1
|
Wang S, Zhan C, Chen R, Li W, Song H, Zhao G, Wen M, Liang D, Qiao J. Achievements and perspectives of synthetic biology in botanical insecticides. J Cell Physiol 2024; 239:e30888. [PMID: 36183373 DOI: 10.1002/jcp.30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Weiguo Li
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Dongmei Liang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
2
|
Matsuda K. Understanding pyrethrin biosynthesis: toward and beyond natural pesticide overproduction. Biochem Soc Trans 2024; 52:1927-1937. [PMID: 39136197 DOI: 10.1042/bst20240213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Pyrethrins are natural insecticides biosynthesised by Asteraceae plants, such as Tanacetum cinerariifolium and have a long history, dating back to ancient times. Pyrethrins are often used as low-persistence and safe insecticides to control household, horticultural, and agricultural insect pests. Despite its long history of use, pyrethrin biosynthesis remains a mystery, presenting a significant opportunity to improve yields and meet the growing demand for organic agriculture. To achieve this, both genetic modification and non-genetic methods, such as chemical activation and priming, are indispensable. Plants use pyrethrins as a defence against herbivores, but pyrethrin biosynthesis pathways are shared with plant hormones and signal molecules. Hence, the insight that pyrethrins may play broader roles than those traditionally expected is invaluable to advance the basic and applied sciences of pyrethrins.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
3
|
Li J, Hu H, Fu H, Li J, Zeng T, Li J, Wang M, Jongsma MA, Wang C. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. PLANTA 2024; 259:41. [PMID: 38270671 DOI: 10.1007/s00425-023-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hansen Fu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Zeng T, Yu Q, Shang J, Xu Z, Zhou L, Li W, Li J, Hu H, Zhu L, Li J, Wang C. TcbHLH14 a Jasmonate Associated MYC2-like Transcription Factor Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2023; 24:ijms24087379. [PMID: 37108541 PMCID: PMC10138541 DOI: 10.3390/ijms24087379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Natural pyrethrins have high application value, and are widely used as a green pesticide in crop pest prevention and control. Pyrethrins are mainly extracted from the flower heads of Tanacetum cinerariifolium; however, the natural content is low. Therefore, it is essential to understand the regulatory mechanisms underlying the synthesis of pyrethrins through identification of key transcription factors. We identified a gene encoding a MYC2-like transcription factor named TcbHLH14 from T. cinerariifolium transcriptome, which is induced by methyl jasmonate. In the present study, we evaluated the regulatory effects and mechanisms of TcbHLH14 using expression analysis, a yeast one-hybrid assay, electrophoretic mobility shift assay, and overexpression/virus-induced gene silencing experiments. We found that TcbHLH14 can directly bind to the cis-elements of the pyrethrins synthesis genes TcAOC and TcGLIP to activate their expression. The transient overexpression of TcbHLH14 enhanced expression of the TcAOC and TcGLIP genes. Conversely, transient silencing of TcbHLH14 downregulated the expression of TcAOC and TcGLIP and reduced the content of pyrethrins. In summary, these results indicate that the potential application of TcbHLH14 in improving the germplasm resources and provide a new insight into the regulatory network of pyrethrins biosynthesis of T. cinerariifolium to further inform the development of engineering strategies for increasing pyrethrins contents.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhong Shang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhizhuo Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jinjin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Xu Z, Zeng T, Li J, Zhou L, Li J, Luo J, Zheng R, Wang Y, Hu H, Wang C. TcbZIP60 positively regulates pyrethrins biosynthesis in Tanacetum cinerariifolium. FRONTIERS IN PLANT SCIENCE 2023; 14:1133912. [PMID: 36890888 PMCID: PMC9986458 DOI: 10.3389/fpls.2023.1133912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Pyrethrins, synthesized in the perennial plant Tanacetum cinerariifolium, are a class of terpene mixtures with high insecticidal activity and low human toxicity, which are widely used in plant-derived pesticides. Numerous studies have identified multiple pyrethrins biosynthesis enzymes, which can be enhanced by exogenous hormones such as methyl jasmonate (MeJA). However, the mechanism by which hormone signaling regulates pyrethrins biosynthesis and the potential involvement of certain transcription factors (TFs) remain unclear. In this study, we found that the expression level of a TF in T. cinerariifolium was significantly increased after treatment with plant hormones (MeJA, abscisic acid). Subsequent analysis identified this TF as a member of the basic region/leucine zipper (bZIP) family and was thus named TcbZIP60. TcbZIP60 was localized in the nucleus, suggesting that it is involved in the transcription process. The expression profiles of TcbZIP60 were similar to those of pyrethrins synthesis genes in different flower organs and at different flowering stages. Furthermore, TcbZIP60 could directly bind to the E-box/G-box motifs in the promoters of the pyrethrins synthesis genes TcCHS and TcAOC to activate their expression. Transient overexpression of TcbZIP60 increased the expression levels of pyrethrins biosynthesis genes, leading to the significant accumulation of pyrethrins. Silencing of TcbZIP60 significantly downregulated pyrethrins accumulation and the expression of related genes. Overall, our results reveal a novel TF, TcbZIP60, that regulates both the terpenoid and jasmonic acid pathways of pyrethrins biosynthesis in T. cinerariifolium.
Collapse
Affiliation(s)
- Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jinjin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Hao Hu, ; Caiyun Wang,
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Hao Hu, ; Caiyun Wang,
| |
Collapse
|
6
|
Yamashiro T, Shiraishi A, Nakayama K, Satake H. Key Amino Acids for Transferase Activity of GDSL Lipases. Int J Mol Sci 2022; 23:ijms232315141. [PMID: 36499468 PMCID: PMC9736205 DOI: 10.3390/ijms232315141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The Gly-Asp-Ser-Leu (GDSL) motif of esterase/lipase family proteins (GELPs) generally exhibit esterase activity, whereas transferase activity is markedly preferred in several GELPs, including the Tanacetum cinerariifolium GDSL lipase TciGLIP, which is responsible for the biosynthesis of the natural insecticide, pyrethrin I. This transferase activity is due to the substrate affinity regulated by the protein structure and these features are expected to be conserved in transferase activity-exhibiting GELPs (tr-GELPs). In this study, we identified two amino acid residues, [N/R]208 and D484, in GELP sequence alignments as candidate key residues for the transferase activity of tr-GELPs by two-entropy analysis. Molecular phylogenetic analysis demonstrated that each tr-GELP is located in the clusters for non-tr-GELPs, and most GELPs conserve at least one of the two residues. These results suggest that the two conserved residues are required for the acquisition of transferase activity in the GELP family. Furthermore, substrate docking analyses using ColabFold-generated structure models of both natives and each of the two amino acids-mutated TciGLIPs also revealed numerous docking models for the proper access of substrates to the active site, indicating crucial roles of these residues of TciGLIP in its transferase activity. This is the first report on essential residues in tr-GELPs for the transferase activity.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka 561-0827, Osaka, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku 619-0284, Kyoto, Japan
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka 561-0827, Osaka, Japan
| | - Honoo Satake
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Hyogo, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku 619-0284, Kyoto, Japan
- Correspondence: ; Tel.: +81-5031820704
| |
Collapse
|
7
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, Zheng R, Wang Y, Wang C. TcMYB8, a R3-MYB Transcription Factor, Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2022; 23:12186. [PMID: 36293043 PMCID: PMC9602545 DOI: 10.3390/ijms232012186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Cenci A, Concepción-Hernández M, Guignon V, Angenon G, Rouard M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. Int J Mol Sci 2022; 23:ijms232012114. [PMID: 36292971 PMCID: PMC9602515 DOI: 10.3390/ijms232012114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
GDSL-type esterase/lipase (GELP) enzymes have key functions in plants, such as developmental processes, anther and pollen development, and responses to biotic and abiotic stresses. Genes that encode GELP belong to a complex and large gene family, ranging from tens to more than hundreds of members per plant species. To facilitate functional transfer between them, we conducted a genome-wide classification of GELP in 46 plant species. First, we applied an iterative phylogenetic method using a selected set of representative angiosperm genomes (three monocots and five dicots) and identified 10 main clusters, subdivided into 44 orthogroups (OGs). An expert curation for gene structures, orthogroup composition, and functional annotation was made based on a literature review. Then, using the HMM profiles as seeds, we expanded the classification to 46 plant species. Our results revealed the variable evolutionary dynamics between OGs in which some expanded, mostly through tandem duplications, while others were maintained as single copies. Among these, dicot-specific clusters and specific amplifications in monocots and wheat were characterized. This approach, by combining manual curation and automatic identification, was effective in characterizing a large gene family, allowing the establishment of a classification framework for gene function transfer and a better understanding of the evolutionary history of GELP.
Collapse
Affiliation(s)
- Alberto Cenci
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| | - Mairenys Concepción-Hernández
- Instituto de Biotecnología de las Plantas, Universidad Central “Marta Abreu” de Las Villas (UCLV), Carretera a Camajuaní km 5.5, Santa Clara C.P. 54830, Villa Clara, Cuba
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
- Correspondence: (A.C.); (M.R.)
| |
Collapse
|
9
|
Sugisaka Y, Aoyama S, Kumagai K, Ihara M, Matsuda K. TcGLIP GDSL Lipase Substrate Specificity Co-determines the Pyrethrin Composition in Tanacetum cinerariifolium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8645-8652. [PMID: 35793553 PMCID: PMC9306000 DOI: 10.1021/acs.jafc.2c02365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural pesticides pyrethrins biosynthesized by Tanacetum cinrerariifolium are biodegradable and safer insecticides for pest insect control. TcGLIP, a GDSL lipase underpinning the ester bond formation in pyrethrins, exhibits high stereo-specificity for acyl-CoA and alcohol substrates. However, it is unknown how the enzyme recognizes the other structural features of the substrates and whether such specificity affects the product amount and composition in T. cinrerariifolium. We report here that the cysteamine moiety in (1R,3R)-chrysanthemoyl CoA and the conjugated diene moiety in (S)-pyrethrolone play key roles in the interactions with TcGLIP. CoA released from chrysanthemoyl CoA in the pyrethrin-forming reaction reduces the substrate affinity for TcGLIP by feedback inhibition. (S)-Pyrethrolone shows the highest catalytic efficiency for TcGLIP, followed by (S)-cinerolone and (S)-jasmololone, contributing, at least in part, to determine the pyrethrin compositions in T. cinerariifolium.
Collapse
Affiliation(s)
- Yukimi Sugisaka
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shiori Aoyama
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Konoka Kumagai
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural
Technology and Innovation Research Institute, Kindai University, 3327-204
Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
10
|
Yamashiro T, Shiraishi A, Nakayama K, Satake H. Draft Genome of Tanacetum Coccineum: Genomic Comparison of Closely Related Tanacetum-Family Plants. Int J Mol Sci 2022; 23:7039. [PMID: 35806039 PMCID: PMC9267051 DOI: 10.3390/ijms23137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The plant Tanacetum coccineum (painted daisy) is closely related to Tanacetum cinerariifolium (pyrethrum daisy). However, T. cinerariifolium produces large amounts of pyrethrins, a class of natural insecticides, whereas T. coccineum produces much smaller amounts of these compounds. Thus, comparative genomic analysis is expected to contribute a great deal to investigating the differences in biological defense systems, including pyrethrin biosynthesis. Here, we elucidated the 9.4 Gb draft genome of T. coccineum, consisting of 2,836,647 scaffolds and 103,680 genes. Comparative analyses of the draft genome of T. coccineum and that of T. cinerariifolium, generated in our previous study, revealed distinct features of T. coccineum genes. While the T. coccineum genome contains more numerous ribosome-inactivating protein (RIP)-encoding genes, the number of higher-toxicity type-II RIP-encoding genes is larger in T. cinerariifolium. Furthermore, the number of histidine kinases encoded by the T. coccineum genome is smaller than that of T. cinerariifolium, suggesting a biological correlation with pyrethrin biosynthesis. Moreover, the flanking regions of pyrethrin biosynthesis-related genes are also distinct between these two plants. These results provide clues to the elucidation of species-specific biodefense systems, including the regulatory mechanisms underlying pyrethrin production.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka 561-0827, Japan; (T.Y.); (K.N.)
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku, Kyoto 619-0284, Japan;
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka 561-0827, Japan; (T.Y.); (K.N.)
| | - Honoo Satake
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Souraku, Kyoto 619-0284, Japan;
| |
Collapse
|
11
|
Li J, Xu Z, Zeng T, Zhou L, Li J, Hu H, Luo J, Wang C. Overexpression of TcCHS Increases Pyrethrin Content When Using a Genotype-Independent Transformation System in Pyrethrum ( Tanacetum cinerariifolium). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121575. [PMID: 35736726 PMCID: PMC9229838 DOI: 10.3390/plants11121575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 05/09/2023]
Abstract
Pyrethrum (Tanacetum cinerariifolium) is one of the most important industrial crops for the extraction of pyrethrins, which are natural insecticidal compounds. Progress in pyrethrum molecular breeding with the objective of increasing pyrethrin content has been slow for lack of a suitable gene transfer system. Regeneration recalcitrance is a crucial barrier to establishing a genetic transformation system in pyrethrum. Therefore, in this study, an Agrobacterium-mediated transformation system in pyrethrum was developed using shoot apical meristems from germinated seedlings. Factors affecting transformation efficiency were optimized. Optimal conditions included explants at the "no true leaf" stage with a half apical meristem, an Agrobacterium tumefaciens cell density of OD600 = 0.5, two days of cocultivation, and the incorporation of 1.5 mg L-1 6-BA and 30 mg L-1 kanamycin into the selection medium. Under the optimized conditions, two expression cassettes (proTcCHS-GUS and proRbcS-TcCHS) were successfully transformed into pyrethrum. Polymerase chain reaction (PCR), Southern blotting, reverse-transcription quantitative PCR (RT-qPCR), and histochemical staining confirmed the identity of proTcCHS-GUS transgenic plants. PCR and RT-qPCR analyses confirmed the identity of proRbcS-TcCHS transgenic plants. The transformation efficiency was 0.83% (5 transgenic lines/600 infected explants). The relative concentration of pyrethrins in proRbcS-TcCHS transformants (OX T0-1: 1.50% or OX T0-2: 1.24%) was higher than that in nontransformed plants (WT: 0.76%). Thus, the genetic transformation system overcame the low regeneration efficiency and integrated a foreign gene into the pyrethrum genome. The new system is a suitable and effective tool for creating high-yielding cultivars of pyrethrum.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Jinjin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- Correspondence: (J.L.); (C.W.)
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (Z.X.); (T.Z.); (L.Z.); (J.L.); (H.H.)
- Correspondence: (J.L.); (C.W.)
| |
Collapse
|
12
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
13
|
Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering (Basel) 2022; 9:bioengineering9050207. [PMID: 35621485 PMCID: PMC9137473 DOI: 10.3390/bioengineering9050207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The production and large-scale application of traditional chemical pesticides will bring environmental pollution and food safety problems. With the advantages of high safety and environmental friendliness, botanical biopesticides are in line with the development trend of modern agriculture and have gradually become the mainstream of modern pesticide development. However, the traditional production of botanical biopesticides has long been faced with prominent problems, such as limited source and supply, complicated production processes, and excessive consumption of resources. In recent years, the rapid development of synthetic biology will break through these bottlenecks, and many botanical biopesticides are produced using synthetic biology, such as emodin, celangulin, etc. This paper reviews the latest progress and application prospect of synthetic biology in the development of botanical pesticides so as to provide new ideas for the analysis of synthetic pathways and heterologous and efficient production of botanical biopesticides and accelerate the research process of synthetic biology of natural products.
Collapse
|
14
|
Wang Y, Wen J, Liu L, Chen J, Wang C, Li Z, Wang G, Pichersky E, Xu H. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides. Metab Eng 2022; 72:188-199. [PMID: 35339691 DOI: 10.1016/j.ymben.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of β-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of β-phellandrene and the representative sesquiterpene β-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Wen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Chu Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
15
|
Shen G, Sun W, Chen Z, Shi L, Hong J, Shi J. Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040468. [PMID: 35214802 PMCID: PMC8880598 DOI: 10.3390/plants11040468] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 05/14/2023]
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant-environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed.
Collapse
|
16
|
Zeng T, Li JW, Xu ZZ, Zhou L, Li JJ, Yu Q, Luo J, Chan ZL, Jongsma MA, Hu H, Wang CY. TcMYC2 regulates Pyrethrin biosynthesis in Tanacetum cinerariifolium. HORTICULTURE RESEARCH 2022; 9:uhac178. [PMID: 36338845 PMCID: PMC9627524 DOI: 10.1093/hr/uhac178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 05/13/2023]
Abstract
Pyrethrins constitute a class of terpene derivatives with high insecticidal activity and are mainly synthesized in the capitula of the horticulturally important plant, Tanacetum cinerariifolium. Treatment of T. cinerariifolium with methyl jasmonate (MeJA) in the field induces pyrethrin biosynthesis, but the mechanism linking MeJA with pyrethrin biosynthesis remains unclear. In this study, we explored the transcription factors involved in regulating MeJA-induced pyrethrin biosynthesis. A single spray application of MeJA to T. cinerariifolium leaves rapidly upregulated the expression of most known pyrethrin biosynthesis genes and subsequently increased the total pyrethrin content in the leaf. A continuous 2-week MeJA treatment resulted in enhanced pyrethrin content and increased trichome density. TcMYC2, a key gene in jasmonate signaling, was screened at the transcriptome after MeJA treatment. TcMYC2 positively regulated expression of the pyrethrin biosynthesis genes TcCHS, TcAOC, and TcGLIP by directly binding to E-box/G-box motifs in the promoters. The stable overexpression of TcMYC2 in T. cinerariifolium hairy roots significantly increased the expression of TcAOC and TcGLIP. Further transient overexpression and viral-induced gene-silencing experiments demonstrated that TcMYC2 positively promoted pyrethrin biosynthesis. Collectively, the results reveal a novel molecular mechanism for MeJA-induced pyrethrin biosynthesis in T. cinerariifolium involving TcMYC2.
Collapse
Affiliation(s)
| | | | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu-Long Chan
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands
| | - Hao Hu
- Corresponding authors. E-mails: ;
| | | |
Collapse
|
17
|
Matsuda K. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Biosci Biotechnol Biochem 2021; 86:1-11. [PMID: 34694357 DOI: 10.1093/bbb/zbab187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/12/2022]
Abstract
Tanacetum cinerariifolium was known to produce pyrethrins, but the mechanism of pyrethrin biosynthesis was largely unclear. The author showed that the nonmevalonate and oxylipin pathways underlie biosynthesis of the acid and alcohol moieties, respectively, and a GDSL lipase joins the products of these pathways. A blend of the green leaf volatiles and (E)-β-farnesene mediates the induction of wounding responses to neighboring intact conspecies by enhancing pyrethrin biosynthesis. Plants fight against herbivores underground as well as aboveground, and, in soy pulps, some fungi produce compounds selectively modulating ion channels in insect nervous system. The author proposed that indirect defense of plants occurs where microorganisms produce defense substances in the rhizosphere. Broad-spectrum pesticides, including neonicotinoids, may affect nontarget organisms. The author discovered cofactors enabling functional expression of insect nicotinic acetylcholine receptors (nAChRs). This led to understanding the mechanism of insect nAChR-neonicotinoid interactions, thus paving new avenues for controlling crop pests and disease vectors.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
18
|
Zeng T, Li JW, Zhou L, Xu ZZ, Li JJ, Hu H, Luo J, Zheng RR, Wang YY, Wang CY. Transcriptional Responses and GCMS Analysis for the Biosynthesis of Pyrethrins and Volatile Terpenes in Tanacetum coccineum. Int J Mol Sci 2021; 22:ijms222313005. [PMID: 34884809 PMCID: PMC8657971 DOI: 10.3390/ijms222313005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/24/2023] Open
Abstract
Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetumcinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost–benefit relationship between plant defense and pollination.
Collapse
Affiliation(s)
- Tuo Zeng
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jia-Wen Li
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Li Zhou
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Zhi-Zhuo Xu
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Jin-Jin Li
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Hao Hu
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Jing Luo
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Ri-Ru Zheng
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Yuan-Yuan Wang
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
| | - Cai-Yun Wang
- A Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (T.Z.); (J.-W.L.); (L.Z.); (Z.-Z.X.); (J.-J.L.); (H.H.); (J.L.); (R.-R.Z.); (Y.-Y.W.)
- Correspondence:
| |
Collapse
|
19
|
Müller H, Terholsen H, Godehard SP, Badenhorst CPS, Bornscheuer UT. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Henrik Terholsen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
20
|
Li J, Hu H, Chen Y, Xie J, Li J, Zeng T, Wang M, Luo J, Zheng R, Jongsma MA, Wang C. Tissue specificity of (E)-β-farnesene and germacrene D accumulation in pyrethrum flowers. PHYTOCHEMISTRY 2021; 187:112768. [PMID: 33932787 DOI: 10.1016/j.phytochem.2021.112768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/21/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Plant defensive mimicry based on the aphid alarm pheromone (E)-β-farnesene (EβF) was previously shown to operate in Tanacetum cinerariifolium (Asteraceae) flowers. Germacrene D (GD), is another dominant volatile of T. cinerariifolium flowers and may modulate both defense and pollination. Here, we find that the increase in GD/EβF ratio at later developmental stages is correlated with the tissue distribution in the flower head: the total content of EβF and GD is similar, but GD accumulates comparatively more in the upper disk florets. Naphthol and N, N-dimethyl-p-phenylenediamine dihydrochloride (NADI)-stained purple ducts containing EβF and GD, were observed in the five petal lips of the corolla and two-lobed stigma of disk florets. By contrast in the peduncle, EβF accounts for nearly 80% of total terpenes, compared to 5% for GD. EβF is accumulated inside inner cortex cells and parenchyma cells of the pith in young peduncle. This is followed by the formation of terpene-filled axial secretory cavities parallel to the vascular bundles. In conclusion, the observed developmental and diurnal emissions of different EβF/GD ratios appear to be regulated by their tissue distribution.
Collapse
Affiliation(s)
- Jinjin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Xie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Riru Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708, PB Wageningen, the Netherlands.
| | - Caiyun Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Spatial and developmental regulation of putative genes associated with the biosynthesis of sesquiterpenes and pyrethrin I in Chrysanthemum cinerariaefolium. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Lybrand DB, Xu H, Last RL, Pichersky E. How Plants Synthesize Pyrethrins: Safe and Biodegradable Insecticides. TRENDS IN PLANT SCIENCE 2020; 25:1240-1251. [PMID: 32690362 PMCID: PMC7677217 DOI: 10.1016/j.tplants.2020.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 05/04/2023]
Abstract
Natural pyrethrin insecticides produced by Dalmatian pyrethrum (Tanacetum cinerariifolium) have low mammalian toxicity and short environmental persistence, providing an alternative to widely used synthetic agricultural insecticides that pose a threat to human health and the environment. A recent surge of interest in the use of pyrethrins as agricultural insecticides coincides with the discovery of several new genes in the pyrethrin biosynthetic pathway. Elucidation of this pathway facilitates efforts to breed improved pyrethrum varieties and to engineer plants with improved endogenous defenses or hosts for heterologous pyrethrin production. We describe the current state of knowledge related to global pyrethrum production, the pyrethrin biosynthetic pathway and its regulation, and recent efforts to engineer the pyrethrin pathway in diverse plant hosts.
Collapse
Affiliation(s)
- Daniel B Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Haiyang Xu
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Li M, Liu J, Zhou Y, Zhou S, Zhang S, Tong H, Zhao A. Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. PHYTOCHEMISTRY 2020; 180:112515. [PMID: 32957017 DOI: 10.1016/j.phytochem.2020.112515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Conventional wisdom holds that tea (Camellia sinensis) quality can be improved by drought. To clarify the underlying mechanism, a conjoint analysis of transcriptome and metabolome profiling was carried out in tea shoots harvested under different soil water contents (SWCs). Drought had little impact on theanine, catechins and caffeine in field conditions. Besides the flavor contributions of amino acid and their derivatives, organic acids, and nucleotides and their derivatives, the obviously increased isoflavonoids and glycosylflavonoids and the sharply decreased lipids are suggested to play key roles, which is mainly due to substantial increases of type III polyketide synthase B (PKSB), flavonol synthase/flavanone 3-hydroxylase (FLS), and UDP-glycosyltransferases (UGTs), as well as the significant repression of anthocyanidin synthase (ANS) and R2R3MYBs, and downregulated lipid metabolisms. Genes of GDSL esterase/lipase (GDSL), abscisic acid (ABA) and jasmonate (JA) signaling were found to play important roles in both flavonoid accumulation and lipid reduction. These findings increased our understanding of how moderate drought improves taste and aroma of tea by interfering in the metabolism of fresh leaves, which provides new insight into balancing compounds in pre-harvest tea shoots.
Collapse
Affiliation(s)
- Meifeng Li
- College of Food Science, Southwest University, Beibei, Chongqing, 400716, China.
| | - Jianjun Liu
- Tea College of Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Yuping Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Siqin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Shuai Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| | - Huarong Tong
- College of Food Science, Southwest University, Beibei, Chongqing, 400716, China.
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
24
|
Guo DL, Wang ZG, Pei MS, Guo LL, Yu YH. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics 2020; 21:784. [PMID: 33176674 PMCID: PMC7657363 DOI: 10.1186/s12864-020-07180-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. Results In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. Conclusions The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07180-y.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Mao-Song Pei
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Li-Li Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|
25
|
Godehard SP, Badenhorst CPS, Müller H, Bornscheuer UT. Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the Mycobacterium smegmatis Acyltransferase MsAcT. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
26
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
27
|
Matsui R, Takiguchi K, Kuwata N, Oki K, Takahashi K, Matsuda K, Matsuura H. Jasmonic acid is not a biosynthetic intermediate to produce the pyrethrolone moiety in pyrethrin II. Sci Rep 2020; 10:6366. [PMID: 32286354 PMCID: PMC7156398 DOI: 10.1038/s41598-020-63026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 12/05/2022] Open
Abstract
Pyrethrum (Tanacetumcinerariifolium) produces insecticidal compounds known as pyrethrins. Pyrethrins are esters; the acid moiety is either trans-chrysanthemic acid or pyrethric acid and the alcohol moiety of pyrethrins is either pyrethrolone, cinerolone, or jasmolone. It was generally accepted that cis-jasmone was biosynthetic intermediate to produce the alcohol moieties of pyrethrin, and the biosynthetic origin of the cis-jasmone was postulated to be jasmonic acid. However, there was no direct evidence to prove this hypothesis. In order to uncover the origin of pyrethrolone moiety in pyrethrin II, feeding experiments were performed employing deuterium- and 13C-labeled compounds as substrates, and the expected labeled compounds were analyzed using UPLC MS/MS system. It was found that the pyrethrolone moiety in pyrethrin II was derived from 12-oxo-phytodienoic acid (OPDA), iso-OPDA and cis-jasmone but not from methyl jasmonate and 3-oxo-2-(2′-[Z]-pentenyl)-cyclopentane-1-hexanoic acid. The results supported that the biosynthesis of the pyrethrolone moiety in pyrethrin II partially used part of the jasmonic acid biosynthetic pathway, but not whole.
Collapse
Affiliation(s)
- Ryo Matsui
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kisumi Takiguchi
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naoshige Kuwata
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Katsunari Oki
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kosaku Takahashi
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Department of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505, Japan
| | - Hideyuki Matsuura
- Laboratory of Natural Product Chemistry, Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
28
|
Yamashiro T, Shiraishi A, Satake H, Nakayama K. Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil. Sci Rep 2019; 9:18249. [PMID: 31796833 PMCID: PMC6890757 DOI: 10.1038/s41598-019-54815-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/20/2019] [Indexed: 11/09/2022] Open
Abstract
Pyrethrum (Tanacetum cinerariifolium), which is a perennial Asteraceae plant with white daisy-like flowers, is the original source of mosquito coils and is known for the biosynthesis of the pyrethrin class of natural insecticides. However, the molecular basis of the production of pyrethrins by T. cinerariifolium has yet to be fully elucidated. Here, we present the 7.1-Gb draft genome of T. cinerariifolium, consisting of 2,016,451 scaffolds and 60,080 genes predicted with high confidence. Notably, analyses of transposable elements (TEs) indicated that TEs occupy 33.84% of the genome sequence. Furthermore, TEs of the sire and oryco clades were found to be enriched in the T. cinerariifolium-specific evolutionary lineage, occupying a total of 13% of the genome sequence, a proportion approximately 8-fold higher than that in other plants. InterProScan analysis demonstrated that biodefense-related toxic proteins (e.g., ribosome inactivating proteins), signal transduction-related proteins (e.g., histidine kinases), and metabolic enzymes (e.g., lipoxygenases, acyl-CoA dehydrogenases/oxygenases, and P450s) are also highly enriched in the T. cinerariifolium genome. Molecular phylogenetic analysis detected a variety of enzymes with genus-specific multiplication, including both common enzymes and others that appear to be specific to pyrethrin biosynthesis. Together, these data identify possible novel components of the pyrethrin biosynthesis pathway and provide new insights into the unique genomic features of T. cinerariifolium.
Collapse
Affiliation(s)
- Takanori Yamashiro
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan.
| | - Koji Nakayama
- Dainihon Jochugiku Co., Ltd., 1-1-11 Daikoku-cho, Toyonaka, Osaka, 561-0827, Japan.
| |
Collapse
|
29
|
Xu H, Li W, Schilmiller AL, van Eekelen H, de Vos RCH, Jongsma MA, Pichersky E. Pyrethric acid of natural pyrethrin insecticide: complete pathway elucidation and reconstitution in Nicotiana benthamiana. THE NEW PHYTOLOGIST 2019; 223:751-765. [PMID: 30920667 DOI: 10.1111/nph.15821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
In the natural pesticides known as pyrethrins, which are esters produced in flowers of Tanacetum cinerariifolium (Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid. We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues. Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10-carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of the SABATH methyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries. Expression in N. benthamiana plants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.
Collapse
Affiliation(s)
- Haiyang Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wei Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Henriëtte van Eekelen
- Business unit Bioscience, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Ric C H de Vos
- Business unit Bioscience, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Maarten A Jongsma
- Business unit Bioscience, Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
30
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
31
|
Duong VT, Unhelkar MH, Kelly JE, Kim SH, Butts CT, Martin RW. Protein structure networks provide insight into active site flexibility in esterase/lipases from the carnivorous plant Drosera capensis. Integr Biol (Camb) 2018; 10:768-779. [PMID: 30516771 PMCID: PMC6336102 DOI: 10.1039/c8ib00140e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In plants, esterase/lipases perform transesterification reactions, playing an important role in the synthesis of useful molecules, such as those comprising the waxy coatings of leaf surfaces. Plant genomes and transcriptomes have provided a wealth of data about expression patterns and the circumstances under which these enzymes are upregulated, e.g. pathogen defense and response to drought; however, predicting their functional characteristics from genomic or transcriptome data is challenging due to weak sequence conservation among the diverse members of this group. Although functional sequence blocks mediating enzyme activity have been identified, progress to date has been hampered by the paucity of information on the structural relationships among these regions and how they affect substrate specificity. Here we present methodology for predicting overall protein flexibility and active site flexibility based on molecular modeling and analysis of protein structure networks (PSNs). We define two new types of specialized PSNs: sequence region networks (SRNs) and active site networks (ASNs), which provide parsimonious representations of molecular structure in reference to known features of interest. Our approach, intended as an aid to target selection for poorly characterized enzyme classes, is demonstrated for 26 previously uncharacterized esterase/lipases from the genome of the carnivorous plant Drosera capensis and validated using a case/control design. Analysis of the network relationships among functional blocks and among the chemical moieties making up the catalytic triad reveals potentially functionally significant differences that are not apparent from sequence analysis alone.
Collapse
Affiliation(s)
- Vy T. Duong
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| | | | | | | | - Carter T. Butts
- Departments of Sociology, Statistics, and Electrical Engineering & Computer Science, UC Irvine
| | - Rachel W. Martin
- Department of Chemistry, UC Irvine
- Department of Molecular Biology & Biochemistry, UC Irvine
| |
Collapse
|
32
|
Gao M, Yin X, Yang W, Lam SM, Tong X, Liu J, Wang X, Li Q, Shui G, He Z. GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 2017; 13:e1006724. [PMID: 29131851 PMCID: PMC5703576 DOI: 10.1371/journal.ppat.1006724] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/27/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. Lipases are a large family of enzymes conferring lipid metabolism. Lipids and their metabolites play diverse roles in plant growth as well as response to environmental stimuli. Accumulating evidence implicates lipids as signaling molecules mediating plant immunity. Therefore, lipases are presumed to be actively involved in plant defense responses. Based on gene expression profiling, we have identified two functional GDSL lipases, encoded by OsGLIP1 and OsGLIP2, whose expression was suppressed by pathogen infection in the model cereal rice. Both OsGLIP1 and OsGLIP2 proteins localize to lipid droplets and the endoplasmic reticulum (ER) membrane, and they likely coordinate lipid metabolism with differential but complementary expression patterns in tissues and developmental stages. Consequently, alteration of OsGLIP gene expression was associated with substantial changes of lipid abundance and plant disease resistance. Our work identifies and characterizes two lipases that function as negative regulators of plant immune responses, strengthening the understanding of lipid metabolism in plant-microbe interactions.
Collapse
Affiliation(s)
- Mingjun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Zhang B, Zhang L, Li F, Zhang D, Liu X, Wang H, Xu Z, Chu C, Zhou Y. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. NATURE PLANTS 2017; 3:17017. [PMID: 28260782 DOI: 10.1038/nplants.2017.17] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 05/17/2023]
Abstract
O-acetylation, a ubiquitous modification of cell wall polymers, has striking impacts on plant growth and biomass utilization and needs to be tightly controlled. However, the mechanisms that underpin the control of cell wall acetylation remain elusive. Here, we show a rice brittle leaf sheath1 (bs1) mutant, which contains a lesion in a Golgi-localized GDSL esterase that deacetylates the prominent hemicellulose xylan. Cell wall composition, detailed xylan structure characterization and enzyme kinetics and activity assays on acetylated sugars and xylooligosaccharides demonstrate that BS1 is an esterase that cleaves acetyl moieties from the xylan backbone at O-2 and O-3 positions of xylopyranosyl residues. BS1 thus plays an important role in the maintenance of proper acetylation level on the xylan backbone, which is crucial for secondary wall formation and patterning. Our findings outline a mechanism for how plants modulate wall acetylation and endow a plethora of uncharacterized GDSL esterases with surmisable activities.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Sakamori K, Ono N, Ihara M, Suzuki H, Matsuura H, Tanaka K, Ohta D, Kanaya S, Matsuda K. Selective regulation of pyrethrin biosynthesis by the specific blend of wound induced volatiles in Tanacetum cinerariifolium. PLANT SIGNALING & BEHAVIOR 2016; 11:e1149675. [PMID: 26918634 PMCID: PMC4883863 DOI: 10.1080/15592324.2016.1149675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Natural pyrethrins are used to control household and agricultural pests, and it is of value to understand biosynthesis in Tanacetum cinerariifolium for enhanced production. We previously found that a blend of four green leaf volatiles (GLVs) and (E)-β-farnesene emitted by T. cinerariifolium seedlings enhanced gene expressions of certain biosynthetic enzymes in unwounded seedlings; however, the extent to which such a regulation facilitates pyrethrin biosynthesis remains unknown. Here we have investigated the effects of the blend of the volatile organic compounds (VOCs) on gene expressions of seven biosynthetic enzymes. VOC treatment resulted in enhanced chrysanthemyl diphosphate synthase (CDS), chrysanthemic acid synthase (CAS), Tanacetum cinerariifolium GDSL lipase (TcGLIP) and acyl-Coenzyme A oxidase 1 (ACX1) gene expressions that reached a peak at a 12 h VOC treatment, whereas the treatment minimally influenced the expressions of other biosynthetic genes. In undifferentiated Tanacetum tissues, such VOC-induced amplification of CDS, CAS, TcGLIP and ACX1 gene expressions were markedly reduced, suggesting that a high-resolution, VOC-mediated communication is an event selective to differentiated plants.
Collapse
Affiliation(s)
- Koji Sakamori
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | - Naoaki Ono
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Makoto Ihara
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute,Kazusa-kamatari, Kisarazu, Chiba, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Division of Applied Bioscience, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Ken Tanaka
- Division of Pharmacognosy, College of Pharmaceutical Science, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Nakaku, Sakai, Osaka, Japan
| | - Shigehiko Kanaya
- Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| |
Collapse
|
35
|
Ahmad FT, Mather DE, Law HY, Li M, Yousif SAJ, Chalmers KJ, Asenstorfer RE, Mares DJ. Genetic control of lutein esterification in wheat (Triticum aestivum L.) grain. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Yang T, Gao L, Hu H, Stoopen G, Wang C, Jongsma MA. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity. J Biol Chem 2014; 289:36325-35. [PMID: 25378387 PMCID: PMC4276892 DOI: 10.1074/jbc.m114.623348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 11/06/2022] Open
Abstract
Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.
Collapse
Affiliation(s)
- Ting Yang
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands, the Laboratory of Entomology, Wageningen UR, P.O. Box 8031, 6700 EH Wageningen, The Netherlands, the Laboratory of Plant Physiology, Wageningen UR, P.O. Box 658, 6700 AR Wageningen, The Netherlands, and
| | - Liping Gao
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Hao Hu
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Geert Stoopen
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Caiyun Wang
- the Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Maarten A Jongsma
- From Business Unit PRI-Bioscience, Wageningen UR, P.O. Box 16, 6700 AA Wageningen, The Netherlands,
| |
Collapse
|
37
|
Requirement of Catalytic-Triad and Related Amino Acids for the Acyltransferase Activity ofTanacetum cinerariifoliumGDSL Lipase/Esterase TcGLIP for Ester-Bond Formation in Pyrethrin Biosynthesis. Biosci Biotechnol Biochem 2014; 77:1822-5. [DOI: 10.1271/bbb.130143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Ramirez AM, Yang T, Bouwmeester HJ, Jongsma MA. A trichome-specific linoleate lipoxygenase expressed during pyrethrin biosynthesis in pyrethrum. Lipids 2013; 48:1005-15. [PMID: 23893337 DOI: 10.1007/s11745-013-3815-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The lipid precursor alcohols of pyrethrins-jasmolone, pyrethrolone and cinerolone-have been proposed as sharing parts of the oxylipin pathway with jasmonic acid. This implies that one of the first committed steps of pyrethrin biosynthesis is catalyzed by a lipoxygenase, catalyzing the hydroperoxidation of linolenic acid at position 13. Previously, we showed that the expression and activity of chrysanthemyl diphosphate synthase (TcCDS), the enzyme catalyzing the first committed step in the biosynthesis of the acid moiety of pyrethrins, is trichome-specific and developmentally regulated in flowers. In the present study we characterized the expression pattern of 25 lipoxygenase EST contigs, and subsequently carried out the molecular cloning of two pyrethrum lipoxygenases, TcLOX1 and TcLOX2, that have a similar pattern to TcCDS. Only recombinant TcLOX1 catalyzed the peroxidation of the linolenic acid substrate. Just as TcCDS, TcLOX1, are exclusively expressed in trichomes. Phylogenetic analysis showed that the enzyme shared the highest homology with chloroplast-localized 13-type-lipoxygenases that are involved in maintaining basal levels of jasmonate.
Collapse
Affiliation(s)
- Aldana M Ramirez
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | |
Collapse
|