1
|
Wang B, Wang Z, Tang Y, Zhong N, Wu J. Cotton BOP1 mediates SUMOylation of GhBES1 to regulate fibre development and plant architecture. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3054-3067. [PMID: 39003587 DOI: 10.1111/pbi.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
The Arabidopsis BLADE-ON-PETIOLE (BOP) genes are primarily known for their roles in regulating leaf and floral patterning. However, the broader functions of BOPs in regulating plant traits remain largely unexplored. In this study, we investigated the role of the Gossypium hirsutum BOP1 gene in the regulation of fibre length and plant height through the brassinosteroid (BR) signalling pathway. Transgenic cotton plants overexpressing GhBOP1 display shorter fibre lengths and reduced plant height compared to the wild type. Conversely, GhBOP1 knockdown led to increased plant height and longer fibre, indicating a connection with phenotypes influenced by the BR pathway. Our genetic evidence supports the notion that GhBOP1 regulates fibre length and plant height in a GhBES1-dependent manner, with GhBES1 being a major transcription factor in the BR signalling pathway. Yeast two-hybrid, luciferase complementation assay and pull-down assay results demonstrated a direct interaction between GhBOP1 and GhSUMO1, potentially forming protein complexes with GhBES1. In vitro and in vivo SUMOylation analyses revealed that GhBOP1 functions in an E3 ligase-like manner to mediate GhBES1 SUMOylation and subsequent degradation. Therefore, our study not only uncovers a novel mechanism of GhBES1 SUMOylation but also provides significant insights into how GhBOP1 regulates fibre length and plant height by controlling GhBES1 accumulation.
Collapse
Affiliation(s)
- Bingting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhian Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Ye Tang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Marttinen EM, Lehtonen MT, van Gessel N, Reski R, Valkonen JPT. Viral suppressor of RNA silencing in vascular plants also interferes with the development of the bryophyte Physcomitrella patens. PLANT, CELL & ENVIRONMENT 2022; 45:220-235. [PMID: 34564869 PMCID: PMC9135061 DOI: 10.1111/pce.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.
Collapse
Affiliation(s)
- Eeva M. Marttinen
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Mikko T. Lehtonen
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
- Plant Analytics UnitFinnish Food AuthorityHelsinkiFinland
| | - Nico van Gessel
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Ralf Reski
- Plant Biotechnology, Faculty of BiologyUniversity of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | | |
Collapse
|
3
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
4
|
Hata Y, Naramoto S, Kyozuka J. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2019; 132:617-627. [PMID: 31432295 DOI: 10.1007/s10265-019-01132-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
The timing of the transition between developmental phases is a critical determinant of plant form. In the moss Physcomitrella patens, the transition from protonema to gametophore is a particularly important step as it results in a change from two-dimensional to three-dimensional growth of the plant body. It is well known that this transition is promoted by cytokinin (CK), however, the underlying mechanisms are poorly understood. Previously, it was reported that P. patens orthologs of BLADE-ON-PETIOLE (BOP) genes (PpBOPs) work downstream of CK to promote the transition to gametophore. To further understand the role of PpBOPs in the control of this transition, we performed functional analyses of PpBOP genes. We simultaneously disrupted the function of all three PpBOP genes in P. patens using CRISPR technology, however, no abnormal phenotypes were observed in the triple mutant during either the gametophytic or the sporophytic growth stages. CK treatment did not alter the phase change in the triple mutant. We conclude that PpBOP genes are unnecessary in the control of P. patens development under normal conditions. We propose that BOP genes are not involved in the control of developmental processes in bryophytes and other basal land plants, but may function in physiological processes such as in the defense response.
Collapse
Affiliation(s)
- Yuki Hata
- Tohoku University Graduate School of Life Sciences, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Satoshi Naramoto
- Tohoku University Graduate School of Life Sciences, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Junko Kyozuka
- Tohoku University Graduate School of Life Sciences, 2-1-1, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
5
|
Moody LA. The 2D to 3D growth transition in the moss Physcomitrella patens. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:88-95. [PMID: 30399606 DOI: 10.1016/j.pbi.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
The colonization of land by plants coincided with and was most likely facilitated by the evolution of 3-dimensional (3D) growth. 3D growth is a pivotal feature of all land plants, but most develop in a way that precludes genetic investigation. In the moss Physcomitrella patens, 3D growth (gametophores) is preceded by an extended 2-dimensional (2D) growth phase (protonemata) that can be propagated indefinitely. Studies using P. patens have thus elucidated some of the molecular mechanisms underlying 3D growth regulation. This review summarizes the known molecular mechanisms underlying both the formation of gametophore initial cells and the development of the 3D growth in gametophores.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
6
|
Couzigou JM, Lauressergues D, André O, Gutjahr C, Guillotin B, Bécard G, Combier JP. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis. Cell Host Microbe 2017; 21:106-112. [PMID: 28041928 DOI: 10.1016/j.chom.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 01/10/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Dominique Lauressergues
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France; Toulouse Tech Transfer, Maison de la Recherche et de la Valorisation, 118 route de Narbonne, 31432 Toulouse, France
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, Ludwig Maximilians University Munich, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Bruno Guillotin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Jean-Philippe Combier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France.
| |
Collapse
|
7
|
Schuessele C, Hoernstein SNW, Mueller SJ, Rodriguez-Franco M, Lorenz T, Lang D, Igloi GL, Reski R. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. THE NEW PHYTOLOGIST 2016; 209:1014-1027. [PMID: 26428055 DOI: 10.1111/nph.13656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE:GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.
Collapse
Affiliation(s)
- Christian Schuessele
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Stefanie J Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- TIP - Trinational Institute for Plant Research, Upper Rhine Valley, 79104, Freiburg, Germany
| |
Collapse
|
8
|
Frank MH, Scanlon MJ. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:743-51. [PMID: 26123849 DOI: 10.1111/tpj.12928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/17/2015] [Accepted: 06/23/2015] [Indexed: 05/18/2023]
Abstract
Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.
Collapse
Affiliation(s)
- Margaret H Frank
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michael J Scanlon
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Hrtyan M, Šliková E, Hejátko J, Růžička K. RNA processing in auxin and cytokinin pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4897-912. [PMID: 25922481 DOI: 10.1093/jxb/erv189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin and cytokinin belong to the 'magnificent seven' plant hormones, having tightly interconnected pathways leading to common as well as opposing effects on plant morphogenesis. Tremendous progress in the past years has yielded a broad understanding of their signalling, metabolism, regulatory pathways, transcriptional networks, and signalling cross-talk. One of the rapidly expanding areas of auxin and cytokinin research concerns their RNA regulatory networks. This review summarizes current knowledge about post-transcriptional gene silencing, the role of non-coding RNAs, the regulation of translation, and alternative splicing of auxin- and cytokinin-related genes. In addition, the role of tRNA-bound cytokinins is also discussed. We highlight the most recent publications dealing with this topic and underline the role of RNA processing in auxin- and cytokinin-mediated growth and development.
Collapse
Affiliation(s)
- Mónika Hrtyan
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Šliková
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
10
|
Shimada S, Komatsu T, Yamagami A, Nakazawa M, Matsui M, Kawaide H, Natsume M, Osada H, Asami T, Nakano T. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. THE PLANT CELL 2015; 27:375-90. [PMID: 25663622 PMCID: PMC4456923 DOI: 10.1105/tpc.114.131508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.
Collapse
Affiliation(s)
- Setsuko Shimada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Komatsu
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Ayumi Yamagami
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miki Nakazawa
- RIKEN Genome Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Kawaide
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Natsume
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Osada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Nakano
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
12
|
Kofuji R, Hasebe M. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:13-21. [PMID: 24507489 DOI: 10.1016/j.pbi.2013.10.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 05/18/2023]
Abstract
Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss.
Collapse
Affiliation(s)
- Rumiko Kofuji
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan; Department of Basic Biology, Graduate School of Advanced Studies, Okazaki 444-8585, Japan.
| |
Collapse
|
13
|
Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. ScientificWorldJournal 2013; 2013:924153. [PMID: 24302881 PMCID: PMC3835848 DOI: 10.1155/2013/924153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022] Open
Abstract
PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.
Collapse
|
14
|
Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jönsson H, Thelander M, Sundberg E. The MOSS Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. PLANT PHYSIOLOGY 2013; 162:1406-19. [PMID: 23669745 PMCID: PMC3707547 DOI: 10.1104/pp.113.214023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to establish a reference for analysis of the function of auxin and the auxin biosynthesis regulators SHORT INTERNODE/STYLISH (SHI/STY) during Physcomitrella patens reproductive development, we have described male (antheridial) and female(archegonial) development in detail, including temporal and positional information of organ initiation. This has allowed us to define discrete stages of organ morphogenesis and to show that reproductive organ development in P. patens is highly organized and that organ phyllotaxis differs between vegetative and reproductive development. Using the PpSHI1 and PpSHI2 reporter and knockout lines, the auxin reporters GmGH3(pro):GUS and PpPINA(pro):GFP-GUS, and the auxin-conjugating transgene PpSHI2(pro):IAAL, we could show that the PpSHI genes, and by inference also auxin, play important roles for reproductive organ development in moss. The PpSHI genes are required for the apical opening of the reproductive organs, the final differentiation of the egg cell, and the progression of canal cells into a cell death program. The apical cells of the archegonium, the canal cells, and the egg cell are also sites of auxin responsiveness and are affected by reduced levels of active auxin, suggesting that auxin mediates PpSHI function in the reproductive organs.
Collapse
|
15
|
Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS. Tell me more: roles of NPRs in plant immunity. TRENDS IN PLANT SCIENCE 2013; 18:402-11. [PMID: 23683896 DOI: 10.1016/j.tplants.2013.04.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.
Collapse
|
16
|
Shi Z, Maximova S, Liu Y, Verica J, Guiltinan MJ. The salicylic acid receptor NPR3 is a negative regulator of the transcriptional defense response during early flower development in Arabidopsis. MOLECULAR PLANT 2013; 6:802-16. [PMID: 22986789 DOI: 10.1093/mp/sss091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis non-expressor of PR1 (NPR1) is a transcription co-activator that plays a central role in regulating the transcriptional response to plant pathogens. The NPR family consists of NPR1 and five NPR1-like genes. The NPR1 paralog NPR3 has recently been shown to function as a receptor of the plant hormone salicylic acid and to mediate proteosomal degradation of NPR1. The function of NPR3 protein during early flower development was revealed through a detailed molecular-genetic analysis including promoter transcriptional fusion analysis, phenotype characterization of npr3-3 mutants/overexpressors, and whole-plant fitness analysis. The physical interaction between NPR3 and NPR1/TGA2 was explored using bimolecular fluorescence complementation analysis in onion epidermal cells. Here, we show that NPR3 expression was strongest in the petals and sepals of developing flowers and declined after flower opening. Consistently with this observation, an npr3 knockout mutant displayed enhanced resistance to Pseudomonas syringae infection of immature flowers, but not leaves. Developing npr3 flowers exhibited increased levels of basal and induced PR1 transcript accumulation. However, the npr3 mutant showed lower fitness compared to Col-0 in the absence of pathogen. Moreover, NPR3 was shown to interact with NPR1 and TGA2 in vivo. Our data suggest that NPR3 is a negative regulator of defense responses during early flower development and it may function through the association with both NPR1 and TGA2.
Collapse
Affiliation(s)
- Zi Shi
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
17
|
de León IP, Montesano M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int J Mol Sci 2013; 14:3178-200. [PMID: 23380962 PMCID: PMC3588038 DOI: 10.3390/ijms14023178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023] Open
Abstract
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +598-24872605; Fax: +598-24875548
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Mataojo 2055, CP 11400, Montevideo, Uruguay; E-Mail:
| |
Collapse
|
18
|
Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 2013; 14:1516-40. [PMID: 23344055 PMCID: PMC3565333 DOI: 10.3390/ijms14011516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Collapse
|
19
|
Cho SH, Coruh C, Axtell MJ. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. THE PLANT CELL 2012; 24:4837-49. [PMID: 23263766 PMCID: PMC3556961 DOI: 10.1105/tpc.112.103176] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 05/18/2023]
Abstract
microRNA156 (miR156) affects developmental timing in flowering plants. miR156 and its target relationships with members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family appear universally conserved in land plants, but the specific functions of miR156 outside of flowering plants are unknown. We find that miR156 promotes a developmental change from young filamentous protonemata to leafy gametophores in the moss Physcomitrella patens, opposite to its role as an inhibitor of development in flowering plants. P. patens miR156 also influences accumulation of trans-acting small interfering RNAs (tasiRNAs) dependent upon a second ancient microRNA, miR390. Both miR156 and miR390 directly target a single major tasiRNA primary transcript. Inhibition of miR156 function causes increased miR390-triggered tasiRNA accumulation and decreased accumulation of tasiRNA targets. Overexpression of miR390 also caused a slower formation of gametophores, elevated miR390-triggered tasiRNA accumulation, and reduced level of tasiRNA targets. We conclude that a gene regulatory network controlled by miR156, miR390, and their targets controls developmental change in P. patens. The broad outlines and regulatory logic of this network are conserved in flowering plants, albeit with some modifications. Partially conserved small RNA networks thus influence developmental timing in plants with radically different body plans.
Collapse
Affiliation(s)
- Sung Hyun Cho
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
| | - Ceyda Coruh
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802
| | - Michael J. Axtell
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
- Plant Biology PhD Program, Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802
- Address correspondence to
| |
Collapse
|
20
|
Arazi T. MicroRNAs in the moss Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2012; 80:55-65. [PMID: 21373961 DOI: 10.1007/s11103-011-9761-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/25/2011] [Indexed: 05/10/2023]
Abstract
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter's evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.
Collapse
Affiliation(s)
- Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
21
|
Wu XM, Yu Y, Han LB, Li CL, Wang HY, Zhong NQ, Yao Y, Xia GX. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. PLANT PHYSIOLOGY 2012; 159:835-50. [PMID: 22492844 PMCID: PMC3375945 DOI: 10.1104/pp.112.193482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/03/2012] [Indexed: 05/19/2023]
Abstract
The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cell Differentiation
- Cell Enlargement
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Flowers/genetics
- Flowers/physiology
- Flowers/ultrastructure
- Gene Expression Regulation, Plant
- Genes, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/cytology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yi Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Chun-Li Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yuan Yao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | | |
Collapse
|
22
|
Somorjai IML, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012; 7:704-22. [PMID: 22581706 DOI: 10.1002/biot.201100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
In both plants and animals, regeneration requires the activation of stem cells. This is possibly related to the origin and requirements of multicellularity. Although long diverged from a common ancestry, plant and animal models such as Arabidopsis, Drosophila and mouse share considerable similarities in stem cell regulation. This includes stem cell niche organisation, epigenetic modification of DNA and histones, and the role of small RNA machinery in differentiation and pluripotency states. Dysregulation of any of these can lead to premature ageing, patterning and specification defects, as well as cancers. Moreover, emerging basal animal and plant systems are beginning to provide important clues concerning the diversity and evolutionary history of stem cell regulatory mechanisms in eukaryotes. This review provides a comparative framework, highlighting both the commonalities and differences among groups, which should promote the intelligent design of artificial stem cell systems, and thereby fuel the field of biomaterials science.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
23
|
Khan M, Xu M, Murmu J, Tabb P, Liu Y, Storey K, McKim SM, Douglas CJ, Hepworth SR. Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. PLANT PHYSIOLOGY 2012; 158:946-60. [PMID: 22114095 PMCID: PMC3271780 DOI: 10.1104/pp.111.188573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
The transition to flowering in many plant species, including Arabidopsis (Arabidopsis thaliana), is marked by the elongation of internodes to make an inflorescence upon which lateral branches and flowers are arranged in a characteristic pattern. Inflorescence patterning relies in part on the activities of two three-amino-acid loop-extension homeodomain transcription factors: BREVIPEDICELLUS (BP) and PENNYWISE (PNY) whose interacting products also promote meristem function. We examine here the genetic interactions between BP-PNY whose expression is up-regulated in stems at the floral transition, and the lateral organ boundary genes BLADE-ON-PETIOLE1 (BOP1) and BOP2, whose expression is restricted to pedicel axils. Our data show that bp and pny inflorescence defects are caused by BOP1/2 gain of function in stems and pedicels. Compatible with this, inactivation of BOP1/2 rescues these defects. BOP expression domains are differentially enlarged in bp and pny mutants, corresponding to the distinctive patterns of growth restriction in these mutants leading to compacted internodes and clustered or downward-oriented fruits. Our data indicate that BOP1/2 are positive regulators of KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 expression and that growth restriction in BOP1/2 gain-of-function plants requires KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6. Antagonism between BOP1/2 and BP is explained in part by their reciprocal regulation of gene expression, as evidenced by the identification of lignin biosynthetic genes that are repressed by BP and activated by BOP1/2 in stems. These data reveal BOP1/2 gain of function as the basis of bp and pny inflorescence defects and reveal how antagonism between BOP1/2 and BP-PNY contributes to inflorescence patterning in a model plant species.
Collapse
|
24
|
Saleh O, Arazi T, Frank W. MicroRNA-mediated establishment of transcription factor gradients controlling developmental phase transitions. PLANT SIGNALING & BEHAVIOR 2011; 6:873-877. [PMID: 21543901 PMCID: PMC3218492 DOI: 10.4161/psb.6.6.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
The juvenile-to-adult phase transition is an important and critical step during plant development to ensure maximum reproductivity. This transition is regulated by different pathways, in some of which microRNAs are considered to be essential key components. In seed plants, miR156 and miR172 act sequentially in well characterized pathways to induce the vegetative phase change and floral formation by the establishment of spatiotemporal gradients of their cognate target transcripts that encode master regulators of development. Recently, we reported on an unrelated, moss-specific miRNA that acts similarly in the control of the juvenile-to-adult phase transition in Physcomitrella patens. Physcomitrella miR534a defines the spatial expression of two transcripts encoding BLADE-ON-PETIOLE (BOP) transcriptional coactivators in a cytokinin-dependent manner. We propose that this miRNA-mediated control is a major mechanism underlying the cytokinin-induced formation of the gametophore meristem in Physcomitrella. Furthermore, it suggests a convergent evolution of miRNA-controlled pathways regulating phase transitions in seed and non-seed plants.
Collapse
Affiliation(s)
- Omar Saleh
- Plant Biotechnology; University of Freiburg; Freiburg, Germany
| | - Tzahi Arazi
- Institute of Plant Sciences; Agricultural Research Organization; Volcani Center; Rishon LeZion, Israel
| | - Wolfgang Frank
- Plant Biotechnology; University of Freiburg; Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS); Freiburg, Germany
| |
Collapse
|