their functions.
Collapse
Affiliation(s)
- Ngoc Nga Nguyen
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Olivier Lamotte
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Mohanad Alsulaiman
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sandrine Ruffel
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Gabriel Krouk
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Nathalie Berger
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Vincent Demolombe
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Claude Nespoulous
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Thi Minh Nguyet Dang
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Sébastien Aimé
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Pierre Berthomieu
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Christian Dubos
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne-Franche Comté, F-21 000 Dijon, France
| | - Denis Vile
- LEPSE, INRAE, Institut Agro, Université de Montpellier, 2 Place P. Viala, F-34 060 Montpellier Cedex 2, France
| | - Françoise Gosti
- IPSiM, CNRS, INRAE, Institut Agro, Université de Montpellier, 2, Place P. Viala, F-34 060 Montpellier Cedex 2, France
| |
Collapse
|
3
|
Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, Hui A, Kaya H, Ozawa A, Kobayashi M, Mori IC, Ogata Y, Ishino Y, Sugano SS, Nagano M, Fukao Y. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1071-1083. [PMID: 37177878 DOI: 10.1111/tpj.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.
Collapse
Affiliation(s)
- Sachie Kimura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, Helsinki, FI-00014, Finland
| | - Tomoya Ohshita
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kotomi Yokoyama
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Kota Yoshida
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Agnes Hui
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hidetaka Kaya
- Department of Food Production Science, Ehime University, Ehime, 790-8566, Japan
| | - Ai Ozawa
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Mami Kobayashi
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Okayama, 710-0046, Japan
| | - Yoshiyuki Ogata
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, 599-8531, Japan
| | - Yoko Ishino
- Graduate School of Innovation and Technology Management, Yamaguchi University, Yamaguchi, 755-8611, Japan
| | - Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, 525-8577, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566, Japan
| | - Minoru Nagano
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
4
|
Gu TY, Qi ZA, Chen SY, Yan J, Fang ZJ, Wang JM, Gong JM. Dual-function DEFENSIN 8 mediates phloem cadmium unloading and accumulation in rice grains. PLANT PHYSIOLOGY 2023; 191:515-527. [PMID: 36087013 PMCID: PMC9806624 DOI: 10.1093/plphys/kiac423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Grain cadmium (Cd) is translocated from source to sink tissues exclusively via phloem, though the phloem Cd unloading transporter has not been identified yet. Here, we isolated and functionally characterized a defensin-like gene DEFENSIN 8 (DEF8) highly expressed in rice (Oryza sativa) grains and induced by Cd exposure in seedling roots. Histochemical analysis and subcellular localization detected DEF8 expression preferentially in pericycle cells and phloem of seedling roots, as well as in phloem of grain vasculatures. Further analysis demonstrated that DEF8 is secreted into extracellular spaces possibly by vesicle trafficking. DEF8 bound to Cd in vitro, and Cd efflux from protoplasts as well as loading into xylem vessels decreased in the def8 mutant seedlings compared with the wild type. At maturity, significantly less Cd accumulation was observed in the mutant grains. These results suggest that DEF8 is a dual function protein that facilitates Cd loading into xylem and unloading from phloem, thus mediating Cd translocation from roots to shoots and further allocation to grains, representing a phloem Cd unloading regulator. Moreover, essential mineral nutrient accumulation as well as important agronomic traits were not affected in the def8 mutants, suggesting DEF8 is an ideal target for breeding low grain Cd rice.
Collapse
Affiliation(s)
| | | | - Si-Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun-Min Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | |
Collapse
|
5
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS 2022; 11:plants11030280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Correspondence:
| |
Collapse
|
6
|
Liu Z, Sun Z, Zeng C, Dong X, Li M, Liu Z, Yan M. The elemental defense effect of cadmium on Alternaria brassicicola in Brassica juncea. BMC PLANT BIOLOGY 2022; 22:17. [PMID: 34986803 PMCID: PMC8729108 DOI: 10.1186/s12870-021-03398-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/10/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The elemental defense hypothesis states a new defensive strategy that hyperaccumulators defense against herbivores or pathogens attacks by accumulating heavy metals. Brassica juncea has an excellent ability of cadmium (Cd) accumulation. However, the elemental defense effect and its regulation mechanism in B. juncea remain unclear. RESULTS In this study, we profiled the elemental defense effect and the molecular regulatory mechanism in Cd-accumulated B. juncea after Alternaria brassicicola infection. B. juncea treated with 180 mg Kg- 1 DW CdCl2 2.5H2O exhibited obvious elemental defense effect after 72 h of infection with A. brassicicola. The expression of some defense-related genes including BjNPR1, BjPR12, BjPR2, and stress-related miRNAs (miR156, miR397, miR398a, miR398b/c, miR408, miR395a, miR395b, miR396a, and miR396b) were remarkably elevated during elemental defense in B. juncea. CONCLUSIONS The results indicate that Cd-accumulated B. juncea may defend against pathogens by coordinating salicylic acid (SA) and jasmonic acid (JA) mediated systemic acquired resistance (SAR) and elemental defense in a synergistic joint effect. Furthermore, the expression of miRNAs related to heavy metal stress response and disease resistance may regulate the balance between pathogen defense and heavy metal stress-responsive in B. juncea. The findings provide experimental evidence for the elemental defense hypothesis in plants from the perspectives of phytohormones, defense-related genes, and miRNAs.
Collapse
Affiliation(s)
- Zhe Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenzhen Sun
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xujie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China.
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
7
|
Quaglia M, Troni E, D’Amato R, Ederli L. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:30-40. [PMID: 34608720 PMCID: PMC9291626 DOI: 10.1111/plb.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
In higher plants, Zn nutritional imbalance can affect growth, physiology and response to stress, with effect variable depending on host-pathogen interaction. Mechanisms through which Zn operates are not yet well known. The hormone salicylic acid (SA) can affect plant ion uptake, transport and defence responses. Thus, in this study the impact of Zn imbalance and SA co-supply on severity of infection with the necrotrophic fungal pathogen B. cinerea or the biotroph G. cichoracearum was assessed in A. thaliana Col-0. Spectrophotometric assays for pigments and malondialdehyde (MDA) content as a marker of lipid peroxidation, plant defensin 1.2 gene expression by semi-quantitative PCR, callose visualization by fluorescence microscopy and diseases evaluation by macro- and microscopic observations were carried out. Zinc plant concentration varied with the supplied dose. In comparison with the control, Zn-deficit or Zn-excess led to reduced chlorophyll content and PDF 1.2 transcripts induction. In Zn-deficient plants, where MDA increased, also the susceptibility to B. cinerea increased, whereas MDA decreased in G. cichoracearum. Zinc excess increased susceptibility to both pathogens. Co-administration of SA positively affected MDA level, callose deposition, PDF 1.2 transcripts and plant response to the two pathogens. The increased susceptibility to B. cinerea in both Zn-deficient and Zn-excess plants could be related to lack of induction of PDF 1.2 transcripts; oxidative stress could explain higher susceptibility to the necrotroph and lower susceptibility to the biotroph in Zn-deficient plants. This research shows that an appropriate evaluation of Zn supply according to the prevalent stress factor is desirable for plants.
Collapse
Affiliation(s)
- M. Quaglia
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - E. Troni
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - R. D’Amato
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| | - L. Ederli
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
| |
Collapse
|
8
|
Liu Y, Hua YP, Chen H, Zhou T, Yue CP, Huang JY. Genome-scale identification of plant defensin ( PDF) family genes and molecular characterization of their responses to diverse nutrient stresses in allotetraploid rapeseed. PeerJ 2021; 9:e12007. [PMID: 34603847 PMCID: PMC8445089 DOI: 10.7717/peerj.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Plant defensins (PDFs), short peptides with strong antibacterial activity, play important roles in plant growth, development, and stress resistance. However, there are few systematic analyses on PDFs in Brassica napus. Here, bioinformatics methods were used to identify genome-wide PDFs in Brassica napus, and systematically analyze physicochemical properties, expansion pattern, phylogeny, and expression profiling of BnaPDFs under diverse nutrient stresses. A total of 37 full-length PDF homologs, divided into two subgroups (PDF1s and PDF2s), were identified in the rapeseed genome. A total of two distinct clades were identified in the BnaPDF phylogeny. Clade specific conserved motifs were identified within each clade respectively. Most BnaPDFs were proved to undergo powerful purified selection. The PDF members had enriched cis-elements related to growth and development, hormone response, environmental stress response in their promoter regions. GO annotations indicate that the functional pathways of BnaPDFs are mainly involved in cells killing and plant defense responses. In addition, bna-miRNA164 and bna-miRNA172 respectively regulate the expression of their targets BnaA2.PDF2.5 and BnaC7.PDF2.6. The expression patterns of BnaPDFs were analyzed in different tissues. BnaPDF1.2bs was mainly expressed in the roots, whereas BnaPDF2.2s and BnaPDF2.3s were both expressed in stamen, pericarp, silique, and stem. However, the other BnaPDF members showed low expression levels in various tissues. Differential expression of BnaPDFs under nitrate limitation, ammonium excess, phosphorus starvation, potassium deficiency, cadmium toxicity, and salt stress indicated that they might participate in different nutrient stress resistance. The genome-wide identification and characterization of BnaPDFs will enrich understanding of their molecular characteristics and provide elite gene resources for genetic improvement of rapeseed resistance to nutrient stresses.
Collapse
Affiliation(s)
- Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Chen
- National Tobacco Quality Supervision and Inspection Center, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Omidvar R, Vosseler N, Abbas A, Gutmann B, Grünwald-Gruber C, Altmann F, Siddique S, Bohlmann H. Analysis of a gene family for PDF-like peptides from Arabidopsis. Sci Rep 2021; 11:18948. [PMID: 34556705 PMCID: PMC8460643 DOI: 10.1038/s41598-021-98175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern which is stabilized by four disulfide bridges. We show here that Arabidopsis contains in addition to the proper plant defensins a group of 9 plant defensin-like (PdfL) genes. They are all expressed at low levels while GUS fusions of the promoters showed expression in most tissues with only minor differences. We produced two of the encoded peptides in E. coli and tested the antimicrobial activity in vitro. Both were highly active against fungi but had lower activity against bacteria. At higher concentrations hyperbranching and swollen tips, which are indicative of antimicrobial activity, were induced in Fusarium graminearum by both peptides. Overexpression lines for most PdfL genes were produced using the 35S CaMV promoter to study their possible in planta function. With the exception of PdfL4.1 these lines had enhanced resistance against F. oxysporum. All PDFL peptides were also transiently expressed in Nicotiana benthamiana leaves with agroinfiltration using the pPZP3425 vector. In case of PDFL1.4 this resulted in complete death of the infiltrated tissues after 7 days. All other PDFLs resulted only in various degrees of small necrotic lesions. In conclusion, our results show that at least some of the PdfL genes could function in plant resistance.
Collapse
Affiliation(s)
- Reza Omidvar
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Nadine Vosseler
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
| | - Amjad Abbas
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Birgit Gutmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- RIVIERA Pharma and Cosmetics GmbH, Holzhackerstraße 1, Tulln, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences Vienna, UFT Tulln, Konrad Lorenz Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
10
|
Ochoa-Zarzosa A, Báez-Magaña M, Guzmán-Rodríguez JJ, Flores-Alvarez LJ, Lara-Márquez M, Zavala-Guerrero B, Salgado-Garciglia R, López-Gómez R, López-Meza JE. Bioactive Molecules From Native Mexican Avocado Fruit (Persea americana var. drymifolia): A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:133-142. [PMID: 33704631 DOI: 10.1007/s11130-021-00887-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Avocado (Persea americana Mill.) is a tree native from central and eastern México that belongs to the Lauraceae family. Avocado has three botanical varieties known as Mexican (P. americana var. drymifolia), West Indian (P. americana var. americana), and Guatemalan (P. americana var. guatemalensis). It is an oil-rich fruit appreciated worldwide because of its nutritional value and the content of bioactive molecules. Several avocado molecules show attractive activities of interest in medicine. Avocado fatty acids have beneficial effects on cardiovascular disease risk factors. Besides, this fruit possesses a high content of carotenoids and phenolic compounds with possible antifungal, anti-cancer and antioxidant activities. Moreover, several metabolites have been reported with anti-inflammatory effects. Also, an unsaponifiable fraction of avocado in combination with soybean oil is used for the treatment of osteoarthritis. The Mexican variety is native from México and is characterized by the anise aroma in leaves and by small thin-skinned fruits of rich flavor and excellent quality. However, the study of the bioactive molecules of the fruit has not been addressed in detail. In this work, we achieved a literature review on the inflammatory, immunomodulatory and cytotoxic properties of long-chain fatty acids and derivatives from Mexican avocado seed. Also, the antioxidant and anti-inflammatory properties of the oil extracted from the avocado seed are referred. Finally, the antimicrobial, immunomodulatory, and cytotoxic activities of some antimicrobial peptides expressed in the fruit are reviewed.
Collapse
Affiliation(s)
- Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Marisol Báez-Magaña
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Jaquelina Julia Guzmán-Rodríguez
- Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Universidad de Guanajuato, 36500, Irapuato, Guanajuato, México
| | - Luis José Flores-Alvarez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Mónica Lara-Márquez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México
| | - Baruc Zavala-Guerrero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Rodolfo López-Gómez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58004, Morelia, Michoacán, México
| | - Joel Edmundo López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carr, Morelia-Zinapécuaro, Posta Veterinaria, Michoacán, C.P. 58893, Morelia, México.
| |
Collapse
|
11
|
Luo JS, Zhang Z. Mechanisms of cadmium phytoremediation and detoxification in plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
13
|
Toledo EB, Lucas DR, Simão TLBV, Calixto SD, Lassounskaia E, Muzitano MF, Damica FZ, Gomes VM, de Oliveira Carvalho A. Design of improved synthetic antifungal peptides with targeted variations in charge, hydrophobicity and chirality based on a correlation study between biological activity and primary structure of plant defensin γ-cores. Amino Acids 2021; 53:219-237. [PMID: 33483849 DOI: 10.1007/s00726-020-02929-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
Microbial resistance to available drugs is a growing health threat imposing the need for the development of new drugs. The scaffold of plant defensins, including their γ-cores, are particularly good candidates for drug design. This work aimed to improve the antifungal activity of a previous design peptide, named A36,42,44γ32-46VuDef (for short DD) against yeasts by altering its biochemical parameters. We explore the correlation of the biological activity and structure of plant defensins and compared their primary structures by superimposition with VuDef1 and DD which indicated us the favorable position and the amino acid to be changed. Three new peptides with modifications in charge, hydrophobicity (RR and WR) and chirality (D-RR) were designed and tested against pathogenic yeasts. Inhibition was determined by absorbance. Viability of mammalian cells was determined by MTT. The three designed peptides had better inhibitory activity against the yeasts with better potency and spectrum of yeast species inhibition, with low toxicity to mammalian cells. WR, the most hydrophobic and cationic, exhibited better antifungal activity and lower toxicity. Our study provides experimental evidence that targeted changes in the primary structure of peptides based on plant defensins γ-core primary structures prove to be a good tool for the synthesis of new compounds that may be useful as alternative antifungal drugs. The method described did not have the drawback of synthesis of several peptides, because alterations are guided. When compared to other methods, the design process described is efficient and viable to those with scarce resources.
Collapse
Affiliation(s)
- Estefany Braz Toledo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Douglas Ribeiro Lucas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Michele Frazão Muzitano
- Laboratório de Produtos Bioativos, Curso de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Pólo Novo Cavaleiro-IMMT, Macaé, RJ, 27933-378, Brazil
| | - Filipe Zanirati Damica
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes, RJ, CEP 28013-602, Brazil.
| |
Collapse
|
14
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
15
|
Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins. J Fungi (Basel) 2020; 6:jof6030145. [PMID: 32847065 PMCID: PMC7557933 DOI: 10.3390/jof6030145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/01/2023] Open
Abstract
Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46–50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs). Using these initial HRD sequences as a query, a search of the available sequence databases identified over 750 HRDs in solanaceous plants and 20 in brassicas. Histidine residues are known to contribute to metal binding functions in proteins leading to the hypothesis that HRDs would have metal binding properties. A selection of the HRD sequences were recombinantly expressed and purified and their antifungal and metal binding activity was characterized. Of the four HRDs that were successfully expressed all displayed some level of metal binding and two of four had antifungal activity. Structural characterization of the other HRDs identified a novel pattern of disulfide linkages in one of the HRDs that is predicted to also occur in HRDs with similar cysteine spacing. Metal binding by HRDs represents a specialization of the plant defensin fold outside of antifungal activity.
Collapse
|
16
|
Hormhuan P, Viboonjun U, Sojikul P, Narangajavana J. Enhancing of anthracnose disease resistance indicates a potential role of antimicrobial peptide genes in cassava. Genetica 2020; 148:135-148. [PMID: 32654093 DOI: 10.1007/s10709-020-00097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022]
Abstract
Cassava (Manihot esculenta Crantz.) is an important economic crop in tropical countries. Demands for using cassava in food, feed and biofuel industries have been increasing worldwide. Cassava anthracnose disease, caused by Colletotrichum gloeosporioides f.sp. manihotis (CAD), is considered a major problem in cassava production. To minimize the effects of such disease, this study investigated the response of cassava to attack by CAD and how the plants defend themselves against this threat. Genome-wide identification of antimicrobial peptide genes (AMPs) and their expression in response to fungal infection was performed in the resistant cassava cultivar (Huay Bong 60; HB60) in comparison with the highly susceptible cultivar (Hanatee; HN). A total of 114 gene members of AMP were identified in the cassava genome database. Fifty-six gene members were selected for phylogenetic tree construction and analysis of putative cis-acting elements in their promoter regions. Differential expression profiles of six candidate genes were observed in response to CAD infection of both cassava cultivars. Upregulation of snakins, MeSN1 and MeSN2 was found in HB60, whereas MeHEL, Me-AMP-D2 and MeLTP2 were highly induced in HN. The MeLTP1 gene was not expressed in either cultivar. HB60 showed a reduced severity rating in comparison to HN after CAD infection. The biomembrane permeability test of fungal CAD was strongly affected after treatment with protein extract derived from CAD-infected HB60. Altogether, these findings suggest that snakins have a potential function in the CAD defense response in cassava. These results could be useful for cassava improvement programs to fight fungal pathogen.
Collapse
Affiliation(s)
- Pattaraporn Hormhuan
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Unchera Viboonjun
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.
| |
Collapse
|
17
|
Odintsova TI, Slezina MP, Istomina EA. Defensins of Grasses: A Systematic Review. Biomolecules 2020; 10:E1029. [PMID: 32664422 PMCID: PMC7407236 DOI: 10.3390/biom10071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure-function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.
Collapse
|
18
|
Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q. Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110379. [PMID: 32005384 DOI: 10.1016/j.plantsci.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant defensins have been implicated in the plant defense system, but their role in poplar immunity is still unclear. In the present study, we present evidence that PtDefensin, a putative plant defensin, participates in the defense of poplar plants against Septotis populiperda infection. After the construction of recombinant plasmid PET-32a-PtDefensin, PtDefensin protein was expressed in Escherichia coli strain BL21 (DE3) and purified through Ni-IDA resin affinity chromatography. The Trx-PtDefensin fusion protein displayed no cytotoxic activity against RAW264.7 cells but had cytotoxic activity against E. coli K12D31 cells. Analyses of PtDefensin transcript abundance showed that the expression levels of PtDefensin responded to abiotic and biotic stresses. Overexpression of PtDefensin in 'Nanlin 895' poplars (Populus × euramericana cv 'Nanlin895') increased resistance to Septotis populiperda, coupled with upregulation of MYC2 (basic helix-loop-helix (bHLH) transcription factor) related to jasmonic acid (JA) signal transduction pathways and downregulation of Jasmonate-zim domain (JAZ), an inhibitor in the JA signal transduction pathway. We speculate that systemic acquired resistance (SAR) was activated in non-transgenic poplars after S. populiperda incubation, and that induced systemic resistance (ISR) was activated more obviously in transgenic poplars after S. populiperda incubation. Hence, overexpression of PtDefensin may improve the resistance of poplar plants to pathogens.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Xiaoli Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China.
| |
Collapse
|
19
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Wei H, Movahedi A, Xu C, Sun W, Wang P, Li D, Yin T, Zhuge Q. Characterization, Expression Profiling, and Functional Analysis of PtDef, a Defensin-Encoding Gene From Populus trichocarpa. Front Microbiol 2020; 11:106. [PMID: 32117134 PMCID: PMC7018670 DOI: 10.3389/fmicb.2020.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023] Open
Abstract
PtDef cloned from Populus trichocarpa contained eight cysteine domains specific to defensins. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis showed that PtDef was expressed in all tissues tested, with lower expression in leaves and higher expression in petioles, stems, and roots. Purified fused PtDef inhibited Aspergillus niger, Alternaria Nees, Mucor corymbifer, Marssonina populi, Rhizopus sp., and Neurospora crassa. PtDef also inhibited the growth of Escherichia coli by triggering autolysis. PtDef overexpression in Nanlin895 poplar (Populus × euramericana cv. Nanlin895) enhanced the level of resistance to Septotinia populiperda. qRT-PCR analysis also showed that the expression of 13 genes related to salicylic acid (SA) and jasmonic acid (JA) signal transduction differed between transgenic and wild-type (WT) poplars before and after inoculation, and that PR1-1 (12–72 h), NPR1-2, TGA1, and MYC2-1 expression was higher in transgenic poplars than in WT. During the hypersensitivity response (HR), large amounts of H2O2 were produced by the poplar lines, particularly 12–24 h after inoculation; the rate and magnitude of the H2O2 concentration increase were greater in transgenic lines than in WT. Overall, our findings suggest that PtDef, a defensin-encoding gene of P. trichocarpa, could be used for genetic engineering of woody plants for enhanced disease resistance.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Ali Movahedi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chen Xu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China.,Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| | - Weibo Sun
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Pu Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Dawei Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
21
|
Luo JS, Xiao Y, Yao J, Wu Z, Yang Y, Ismail AM, Zhang Z. Overexpression of a Defensin-Like Gene CAL2 Enhances Cadmium Accumulation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:217. [PMID: 32174951 PMCID: PMC7057248 DOI: 10.3389/fpls.2020.00217] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 05/15/2023]
Abstract
Accumulation and detoxification of cadmium in rice shoots are of great importance for adaptation to grow in cadmium contaminated soils and for limiting the transport of Cd to grains. However, the molecular mechanisms behind the processes involved in this regulation remain largely unknown. Defensin proteins play important roles in heavy metal tolerance and accumulation in plants. In rice, the cell wall-localized defensin protein (CAL1) is involved in Cd efflux and partitioning to the shoots. In the present study, we functionally characterized the CAL2 defensin protein and determined its contribution to Cd accumulation. CAL2 shared 66% similarity with CAL1, and its mRNA accumulation is mainly observed in roots and is unaffected by Cd stress, but its transcription level was lower than that of CAL1 based on the relative expression of CAL2/Actin1 observed in this study and that reported previously. A promoter-GUS assay revealed that CAL2 is expressed in root tips. Stable expression of the CAL2-mRFP fusion protein indicated that CAL2 is also localized in the cell walls. An in vitro Cd binding experiment revealed that CAL2 has Cd chelation activity. Overexpression of CAL2 increased Cd accumulation in Arabidopsis and rice shoots, but it had no effect on the accumulation of other essential elements. Heterologous expression of CAL2 enhanced Cd sensitivity in Arabidopsis, whereas overexpression of CAL2 had no effect on Cd tolerance in rice. These findings indicate that CAL2 positively regulates Cd accumulation in ectopic overexpression lines of Arabidopsis and rice. We have identified a new gene regulating Cd accumulation in rice grain, which would provide a new genetic resource for molecular breeding.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Yan Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Junyue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Zhimin Wu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
| | | | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, China
- *Correspondence: Zhenhua Zhang,
| |
Collapse
|
22
|
Yao J, Luo JS, Xiao Y, Zhang Z. The plant defensin gene AtPDF2.1 mediates ammonium metabolism by regulating glutamine synthetase activity in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:557. [PMID: 31842759 PMCID: PMC6916093 DOI: 10.1186/s12870-019-2183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/03/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND In plants, ammonium metabolism is particularly important for converting absorbed nitrogen into amino acids. However, the molecular mechanism underlying this conversion remains largely unknown. RESULTS Using wild type Arabidopsis thaliana (Col-0) and AtPDF2.1 mutants (pdf2.1-1 and pdf2.1-2), we found that the small cysteine-rich peptide AtPDF2.1, a plant defensin, is involved in regulating ammonium metabolism in the shoot. Ammonium significantly induced the expression of AtPDF2.1 in the shoot and root, particularly in root xylem vascular bundles, as demonstrated by histochemical analysis. Subcellular localization analysis revealed that AtPDF2.1 was localized to the cell wall. Ammonium concentration was higher in the shoot of mutants than in the shoot of Col-0, but no differences were found for total nitrogen content, root ammonium concentration, and the expression of the ammonium transporter gene AtAMT2.1. The activity of glutamine synthetase was significantly decreased in mutants, and the glutamine synthetase family genes GLN1.3 and GLN1.5 were significantly downregulated in mutants compared to Col-0. The activity of nitrate reductase showed no difference between mutants and Col-0. CONCLUSIONS Overall, these data suggest that AtPDF2.1 affects ammonium metabolism by regulating the expression of GLN1.3 and GLN1.5 through a yet unidentified mechanism.
Collapse
Affiliation(s)
- Junyue Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128 China
| | - Yan Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128 China
| |
Collapse
|
23
|
Luo JS, Yang Y, Gu T, Wu Z, Zhang Z. The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation. PLANT, CELL & ENVIRONMENT 2019; 42:2681-2695. [PMID: 31115921 DOI: 10.1111/pce.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 05/11/2023]
Abstract
Although excess cadmium (Cd) accumulation is harmful to plants, the molecular mechanisms underlying Cd detoxification and accumulation in Arabidopsis thaliana remain largely undetermined. In this study, we demonstrated that the A. thaliana PLANT DEFENSIN 2 gene AtPDF2.5 is involved in Cd tolerance and accumulation. In vitro Cd-binding assays revealed that AtPDF2.5 has Cd-chelating activity. Site-directed mutagenesis of AtPDF2.5 identified eight cysteine residues that were essential for mediating Cd tolerance and chelation. Histochemical analysis demonstrated that AtPDF2.5 was mainly expressed in root xylem vascular bundles, and that AtPDF2.5 was significantly induced by Cd. Subcellular localization analysis revealed that AtPDF2.5 was localized to the cell wall. The overexpression of AtPDF2.5 significantly enhanced Cd tolerance and accumulation in A. thaliana and its heterologous overexpression in rice increased Cd accumulation; however, the functional disruption of AtPDF2.5 decreased Cd tolerance and accumulation. Physiological analysis suggested that AtPDF2.5 promoted Cd efflux from the protoplast and its subsequent accumulation in the cell wall. These data suggest that AtPDF2.5 promotes cytoplasmic Cd efflux via chelation, thereby enhancing Cd detoxification and apoplastic accumulation.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhimin Wu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| |
Collapse
|
24
|
Mirakhorli N, Norolah Z, Foruzandeh S, Shafizade F, Nikookhah F, Saffar B, Ansari O. Multi-functionPlantDefensin,AntimicrobialandHeavyMetal Adsorbent Peptide. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1562. [PMID: 32195280 PMCID: PMC7080970 DOI: 10.29252/ijb.1562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Defensin peptide isolated from plants are often heterogeneous in length, sequence and structure, but they are mostly small, cationic and amphipathic.
Plant defensins exhibit broad-spectrum antibacterial and antifungal activities against Gram-positive and Gram-negative bacteria, fungi and etc.
Plant defensins also play an important role in innate immunity, such as heavy metal and some abiotic stresses tolerance. Objectives: In this paper, in vitro broad-spectrum activities, antimicrobial and heavy metal absorption, of a recombinant plant defensin were studied. Material and Methods: SDmod gene, a modified plant defensin gene, was cloned in pBISN1-IN (EU886197) plasmid, recombinant protein was produced by transient expression
via Agroinfiltration method in common bean. The recombinant protein was tested for antibacterial activity against Gram-negative, Gram-positive bacteria
and Fusarium sp. the effects of different treatments on heavy metal zinc absorption by this peptide were tested. Results: We confirmed the antibacterial activities of this peptide against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive
(Staphylococcus aureus and Bacillus cereus) bacteria, and antifungal activities of this peptide against Fusarium spp.
(Fusarium oxysporum and Fusarium solani).
High metal absorption coefficient for this peptide was also observed.
Results: Out of six actinobacterial isolates, VITVAMB 1 possessed the most efficient RO-16 decolorization property.
It decolorized 85.6% of RO-16 (250 mg L-1) within 24hrs. Isolate VITVAMB 1 was identified to be Nocardiopsis sp.
Maximum dye decolorization occurred at pH 8, temperature 35oC, 3% salt concentration and a dye concentration of 50 mg L-1. Conclusions: Results suggesting that modified defensin peptide facilitates a broader range of defense activities. dedefensins are an important part of the
innate immune system in eukaryotes. These molecules have multidimensional properties that making them promising agents for therapeutic drugs.
Collapse
Affiliation(s)
- Neda Mirakhorli
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Zahra Norolah
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Samira Foruzandeh
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Fateme Shafizade
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Nikookhah
- Department of Fisheries and Environmental Science, Shahrekord University, Shahrekord, Iran
| | - Behnaz Saffar
- Department of Genetic, Shahrekord University, Shahrekord, Iran
| | - Omid Ansari
- Ecofibre Industries Operations and Ananda Hemp, Brisbane, Australia
| |
Collapse
|
25
|
Luo JS, Gu T, Yang Y, Zhang Z. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 100:561-569. [PMID: 31053987 DOI: 10.1007/s11103-019-00878-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/25/2019] [Indexed: 05/27/2023]
Abstract
Plant defensin AtPDF2.6 is not secreted to the apoplast and localized in cytoplasm. AtPDF2.6 is mainly expressed in root vascular bundles of xylem parenchyma cell, and significantly induced by Cd stress. AtPDF2.6 detoxicate cytoplasmic Cd via chelation, thus enhanced Cd tolerance in Arabidopsis. In order to detoxify the heavy metal cadmium (Cd), plants have evolved several mechanisms, among which chelation represents the major Cd-detoxification mechanism. In this study, we aimed to identify a new defensin protein involved in cytoplasmic Cd detoxification by using plant molecular genetics and physiological methods. The results of bioinformatic analysis showed that the Arabidopsis thaliana defensin gene AtPDF2.6 has a signal peptide that may mediate its secretion to the cell wall. Subcellular localization analysis revealed that AtPDF2.6 is localized to the cytoplasm and is not secreted to the apoplast, whereas histochemical analysis indicated that AtPDF2.6 is mainly expressed in the root xylem parenchyma cells and that its expression is significantly induced by Cd. An in vitro Cd-binding assay revealed that AtPDF2.6 has Cd-chelating activity. Heterologous overexpression of AtPDF2.6 increased Cd tolerance in Escherichia coli and yeast, and AtPDF2.6 overexpression significantly enhanced Cd tolerance in Arabidopsis, whereas functional disruption of AtPDF2.6 decreased Cd tolerance. These data suggest that AtPDF2.6 detoxifies cytoplasmic Cd via chelation and thereby enhances Cd tolerance in Arabidopsis. Our findings accordingly challenge the commonly accepted view of defensins as secreted proteins.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Tianyu Gu
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Yang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Provincial Key Laboratory of Nutrition in Common University, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Changsha, 410128, China.
| |
Collapse
|
26
|
Luo JS, Zhang Z. Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation. BMC PLANT BIOLOGY 2019; 19:280. [PMID: 31242871 PMCID: PMC6595625 DOI: 10.1186/s12870-019-1895-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The xylem sap of vascular plants primarily transports water and mineral nutrients from the roots to the shoots and also transports heavy metals such as cadmium (Cd). Proteomic changes in xylem sap is an important mechanism for detoxifying Cd by plants. However, it is unclear how proteins in xylem sap respond to Cd. Here, we investigated the effects of Cd stress on the xylem sap proteome of Brassica napus using a label-free shotgun proteomic approach to elucidate plant response mechanisms to Cd toxicity. RESULTS We identified and quantified 672 proteins; 67% were predicted to be secretory, and 11% (73 proteins) were unique to Cd-treated samples. Cd stress caused statistically significant and biologically relevant abundance changes in 28 xylem sap proteins. Among these proteins, the metabolic pathways that were most affected were related to cell wall modifications, stress/oxidoreductases, and lipid and protein metabolism. We functionally validated a plant defensin-like protein, BnPDFL, which belongs to the stress/oxidoreductase category, that was unique to the Cd-treated samples and played a positive role in Cd tolerance. Subcellular localization analysis revealed that BnPDFL is cell wall-localized. In vitro Cd-binding assays revealed that BnPDFL has Cd-chelating activity. BnPDFL heterologous overexpression significantly enhanced Cd tolerance in E. coli and Arabidopsis. Functional disruption of Arabidopsis plant defensin genes AtPDF2.3 and AtPDF2.2, which are mainly expressed in root vascular bundles, significantly decreased Cd tolerance. CONCLUSIONS Several xylem sap proteins in Brassica napus are differentially induced in response to Cd treatment, and plant defensin plays a positive role in Cd tolerance.
Collapse
Affiliation(s)
- Jin-Song Luo
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Hunan Provincial Key Laboratory of Nutrition in Common University, Changsha, 410128 China
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, National Engineering Laboratory on Soil and Fertilizer Resources Efficient Utilization, Hunan Provincial Key Laboratory of Nutrition in Common University, Changsha, 410128 China
| |
Collapse
|
27
|
Lay FT, Ryan GF, Caria S, Phan TK, Veneer PK, White JA, Kvansakul M, Hulett MD. Structural and functional characterization of the membrane-permeabilizing activity of Nicotiana occidentalis defensin NoD173 and protein engineering to enhance oncolysis. FASEB J 2019; 33:6470-6482. [PMID: 30794440 DOI: 10.1096/fj.201802540r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Defensins are an extensive family of host defense peptides found ubiquitously across plant and animal species. In addition to protecting against infection by pathogenic microorganisms, some defensins are selectively cytotoxic toward tumor cells. As such, defensins have attracted interest as potential antimicrobial and anticancer therapeutics. The mechanism of defensin action against microbes and tumor cells appears to be conserved and involves the targeting and disruption of cellular membranes. This has been best defined for plant defensins, which upon binding specific phospholipids, such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid, form defensin-lipid oligomeric complexes that destabilize membranes, leading to cell lysis. In this study, to further define the anticancer and therapeutic properties of plant defensins, we have characterized a novel plant defensin, Nicotiana occidentalis defensin 173 (NoD173), from N. occidentalis. NoD173 at low micromolar concentrations selectively killed a panel of tumor cell lines over normal primary cells. To improve the anticancer activity of NoD173, we explored increasing cationicity by mutation, with NoD173 with the substitution of Q22 with lysine [NoD173(Q22K)], increasing the antitumor cell activity by 2-fold. NoD173 and the NoD173(Q22K) mutant exhibited only low levels of hemolytic activity, and both maintained activity against tumor cells in serum. The ability of NoD173 to inhibit solid tumor growth in vivo was tested in a mouse B16-F1 model, whereby injection of NoD173 into established subcutaneous tumors significantly inhibited tumor growth. Finally, we showed that NoD173 specifically targets PIP2 and determined by X-ray crystallography that a high-resolution structure of NoD173, which forms a conserved family-defining cysteine-stabilized-αβ motif with a dimeric lipid-binding conformation, configured into an arch-shaped oligomer of 4 dimers. These data provide insights into the mechanism of how defensins target membranes to kill tumor cells and provide proof of concept that defensins are able to inhibit tumor growth in vivo.-Lay, F. T., Ryan, G. F., Caria, S., Phan, T. K., Veneer, P. K., White, J. A., Kvansakul, M., Hulett M. D. Structural and functional characterization of the membrane-permeabilizing activity of Nicotiana occidentalis defensin NoD173 and protein engineering to enhance oncolysis.
Collapse
Affiliation(s)
- Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sofia Caria
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Prem K Veneer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Julie A White
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Dang F, Lin J, Chen Y, Li GX, Guan D, Zheng SJ, He S. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1581-1595. [PMID: 30649526 PMCID: PMC6416791 DOI: 10.1093/jxb/erz006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
WRKY transcription factors have been implicated in both plant immunity and plant responses to cadmium (Cd); however, the mechanism underlying the crosstalk between these processes is unclear. Here, we characterized the roles of CaWRKY41, a group III WRKY transcription factor, in immunity against the pathogenic bacterium Ralstonia solanacearum and Cd stress responses in pepper (Capsicum annuum). CaWRKY41 was transcriptionally up-regulated in response to Cd exposure, R. solanacearum inoculation, and H2O2 treatment. Virus-induced silencing of CaWRKY41 increased Cd tolerance and R. solanacearum susceptibility, while heterologous overexpression of CaWRKY41 in Arabidopsis impaired Cd tolerance, and enhanced Cd and zinc (Zn) uptake and H2O2 accumulation. Genes encoding reactive oxygen species-scavenging enzymes were down-regulated in CaWRKY41-overexpressing Arabidopsis plants, whereas genes encoding Zn transporters and enzymes involved in H2O2 production were up-regulated. Consistent with these findings, the ocp3 (overexpressor of cationic peroxidase 3) mutant, which has elevated H2O2 levels, displayed enhanced sensitivity to Cd stress. These results suggest that a positive feedback loop between H2O2 accumulation and CaWRKY41 up-regulation coordinates the responses of pepper to R. solanacearum inoculation and Cd exposure. This mechanism might reduce Cd tolerance by increasing Cd uptake via Zn transporters, while enhancing resistance to R. solanacearum.
Collapse
Affiliation(s)
- Fengfeng Dang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jinhui Lin
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongping Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, China
| | - Deyi Guan
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Correspondence: or
| | - Shuilin He
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Correspondence: or
| |
Collapse
|
29
|
Medicinal Potentialities of Plant Defensins: A Review with Applied Perspectives. MEDICINES 2019; 6:medicines6010029. [PMID: 30791451 PMCID: PMC6473878 DOI: 10.3390/medicines6010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Plant-based secondary metabolites with medicinal potentialities such as defensins are small, cysteine-rich peptides that represent an imperative aspect of the inherent defense system. Plant defensins possess broad-spectrum biological activities, e.g., bactericidal and insecticidal actions, as well as antifungal, antiviral, and anticancer activities. The unique structural and functional attributes provide a nonspecific and versatile means of combating a variety of microbial pathogens, i.e., fungi, bacteria, protozoa, and enveloped viruses. Some defensins in plants involved in other functions include the development of metal tolerance and the role in sexual reproduction, while most of the defensins make up the innate immune system of the plants. Defensins are structurally and functionally linked and have been characterized in various eukaryotic microorganisms, mammals, plants, gulls, teleost species of fish, mollusks, insect pests, arachnidan, and crustaceans. This defense mechanism has been improved biotechnologically as it helps to protect plants from fungal attacks in genetically modified organisms (GMO). Herein, we review plant defensins as secondary metabolites with medicinal potentialities. The first half of the review elaborates the origin, structural variations, and mechanism of actions of plant defensins. In the second part, the role of defensins in plant defense, stress response, and reproduction are discussed with suitable examples. Lastly, the biological applications of plant defensins as potential antimicrobial and anticancer agents are also deliberated. In summary, plant defensins may open a new prospect in medicine, human health, and agriculture.
Collapse
|
30
|
Odintsova TI, Slezina MP, Istomina EA, Korostyleva TV, Kasianov AS, Kovtun AS, Makeev VJ, Shcherbakova LA, Kudryavtsev AM. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance. PeerJ 2019; 7:e6125. [PMID: 30643692 PMCID: PMC6329339 DOI: 10.7717/peerj.6125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and de novo transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat Triticum kiharae and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of Fusarium sambucinum. Using a combination of two pipelines for DEFL mining in transcriptome data sets, as many as 143 DEFL genes were identified in T. kiharae, the vast majority of them represent novel genes. According to the number of cysteine residues and the cysteine motif, wheat DEFLs were classified into ten groups. Classical defensins with a characteristic 8-Cys motif assigned to group 1 DEFLs represent the most abundant group comprising 52 family members. DEFLs with a characteristic 4-Cys motif CX{3,5}CX{8,17}CX{4,6}C named group 4 DEFLs previously found only in legumes were discovered in wheat. Within DEFL groups, subgroups of similar sequences originated by duplication events were isolated. Variation among DEFLs within subgroups is due to amino acid substitutions and insertions/deletions of amino acid sequences. To identify IR-related DEFL genes, transcriptional changes in DEFL gene expression during elicitor-mediated IR were monitored. Transcriptional diversity of DEFL genes in wheat seedlings in response to the fungus Fusarium oxysporum, FS-94 elicitors, and the combination of both (elicitors + fungus) was demonstrated, with specific sets of up- and down-regulated DEFL genes. DEFL expression profiling allowed us to gain insight into the mode of action of the elicitors from F. sambucinum. We discovered that the elicitors up-regulated a set of 24 DEFL genes. After challenge inoculation with F. oxysporum, another set of 22 DEFLs showed enhanced expression in IR-displaying seedlings. These DEFLs, in concert with other defense molecules, are suggested to determine enhanced resistance of elicitor-pretreated wheat seedlings. In addition to providing a better understanding of the mode of action of the elicitors from FS-94 in controlling diseases, up-regulated IR-specific DEFL genes represent novel candidates for genetic transformation of plants and development of pathogen-resistant crops.
Collapse
Affiliation(s)
- Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marina P Slezina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Istomina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kovtun
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Larisa A Shcherbakova
- All-Russian Research Institute of Phytopathology, B. Vyazyomy, Moscow Region, Russia
| | | |
Collapse
|
31
|
Kumar M, Yusuf MA, Yadav P, Narayan S, Kumar M. Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:290. [PMID: 30915095 PMCID: PMC6423178 DOI: 10.3389/fpls.2019.00290] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/21/2019] [Indexed: 05/22/2023]
Abstract
Plant defensins are mainly known for their antifungal activity. However, limited information is available regarding their function in abiotic stresses. In this study, a defensin gene, Ca-AFP, from Cicer arietinum, commonly known as chickpea, was cloned and transformed in Arabidopsis thaliana for its functional characterization under simulated water-deficit conditions. Under simulated water-deficit conditions (mannitol and polyethylene glycol-6000 induced), the transgenic A. thaliana plants had higher accumulation of the Ca-AFP transcript compared to that under non-stress condition and showed higher germination rate, root length, and biomass than the wild-type (WT) plants. To get further insights into the role of Ca-AFP in conferring tolerance to water-deficit stress, we determined various physiological parameters and found significant reduction in the transpiration rate and stomatal conductance whereas the net photosynthesis and water use efficiency was increased in the transgenic plants compared to that in the WT plants under water deficit conditions. The transgenic plants showed enhanced superoxide dismutase, ascorbate peroxidase, and catalase activities, had higher proline, chlorophyll, and relative water content, and exhibited reduced ion leakage and malondialdehyde content under water-deficit conditions. Overall, our results indicate that overexpression of Ca-AFP could be an efficient approach for conferring tolerance to water-deficit stress in plants.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Lucknow, India
| | - Pooja Yadav
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiv Narayan
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Manoj Kumar
- Department of Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- *Correspondence: Manoj Kumar,
| |
Collapse
|
32
|
Sinha R, Pal AK, Singh AK. Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik.) genotypes under drought stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Shafee T, Anderson MA. A quantitative map of protein sequence space for the cis-defensin superfamily. Bioinformatics 2018; 35:743-752. [DOI: 10.1093/bioinformatics/bty697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Thomas Shafee
- Department of biochemistry and genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marilyn A Anderson
- Department of biochemistry and genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
34
|
Finkina EI, Ovchinnikova TV. Plant Defensins: Structure, Functions, Biosynthesis, and the Role in the Immune Response. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Zhao FJ, Huang XY. Cadmium Phytoremediation: Call Rice CAL1. MOLECULAR PLANT 2018; 11:640-642. [PMID: 29614318 DOI: 10.1016/j.molp.2018.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Sharma KK, Pothana A, Prasad K, Shah D, Kaur J, Bhatnagar D, Chen Z, Raruang Y, Cary JW, Rajasekaran K, Sudini HK, Bhatnagar‐Mathur P. Peanuts that keep aflatoxin at bay: a threshold that matters. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1024-1033. [PMID: 28973784 PMCID: PMC5902767 DOI: 10.1111/pbi.12846] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 05/04/2023]
Abstract
Aflatoxin contamination in peanuts poses major challenges for vulnerable populations of sub-Saharan Africa and South Asia. Developing peanut varieties to combat preharvest Aspergillus flavus infection and resulting aflatoxin contamination has thus far remained a major challenge, confounded by highly complex peanut-Aspergilli pathosystem. Our study reports achieving a high level of resistance in peanut by overexpressing (OE) antifungal plant defensins MsDef1 and MtDef4.2, and through host-induced gene silencing (HIGS) of aflM and aflP genes from the aflatoxin biosynthetic pathway. While the former improves genetic resistance to A. flavus infection, the latter inhibits aflatoxin production in the event of infection providing durable resistance against different Aspergillus flavus morphotypes and negligible aflatoxin content in several peanut events/lines well. A strong positive correlation was observed between aflatoxin accumulation and decline in transcription of the aflatoxin biosynthetic pathway genes in both OE-Def and HIGS lines. Transcriptomic signatures in the resistant lines revealed key mechanisms such as regulation of aflatoxin synthesis, its packaging and export control, besides the role of reactive oxygen species-scavenging enzymes that render enhanced protection in the OE and HIGS lines. This is the first study to demonstrate highly effective biotechnological strategies for successfully generating peanuts that are near-immune to aflatoxin contamination, offering a panacea for serious food safety, health and trade issues in the semi-arid regions.
Collapse
Affiliation(s)
- Kiran K. Sharma
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| | - Arunima Pothana
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| | - Kalyani Prasad
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| | - Dilip Shah
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Jagdeep Kaur
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | - Deepak Bhatnagar
- Southern Regional Research CenterAgricultural Research ServiceUnited States Department of Agriculture (USDA/ARS)New OrleansLAUSA
| | - Zhi‐Yuan Chen
- Department of Plant Pathology and Crop PhysiologyAgricultural centerLouisiana State UniversityBaton RougeLAUSA
| | - Yenjit Raruang
- Department of Plant Pathology and Crop PhysiologyAgricultural centerLouisiana State UniversityBaton RougeLAUSA
| | - Jeffrey W. Cary
- Southern Regional Research CenterAgricultural Research ServiceUnited States Department of Agriculture (USDA/ARS)New OrleansLAUSA
| | - Kanniah Rajasekaran
- Southern Regional Research CenterAgricultural Research ServiceUnited States Department of Agriculture (USDA/ARS)New OrleansLAUSA
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| | - Pooja Bhatnagar‐Mathur
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadTelanganaIndia
| |
Collapse
|
37
|
Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, Yadav P, Rawat S, Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018; 212-213:29-37. [PMID: 29853166 DOI: 10.1016/j.micres.2018.04.008] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides.
Collapse
Affiliation(s)
- Sajad Ali
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India; Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Azra N Kamili
- Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India
| | - Ajaz Ali Bhat
- Govt Degree College Boys Baramulla, Jammu and Kashmir, India
| | - Zahoor Ahmad Mir
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Anshika Tyagi
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | | | - Prashant Yadav
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sandhya Rawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India.
| |
Collapse
|
38
|
Martin RC, Vining K, Dombrowski JE. Genome-wide (ChIP-seq) identification of target genes regulated by BdbZIP10 during paraquat-induced oxidative stress. BMC PLANT BIOLOGY 2018; 18:58. [PMID: 29636001 PMCID: PMC5894230 DOI: 10.1186/s12870-018-1275-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND bZIP transcription factors play a significant role in many aspects of plant growth and development and also play critical regulatory roles during plant responses to various stresses. Overexpression of the Brachypodium bZIP10 (Bradi1g30140) transcription factor conferred enhanced oxidative stress tolerance and increased viability when plants or cells were exposed to the herbicide paraquat. To gain a better understanding of genes involved in bZIP10 conferred oxidative stress tolerance, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) was performed on BdbZIP10 overexpressing plants in the presence of oxidative stress. RESULTS We identified a transcription factor binding motif, TGDCGACA, different from most known bZIP TF motifs but with strong homology to the Arabidopsis zinc deficiency response element. Analysis of the immunoprecipitated sequences revealed an enrichment of gene ontology groups with metal ion transmembrane transporter, transferase, catalytic and binding activities. Functional categories including kinases and phosphotransferases, cation/ion transmembrane transporters, transferases (phosphorus-containing and glycosyl groups), and some nucleoside/nucleotide binding activities were also enriched. CONCLUSIONS Brachypodium bZIP10 is involved in zinc homeostasis, as it relates to oxidative stress.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA ARS National Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97330 USA
| | - Kelly Vining
- Department of Horticulture, 4123 Agricultural & Life Sciences, Oregon State University, Corvallis, OR 97330 USA
| | - James E. Dombrowski
- USDA ARS National Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97330 USA
| |
Collapse
|
39
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
40
|
Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM. A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 2018; 9:645. [PMID: 29440679 PMCID: PMC5811569 DOI: 10.1038/s41467-018-03088-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Pollution by heavy metals limits the area of land available for cultivation of food crops. A potential solution to this problem might lie in the molecular breeding of food crops for phytoremediation that accumulate toxic metals in straw while producing safe and nutritious grains. Here, we identify a rice quantitative trait locus we name cadmium (Cd) accumulation in leaf 1 (CAL1), which encodes a defensin-like protein. CAL1 is expressed preferentially in root exodermis and xylem parenchyma cells. We provide evidence that CAL1 acts by chelating Cd in the cytosol and facilitating Cd secretion to extracellular spaces, hence lowering cytosolic Cd concentration while driving long-distance Cd transport via xylem vessels. CAL1 does not appear to affect Cd accumulation in rice grains or the accumulation of other essential metals, thus providing an efficient molecular tool to breed dual-function rice varieties that produce safe grains while remediating paddy soils.
Collapse
Affiliation(s)
- Jin-Song Luo
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Huang
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Da-Li Zeng
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guo-Bin Zhang
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Ling Ma
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Guan
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan-Lei Fu
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bin Han
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Qian
- China National Rice Research Institute, Hangzhou, 310006, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics and CAS center for excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
41
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system. Sci Rep 2017; 7:9175. [PMID: 28835670 PMCID: PMC5569111 DOI: 10.1038/s41598-017-08497-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 12/05/2022] Open
Abstract
Plant defensins (PDFs) are cysteine-rich peptides that have a range of biological functions, including defence against fungal pathogens. However, little is known about their role in defence against bacteria. In this study, we showed that the protein encoded by ARABIDOPSIS THALIANA PLANT DEFENSIN TYPE 1.1 (AtPDF1.1) is a secreted protein that can chelate apoplastic iron. Transcripts of AtPDF1.1 were induced in both systemic non-infected leaves of Arabidopsis thaliana plants and those infected with the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum (Pcc). The expression levels of AtPDF1.1 with correct subcellular localization in transgenic A. thaliana plants were positively correlated with tolerance to Pcc, suggesting its involvement in the defence against this bacterium. Expression analysis of genes associated with iron homeostasis/deficiency and hormone signalling indicated that the increased sequestration of iron by apoplastic AtPDF1.1 overexpression perturbs iron homeostasis in leaves and consequently activates an iron-deficiency-mediated response in roots via the ethylene signalling pathway. This in turn triggers ethylene-mediated signalling in systemic leaves, which is involved in suppressing the infection of necrotrophic pathogens. These findings provide new insight into the key functions of plant defensins in limiting the infection by the necrotrophic bacterium Pcc via an iron-deficiency-mediated defence response.
Collapse
|
43
|
Mahnam K, Foruzandeh S, Mirakhorli N, Saffar B. Experimental and theoretical studies of cadmium ions absorption by a new reduced recombinant defensin. J Biomol Struct Dyn 2017; 36:2004-2014. [PMID: 28617190 DOI: 10.1080/07391102.2017.1340851] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heavy metal pollutants such as Cd, Hg, Pb, As, and Se are considered as both a global problem and a growing threat to the humanity. Being strongly poisonous to the metal-sensitive enzymes and leading to the growth inhibition and death of organisms, these metals have a toxic impact on the plants and animals. Inducing the metal-binding cysteine-rich peptides such as metallothioneins, phytochelatins, and defensins, higher organisms like plants and animals usually react to the heavy metal stress. In this study, a recombinant defensin protein was expressed in bean and its ability in the cadmium absorption was determined. Experimental studies revealed that this protein was able to absorb cadmium ions in reduced form more than oxide one. Molecular dynamics simulations were carried out in order to evaluation of experimental studies, using a model of Cd2+ or Na+ and Cl- ions enclosed in a fully hydrated simulation box with the recombinant defensin. The theoretical results also suggested that the reduced recombinant defensin was more powerful in the absorption of Cd2+ than its oxide form. The present study is the first report of Cd2+ absorption potential of this new reduced recombinant defensin. The results unraveled that this recombinant defensin can be adopted as a molecular switch in the cadmium pollution of the environment and also the important role of sulfur groups in the absorption of cadmium ions.
Collapse
Affiliation(s)
- Karim Mahnam
- a Faculty of Science, Department of Biology , Shahrekord University , Shahrekord , Iran
| | - Samira Foruzandeh
- b Faculty of Agriculture, Department of Plant Breeding and Biotechnology , Shahrekord University , Shahrekord , Iran
| | - Neda Mirakhorli
- b Faculty of Agriculture, Department of Plant Breeding and Biotechnology , Shahrekord University , Shahrekord , Iran
| | - Behnaz Saffar
- c Faculty of Science, Department of Genetics , Shahrekord University , Shahrekord , Iran
| |
Collapse
|
44
|
Weiller F, Moore JP, Young P, Driouich A, Vivier MA. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides. ANNALS OF BOTANY 2017; 119:803-813. [PMID: 27481828 PMCID: PMC5379576 DOI: 10.1093/aob/mcw141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection.
Collapse
Affiliation(s)
- Florent Weiller
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - John P. Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Philip Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, Normandie Université, Université de Rouen, 76821 Mont Saint Aignan cedex, France
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
45
|
Shafee TMA, Lay FT, Phan TK, Anderson MA, Hulett MD. Convergent evolution of defensin sequence, structure and function. Cell Mol Life Sci 2017; 74:663-682. [PMID: 27557668 PMCID: PMC11107677 DOI: 10.1007/s00018-016-2344-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023]
Abstract
Defensins are a well-characterised group of small, disulphide-rich, cationic peptides that are produced by essentially all eukaryotes and are highly diverse in their sequences and structures. Most display broad range antimicrobial activity at low micromolar concentrations, whereas others have other diverse roles, including cell signalling (e.g. immune cell recruitment, self/non-self-recognition), ion channel perturbation, toxic functions, and enzyme inhibition. The defensins consist of two superfamilies, each derived from an independent evolutionary origin, which have subsequently undergone extensive divergent evolution in their sequence, structure and function. Referred to as the cis- and trans-defensin superfamilies, they are classified based on their secondary structure orientation, cysteine motifs and disulphide bond connectivities, tertiary structure similarities and precursor gene sequence. The utility of displaying loops on a stable, compact, disulphide-rich core has been exploited by evolution on multiple occasions. The defensin superfamilies represent a case where the ensuing convergent evolution of sequence, structure and function has been particularly extreme. Here, we discuss the extent, causes and significance of these convergent features, drawing examples from across the eukaryotes.
Collapse
Affiliation(s)
- Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
46
|
VI TXT, LE HD, NGUYEN VTT, LE VS, CHU HM. Expression of the ZmDEF1 gene and α-amylase inhibitory activityof recombinant defensin against maize weevils. Turk J Biol 2017. [DOI: 10.3906/biy-1512-64] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Tamaoki M, Maruyama-Nakashita A. Molecular Mechanisms of Selenium Responses and Resistance in Plants. PLANT ECOPHYSIOLOGY 2017. [DOI: 10.1007/978-3-319-56249-0_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Istomina EA, Korostyleva TV, Rozhnova NA, Rogozhin EA, Pukhalskiy VA, Odintsova TI. Genes encoding hevein-like antimicrobial peptides WAMPs: Expression in response to phytohormones and environmental factors. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416110053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Paape T, Hatakeyama M, Shimizu-Inatsugi R, Cereghetti T, Onda Y, Kenta T, Sese J, Shimizu KK. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica. Mol Biol Evol 2016; 33:2781-2800. [PMID: 27413047 PMCID: PMC5062318 DOI: 10.1093/molbev/msw141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland Functional Genomics Center Zurich, Winterthurerstrasse 190, Zurich, CH 8057, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland
| | - Yoshihiko Onda
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Kanagawa, Japan Sugadaira Montane Research Center, University of Tsukuba, Ueda, Nagano, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Ueda, Nagano, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies and Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, CH 8057, Switzerland Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
| |
Collapse
|
50
|
NMR structure and conformational dynamics of AtPDFL2.1, a defensin-like peptide from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1739-1747. [PMID: 27592418 DOI: 10.1016/j.bbapap.2016.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 01/27/2023]
Abstract
Plant defensins constitute the innate immune response against pathogens such as fungi and bacteria. Typical plant defensins are small, basic peptides that possess a characteristic three-dimensional fold stabilized by three or four disulfide bridges. In addition to known defensin genes, the Arabidopsis genome comprises >300 defensin-like genes coding for small cysteine-rich peptides. One of such genes encodes for AtPDFL2.1, a putative antifungal peptide of 55 amino acids, with six cysteine residues in its primary sequence. To understand the functional role of AtPDFL2.1, we carried out antifungal activity assays and determined its high-resolution three-dimensional structure using multidimensional solution NMR spectroscopy. We found that AtPDFL2.1 displays a strong inhibitory effect against Fusarium graminearum (IC50≈4μM). This peptide folds in the canonical cysteine-stabilized αβ (CSαβ) motif, consisting of one α-helix and one triple-stranded antiparallel β-sheet stabilized by three disulfide bridges and a hydrophobic cluster of residues within its core where the α-helix packs tightly against the β-sheets. Nuclear spin relaxation measurements show that the structure of AtPDFL2.1 is essentially rigid, with the L3 loop located between β-strands 2 and 3 being more flexible and displaying conformational exchange. Interestingly, the dynamic features of loop L3 are conserved among defensins and are probably correlated to the antifungal and receptor binding activities.
Collapse
|