1
|
Zhang C, Jiang L, Qian J, Yu G, Qing H, Li L, Fu J. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in petunia and identification of the putative candidate member involved in floral volatile benzenoids/phenylpropanoids metabolism. Gene 2025; 938:149150. [PMID: 39667713 DOI: 10.1016/j.gene.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
The basic helix-loop-helix (bHLH) family, a prominent group of transcription factors, is involved in plant growth, development, and secondary metabolic processes. Petunia (Petunia hybrida), a beloved and widely cultivated garden flower, boasts a diverse array of varieties, some of which exude a captivating fragrance that has garnered immense popularity. The aromatic allure of petunias primarily stems from the presence of volatile benzenoids/phenylpropanoids, the principal floral scent compounds. But whether bHLH transcription factors regulate petunia floral scent compound synthesis is not clear. In this study, we sought to screen the putative candidate member of bHLH which can be involved in the biosynthesis of benzenoids/phenylpropanoids by examining 63 members of the petunia bHLH gene family. Phylogenetic analysis of the 63 petunia bHLH proteins them into 16 subgroups. Almost all bHLH members contained alkaline/helix-loop-helix domains. Based on the reported RNA sequencing data of P. hybrida 'Mitchell', 30 assembled sequences were mapped to the bHLH genes of P. axillaris. Further qRT-PCR assays suggested that PhbHLH19 might be the putative candidate member in the biosynthesis of benzenoids/phenylpropanoids. PhbHLH19 showed higher expression levels in the petal limb but was lowly expressed at the bud stage, with a rapid increase in the expression level when flowers opened. The expression of PhbHLH19 displayed a significant positive correlation with that of PhPAL2, and the yeast one-hybrid assay verified that PhbHLH19 can bind to the promoter of PhPAL2. Moreover, a dual-luciferase assay proved the transcriptional activation of PhbHLH19 on PhPAL2. These findings suggested that PhbHLH19 might be a putative candidate in the regulation of benzenoid/phenylpropanoid synthesis by activating PhPAL2 expression.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guo Yu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Li Li
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
2
|
Lv M, Zhang L, Wang Y, Ma L, Yang Y, Zhou X, Wang L, Yu X, Li S. Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value. HORTICULTURE RESEARCH 2024; 11:uhae220. [PMID: 39398951 PMCID: PMC11469922 DOI: 10.1093/hr/uhae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/28/2024] [Indexed: 10/15/2024]
Abstract
Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.
Collapse
Affiliation(s)
- Mengwen Lv
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Ling Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xian Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangsheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Yu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Shanshan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yang K, Zhou G, Chen C, Liu X, Wei L, Zhu F, Liang Z, Chen H. Joint metabolomic and transcriptomic analysis identify unique phenolic acid and flavonoid compounds associated with resistance to fusarium wilt in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1447860. [PMID: 39170788 PMCID: PMC11335689 DOI: 10.3389/fpls.2024.1447860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Introduction Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cucumerinum (Foc) is a destructive soil-borne disease in cucumber (Cucumis sativus. L). However, there remains limited knowledge on the molecular mechanisms underlying FW resistance-mediated defense responses in cucumber. Methods In this study, metabolome and transcriptome profiling were carried out for two FW resistant (NR) and susceptible (NS), near isogenic lines (NILs) before and after Foc inoculation. NILs have shown consistent and stable resistance in multiple resistance tests conducted in the greenhouse and in the laboratory. A widely targeted metabolomic analysis identified differentially accumulated metabolites (DAMs) with significantly greater NR accumulation in response to Foc infection, including many phenolic acid and flavonoid compounds from the flavonoid biosynthesis pathway. Results Transcriptome analysis identified differentially expressed genes (DEGs) between the NILs upon Foc inoculation including genes for secondary metabolite biosynthesis and transcription factor genes regulating the flavonoid biosynthesis pathway. Joint analysis of the metabolomic and transcriptomic data identified DAMs and DEGs closely associated with the biosynthesis of phenolic acid and flavonoid DAMs. The association of these compounds with NR-conferred FW resistance was exemplified by in vivo assays. These assays found two phenolic acid compounds, bis (2-ethylhexyl) phthalate and diisooctyl phthalate, as well as the flavonoid compound gallocatechin 3-O-gallate to have significant inhibitory effects on Foc growth. The antifungal effects of these three compounds represent a novel finding. Discussion Therefore, phenolic acids and flavonoids play important roles in NR mediated FW resistance breeding in cucumber.
Collapse
Affiliation(s)
- Kankan Yang
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chen Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lin Wei
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Feiying Zhu
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihuai Liang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huiming Chen
- Longping Branch, Graduated School of Hunan University, Changsha, China
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
5
|
Zhou C, Tian C, Wen S, Yang N, Zhang C, Zheng A, Tan J, Jiang L, Zhu C, Lai Z, Lin Y, Guo Y. Multiomics Analysis Reveals the Involvement of JsLHY in Controlling Aroma Production in Jasmine Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930796 DOI: 10.1021/acs.jafc.3c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayao Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
6
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
7
|
Yeh CW, Zhong HQ, Ho YF, Tian ZH, Yeh KW. The diurnal emission of floral scent in Oncidium hybrid orchid is controlled by CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) through the direct regulation on terpene synthase. BMC PLANT BIOLOGY 2022; 22:472. [PMID: 36195835 PMCID: PMC9531428 DOI: 10.1186/s12870-022-03850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND To adapt the periodic fluctuation of environmental factors, plants are subtle to monitor the natural variation for the growth and development. The daily activities and physiological functions in coordination with the natural variation are regulated by circadian clock genes. The circadian emission of floral scents is one of the rhythmic physiological activities controlled by circadian clock genes. Here, we study the molecular mechanism of circadian emission pattern of ocimene and linalool compounds in Oncidium Sharry Baby (Onc. SB) orchid. RESULTS GC-Mass analysis revealed that Onc. SB periodically emitted ocimene and linalool during 6 to 14 o'clock daily. Terpene synthase, one of the key gene in the terpenoid biosynthetic pathway is expressed in coordination with scent emission. The promoter structure of terpene synthase revealed a circadian binding sequence (CBS), 5'-AGATTTTT-3' for CIRCADIAN CLOCK ASSOCIATED1 (CCA1) transcription factor. EMSA data confirms the binding affinity of CCA1. Transactivation assay further verified that TPS expression is regulated by CCA1. It suggests that the emission of floral scents is controlled by CCA1. CONCLUSIONS The work validates that the mechanism of circadian emission of floral scents in Onc. Sharry Baby is controlled by the oscillator gene, CCA1(CIRCADIAN CLOCK ASSOCIATED 1) under light condition. CCA1 transcription factor up-regulates terpene synthase (TPS) by binding on CBS motif, 5'-AGATTTTT-3' of promoter region to affect the circadian emission of floral scents in Onc. SB.
Collapse
Affiliation(s)
- Chao-Wei Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Hui-Qin Zhong
- Fujian Engineering Research Center for Characteristic Floriculture, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yung-Feng Ho
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan
| | - Zhi-Hong Tian
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Kai-Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, No 1, Sect. 4, Roosevelt Road, 106, Taipei, Taiwan.
- Center for Weather Climate and Disaster Research, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
8
|
Shi S, Zhang S, Wu J, Liu X, Zhang Z. Identification of long non-coding RNAs involved in floral scent of Rosa hybrida. FRONTIERS IN PLANT SCIENCE 2022; 13:996474. [PMID: 36267940 PMCID: PMC9577252 DOI: 10.3389/fpls.2022.996474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play important roles in transcriptional, post-transcriptional, and epigenetic gene regulation in various biological processes. However, lncRNAs and their regulatory roles remain poorly studied in horticultural plants. Rose is economically important not only for their wide use as garden and cut flowers but also as important sources of natural fragrance for perfume and cosmetics industry, but presently little was known about the regulatory mechanism of the floral scent production. In this paper, a RNA-Seq analysis with strand-specific libraries, was performed to rose flowers in different flowering stages. The scented variety 'Tianmidemeng' (Rosa hybrida) was used as plant material. A total of 13,957 lncRNAs were identified by mining the RNA-Seq data, including 10,887 annotated lncRNAs and 3070 novel lncRNAs. Among them, 10,075 lncRNAs were predicted to possess a total of 29,622 target genes, including 54 synthase genes and 24 transcription factors related to floral scent synthesis. 425 lncRNAs were differentially expressed during the flowering process, among which 19 were differentially expressed among all the three flowering stages. Using weighted correlation network analysis (WGCNA), we correlate the differentially-expressed lncRNAs to synthesis of individual floral scent compounds. Furthermore, regulatory function of one of candidate lncRNAs for floral scent synthesis was verified using VIGS method in the rose. In this study, we were able to show that lncRNAs may play important roles in floral scent production in the rose. This study also improves our understanding of how plants regulate their secondary metabolism by lncRNAs.
Collapse
Affiliation(s)
- Shaochuan Shi
- Vegetable Research Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Skaliter O, Livneh Y, Agron S, Shafir S, Vainstein A. A whiff of the future: functions of phenylalanine-derived aroma compounds and advances in their industrial production. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1651-1669. [PMID: 35638340 PMCID: PMC9398379 DOI: 10.1111/pbi.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Plants produce myriad aroma compounds-odorous molecules that are key factors in countless aspects of the plant's life cycle, including pollinator attraction and communication within and between plants. For humans, aroma compounds convey accurate information on food type, and are vital for assessing the environment. The phenylpropanoid pathway is the origin of notable aroma compounds, such as raspberry ketone and vanillin. In the last decade, great strides have been made in elucidating this pathway with the identification of numerous aroma-related biosynthetic enzymes and factors regulating metabolic shunts. These scientific achievements, together with public acknowledgment of aroma compounds' medicinal benefits and growing consumer demand for natural products, are driving the development of novel biological sources for wide-scale, eco-friendly, and inexpensive production. Microbes and plants that are readily amenable to metabolic engineering are garnering attention as suitable platforms for achieving this goal. In this review, we discuss the importance of aroma compounds from the perspectives of humans, pollinators and plant-plant interactions. Focusing on vanillin and raspberry ketone, which are of high interest to the industry, we present key knowledge on the biosynthesis and regulation of phenylalanine-derived aroma compounds, describe advances in the adoption of microbes and plants as platforms for their production, and propose routes for improvement.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Yarin Livneh
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Shani Agron
- Department of NeurobiologyThe Weizmann Institute of ScienceRehovotIsrael
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
10
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
11
|
Kang M, Choi Y, Kim H, Kim S. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. THE NEW PHYTOLOGIST 2022; 234:527-544. [PMID: 35075650 PMCID: PMC9305527 DOI: 10.1111/nph.17992] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 05/28/2023]
Abstract
High-throughput single-cell RNA sequencing (scRNA-Seq) identifies distinct cell populations based on cell-to-cell heterogeneity in gene expression. By examining the distribution of the density of gene expression profiles, we can observe the metabolic features of each cell population. Here, we employ the scRNA-Seq technique to reveal the entire biosynthetic pathway of a flower volatile. The corolla of the wild tobacco Nicotiana attenuata emits a bouquet of scents that are composed mainly of benzylacetone (BA). Protoplasts from the N. attenuata corolla limbs and throat cups were isolated at three different time points, and the transcript levels of > 16 000 genes were analyzed in 3756 single cells. We performed unsupervised clustering analysis to determine which cell clusters were involved in BA biosynthesis. The biosynthetic pathway of BA was uncovered by analyzing gene co-expression in scRNA-Seq datasets and by silencing candidate genes in the corolla. In conclusion, the high-resolution spatiotemporal atlas of gene expression provided by scRNA-Seq reveals the molecular features underlying cell-type-specific metabolism in a plant.
Collapse
Affiliation(s)
- Moonyoung Kang
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Yuri Choi
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Hyeonjin Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| |
Collapse
|
12
|
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. PLANT PHYSIOLOGY 2022; 188:2146-2165. [PMID: 35043961 PMCID: PMC8968321 DOI: 10.1093/plphys/kiac014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The biosynthetic pathway of volatile phenylpropanoids, including 4-allyl-2-methoxyphenol (eugenol), has been investigated in petunia (Petunia hybrida). However, the regulatory network for eugenol accumulation in strawberry (Fragaria × ananassa Duch.) fruit remains unclear. Here, an R2R3-type MYB transcription factor (TF; FaMYB63) was isolated from strawberry by yeast one-hybrid (Y1H) screening using the promoter of the FaEGS1 (eugenol synthase 1 [EGS 1]) gene, which encodes the enzyme responsible for the last step in eugenol biosynthesis. FaMYB63 is phylogenetically distinct from other R2R3-MYB TFs, including FaEOBІІ (EMISSION OF BENZENOID II [EOBII]), which also participates in regulating eugenol biosynthesis in strawberry receptacles. Reverse transcription quantitative PCR (RT-qPCR) assays showed that the expression of FaMYB63 was tissue-specific and consistent with eugenol content through strawberry fruit development, was repressed by abscisic acid, and was activated by auxins (indole-3-acetic acid). Overexpression and RNA interference-mediated silencing of FaMYB63 resulted in marked changes in the transcript levels of the biosynthetic genes FaEGS1, FaEGS2, and FaCAD1 (cinnamyl alcohol dehydrogenase 1 [CAD1]) and, thereby, the accumulation of eugenol. Electrophoretic mobility shift, Y1H, GUS activity, and dual-luciferase activity assays demonstrated that the transcript levels of FaEOBІІ and FaMYB10 were regulated by FaMYB63, but not the other way around. Together, these results demonstrate that FaMYB63 directly activates FaEGS1, FaEGS2, FaCAD1, FaEOBІІ, and FaMYB10 to induce eugenol biosynthesis during strawberry fruit development. These findings deepen the understanding of the regulatory network that influences eugenol metabolism in an edible fruit crop.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhifei Pan
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Linzhong Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Xue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | | | | |
Collapse
|
13
|
Mostafa S, Wang Y, Zeng W, Jin B. Floral Scents and Fruit Aromas: Functions, Compositions, Biosynthesis, and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:860157. [PMID: 35360336 PMCID: PMC8961363 DOI: 10.3389/fpls.2022.860157] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
Floral scents and fruit aromas are crucial volatile organic compounds (VOCs) in plants. They are used in defense mechanisms, along with mechanisms to attract pollinators and seed dispersers. In addition, they are economically important for the quality of crops, as well as quality in the perfume, cosmetics, food, drink, and pharmaceutical industries. Floral scents and fruit aromas share many volatile organic compounds in flowers and fruits. Volatile compounds are classified as terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. Many genes and transcription factors regulating the synthesis of volatiles have been discovered. In this review, we summarize recent progress in volatile function, composition, biosynthetic pathway, and metabolism regulation. We also discuss unresolved issues and research perspectives, providing insight into improvements and applications of plant VOCs.
Collapse
Affiliation(s)
- Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Yun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Boersma MR, Patrick RM, Jillings SL, Shaipulah NFM, Sun P, Haring MA, Dudareva N, Li Y, Schuurink RC. ODORANT1 targets multiple metabolic networks in petunia flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1134-1151. [PMID: 34863006 PMCID: PMC9306810 DOI: 10.1111/tpj.15618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 05/19/2023]
Abstract
Scent bouquets produced by the flowers of Petunia spp. (petunia) are composed of a complex mixture of floral volatile benzenoid and phenylpropanoid compounds (FVBPs), which are specialized metabolites derived from phenylalanine (Phe) through an interconnected network of enzymes. The biosynthesis and emission of high levels of these volatiles requires coordinated transcriptional activation of both primary and specialized metabolic networks. The petunia R2R3-MYB transcription factor ODORANT 1 (ODO1) was identified as a master regulator of FVBP production and emission; however, our knowledge of the direct regulatory targets of ODO1 has remained limited. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq) in petunia flowers, we identify genome-wide ODO1-bound genes that are enriched not only in genes involved in the biosynthesis of the Phe precursor, as previously reported, but also genes associated with the specialized metabolic pathways involved in generating phenylpropanoid intermediates for FVBPs. ODO1-bound genes are also involved in methionine and S-adenosylmethionine metabolism, which could modulate methyl group supplies for certain FVBPs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and RNA-seq analysis in an ODO1 RNAi knockdown line revealed that ODO1-bound targets are expressed at lower levels when ODO1 is suppressed. A cis-regulatory motif, CACCAACCCC, was identified as a potential binding site for ODO1 in the promoters of genes that are both bound and activated by ODO1, which was validated by in planta promoter reporter assays with wild-type and mutated promoters. Overall, our work presents a mechanistic model for ODO1 controlling an extensive gene regulatory network that contributes to FVBP production to give rise to floral scent.
Collapse
Affiliation(s)
- Maaike R. Boersma
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Green BiotechnologyInholland University of Applied SciencesAmsterdam1098 XHthe Netherlands
| | - Ryan M. Patrick
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Sonia L. Jillings
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Nur Fariza M. Shaipulah
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
- Present address:
Faculty of Science and Marine EnvironmentUniversiti Malaysia Terrengganu21030 Kuala NerusTerrenganuMalaysia
| | - Pulu Sun
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Michel A. Haring
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| | - Natalia Dudareva
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN47907USA
| | - Ying Li
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Robert C. Schuurink
- Green Life Sciences Research ClusterSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| |
Collapse
|
15
|
Abbas F, Ke Y, Zhou Y, Yu R, Imran M, Amanullah S, Rothenberg DO, Wang Q, Wang L, Fan Y. Functional Characterization of Hedychium coronarium J. Koenig MYB132 Confers the Potential Role in Floral Aroma Synthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2014. [PMID: 34685822 PMCID: PMC8541032 DOI: 10.3390/plants10102014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The R2R3-MYB transcription factors (TFs) play several key roles in numerous plant biological processes. Hedychium coronarium is an important ornamental plant well-known for its elegant flower shape and abundant aroma type. The floral aroma of H. coronarium is due to the presence of a large amount of terpenes and benzenoids. However, less is known about the role of R2R3-MYB TFs in the regulatory mechanism of floral aroma production in this breed. Herein, we isolate and functionally characterize the R2R3-MYB TF HcMYB132, which is potentially involved in regulating floral aroma synthesis. Sequence alignment analysis revealed that it includes a nuclear localization signal NLS(s) and a 2R, 3R motif signature in the sequences. A subcellular localization assay revealed that HcMYB132 protein localizes to the nucleus. Real-time qPCR assays showed that HcMYB132 is specifically expressed in flowers and its expression pattern correlates with the emission of floral volatile compounds. In HcMYB132-silenced flowers, the levels of floral volatile compounds were significantly reduced, and the expression of key structural volatile synthesis genes was downregulated compared to control. Collectively, these results suggest that HcMYB132 might play a significant role in the regulation of terpenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- College of Economics and Management, Kunming University, Kunming 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | | | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, Kuhlemeier C. Complex evolution of novel red floral color in Petunia. THE PLANT CELL 2021; 33:2273-2295. [PMID: 33871652 PMCID: PMC8364234 DOI: 10.1093/plcell/koab114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 05/20/2023]
Abstract
Red flower color has arisen multiple times and is generally associated with hummingbird pollination. The majority of evolutionary transitions to red color proceeded from purple lineages and tend to be genetically simple, almost always involving a few loss-of-function mutations of major phenotypic effect. Here we report on the complex evolution of a novel red floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless ancestor. The presence of a red color is remarkable because the genus cannot synthesize red anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor AN2. We show that moderate upregulation and a shift in tissue specificity of an AN2 paralog, DEEP PURPLE, restores anthocyanin biosynthesis in P. exserta. An essential shift in anthocyanin hydroxylation occurred through rebalancing the expression of three hydroxylating genes. Furthermore, the downregulation of an acyltransferase promotes reddish hues in typically purple pigments by preventing acyl group decoration of anthocyanins. This study presents a rare case of a genetically complex evolutionary transition toward the gain of a novel red color.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lea Jäggi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Author for correspondence:
| |
Collapse
|
17
|
Transcriptome-Based WGCNA Analysis Reveals Regulated Metabolite Fluxes between Floral Color and Scent in Narcissus tazetta Flower. Int J Mol Sci 2021; 22:ijms22158249. [PMID: 34361014 PMCID: PMC8348138 DOI: 10.3390/ijms22158249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
A link between the scent and color of Narcissus tazetta flowers can be anticipated due to their biochemical origin, as well as their similar biological role. Despite the obvious aesthetic and ecological significance of these colorful and fragrant components of the flowers and the molecular profiles of their pigments, fragrant formation has addressed in some cases. However, the regulatory mechanism of the correlation of fragrant components and color patterns is less clear. We simultaneously used one way to address how floral color and fragrant formation in different tissues are generated during the development of an individual plant by transcriptome-based weighted gene co-expression network analysis (WGCNA). A spatiotemporal pattern variation of flavonols/carotenoids/chlorophyll pigmentation and benzenoid/phenylpropanoid/ monoterpene fragrant components between the tepal and corona in the flower tissues of Narcissus tazetta, was exhibited. Several candidate transcription factors: MYB12, MYB1, AP2-ERF, bZIP, NAC, MYB, C2C2, C2H2 and GRAS are shown to be associated with metabolite flux, the phenylpropanoid pathway to the production of flavonols/anthocyanin, as well as related to one branch of the phenylpropanoid pathway to the benzenoid/phenylpropanoid component in the tepal and the metabolite flux between the monoterpene and carotenoids biosynthesis pathway in coronas. It indicates that potential competition exists between floral pigment and floral fragrance during Narcissus tazetta individual plant development and evolutionary development.
Collapse
|
18
|
Profiling of Volatile Compounds and Associated Gene Expression in Two Anthurium Cultivars and Their F1 Hybrid Progenies. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102902. [PMID: 34068329 PMCID: PMC8153298 DOI: 10.3390/molecules26102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Anthurium is an important ornamental crop in the world market and its floral scent can enhance its ornamental value. To date, studies of the components and formation mechanism of the floral scent of Anthurium are relatively few. In this study, the scent profiles of two Anthurium varieties were measured by gas chromatograph-mass spectrometer (GC-MS). There were 32 volatile organic compounds (VOCs) identified in Anthurium ‘Mystral’, and the most abundant compound was eucalyptol (57.5%). Extremely small amounts of VOCs were detected in Anthurium ‘Alabama’. Compared with A. ‘Alabama’, most genes related to floral scent synthesis exhibited a higher expression in A.‘Mystral’, including AaDXS, AaDXR, AaMDS, AaHDS, AaTPS, AaDAHPS, AaADT2, AaPAL1, and AaPAL2. In order to produce new varieties of Anthurium with fragrance, 454 progenies of two crossbred combinations of A. ‘Mystral’ and A. ‘Alabama’ were obtained. Four F1 generation plants with different floral scent intensities were selected for further study. The major components of floral scent in the progenies were similar to that of the parental A.‘Mystral’ plant. The expression patterns of genes related to floral scent synthesis were consistent with the relative contents of different types of VOCs. This study revealed the profiles of volatile compounds and associated gene expression in two Anthurium cultivars and their F1 hybrids, which provided a basis for the floral scent inheritance of Anthurium andraeanum.
Collapse
|
19
|
Schulz D, Linde M, Debener T. Detection of Reproducible Major Effect QTL for Petal Traits in Garden Roses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050897. [PMID: 33946713 PMCID: PMC8145204 DOI: 10.3390/plants10050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The detection of QTL by association genetics depends on the genetic architecture of the trait under study, the size and structure of the investigated population and the availability of phenotypic and marker data of sufficient quality and quantity. In roses, we previously demonstrated that major QTL could already be detected in small association panels. In this study, we analyzed petal number, petal size and fragrance in a small panel of 95 mostly tetraploid garden rose genotypes. After genotyping the panel with the 68 K Axiom WagRhSNP chip we detected major QTL for all three traits. Each trait was significantly influenced by several genomic regions. Some of the QTL span genomic regions that comprise several candidate genes. Selected markers from some of these regions were converted into KASP markers and were validated in independent populations of up to 282 garden rose genotypes. These markers demonstrate the robustness of the detected effects independent of the set of genotypes analyzed. Furthermore, the markers can serve as tools for marker-assisted breeding in garden roses. Over an extended timeframe, they may be used as a starting point for the isolation of the genes underlying the QTL.
Collapse
|
20
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
21
|
Ke Y, Abbas F, Zhou Y, Yu R, Fan Y. Auxin-Responsive R2R3-MYB Transcription Factors HcMYB1 and HcMYB2 Activate Volatile Biosynthesis in Hedychium coronarium Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:710826. [PMID: 34413870 PMCID: PMC8369990 DOI: 10.3389/fpls.2021.710826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 05/19/2023]
Abstract
Auxin, an important plant hormone, induces the biosynthesis of various secondary metabolites by modulating the expression of auxin-responsive genes. In the ornamental plant Hedychium coronarium, linalool and methyl benzoate are biosynthesized by the terpene synthase (TPS) HcTPS5 and the benzoic/salicylic acid methyltransferase (BSMT) HcBSMT2, respectively. However, the transcriptional regulation of this process remains unclear. Here, we identified and functionally characterized the R2R3-MYB transcription factors HcMYB1 and HcMYB2 in regulating the biosynthesis of these floral aroma compounds. HcMYB1 and HcMYB2 are specifically expressed in flowers, their expression is correlated with the emission of volatile compounds in flowers, and is induced by auxin. Moreover, HcMYB1 and HcMYB2 interact with the HcBSMT2 promoter region. HcMYB2 activates the expression of the linalool synthase gene HcTPS5. In flowers with HcMYB1 or HcMYB2 silenced, the levels of floral scent compounds were significantly reduced, and HcBSMT2 and HcTPS5 were downregulated compared with the wild type. Moreover, HcMYB1 form protein-protein interaction with key scent-related HcIAA4 protein to regulate floral aroma production. Taken together, these results indicate that HcMYB1 and HcMYB2 play crucial roles in regulating the formation of scent compounds in Hedychium coronarium (H. coronarium) flowers in response to auxin signaling.
Collapse
Affiliation(s)
- Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
22
|
Abbas F, Zhou Y, He J, Ke Y, Qin W, Yu R, Fan Y. Metabolite and Transcriptome Profiling Analysis Revealed That Melatonin Positively Regulates Floral Scent Production in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:808899. [PMID: 34975998 PMCID: PMC8719004 DOI: 10.3389/fpls.2021.808899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 05/19/2023]
Abstract
Melatonin is a pleiotropic molecule that regulates a variety of developmental processes. Floral volatiles are important features of flowers that facilitate flower-visitor interactions by attracting pollinators, structure flower-visitor communities, and play defensive roles against plant and flower antagonists. Aside from their role in plants, floral volatiles are an essential ingredient in cosmetics, perfumes, pharmaceuticals, and flavorings. Herein, integrated metabolomic and transcriptomic approaches were carried out to analyze the changes triggered by melatonin exposure during the Hedychium coronarium flower development stages. Quantitative analysis of the volatiles of H. coronarium flowers revealed that volatile organic compound emission was significantly enhanced after melatonin exposure during the half bloom (HS), full bloom (FB) and fade stage (FS). Under the melatonin treatment, the emission of volatile contents was highest during the full bloom stage of the flower. Variable importance in projection (VIP) analysis and partial least-squares discriminant analysis (PLS-DA) identified 15 volatile compounds with VIP > 1 that were prominently altered by the melatonin treatments. According to the transcriptome sequencing data of the HS, FB, and FS of the flowers, 1,372, 1,510, and 1,488 differentially expressed genes were identified between CK-HS and 100MT-HS, CK-FB and 100MT-FB, and CK-FS and 100MT-FS, respectively. Among the significant differentially expressed genes (DEGs), 76 were significantly upregulated and directly involved in the floral scent biosynthesis process. In addition, certain volatile organic compounds were substantially linked with various DEGs after combining the metabolome and transcriptome datasets. Moreover, some transcription factors, such as MYB and bHLH, were also significantly upregulated in the comparison, which might be related to the floral aroma mechanism. Our results suggested that melatonin increased floral aroma production in H. coronarium flowers by modifying the expression level of genes involved in the floral scent biosynthesis pathway. These findings serve as a foundation for future research into the molecular mechanisms underlying the dynamic changes in volatile contents induced by melatonin treatment in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingjuan He
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Wang Qin
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
23
|
Chen C, Shi X, Zhou T, Li W, Li S, Bai G. Full-length transcriptome analysis and identification of genes involved in asarinin and aristolochic acid biosynthesis in medicinal plant Asarum sieboldii. Genome 2020; 64:639-653. [PMID: 33320770 DOI: 10.1139/gen-2020-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asarum sieboldii, a well-known traditional Chinese medicinal herb, is used for curing inflammation and ache. It contains both the bioactive ingredient asarinin and the toxic compound aristolochic acid. To address further breeding demand, genes involved in the biosynthetic pathways of asarinin and aristolochic acid should be explored. Therefore, the full-length transcriptome of A. sieboldii was sequenced using PacBio Iso-Seq to determine the candidate transcripts that encode the biosynthetic enzymes of asarinin and aristolochic acid. In this study, 63 023 full-length transcripts were generated with an average length of 1371 bp from roots, stems, and leaves, of which 49 593 transcripts (78.69%) were annotated against public databases. Furthermore, 555 alternative splicing (AS) events, 10 869 long noncoding RNAs (lncRNAs) as well as their 11 291 target genes, and 17 909 simple sequence repeats (SSRs) were identified. The data also revealed 97 candidate transcripts related to asarinin metabolism, of which six novel genes that encoded enzymes involved in asarinin biosynthesis were initially reported. In addition, 56 transcripts related to aristolochic acid biosynthesis were also identified, including CYP81B. In summary, these transcriptome data provide a useful resource to study gene function and genetic engineering in A. sieboldii.
Collapse
Affiliation(s)
- Chen Chen
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Xinwei Shi
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Tao Zhou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, 710061, Xi'an City, Shaanxi Province, China
| | - Weimin Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Sifeng Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| | - Guoqing Bai
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, 710061, Xi'an City, Shaanxi Province, China
| |
Collapse
|
24
|
Shan X, Li Y, Yang S, Yang Z, Qiu M, Gao R, Han T, Meng X, Xu Z, Wang L, Gao X. The spatio-temporal biosynthesis of floral flavonols is controlled by differential phylogenetic MYB regulators in Freesia hybrida. THE NEW PHYTOLOGIST 2020; 228:1864-1879. [PMID: 32696979 DOI: 10.1111/nph.16818] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 05/25/2023]
Abstract
Floral flavonols play specific pivotal roles in pollinator attraction, pollen germination and fertility, in addition to other functions in vegetative organs. For many plants, the process of flavonol biosynthesis in late flower development stages and in mature flower tissues is poorly understood, in contrast to early flower development stages. It is thought that this process may be regulated independently of subgroup 7 R2R3 MYB (SG7 MYB) transcription factors. In this study, two FLS genes were shown to be expressed synchronously with the flower development-specific and tissue-specific biosynthesis of flavonols in Freesia hybrida. FhFLS1 contributed to flavonol biosynthesis in early flower buds, toruses and calyxes, and was regulated by four well-known SG7 MYB proteins, designated as FhMYBFs, with at least partial regulatory redundancy. FhFLS2 accounted for flavonols in late developed flowers and in the petals, stamens and pistils, and was targeted directly by non SG7 MYB protein FhMYB21L2. In parallel, AtMYB21 and AtMYB24 also activated AtFLS1, a gene highly expressed in Arabidopsis anthers and pollen, indicating the conserved regulatory roles of MYB21 against FLS genes in these two evolutionarily divergent angiosperm plants. Our results reveal a novel regulatory and synthetic mechanism underlying flavonol biosynthesis in floral organs and tissues which may be exploited to investigate supplementary roles of flavonols in flowers.
Collapse
Affiliation(s)
- Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Meng Qiu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xiangyu Meng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Zhengyi Xu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
25
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
26
|
Yarahmadov T, Robinson S, Hanemian M, Pulver V, Kuhlemeier C. Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:289-301. [PMID: 32780443 PMCID: PMC7693086 DOI: 10.1111/tpj.14962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/15/2020] [Indexed: 05/29/2023]
Abstract
Adaptation to different pollinators is an important driver of speciation in the angiosperms. Genetic approaches such as QTL mapping have been successfully used to identify the underlying speciation genes. However, these methods are often limited by widespread suppression of recombination due to divergence between species. While the mutations that caused the interspecific differences in floral color and scent have been elucidated in a variety of plant genera, the genes that are responsible for morphological differences remain mostly unknown. Differences in floral organ length determine the pollination efficiency of hawkmoths and hummingbirds, and therefore the genes that control these differences are potential speciation genes. Identifying such genes is challenging, especially in non-model species and when studying complex traits for which little prior genetic and biochemical knowledge is available. Here we combine transcriptomics with detailed growth analysis to identify candidate transcription factors underlying interspecific variation in the styles of Petunia flowers. Starting from a set of 2284 genes, stepwise filtering for expression in styles, differential expression between species, correlation with growth-related traits, allele-specific expression in interspecific hybrids, and/or high-impact polymorphisms resulted in a set of 43 candidate speciation genes. Validation by virus-induced gene silencing identified two MYB transcription factors, EOBI and EOBII, that were previously shown to regulate floral scent emission, a trait associated with pollination by hawkmoths.
Collapse
Affiliation(s)
- Tural Yarahmadov
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- Department of BioMedical ResearchUniversity of BernBernCH‐3008Switzerland
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- Sainsbury LaboratoryUniversity of CambridgeCambridgeCB2 1LRUK
| | - Mathieu Hanemian
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
- LIPMUniversité de ToulouseINRAECNRSCastanet‐TolosanFrance
| | - Valentin Pulver
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
| | - Cris Kuhlemeier
- Institute of Plant SciencesUniversity of BernAltenbergrain 21BernCH‐3013Switzerland
| |
Collapse
|
27
|
Lynch JH, Dudareva N. Aromatic Amino Acids: A Complex Network Ripe for Future Exploration. TRENDS IN PLANT SCIENCE 2020; 25:670-681. [PMID: 32526172 DOI: 10.1016/j.tplants.2020.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 05/28/2023]
Abstract
In plants, high carbon flux is committed to the biosynthesis of phenylalanine, tyrosine, and tryptophan, owing to their roles not only in the production of proteins, but also as precursors to thousands of primary and specialized metabolites. The core plastidial pathways that supply the majority of aromatic amino acids (AAAs) have previously been described in detail. More recently, the discovery of cytosolic enzymes contributing to overall AAA biosynthesis, as well as the identification of intracellular transporters and the continuing elucidation of transcriptional and post-transcriptional regulatory mechanisms, have revealed the complexity of this intercompartmental metabolic network. Here, we review the latest breakthroughs in AAA production and use the newest findings to highlight both longstanding and newly developed questions.
Collapse
Affiliation(s)
- Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907-2063, USA
| | - Natalia Dudareva
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
28
|
Khakhar A, Starker CG, Chamness JC, Lee N, Stokke S, Wang C, Swanson R, Rizvi F, Imaizumi T, Voytas DF. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 2020; 9:52786. [PMID: 32209230 PMCID: PMC7164954 DOI: 10.7554/elife.52786] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Colby G Starker
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - James C Chamness
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, United States
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, United States
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| |
Collapse
|
29
|
Zheng X, Zhu K, Sun Q, Zhang W, Wang X, Cao H, Tan M, Xie Z, Zeng Y, Ye J, Chai L, Xu Q, Pan Z, Xiao S, Fraser PD, Deng X. Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel. MOLECULAR PLANT 2019; 12:1294-1307. [PMID: 31102783 DOI: 10.1016/j.molp.2019.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 05/06/2023]
Abstract
Carotenoids and apocarotenoids act as phytohormones and volatile precursors that influence plant development and confer aesthetic and nutritional value critical to consumer preference. Citrus fruits display considerable natural variation in carotenoid and apocarotenoid pigments. In this study, using an integrated genetic approach we revealed that a 5' cis-regulatory change at CCD4b encoding CAROTENOID CLEAVAGE DIOXYGENASE 4b is a major genetic determinant of natural variation in C30 apocarotenoids responsible for red coloration of citrus peel. Functional analyses demonstrated that in addition the known role in synthesizing β-citraurin, CCD4b is also responsible for the production of another important C30 apocarotenoid pigment, β-citraurinene. Furthermore, analyses of the CCD4b promoter and transcripts from various citrus germplasm accessions established a tight correlation between the presence of a putative 5' cis-regulatory enhancer within an MITE transposon and the enhanced allelic expression of CCD4b in C30 apocarotenoid-rich red-peeled accessions. Phylogenetic analysis provided further evidence that functional diversification of CCD4b and naturally occurring variation of the CCD4b promoter resulted in the stepwise evolution of red peels in mandarins and their hybrids. Taken together, our findings provide new insights into the genetic and evolutionary basis of apocarotenoid diversity in plants, and would facilitate breeding efforts that aim to improve the nutritional and aesthetic value of citrus and perhaps other fruit crops.
Collapse
Affiliation(s)
- Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Hongbo Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Meilian Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| | - Shunyuan Xiao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China; Department of Plant Science and Landscape Architecture, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
30
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
31
|
Kim JY, Swanson RT, Alvarez MI, Johnson TS, Cho KH, Clark DG, Colquhoun TA. Down regulation of p-coumarate 3-hydroxylase in petunia uniquely alters the profile of emitted floral volatiles. Sci Rep 2019; 9:8852. [PMID: 31221970 PMCID: PMC6586934 DOI: 10.1038/s41598-019-45183-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 11/09/2022] Open
Abstract
Petunia × hybrida cv ‘Mitchell Diploid’ floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis ultimately produces floral volatiles derived sequentially from phenylalanine, cinnamic acid, and p-coumaric acid. In an attempt to better understand biochemical steps after p-coumaric acid production, we cloned and characterized three petunia transcripts with high similarity to p-coumarate 3-hydroxylase (C3H), hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT), and caffeoyl shikimate esterase (CSE). Transcript accumulation of PhC3H and PhHCT was highest in flower limb tissue during open flower stages. PhCSE transcript accumulation was also highest in flower limb tissue, but it was detected earlier at initial flower opening with a bell-shaped distribution pattern. Down regulation of endogenous PhC3H transcript resulted in altered transcript accumulation of many other FVBP network transcripts, a reduction in floral volatiles, and the emission of a novel floral volatile. Down regulation of PhHCT transcript did not have as large of an effect on floral volatiles as was observed for PhC3H down regulation, but eugenol and isoeugenol emissions were significantly reduced on the downstream floral volatiles. Together these results indicate that PhC3H is involved in FVBP biosynthesis and the reduction of PhC3H transcript influences FVBP metabolism at the network level. Additional research is required to illustrate PhHCT and PhCSE functions of petunia.
Collapse
Affiliation(s)
- Joo Young Kim
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Robert T Swanson
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maria I Alvarez
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Timothy S Johnson
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Keun H Cho
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - David G Clark
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Thomas A Colquhoun
- Environmental Horticulture Department, Plant Innovation Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
32
|
Mortensen S, Bernal-Franco D, Cole LF, Sathitloetsakun S, Cram EJ, Lee-Parsons CWT. EASI Transformation: An Efficient Transient Expression Method for Analyzing Gene Function in Catharanthus roseus Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:755. [PMID: 31263474 PMCID: PMC6585625 DOI: 10.3389/fpls.2019.00755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 05/07/2023]
Abstract
The Catharanthus roseus plant is the exclusive source of the valuable anticancer terpenoid indole alkaloids, vinblastine (VB) and vincristine (VC). The recent availability of transcriptome and genome resources for C. roseus necessitates a fast and reliable method for studying gene function. In this study, we developed an Agrobacterium-mediated transient expression method to enable the functional study of genes rapidly in planta, conserving the compartmentalization observed in the VB and VC pathway. We focused on (1) improving the transformation method (syringe versus vacuum agroinfiltration) and cultivation conditions (seedling age, Agrobacterium density, and time point of maximum transgene expression), (2) improving transformation efficiency through the constitutive expression of the virulence genes and suppressing RNA silencing mechanisms, and (3) improving the vector design by incorporating introns, quantitative and qualitative reporter genes (luciferase and GUS genes), and accounting for transformation heterogeneity across the tissue using an internal control. Of all the parameters tested, vacuum infiltration of young seedlings (10-day-old, harvested 3 days post-infection) resulted in the strongest increase in transgene expression, at 18 - 57 fold higher than either vacuum or syringe infiltration of other seedling ages. Endowing the A. tumefaciens strain with the mutated VirGN54D or silencing suppressors within the same plasmid as the reporter gene further increased expression by 2 - 10 fold. For accurate measurement of promoter transactivation or activity, we included an internal control to normalize the differences in plant mass and transformation efficiency. Including the normalization gene (Renilla luciferase) on the same plasmid as the reporter gene (firefly luciferase) consistently yielded a high signal and a high correlation between RLUC and FLUC. As proof of principle, we applied this approach to investigate the regulation of the CroSTR1 promoter with the well-known activator ORCA3 and repressor ZCT1. Our method demonstrated the quantitative assessment of both the activation and repression of promoter activity in C. roseus. Our efficient Agrobacterium-mediated seedling infiltration (EASI) protocol allows highly efficient, reproducible, and homogenous transformation of C. roseus cotyledons and provides a timely tool for the community to rapidly assess the function of genes in planta, particularly for investigating how transcription factors regulate terpenoid indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Samuel Mortensen
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Diana Bernal-Franco
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Lauren F. Cole
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Suphinya Sathitloetsakun
- Department of Biology, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Carolyn W. T. Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
33
|
Kutty NN, Mitra A. Profiling of volatile and non-volatile metabolites in Polianthes tuberosa L. flowers reveals intraspecific variation among cultivars. PHYTOCHEMISTRY 2019; 162:10-20. [PMID: 30844491 DOI: 10.1016/j.phytochem.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Polianthes tuberosa L. (tuberose) is a widely cultivated ornamental crop in Asian countries. Different cultivars of tuberose have been developed through breeding programs in India. However, no reports on floral fragrance and metabolite contents of these cultivars are available. In this study, an attempt has been made to evaluate the levels of both volatile and non-volatile metabolites from seven different cultivars of P. tuberosa. Presence of benzenoids, phenylpropanoids, terpenoids, and few fatty acid derivatives as emitted, endogenous and glycosylated forms were revealed from the studied cultivars. Further, chemometric analyses in both supervised and unsupervised manner led to identification of patterns among the cultivars. Among the seven cultivars, four distinct clusters were obtained linking to their volatiles, flavonoids and primary metabolite levels. Metabolic variations obtained from the cultivars also suggest cross-talks between phenylpropanoid, benzenoid, and flavonoid pathways. Thus metabolite profiling reported here may help in characterization of tuberose cultivars for perfumery utility and future breeding programme.
Collapse
Affiliation(s)
- Nithya N Kutty
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
34
|
Allan AC, Espley RV. MYBs Drive Novel Consumer Traits in Fruits and Vegetables. TRENDS IN PLANT SCIENCE 2018; 23:693-705. [PMID: 30033210 DOI: 10.1016/j.tplants.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Eating plant-derived compounds can lead to a longer and healthier life and also benefits the environment. Innovation in the fresh food sector, as well as new cultivars, can improve consumption of fruit and vegetables, with MYB transcription factors being a target to drive this novelty. Plant MYB transcription factors are implicated in diverse roles including development, hormone signalling, and metabolite biosynthesis. The reds and blues of fruit and vegetables provided by anthocyanins, phlobaphenes, and betalains are controlled by specific R2R3 MYBs. New studies are now revealing that MYBs also control carotenoid biosynthesis and other quality traits, such as flavour and texture. Future breeding techniques may manipulate or create alleles of key MYB transcription factors.
Collapse
Affiliation(s)
- Andrew C Allan
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard V Espley
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand
| |
Collapse
|
35
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
36
|
Weiss J, Terry MI, Martos-Fuentes M, Letourneux L, Ruiz-Hernández V, Fernández JA, Egea-Cortines M. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata). BMC PLANT BIOLOGY 2018; 18:33. [PMID: 29444635 PMCID: PMC5813328 DOI: 10.1186/s12870-018-1244-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/18/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. RESULTS We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. CONCLUSIONS The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.
Collapse
Affiliation(s)
- Julia Weiss
- Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain.
| | - Marta I Terry
- Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain
| | - Marina Martos-Fuentes
- Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain
| | - Lisa Letourneux
- Mapping Consulting, 26 Rue St Antoine du T, 31000, Toulouse, France
| | - Victoria Ruiz-Hernández
- Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain
| | - Juan A Fernández
- Producción Vegetal, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genetics, ETSIA, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain
| |
Collapse
|
37
|
Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci Rep 2018; 8:2842. [PMID: 29434312 PMCID: PMC5809389 DOI: 10.1038/s41598-018-21251-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/26/2022] Open
Abstract
Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.
Collapse
|
38
|
Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock. Int J Mol Sci 2017; 18:ijms18112408. [PMID: 29137171 PMCID: PMC5713376 DOI: 10.3390/ijms18112408] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.
Collapse
|
39
|
Molina-Hidalgo FJ, Medina-Puche L, Cañete-Gómez C, Franco-Zorrilla JM, López-Vidriero I, Solano R, Caballero JL, Rodríguez-Franco A, Blanco-Portales R, Muñoz-Blanco J, Moyano E. The fruit-specific transcription factor FaDOF2 regulates the production of eugenol in ripe fruit receptacles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4529-4543. [PMID: 28981772 DOI: 10.1093/jxb/erx257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Only a few transcription factors have been described in the regulation of the strawberry (Fragaria x ananassa) fruit ripening process. Using a transcriptomic approach, we identified and functionally characterized FaDOF2, a DOF-type ripening-related transcription factor, which is hormonally regulated and specific to the receptacle, though high expression levels were also found in petals. The expression pattern of FaDOF2 correlated with eugenol content, a phenylpropanoid volatile, in both fruit receptacles and petals. When FaDOF2 expression was silenced in ripe strawberry receptacles, the expression of FaEOBII and FaEGS2, two key genes involved in eugenol production, were down-regulated. These fruits showed a concomitant decrease in eugenol content, which confirmed that FaDOF2 is a transcription factor that is involved in eugenol production in ripe fruit receptacles. By using the yeast two-hybrid system and bimolecular fluorescence complementation, we demonstrated that FaDOF2 interacts with FaEOBII, a previously reported regulator of eugenol production, which determines fine-tuning of the expression of key genes that are involved in eugenol production. These results provide evidence that FaDOF2 plays a subsidiary regulatory role with FaEOBII in the expression of genes encoding enzymes that control eugenol production. Taken together, our results provide new insights into the regulation of the volatile phenylpropanoid pathway in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba, Spain
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Carlos Cañete-Gómez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | | | | | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049-Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| | - Enriqueta Moyano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071 Córdoba,Spain
| |
Collapse
|
40
|
Ravid J, Spitzer-Rimon B, Takebayashi Y, Seo M, Cna'ani A, Aravena-Calvo J, Masci T, Farhi M, Vainstein A. GA as a regulatory link between the showy floral traits color and scent. THE NEW PHYTOLOGIST 2017; 215:411-422. [PMID: 28262954 DOI: 10.1111/nph.14504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC-MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.
Collapse
Affiliation(s)
- Jasmin Ravid
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Ben Spitzer-Rimon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alon Cna'ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Moran Farhi
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| |
Collapse
|
41
|
Ruiz-Hernández V, Hermans B, Weiss J, Egea-Cortines M. Genetic Analysis of Natural Variation in Antirrhinum Scent Profiles Identifies BENZOIC ACID CARBOXYMETHYL TRANSFERASE As the Major Locus Controlling Methyl Benzoate Synthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:27. [PMID: 28154577 PMCID: PMC5244254 DOI: 10.3389/fpls.2017.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/05/2017] [Indexed: 05/31/2023]
Abstract
The Antirrhinum genus has a considerable complexity in the scent profiles produced by different species. We have analyzed the genetic differences between A. majus and A. linkianum, two species divergent in the emission of methyl benzoate, methyl cinnamate, acetophenone, and ocimene. The genetic analysis showed that all compounds segregated in a Mendelian fashion attributable to one or two loci with simple or epistatic interactions. Several lines lacked methyl benzoate, a major Volatile Organic Compound emitted by A. majus but missing in A. linkianum. Using a candidate gene approach, we found that the BENZOIC ACID CARBOXYMETHYL TRANSFERASE from A. linkianum appeared to be a null allele as we could not detect mRNA expression. The coding region did not show significant differences that could explain the loss of expression. The intron-exon boundaries was also conserved indicating that there is no alternative splicing in A. linkianum as compared to A. majus. However, it showed multiple polymorphisms in the 5' promoter region including two insertions, one harboring an IDLE MITE transposon with additional sequences with high homology to the PLENA locus and a second one with somewhat lower homology to the regulatory region of the VENOSA locus. It also had a 778 bp deletion as compared to the A. majus BAMT promoter region. Our results show that the differences in scent emission between A. majus and A. linkianum may be traced back to single genes involved in discrete biosynthetic reactions such as benzoic acid methylation. Thus, natural variation of this complex trait maybe the result of combinations of wild type, and loss of function alleles in different genes involved in discrete VOCs biosynthesis. Furthermore, the presence of active transposable elements in the genus may account for rapid evolution and instability, raising the possibility of adaptation to local pollinators.
Collapse
|
42
|
Zhao K, Yang W, Zhou Y, Zhang J, Li Y, Ahmad S, Zhang Q. Comparative Transcriptome Reveals Benzenoid Biosynthesis Regulation as Inducer of Floral Scent in the Woody Plant Prunus mume. FRONTIERS IN PLANT SCIENCE 2017; 8:319. [PMID: 28344586 PMCID: PMC5345196 DOI: 10.3389/fpls.2017.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Mei (Prunus mume) is a peculiar woody ornamental plant famous for its inviting fragrance in winter. However, in this valuable plant, the mechanism behind floral volatile development remains poorly defined. Therefore, to explore the floral scent formation, a comparative transcriptome was conducted in order to identify the global transcripts specifying flower buds and blooming flowers of P. mume. Differentially expressed genes were identified between the two different stages showing great discrepancy in floral volatile production. Moreover, according to the expression specificity among the organs (stem, root, fruit, leaf), we summarized one gene cluster regulating the benzenoid floral scent. Significant gene changes were observed in accordance with the formation of benzenoid, thus pointing the pivotal roles of genes as well as cytochrome-P450s and short chain dehydrogenases in the benzenoid biosynthetic process. Further, transcription factors like EMISSION OF BENZENOID I and ODORANT I performed the same expression pattern suggesting key roles in the management of the downstream genes. Taken together, these data provide potential novel anchors for the benzenoid pathway, and the insight for the floral scent induction and regulation mechanism in woody plants.
Collapse
|
43
|
Weiss J, Mühlemann JK, Ruiz-Hernández V, Dudareva N, Egea-Cortines M. Phenotypic Space and Variation of Floral Scent Profiles during Late Flower Development in Antirrhinum. FRONTIERS IN PLANT SCIENCE 2016; 7:1903. [PMID: 28066463 PMCID: PMC5174079 DOI: 10.3389/fpls.2016.01903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/01/2016] [Indexed: 05/24/2023]
Abstract
The genus Antirrhinum comprises about 28 species with a center of origin in the Iberian Peninsula. They show an important diversity of growing niches. We have performed a comprehensive analysis of scent profiles in eight wild species, Antirrhinum linkianum, A. tortuosum, A. cirrigherum, A. latifolium, A. meonanthum, A. braun-blanquetii, A. barrelieri, and A. graniticum. We used also two laboratory inbred lines A. majus, 165E and Sippe50. We identified 63 volatile organic compounds (VOCs) belonging to phenylpropanoids, benzenoids, mono- and sesquiterpenes, nitrogen-containing compounds, and aliphatic alcohols previously described in plants. Twenty-four VOCs were produced at levels higher than 2% of total VOC emission, while other VOCs were emitted in trace amounts. The absolute scent emission varied during flower maturation and species. The lowest emitting was A. meonanthum while A. tortuosum had the largest emissions. Species were clustered according to their scent profiles and the resulting dendrogram matched the current species phylogeny. However, two accessions, A. majus Sippe 50 and A. braun-blanquetii, showed development-specific changes in their VOC composition, suggesting a precise control and fine tuning of scent profiles. Cluster analysis of the different scent components failed to identify a specific synthesis pathway, indicating a key role of scent profiles as blends. There is considerable degree of chemodiversity in scent profiles in Antirrhinum. The specific developmental stage plays an important role in scent quantitative emissions. The relative robustness of the bouquets could be an adaptation to local pollinators.
Collapse
Affiliation(s)
- Julia Weiss
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| | | | - Victoria Ruiz-Hernández
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West LafayetteIN, USA
| | - Marcos Egea-Cortines
- Department of Genetics, Institute of Biotechnology, Universidad Politécnica de CartagenaCartagena, Spain
| |
Collapse
|
44
|
Xie Q, Liu Z, Meir S, Rogachev I, Aharoni A, Klee HJ, Galili G. Altered metabolite accumulation in tomato fruits by coexpressing a feedback-insensitive AroG and the PhODO1 MYB-type transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2300-2309. [PMID: 27185473 PMCID: PMC5103220 DOI: 10.1111/pbi.12583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Targeted manipulation of phenylalanine (Phe) synthesis is a potentially powerful strategy to boost biologically and economically important metabolites, including phenylpropanoids, aromatic volatiles and other specialized plant metabolites. Here, we use two transgenes to significantly increase the levels of aromatic amino acids, tomato flavour-associated volatiles and antioxidant phenylpropanoids. Overexpression of the petunia MYB transcript factor, ODORANT1 (ODO1), combined with expression of a feedback-insensitive E. coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (AroG), altered the levels of multiple primary and secondary metabolites in tomato fruit, boosting levels of multiple secondary metabolites. Our results indicate that coexpression of AroG and ODO1 has a dual effect on Phe and related biosynthetic pathways: (i) positively impacting tyrosine (Tyr) and antioxidant related metabolites, including ones derived from coumaric acid and ferulic acid; (ii) negatively impacting other downstream secondary metabolites of the Phe pathway, including kaempferol-, naringenin- and quercetin-derived metabolites, as well as aromatic volatiles. The metabolite profiles were distinct from those obtained with either single transgene. In addition to providing fruits that are increased in flavour and nutritional chemicals, coexpression of the two genes provides insights into regulation of branches of phenylpropanoid metabolic pathways.
Collapse
Affiliation(s)
- Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Zhongyuan Liu
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611‐0690USA
| | - Sagit Meir
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Ilana Rogachev
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Asaph Aharoni
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Harry J. Klee
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611‐0690USA
| | - Gad Galili
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
45
|
Preger-Ben Noon E, Davis FP, Stern DL. Evolved Repression Overcomes Enhancer Robustness. Dev Cell 2016; 39:572-584. [PMID: 27840106 DOI: 10.1016/j.devcel.2016.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/26/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
Abstract
Biological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages.
Collapse
Affiliation(s)
- Ella Preger-Ben Noon
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Fred P Davis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
46
|
Van Moerkercke A, Steensma P, Gariboldi I, Espoz J, Purnama PC, Schweizer F, Miettinen K, Vanden Bossche R, De Clercq R, Memelink J, Goossens A. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:3-12. [PMID: 27342401 DOI: 10.1111/tpj.13230] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 05/07/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) are produced as plant defence compounds. In the medicinal plant Catharanthus roseus, they comprise the anticancer compounds vinblastine and vincristine. The iridoid (monoterpenoid) pathway forms one of the two branches that feed MIA biosynthesis and its activation is regulated by the transcription factor (TF) basic helix-loop-helix (bHLH) iridoid synthesis 1 (BIS1). Here, we describe the identification and characterisation of BIS2, a jasmonate (JA)-responsive bHLH TF expressed preferentially in internal phloem-associated parenchyma cells, which transactivates promoters of iridoid biosynthesis genes and can homodimerise or form heterodimers with BIS1. Stable overexpression of BIS2 in C. roseus suspension cells and transient ectopic expression of BIS2 in C. roseus petal limbs resulted in increased transcript accumulation of methylerythritol-4-phosphate and iridoid pathway genes, but not of other MIA genes or triterpenoid genes. Transcript profiling also indicated that BIS2 expression is part of an amplification loop, as it is induced by overexpression of either BIS1 or BIS2. Accordingly, silencing of BIS2 in C. roseus suspension cells completely abolished the JA-induced upregulation of the iridoid pathway genes and subsequent MIA accumulation, despite the presence of induced BIS1, indicating that BIS2 is essential for MIA production in C. roseus.
Collapse
Affiliation(s)
- Alex Van Moerkercke
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Priscille Steensma
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Ivo Gariboldi
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Javiera Espoz
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Purin C Purnama
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Fabian Schweizer
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Karel Miettinen
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Johan Memelink
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.
| |
Collapse
|
47
|
Cheng S, Fu X, Mei X, Zhou Y, Du B, Watanabe N, Yang Z. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:1-8. [PMID: 27235646 DOI: 10.1016/j.plaphy.2016.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 05/24/2023]
Abstract
Floral volatile phenylpropanoids and benzenoids (VPBs) play important ecological functions and have potential economic applications. Little is known about how multi-factors in integration regulate the formation and emission of floral VPBs. In the present study, we investigated effects of multi factors including endogenous circadian clock, light, and temperature on the formation and emission of VPBs, which are major volatiles in flowers of Petunia× hybrida cv. 'Mitchell Diploid'. Endogenous circadian clock was proposed as the most important factor regulating rhythmic emission of VPBs and expressions of structural genes involved in the upstream biosynthetic pathway of VPBs, but did not affect expression levels of structural genes involved in the downstream pathway and VPBs-related regulators. In contrast to light, temperature was a more constant factor affecting emission of VPBs. VPBs emission could be inhibited within a short time by increasing temperature. The information will contribute to our understanding of emission mechanism of floral volatiles.
Collapse
Affiliation(s)
- Sihua Cheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiumin Fu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Xin Mei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Ying Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
| | - Bing Du
- College of Food, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, China; Juxiangyuan Health Food (Zhongshan) Co., Ltd., No. 13, Yandong Second Road, Torch Development Zone, Zhongshan, 528400, China
| | - Naoharu Watanabe
- Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
48
|
Johnson TS, Schwieterman ML, Kim JY, Cho KH, Clark DG, Colquhoun TA. Lilium floral fragrance: A biochemical and genetic resource for aroma and flavor. PHYTOCHEMISTRY 2016; 122:103-112. [PMID: 26654856 DOI: 10.1016/j.phytochem.2015.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 05/08/2023]
Abstract
Hybrid Lilium (common name lily) cultivars are among the top produced domestic fresh cut flowers and potted plants in the US today. Many hybrid Lilium cultivars produce large and showy flowers that emit copious amounts of volatile molecules, which can negatively affect a consumer's appreciation or limit use of the plant product. There are few publications focused on the biochemistry, genetics, and/or molecular regulation of floral volatile biosynthesis for Lilium cultivars. In an initial pursuit to provide breeders with molecular markers for floral volatile biosynthesis, a total of five commercially available oriental and oriental-trumpet hybrid Lilium cultivars were selected for analytical characterization of floral volatile emission. In total, 66 volatile molecules were qualified and quantitated among all cultivars. Chemical classes of identified volatiles include monoterpene hydrocarbons, monoterpene alcohols and aldehydes, phenylpropanoids, benzenoids, fatty-acid-derived, nitrogen-containing, and amino-acid-derived compounds. In general, the floral volatile profiles of the three oriental-trumpet hybrids were dominated by monoterpene hydrocarbons, monoterpene alcohols and aldehydes, while the two oriental hybrids were dominated by monoterpene alcohols and aldehydes and phenylpropanoids, respectively. Tepal tissues (two petal whirls) emitted the vast majority of total volatile molecules compared to the reproductive organs of the flowers. Tepal volatile profiles were cultivar specific with a high degree of distinction, which indicates the five cultivars chosen will provide an excellent differential genetic environment for gene discovery through comparative transcriptomics in the future. Cloning and assaying transcript accumulation from four floral volatile biosynthetic candidates provided few immediate or obvious trends with floral volatile emission.
Collapse
Affiliation(s)
- Timothy S Johnson
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Michael L Schwieterman
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA; Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Joo Young Kim
- Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Keun H Cho
- Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - David G Clark
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA; Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Thomas A Colquhoun
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA; Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
49
|
Lu S, Zhang Y, Zheng X, Zhu K, Xu Q, Deng X. Isolation and Functional Characterization of a Lycopene β-cyclase Gene Promoter from Citrus. FRONTIERS IN PLANT SCIENCE 2016; 7:1367. [PMID: 27679644 PMCID: PMC5020073 DOI: 10.3389/fpls.2016.01367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/29/2016] [Indexed: 05/19/2023]
Abstract
Lycopene β-cyclases are key enzymes located at the branch point of the carotenoid biosynthesis pathway. However, the transcriptional regulatory mechanisms of LCYb1 in citrus with abundant carotenoid accumulation are still unclear. To understand the molecular basis of CsLCYb1 expression, we isolated and functionally characterized the 5' upstream sequences of CsLCYb1 from citrus. The full-length CsLCYb1 promoter and a series of its 5' deletions were fused to the β-glucuronidase (GUS) reporter gene and transferred into different plants (tomato, Arabidopsis and citrus callus) to test the promoter activities. The results of all transgenic species showed that the 1584 bp upstream region from the translational start site displayed maximal promoter activity, and the minimal promoter containing 746 bp upstream sequences was sufficient for strong basal promoter activity. Furthermore, the CsLCYb1 promoter activity was developmentally and tissue-specially regulated in transgenic Arabidopsis, and it was affected by multiple hormones and environmental cues in transgenic citrus callus under various treatments. Finer deletion analysis identified an enhancer element existing as a tandem repeat in the promoter region between -574 to -513 bp and conferring strong promoter activity. The copy numbers of the enhancer element differed among various citrus species, leading to the development of a derived simple sequence repeat marker to distinguish different species. In conclusion, this study elucidates the expression characteristics of the LCYb1 promoter from citrus and further identifies a novel enhancer element required for the promoter activity. The characterized promoter fragment would be an ideal candidate for genetic engineering and seeking of upstream trans-acting elements.
Collapse
|
50
|
Fenske MP, Imaizumi T. Circadian Rhythms in Floral Scent Emission. FRONTIERS IN PLANT SCIENCE 2016; 7:462. [PMID: 27148293 PMCID: PMC4829607 DOI: 10.3389/fpls.2016.00462] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 05/12/2023]
Abstract
To successfully recruit pollinators, plants often release attractive floral scents at specific times of day to coincide with pollinator foraging. This timing of scent emission is thought to be evolutionarily beneficial to maximize resource efficiency while attracting only useful pollinators. Temporal regulation of scent emission is tied to the activity of the specific metabolic pathways responsible for scent production. Although floral volatile profiling in various plants indicated a contribution by the circadian clock, the mechanisms by which the circadian clock regulates timing of floral scent emission remained elusive. Recent studies using two species in the Solanaceae family provided initial insight into molecular clock regulation of scent emission timing. In Petunia hybrida, the floral volatile benzenoid/phenylpropanoid (FVBP) pathway is the major metabolic pathway that produces floral volatiles. Three MYB-type transcription factors, ODORANT 1 (ODO1), EMISSION OF BENZENOIDS I (EOBI), and EOBII, all of which show diurnal rhythms in mRNA expression, act as positive regulators for several enzyme genes in the FVBP pathway. Recently, in P. hybrida and Nicotiana attenuata, homologs of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL (LHY) have been shown to have a similar role in the circadian clock in these plants, and to also determine the timing of scent emission. In addition, in P. hybrida, PhLHY directly represses ODO1 and several enzyme genes in the FVBP pathway during the morning as an important negative regulator of scent emission. These findings facilitate our understanding of the relationship between a molecular timekeeper and the timing of scent emission, which may influence reproductive success.
Collapse
|