1
|
Chen H, Li X, Cheng Q, Shang N, Tong Z, Chu Q, Ye C, Shen X, Zhu QH, Xiao B, Fan L. Single-cell landscape of long and short glandular trichomes in Nicotiana tabacum leaves. iScience 2024; 27:110650. [PMID: 39252954 PMCID: PMC11382123 DOI: 10.1016/j.isci.2024.110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/06/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Glandular trichomes (GTs) play a crucial role in plant defenses and the synthesis of secondary metabolites. Understanding the developmental trajectory of GTs is essential for unraveling their functional significance and potential applications. Here we established a comprehensive single-cell atlas of Nicotiana tabacum leaves, a model plant for GT studies. The atlas included a total of 40,433 cells and successfully captured both long GTs (LGTs) and short GTs (SGTs) from Nicotiana leaves. The developmental trajectories of these trichomes were delineated, revealing potential disparities in epidermal development. Comparative analysis of Arabidopsis and Nicotiana trichome development indicated limited similarity between Arabidopsis epidermal non-glandular trichomes and Nicotiana LGTs and SGTs, implying the essentiality of studying the genes directly involved in the development of Nicotiana GTs for a proper and comprehensive understanding of GT biology. Overall, our results provide profound insights into the developmental intricacies of the specialized GTs.
Collapse
Affiliation(s)
- Hongyu Chen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Beijing Life Science Academy, Changping, Beijing 102209, China
| | - Xiaohan Li
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qing Cheng
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Nianmin Shang
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Zhijun Tong
- Yunnan Tobacco Agricultural Academy, Kunming 650106, China
| | - Qinjie Chu
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Chuyu Ye
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Xiner Shen
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Bingguang Xiao
- Yunnan Tobacco Agricultural Academy, Kunming 650106, China
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Beijing Life Science Academy, Changping, Beijing 102209, China
| |
Collapse
|
2
|
Xu M, Du Y, Hou X, Zhang Z, Yan N. Chemical structures, biosynthesis, bioactivities, and utilisation values for the diterpenes produced in tobacco trichomes. PHYTOCHEMISTRY 2024; 223:114117. [PMID: 38697243 DOI: 10.1016/j.phytochem.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Cembranoids and labdanes are two important types of diterpenes in tobacco (Nicotiana genus) that are predominantly found in the leaf and flower glandular trichome secretions. This is the first systematic review of the biosynthesis, chemical structures, bioactivities, and utilisation values of cembranoid and labdane diterpenes in tobacco. A total of 131 natural cembranoid diterpenes have been reported in tobacco since 1962; these were summarised and classified according to their chemical structure characteristics as isopropyl cembranoids (1-88), seco-cembranoids (89-103), chain cembranoids (104-123), and polycyclic cembranoids (124-131). Forty natural labdane diterpenes reported since 1961 were also summarised and divided into epoxy side chain labdanes (132-150) and epoxy-free side chain labdanes (151-171). Tobacco cembranoid and labdane diterpenes are both formed via the methylerythritol 4-phosphate pathway and are synthesised from geranylgeranyl diphosphate. Their biosynthetic pathways and the four key enzymes (cembratrienol synthase, cytochrome P450 hydroxylase, copalyl diphosphate synthase, and Z-abienol cyclase) that affect their biosynthesis have been described in detail. A systematic summary of the bioactivity and utilisation values of the cembranoid and labdane diterpenes is also provided. The agricultural bioactivities associated with cembranoid and labdane diterpenes include antimicrobial and insecticidal activities as well as induced resistance, while the medical bioactivities include cytotoxic and neuroprotective activities. Further research into the cembranoid and labdane diterpenes will help to promote their development and utilisation as plant-derived pesticides and medicines.
Collapse
Affiliation(s)
- Minglei Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Xiaodong Hou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ning Yan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
3
|
Chen M, Li Z, He X, Zhang Z, Wang D, Cui L, Xie M, Zhao Z, Sun Q, Wang D, Dai J, Gong D. Comparative transcriptome analysis reveals genes involved in trichome development and metabolism in tobacco. BMC PLANT BIOLOGY 2024; 24:541. [PMID: 38872084 DOI: 10.1186/s12870-024-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.
Collapse
Affiliation(s)
- Mingli Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinxi He
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Zhe Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Luying Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zeyu Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dahai Wang
- Shandong Weifang Tobacco Co., Ltd, Weifang, China
| | - Jiameng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, China.
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
4
|
Ma H, Steede T, Dewey RE, Lewis RS. Engineering Sclareol Production on the Leaf Surface of Nicotiana tabacum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38840459 DOI: 10.1021/acs.jafc.4c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Sclareol, a diterpene alcohol, is the most common starting material for the synthesis of ambrox, which serves as a sustainable substitute for ambergris, a valuable fragrance secreted by sperm whales. Sclareol has also been proposed to possess antibacterial, antifungal, and anticancer activities. However, in nature, sclareol is only produced by a few plant species, including Cistus creticus, Cleome spinosa, Nicotiana glutinosa, and Salvia sclarea, which limits its commercial application. In this study, we cloned the two genes responsible for sclareol biosynthesis in S. sclarea, labda-13-en-8-ol diphosphate synthase (LPPS) and sclareol synthase (SS), and overexpressed them in tobacco (Nicotiana tabacum L.). The best transgenic tobacco lines accumulated 4.1 μg/cm2 of sclareol, which is comparable to the sclareol production of N. glutinosa, a natural sclareol producer. Thus, sclareol synthesis in tobacco represents a potential alternative means for the production of this high-value compound.
Collapse
Affiliation(s)
- Hong Ma
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tyler Steede
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ralph E Dewey
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ramsey S Lewis
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Yao X, Li R, Liu Y, Song P, Wu Z, Yan M, Luo J, Fan F, Wang Y. Feedback regulation of the isoprenoid pathway by SsdTPS overexpression has the potential to enhance plant tolerance to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14277. [PMID: 38566271 DOI: 10.1111/ppl.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.
Collapse
Affiliation(s)
- Xiangyu Yao
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Rui Li
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Yanan Liu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Peng Song
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Ziyi Wu
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Meilin Yan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Jinmei Luo
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| | - Fenggui Fan
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, China
| | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, China
| |
Collapse
|
6
|
Zhao Y, Liang Y, Luo G, Li Y, Han X, Wen M. Sequence-Structure Analysis Unlocking the Potential Functional Application of the Local 3D Motifs of Plant-Derived Diterpene Synthases. Biomolecules 2024; 14:120. [PMID: 38254720 PMCID: PMC10813164 DOI: 10.3390/biom14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Plant-derived diterpene synthases (PdiTPSs) play a critical role in the formation of structurally and functionally diverse diterpenoids. However, the specificity or functional-related features of PdiTPSs are not well understood. For a more profound insight, we collected, constructed, and curated 199 functionally characterized PdiTPSs and their corresponding 3D structures. The complex correlations among their sequences, domains, structures, and corresponding products were comprehensively analyzed. Ultimately, our focus narrowed to the geometric arrangement of local structures. We found that local structural alignment can rapidly localize product-specific residues that have been validated by mutagenesis experiments. Based on the 3D motifs derived from the residues around the substrate, we successfully searched diterpene synthases (diTPSs) from the predicted terpene synthases and newly characterized PdiTPSs, suggesting that the identified 3D motifs can serve as distinctive signatures in diTPSs (I and II class). Local structural analysis revealed the PdiTPSs with more conserved amino acid residues show features unique to class I and class II, whereas those with fewer conserved amino acid residues typically exhibit product diversity and specificity. These results provide an attractive method for discovering novel or functionally equivalent enzymes and probing the product specificity in cases where enzyme characterization is limited.
Collapse
Affiliation(s)
- Yalan Zhao
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yupeng Liang
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Gan Luo
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali 671003, China
| | - Xiulin Han
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Mengliang Wen
- National Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (Y.Z.); (Y.L.); (G.L.); (X.H.)
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
7
|
Zhang J, Zhang L, Zhang C, Yang Y, Liu H, Li L, Zhang S, Li X, Liu X, Liu Y, Wang J, Yang G, Xia Q, Wang W, Yang J. Developing an efficient and visible prime editing system to restore tobacco 8-hydroxy-copalyl diphosphate gene for labdane diterpene Z-abienol biosynthesis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2910-2921. [PMID: 37460713 DOI: 10.1007/s11427-022-2396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/30/2023] [Indexed: 12/18/2023]
Abstract
Prime editing (PE) is a versatile CRISPR-Cas based precise genome-editing platform widely used to introduce a range of possible base conversions in various organisms. However, no PE systems have been shown to induce heritable mutations in tobacco, nor in any other dicot. In this study, we generated an efficient PE system in tobacco that not only introduced heritable mutations, but also enabled anthocyanin-based reporter selection of transgene-free T1 plants. This system was used to confer Z-abienol biosynthesis in the allotetraploid tobacco cultivar HHDJY by restoring a G>T conversion in the NtCPS2 gene. High levels of Z-abienol were detected in the leaves of homozygous T1 plants at two weeks after topping. This study describes an advance in PE systems and expands genome-editing toolbox in tobacco, even in dicots, for use in basic research and molecular breeding. And restoring biosynthesis of Z-abienol in tobacco might provide an efficient way to obtain Z-abienol in plants.
Collapse
Affiliation(s)
- Jianduo Zhang
- Yunnan Key Laboratory of Tobacco, Yunnan Academy of Tobacco Science, Kunming, 650231, China
| | - Lu Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | - Chengwei Zhang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | - Yongxing Yang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | - Huayin Liu
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China
| | - Lu Li
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | | | - Xianggan Li
- Cropedit Biotechnology Co. Ltd., Beijing, 102206, China
| | - Xinxiang Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | - Ya Liu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China
| | - Jin Wang
- Yunnan Key Laboratory of Tobacco, Yunnan Academy of Tobacco Science, Kunming, 650231, China
| | - Guangyu Yang
- Yunnan Key Laboratory of Tobacco, Yunnan Academy of Tobacco Science, Kunming, 650231, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| | - Weiguang Wang
- Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, Yunnan Minzu University, Kunming, 650031, China.
| | - Jinxiao Yang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing Academy of Agriculture & Forestry Sciences, Beijing, 100089, China.
| |
Collapse
|
8
|
Tian M, Jin B, Chen L, Ma R, Ma Q, Li X, Chen T, Guo J, Ge H, Zhao X, Lai C, Tang J, Cui G, Huang L. Functional diversity of diterpene synthases in Aconitum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107968. [PMID: 37619270 DOI: 10.1016/j.plaphy.2023.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Members of the Aconitum genus within the Ranunculaceae family are known to accumulate a broad array of medicinal and toxic diterpenoid alkaloids (DAs). Historically, ent-copalyl diphosphate (ent-CPP) was considered the sole precursor in DAs biosynthesis. However, the recent discovery of ent-8,13-CPP synthase in A. gymnandrum Maxim., which participates in ent-atiserene biosynthesis, raises the question of whether this gene is conserved throughout the Aconitum genus. In this study, RNA sequencing and PacBio Iso-sequencing were employed to identify diterpene synthases (diTPSs) in four additional Aconitum species with distinct DA compositions. In vitro and in vivo analyses functionally characterized a diverse array of 10 class II and 9 class I diTPSs. In addition to the identification of seven class II diTPSs as ent-CPP synthases, three other synthases generating ent-8,13-CPP, 8,13-CPP, and 8α-hydroxy-CPP were also discovered. Four class I kaurene synthases-like (KSLs) were observed to react with ent-CPP to yield ent-kaurene. Three KSLs not only reacted with ent-CPP but also ent-8,13-CPP to produce ent-atiserene. AsiKSL2-1 was found to react with 8α-hydroxy-CPP to produce Z-abienol and AsiKSL2-2 exhibited no activity with any of the four intermediates. This research delineates the known diterpene biosynthesis pathways in six Aconitum species and explores the highly divergent diterpene synthases within the genus, which are consistent with their phylogeny and may be responsible for the differential distribution of diterpenoid alkaloids in root and aerial parts. These findings contribute valuable insights into the diversification of diterpene biosynthesis and establish a solid foundation for future investigation into DA biosynthetic pathways in Aconitum.
Collapse
Affiliation(s)
- Mei Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingli Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine, Anhui Food and Drug Inspection and Research Institute, Hefei, 230051, China
| | - Rui Ma
- School of Pharmacy, Henan University of Chinese Medicine, Henan, 450046, China
| | - Qing Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Ge
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Xin Zhao
- Gansu University of Traditional Chinese Medicine, Gansu, 730000, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Gossart N, Berhin A, Sergeant K, Alam I, André C, Hausman JF, Boutry M, Hachez C. Engineering Nicotiana tabacum trichomes for triterpenic acid production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111573. [PMID: 36563941 DOI: 10.1016/j.plantsci.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, we aimed at implementing the biosynthesis of triterpenic acids in Nicotiana tabacum glandular trichomes. Although endogenous genes coding for enzymes involved in such biosynthetic pathway are found in the Nicotiana tabacum genome, implementing such pathway specifically in glandular trichomes required to boost endogenous enzymatic activities. Five transgenes coding for a farnesyl-diphosphate synthase, a squalene synthase, a squalene epoxidase, a beta-amyrin synthase and a beta-amyrin 28-monooxygenase were introduced in N.tabacum, their expression being driven by pMALD1, a trichome-specific transcriptional promoter. This study aimed at testing whether sinking isoprenoid precursors localized in plastids, by exploiting potential cross-talks allowing the exchange of terpenoid pools from the chloroplast to the cytosol, could be a way to improve overall yield. By analyzing metabolites extracted from entire leaves, a low amount of ursolic acid was detected in plants expressing the five transgenes. Our study shows that the terpene biosynthetic pathway could be, in part, redirected in N.tabacum glandular trichomes with no deleterious phenotype at the whole plant level (chlorosis, dwarfism,…). In light of our results, possible ways to improve the final yield are discussed.
Collapse
Affiliation(s)
- Nicola Gossart
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Iftekhar Alam
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium; Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Christelle André
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg; The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Jean-François Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
10
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Isolation of Salvia miltiorrhiza Kaurene Synthase-like ( KSL) Gene Promoter and Its Regulation by Ethephon and Yeast Extract. Genes (Basel) 2022; 14:genes14010054. [PMID: 36672795 PMCID: PMC9859234 DOI: 10.3390/genes14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The presented study describes the regulation of the promoter region of the Salvia miltiorrhiza kaurene synthase-like gene (SmKSL) by ethylene and yeast extract. The isolated fragment is 897 bp and is composed of a promoter (763 bp), 5'UTR (109 bp), and a short CDS (25 bp). The initial in silico analysis revealed the presence of numerous putative cis-active sites for trans-factors responding to different stress conditions. However, this study examines the influence of ethylene and yeast extract on SmKSL gene expression and tanshinone biosynthesis regulation. The results of 72h RT-PCR indicate an antagonistic interaction between ethylene, provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM), and yeast extract (0.5%) on SmKSL gene expression in callus cultures of S. miltiorrhiza. A similar antagonistic effect was observed on total tanshinone concentration for up to 60 days. Ethylene provided as ethephon (0.05, 0.10, 0.25, and 0.50 mM) is a weak inducer of total tanshinone biosynthesis, increasing them only up to the maximum value of 0.67 ± 0.04 mg g-1 DW (60-day induction with 0.50 mM ethephon). Among the tanshinones elicited by ethephon, cryptotanshinone (52.21%) dominates, followed by dihydrotanshinone (45.00%) and tanshinone IIA (3.79%). In contrast, the 0.5% yeast extract strongly increases the total tanshinone concentration up to a maximum value of 13.30 ± 1.09 mg g-1 DW, observed after 50 days of induction. Yeast extract and ethylene appear to activate different fragments of the tanshinone biosynthesis route; hence the primary tanshinones induced by yeast extract were cryptotanshinone (81.42%), followed by dihydrotanshinone (17.06%) and tanshinone IIA (1.52%).
Collapse
|
12
|
Lee JB, Ohmura T, Yamamura Y. Functional Characterization of Three Diterpene Synthases Responsible for Tetracyclic Diterpene Biosynthesis in Scoparia dulcis. PLANTS (BASEL, SWITZERLAND) 2022; 12:69. [PMID: 36616198 PMCID: PMC9824296 DOI: 10.3390/plants12010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Scoparia dulcis produces unique biologically active diterpenoids such as scopadulcic acid B (SDB). They are biosynthesized from geranylgeranyl diphosphate (GGPP) via syn-copalyl diphosphate (syn-CPP) and scopadulanol as an important key intermediate. In this paper, we functionally characterized three diterpene synthases, SdCPS2, SdKSL1 and SdKSL2, from S. dulcis. The SdCPS2 catalyzed a cyclization reaction from GGPP to syn-CPP, and SdKSL1 did from syn-CPP to scopadulan-13α-ol. On the other hand, SdKSL2 was found to incorporate a non-sense mutation at 682. Therefore, we mutated the nucleotide residue from A to G in SdKSL2 to produce SdKSL2mut, and it was able to recover the catalytic function from syn-CPP to syn-aphidicol-16-ene, the precursor to scopadulin. From our results, SdCPS2 and SdKSL1 might be important key players for SDB biosynthesis in S. dulcis.
Collapse
|
13
|
Xu S, Han W, Cao K, Li B, Zheng C, Xie K, Li W, He L. Knockdown of NtCPS2 promotes plant growth and reduces drought tolerance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:968738. [PMID: 36426146 PMCID: PMC9679219 DOI: 10.3389/fpls.2022.968738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drought stress is one of the primary environmental stress factors that gravely threaten crop growth, development, and yields. After drought stress, plants can regulate the content and proportion of various hormones to adjust their growth and development, and in some cases to minimize the adverse effects of drought stress. In our previous study, the tobacco cis-abienol synthesis gene (NtCPS2) was found to affect hormone synthesis in tobacco plants. Unfortunately, the role of NtCPS2 genes in the response to abiotic stress has not yet been investigated. Here, we present data supporting the role of NtCPS2 genes in drought stress and the possible underlying molecular mechanisms. NtCPS2 gene expression was induced by polyethylene glycol, high-temperature, and virus treatments. The results of subcellular localization showed that NtCPS2 was localized in the cell membrane. The NtCPS2-knockdown plants exhibited higher levels of gibberellin (GA) content and synthesis pathway genes expression but lower abscisic acid (ABA) content and synthesis pathway genes expression in response to drought stress. In addition, the transgenic tobacco lines showed higher leaf water loss and electrolyte loss, lower soluble protein and reactive oxygen species content (ROS), and lower antioxidant enzyme activity after drought treatment compared to wild type plants (WT). In summary, NtCPS2 positively regulates drought stress tolerance possibly by modulating the ratio of GA to ABA, which was confirmed by evidence of related phenotypic and physiological indicators. This study may provide evidence for the feedback regulation of hormone to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Shixiao Xu
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Wenlong Han
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Kexin Cao
- Henan Agricultural University, College Tobacco Science, National Tobacco Cultivation & Physiology & Biochemistry Research Center, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, Henan, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Cong Zheng
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Ke Xie
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Wei Li
- Fujian Tobacco Corporation Nanping Company, Nanping, Fujian, China
| | - Lingxiao He
- College of Agronomy, Sichuan Agricultural University & Sichuan Engineering Research Center for Crop Strip Intercropping System & Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Total optimization potential (TOP) approach based constrained design of isoprene and cis-abienol production in A. thaliana. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
Gani U, Nautiyal AK, Kundan M, Rout B, Pandey A, Misra P. Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6186-6206. [PMID: 35662335 DOI: 10.1093/jxb/erac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The β-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Application of Chromatographic Technology to Determine Aromatic Substances in Tobacco during Natural Fermentation: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Flavor is an important index to evaluate the sensory quality of tobacco. The process of fermentation is a key step in the production of aromatic substances in tobacco leaves and an important factor in improving their quality. Worldwide, reams of research show that chromatographic technology plays an irreplaceable role in the tobacco aromatic chemistry. Nevertheless, the degradation mechanism of latent aromatic compounds and the formation mechanism of characteristic aromatic substances have not been fully and systematically elucidated. In this study, the latest progress of basic methods, techniques, and research results of the separation, analysis, and identification of aromatic substances in fermented tobacco leaves were reviewed, and the next research and application directions were prospected. It is expected to provide theoretical reference for the study of molecular mechanism of tobacco flavor, reveal the degradation mechanism of potential aroma compounds, and help improve the quality of tobacco.
Collapse
|
17
|
Wang Y, Wen J, Liu L, Chen J, Wang C, Li Z, Wang G, Pichersky E, Xu H. Engineering of tomato type VI glandular trichomes for trans-chrysanthemic acid biosynthesis, the acid moiety of natural pyrethrin insecticides. Metab Eng 2022; 72:188-199. [PMID: 35339691 DOI: 10.1016/j.ymben.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Glandular trichomes, known as metabolic cell factories, have been proposed as highly suitable for metabolically engineering the production of plant high-value specialized metabolites. Natural pyrethrins, found only in Dalmatian pyrethrum (Tanacetum cinerariifolium), are insecticides with low mammalian toxicity and short environmental persistence. Type I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of the three rethrolone-type alcohols. To test if glandular trichomes can be made to synthesize trans-chrysanthemic acid, we reconstructed its biosynthetic pathway in tomato type VI glandular trichomes, which produce large amounts of terpenoids that share the precursor dimethylallyl diphosphate (DMAPP) with this acid. This was achieved by coexpressing the trans-chrysanthemic acid pathway related genes including TcCDS encoding chrysanthemyl diphosphate synthase and the fusion gene of TcADH2 encoding the alcohol dehydrogenase 2 linked with TcALDH1 encoding the aldehyde dehydrogenase 1 under the control of a newly identified type VI glandular trichome-specific metallocarboxypeptidase inhibitor promoter. Whole tomato leaves harboring type VI glandular trichomes expressing all three aformentioned genes had a concentration of total trans-chrysanthemic acid that was about 1.5-fold higher (by mole number) than the levels of β-phellandrene, the dominant monoterpene present in non-transgenic leaves, while the levels of β-phellandrene and the representative sesquiterpene β-caryophyllene in transgenic leaves were reduced by 96% and 81%, respectively. These results suggest that the tomato type VI glandular trichome is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Wen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Lang Liu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Chu Wang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China; Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
18
|
Wang Z, Yan X, Zhang H, Meng Y, Pan Y, Cui H. NtCycB2 negatively regulates tobacco glandular trichome formation, exudate accumulation, and aphid resistance. PLANT MOLECULAR BIOLOGY 2022; 108:65-76. [PMID: 34826009 DOI: 10.1007/s11103-021-01222-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE NtCycB2 negatively regulates the initiation of tobacco long stalk glandular trichomes and influences the expression of diterpenoid biosynthesis- and environmental stress resistance-related genes. Many asterid plants possess multicellular trichomes on their surface, both glandular and non-glandular. The CycB2 gene plays a key role in multicellular trichome initiation, but has distinct effects on different types of trichomes; its mechanisms remain unknown. In tomato (Solanum lycopersicum), SlCycB2 negatively regulates non-glandular trichome formation, but its effects on glandular trichomes are ambiguous. In this study, we cloned the SlCycB2 homolog of Nicotiana tabacum, NtCycB2, and analyzed its effect on three types of trichomes, long stalk glandular trichomes (LGT), short stalk glandular trichomes (SGT), and non-glandular trichomes (NGT). Knocking out NtCycB2 (NtCycB2-KO) promoted LGT formation, while overexpression of NtCycB2 (NtCycB2-OE) decreased LGT density. SGT and NGT were not significantly influenced in either NtCycB2-KO or NtCycB2-OE plants, indicating that NtCycB2 regulated only LGT formation in tobacco. In addition, compared with NtCycB2-OE and control plants, NtCycB2-KO plants produced more trichome exudates, including diterpenoids and sugar esters, and exhibited stronger aphid resistance. To further elucidate the function of NtCycB2, RNA-Seq analysis of the NtCycB2-KO, NtCycB2-OE, and control plants was conducted. 2,552 and 1,933 differentially expressed genes (DEGs) were found in NtCycB2-KO and NtCycB2-OE plants, respectively. Gene Ontology analysis of the common DEGs revealed that ion transport, carbohydrate and amino acid metabolism, photosynthesis, and transcription regulation processes were significantly enriched. Among these DEGs, diterpenoid biosynthesis genes were upregulated in NtCycB2-KO plants and downregulated in NtCycB2-OE plants. Two MYB transcription factors and several stress resistance-related genes were also identified, suggesting they may participate in regulating LGT formation and aphid resistance.
Collapse
Affiliation(s)
- Zhaojun Wang
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hongying Zhang
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Ying Meng
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yang Pan
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hong Cui
- College of tobacco science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Wang Z, Li Y, Zhang H, Yan X, Cui H. Methyl jasmonate treatment, aphid resistance assay, and transcriptomic analysis revealed different herbivore defensive roles between tobacco glandular and non-glandular trichomes. PLANT CELL REPORTS 2022; 41:195-208. [PMID: 34647139 DOI: 10.1007/s00299-021-02801-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Methyl jasmonate treatment and aphid resistance assays reveal different roles in herbivore defensive responses between tobacco glandular and non-glandular trichomes. These roles correlate with trichome gene expression patterns. In plants, trichomes greatly contribute to biotic stress resistance. To better understand the different defensive functions between glandular and non-glandular trichomes, we used Nicotiana tabacum as a model. This species bears three types of trichomes: long and short stalk glandular trichomes (LGT and SGT, respectively), and non-glandular trichomes (NGT). Tobacco accession T.I.1068 (lacking NGT) and T.I.1112 (lacking LGT) were used for the experiment. After methyl jasmonate (MeJA) treatment, LGT formation was promoted not only in T.I.1068, but also in T.I.1112, whereas NGT remained absent in T.I.1068, and was slightly reduced in T.I.1112. Diterpenoids, which play important roles in herbivore resistance, accumulated abundantly in T.I.1068 and were elevated by MeJA; however, they were not found in T.I.1112 but became detectable after MeJA treatment. The aphid resistance of T.I.1068 was higher than that of T.I.1112, and both were enhanced by MeJA, which was closely correlated with LGT density. Trichomes detached from T.I.1068 and T.I.1112 were used for RNA-Seq analysis, the results showed that pentose phosphate, photosynthesis, and diterpenoid biosynthesis genes were much more expressed in T.I.1068 than in T.I.1112, which was consistent with the vigorous diterpenoid biosynthesis in T.I.1068. In T.I.1112, citrate cycle, propanoate, and glyoxylate metabolism processes were enriched, and some defensive protein genes were expressed at higher levels than those in T.I.1068.These results suggested that LGT plays a predominant role in aphid resistance, whereas NGT could strengthen herbivore resistance by accumulating defensive proteins, and the roles of LGT and NGT are associated with their gene expression patterns.
Collapse
Affiliation(s)
- Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yanhua Li
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
20
|
Yang R, Du Z, Qiu T, Sun J, Shen Y, Huang L. Discovery and Functional Characterization of a Diverse Diterpene Synthase Family in the Medicinal Herb Isodon lophanthoides Var. gerardiana. PLANT & CELL PHYSIOLOGY 2021; 62:1423-1435. [PMID: 34133748 DOI: 10.1093/pcp/pcab089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Isodon lophanthoides var. gerardiana (Lamiaceae), also named xihuangcao, is a traditional Chinese medicinal herb that exhibits a broad range of pharmacological activities. Abietane-type diterpenoids are the characteristic constituents of I. lophanthoides, yet their biosynthesis has not been elucidated. Although the aerial parts are the most commonly used organs of I. lophanthoides, metabolite profiling by gas chromatography-mass spectrometry showed the underground parts also contain large amounts of labdane diterpenoids including abietatriene, miltiradiene and ferruginol, which are distinct from the 13-hydroxy-8(14)-abietene detected in the aerial parts. Comparative transcriptome analysis of root and leaf samples identified a diverse diterpene synthase family including 6 copalyl diphosphate synthase (IlCPS1-6) and 5 kaurene synthase-like (IlKSL1-5). Here we report the functional characterization of six of these enzymes using yeast heterologous expression system. Both IlCPS1 and IlCPS3 synthesized (+)-copalyl diphosphate (CPP), in combination with IlKSL1 resulted in miltiradiene, precursor of abietane-type diterpenoids, while coupling with IlKSL5 led to the formation of hydroxylated diterpene scaffold nezukol. Expression profiling and phylogenetic analysis further support the distinct evolutionary relationship and spatial distribution of IlCPS1 and IlCPS3. IlCPS2 converted GGPP into labda-7,13E-dien-15-ol diphosphate. IlCPS6 was identified as ent-CPS, indicating a role in gibberellin metabolism. We further identified a single residue that determined the water addition of nezukol synthase IlKSL5. Substitution of alanine 513 with isoleucine completely altered the product outcome from hydroxylated nezukol to isopimara-7,15-diene. Together, these findings elucidated the early steps of bioactive abietane-type diterpenoid biosynthesis in I. lophanthoides and the catalytic mechanism of nezukol synthase.
Collapse
Affiliation(s)
- Ruikang Yang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
| | - Zuying Du
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ting Qiu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of biotechnology and bioengineering, Zhejiang University of Technology, 18 Chaowang Rd Hangzhou 310014, Zhejiang, China
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| | - Lili Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Rd, Guangzhou 510405, China
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, 232 Waihuan Rd, Guangzhou 510006, China
| |
Collapse
|
21
|
Chalvin C, Drevensek S, Gilard F, Mauve C, Chollet C, Morin H, Nicol E, Héripré E, Kriegshauser L, Gakière B, Dron M, Bendahmane A, Boualem A. Sclareol and linalyl acetate are produced by glandular trichomes through the MEP pathway. HORTICULTURE RESEARCH 2021; 8:206. [PMID: 34593779 PMCID: PMC8484277 DOI: 10.1038/s41438-021-00640-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Sclareol, an antifungal specialized metabolite produced by clary sage, Salvia sclarea, is the starting plant natural molecule used for the hemisynthesis of the perfume ingredient ambroxide. Sclareol is mainly produced in clary sage flower calyces; however, the cellular localization of the sclareol biosynthesis remains unknown. To elucidate the site of sclareol biosynthesis, we analyzed its spatial distribution in the clary sage calyx epidermis using laser desorption/ionization mass spectrometry imaging (LDI-FTICR-MSI) and investigated the expression profile of sclareol biosynthesis genes in isolated glandular trichomes (GTs). We showed that sclareol specifically accumulates in GTs' gland cells in which sclareol biosynthesis genes are strongly expressed. We next isolated a glabrous beardless mutant and demonstrate that more than 90% of the sclareol is produced by the large capitate GTs. Feeding experiments, using 1-13C-glucose, and specific enzyme inhibitors further revealed that the methylerythritol-phosphate (MEP) biosynthetic pathway is the main source of isopentenyl diphosphate (IPP) precursor used for the biosynthesis of sclareol. Our findings demonstrate that sclareol is an MEP-derived diterpene produced by large capitate GTs in clary sage emphasing the role of GTs as biofactories dedicated to the production of specialized metabolites.
Collapse
Affiliation(s)
- Camille Chalvin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Stéphanie Drevensek
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Françoise Gilard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Caroline Mauve
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Christel Chollet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Edith Nicol
- Molecular Chemistry Laboratory (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Eva Héripré
- Laboratory of Mechanics of Soils, Structures and Materials (MSSMAT), UMR 8579, CNRS, Ecole CentraleSupélec, Université Paris-Saclay, Bâtiment Eiffel, 8-10 rue Joliot-Curie, 91190, Gif-Sur-Yvette, France
| | - Lucie Kriegshauser
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Michel Dron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
| |
Collapse
|
22
|
Gao K, Zha WL, Zhu JX, Zheng C, Zi JC. A review: biosynthesis of plant-derived labdane-related diterpenoids. Chin J Nat Med 2021; 19:666-674. [PMID: 34561077 DOI: 10.1016/s1875-5364(21)60100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a labdane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane, kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharmaceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene synthases and cytochrome P450 enzymes) were summarized in this review.
Collapse
Affiliation(s)
- Ke Gao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Long Zha
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian-Xun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou 310052, China.
| | - Jia-Chen Zi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Wedow JM, Ainsworth EA, Li S. Plant biochemistry influences tropospheric ozone formation, destruction, deposition, and response. Trends Biochem Sci 2021; 46:992-1002. [PMID: 34303585 DOI: 10.1016/j.tibs.2021.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O3; and (ii) by dry deposition, which includes diffusion of O3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O3. Deposition of O3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.
Collapse
Affiliation(s)
- Jessica M Wedow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
24
|
He L, Liu H, Cheng C, Xu M, He L, Li L, Yao J, Zhang W, Zhai Z, Luo Q, Sun J, Yang T, Xu S. RNA sequencing reveals transcriptomic changes in tobacco (Nicotiana tabacum) following NtCPS2 knockdown. BMC Genomics 2021; 22:467. [PMID: 34162328 PMCID: PMC8220664 DOI: 10.1186/s12864-021-07796-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amber-like compounds form in tobacco (Nicotiana tabacum) during leaf curing and impact aromatic quality. In particular, cis-abienol, a polycyclic labdane-related diterpenoid, is of research interest as a precursor of these compounds. Glandular trichome cells specifically express copalyl diphosphate synthase (NtCPS2) at high levels in tobacco, which, together with NtABS, are major regulators of cis-abienol biosynthesis in tobacco. RESULTS To identify the genes involved in the biosynthesis of cis-abienol in tobacco, we constructed transgenic tobacco lines based on an NtCPS2 gene-knockdown model using CRISPR/Cas9 genome-editing technology to inhibit NtCPS2 function in vitro. In mutant plants, cis-abienol and labdene diol contents decreased, whereas the gibberellin and abscisic acid (ABA) contents increased compared with those in wild-type tobacco plants. RNA sequencing analysis revealed the presence of 9514 differentially expressed genes (DEGs; 4279 upregulated, 5235 downregulated) when the leaves of wild-type and NtCPS2-knockdown tobacco plants were screened. Among these DEGs, the genes encoding cis-abienol synthase, ent-kaurene oxidase, auxin/ABA-related proteins, and transcription factors were found to be involved in various biological and physiochemical processes, including diterpenoid biosynthesis, plant hormone signal transduction, and plant-pathogen interactions. CONCLUSIONS The present study provides insight into the unique transcriptome profile of NtCPS2 knockdown tobacco, allowing for a better understanding of the biosynthesis of cis-abienol in tobacco.
Collapse
Affiliation(s)
- Lingxiao He
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, 450002 China
| | - Huabing Liu
- Technology Center, China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, 310008 China
| | - Changhe Cheng
- Technology Center, China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, 310008 China
| | - Min Xu
- China National Tobacco Corporation Henan company, Zhengzhou, 450002 Henan China
| | - Lei He
- China National Tobacco Corporation Henan company, Zhengzhou, 450002 Henan China
| | - Lihua Li
- China National Tobacco Corporation Henan company, Zhengzhou, 450002 Henan China
| | - Jian Yao
- China National Tobacco Corporation Henan company, Zhengzhou, 450002 Henan China
| | - Wenjun Zhang
- Hunan Tobacco Corporation Changsha Company, Changsha, 410007 Hunan China
| | - Zhengguang Zhai
- Hunan Tobacco Corporation Changsha Company, Changsha, 410007 Hunan China
| | - Qinzhan Luo
- Guangxi Zhuang Autonomous Region Tobacco Corporation Baise Company, Baise, 533000 Guangxi China
| | - Jutao Sun
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, 450002 China
| | - Tiezhao Yang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, 450002 China
| | - Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, 450002 China
| |
Collapse
|
25
|
Improved cis-Abienol production through increasing precursor supply in Escherichia coli. Sci Rep 2020; 10:16791. [PMID: 33033333 PMCID: PMC7545193 DOI: 10.1038/s41598-020-73934-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
cis-Abienol, a natural diterpene-diol isolated from balsam fir (Abies balsamea), can be employed as precursors for the semi-synthesis of amber compounds, which are sustainable replacement for ambergris and widely used in the fragmented industry. This study combinatorially co-expressed geranyl diphosphate synthase, geranylgeranyl diphosphate synthase, Labda-13-en-8-ol diphosphate synthase and diterpene synthase, with the best combination achieving ~ 0.3 mg/L of cis-abienol. An additional enhancement of cis-abienol production (up to 8.6 mg/L) was achieved by introducing an exogenous mevalonate pathway which was divided into the upper pathway containing acetyl-CoA acetyltransferase/HMG-CoA reductase and HMG-CoA synthase and the lower pathway containing mevalonate kinase, phosphomevalonate kinase, pyrophosphate mevalonate decarboxylase and isopentenyl pyrophosphate isomerase. The genetically modified strain carrying chromosomal copy of low genes of the mevalonate with the trc promoter accumulated cis-abienol up to 9.2 mg/L in shake flask. Finally, cis-abienol titers of ~ 220 mg/L could be achieved directly from glucose using this de novo cis-abienol-producing E. coli in high-cell-density fermentation. This study demonstrates a microbial process to apply the E. coli cell factory in the biosynthesis of cis-abienol.
Collapse
|
26
|
Hwang HS, Adhikari PB, Jo HJ, Han JY, Choi YE. Enhanced monoterpene emission in transgenic orange mint (Mentha × piperita f. citrata) overexpressing a tobacco lipid transfer protein (NtLTP1). PLANTA 2020; 252:44. [PMID: 32876749 DOI: 10.1007/s00425-020-03447-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Overexpression of the tobacco lipid transfer protein (NtLTP1) gene in transgenic orange mint resulted in enhanced accumulation of monoterpenes in the cavity of head cells of glandular trichomes, which resulted in enhanced emission of monoterpenes from transgenic orange mints. Plants in the genus Mentha (Lamiaceae) produce volatile oils that accumulate in peltate glandular trichomes in the aerial parts of plants. A lipid transfer protein (NtLTP1) in tobacco showed glandular trichome-specific expression and supported the secretion of diterpenoid lipids from head cells of glandular trichomes (Choi et al., Plant J 70:480-491,2012). Here, we constructed transgenic orange mint (Mentha × piperita f. citrata) overexpressing the tobacco NtLTP1 gene via Agrobacterium-mediated transformation. Transgenic lines of orange mint overexpressing NtLTP1 were confirmed by genomic PCR and RT-PCR. Immunoblotting analysis using an NtLTP1 polyclonal antibody showed clear dark spots at the position of the lipid exudates from tobacco glandular trichomes and the squeezed out lipids from the glandular trichomes of transgenic orange mint. Heads of glandular trichomes in transgenic plants overexpressing the NtLTP1 gene showed a larger diameter than those of the wild-type control. The enhanced size of trichome heads in transgenic orange mint was confirmed by scanning electron microscopy. Volatile components were extracted from wild-type and transgenic orange mint by solid-phase microextraction (SPME) and analyzed by headspace-gas chromatography-mass spectrometry (HS/GC/MS). Linalyl acetate was the most abundant component among the eleven identified monoterpenes in the volatile compounds extracted from both the wild-type and transgenic lines of orange mint. Overexpression of NtLTP1 in transgenic orange mint plants resulted in enhanced emission of volatile monoterpenoids compared with that of volatile monoterpenoids in the wild-type control plants.
Collapse
Affiliation(s)
- Hwan-Su Hwang
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hye-Jeong Jo
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
27
|
Mora Vargas JA, Orduña Ortega J, Metzker G, Larrahondo JE, Boscolo M. Natural sucrose esters: Perspectives on the chemical and physiological use of an under investigated chemical class of compounds. PHYTOCHEMISTRY 2020; 177:112433. [PMID: 32570051 DOI: 10.1016/j.phytochem.2020.112433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present review describes the chemistry and physiological properties of the sucrose esters (SEs) obtained from natural or synthetic pathways, with emphasis on those that have aliphatic and phenylpropanoid substituents on their sucrose moiety. Synthesis, extraction and characterization methods for the SEs and NSEs are discussed in terms of synthetic procedures, separation techniques and spectroscopic methods. The physiological properties are discussed taking into account the nature of the substituent groups and their regiochemistry (position and number of substitutions) on the sucrose moiety.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Julieth Orduña Ortega
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil; Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Gustavo Metzker
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| | - Jesus Eliecer Larrahondo
- Universidad Santiago de Cali, Facultad de Ciencias Básicas, Campus Pampalinda, Santiago de Cali, Colombia.
| | - Mauricio Boscolo
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
28
|
Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep 2020; 10:12464. [PMID: 32719384 PMCID: PMC7385631 DOI: 10.1038/s41598-020-69373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lufiani L Madilao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
29
|
Verification of Chromatographic Profile of Primary Essential Oil of Pinus sylvestris L. Combined with Chemometric Analysis. Molecules 2020; 25:molecules25132973. [PMID: 32605289 PMCID: PMC7411901 DOI: 10.3390/molecules25132973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
Chromatographic profiles of primary essential oils (EO) deliver valuable authentic information about composition and compound pattern. Primary EOs obtained from Pinus sylvestris L. (PS) from different global origins were analyzed using gas chromatography coupled to a flame ionization detector (GC-FID) and identified by GC hyphenated to mass spectrometer (GC-MS). A primary EO of PS was characterized by a distinct sesquiterpene pattern followed by a diterpene profile containing diterpenoids of the labdane, pimarane or abietane type. Based on their sesquiterpene compound patterns, primary EOs of PS were separated into their geographical origin using component analysis. Furthermore, differentiation of closely related pine EOs by partial least square discriminant analysis proved the existence of a primary EO of PS. The developed and validated PLS-DA model is suitable as a screening tool to assess the correct chemotaxonomic identification of a primary pine EOs as it classified all pine EOs correctly.
Collapse
|
30
|
Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:1-10. [PMID: 32088555 DOI: 10.1016/j.pbi.2020.01.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 05/18/2023]
Abstract
All plants synthesize a diverse array of terpenoid metabolites. Some are common to all, but many are synthesized only in specific taxa and presumably evolved as adaptations to specific ecological conditions. While the basic terpenoid biosynthetic pathways are common in all plants, recent discoveries have revealed many variations in the way plants synthesized specific terpenes. A major theme is the much greater number of substrates that can be used by enzymes belonging to the terpene synthase (TPS) family. Other recent discoveries include non-TPS enzymes that catalyze the formation of terpenes, and novel transport mechanisms.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Ma JM, Heim CB, Humphry M, Nifong JM, Lewis RS. Characterization of Phn15.1, a Newly Identified Phytophthora nicotianae Resistance QTL in Nicotiana tabacum. PLANT DISEASE 2020; 104:1638-1646. [PMID: 32310718 DOI: 10.1094/pdis-10-19-2257-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora nicotianae is an oomycete that causes black shank, one of the most economically important diseases affecting tobacco production worldwide. Identification and introgression of novel genetic variability affecting partial genetic resistance to this pathogen is important because of the increased durability of partial resistance over time as compared with genes conferring immunity. A previous mapping study identified a quantitative trait locus (QTL), hereafter designated as Phn15.1, with a major effect on P. nicotianae resistance in tobacco. In this research, we describe significantly improved resistance of nearly isogenic lines (NILs) of flue-cured tobacco carrying the introgressed Phn15.1 region derived from highly resistant cigar tobacco cultivar Beinhart 1000. The Phn15.1 region appeared to act in an additive or partially dominant manner to positively affect resistance. To more finely resolve the position of the gene or genes underlying the Phn15.1 effect, the QTL was mapped with an increased number of molecular markers (single-nucleotide polymorphisms) identified to reside within the region. Development and evaluation of subNILs containing varying amounts of Beinhart 1000-derived Phn15.1-associated genetic material permitted the localization of the QTL to a genetic interval of approximately 2.7 centimorgans. Importantly, we were able to disassociate the Beinhart 1000 Phn15.1 resistance alleles from a functional NtCPS2 allele(s) which contributes to the accumulation of a diterpene leaf surface exudate considered undesirable for flue-cured and burley tobacco. Information from this research should be of value for marker-assisted introgression of Beinhart 1000-derived partial black shank resistance into flue-cured and burley tobacco breeding programs.
Collapse
Affiliation(s)
- Justin M Ma
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Crystal B Heim
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Matt Humphry
- Plant Biotechnology Division, British American Tobacco Company, Cambridge, U.K
| | - Jessica M Nifong
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| | - Ramsey S Lewis
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, U.S.A
| |
Collapse
|
32
|
Zhou F, Pichersky E. The complete functional characterisation of the terpene synthase family in tomato. THE NEW PHYTOLOGIST 2020; 226:1341-1360. [PMID: 31943222 PMCID: PMC7422722 DOI: 10.1111/nph.16431] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 05/14/2023]
Abstract
Analysis of the updated reference tomato genome found 34 full-length TPS genes and 18 TPS pseudogenes. Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some use trans-prenyl diphosphates, some use cis-prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria. New trans-prenyltransferases (TPTs) were characterised; together with previously characterised TPTs and cis-prenyltransferases (CPTs), tomato plants can make all cis and trans C10 , C15 and C20 prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs. Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
33
|
Nautiyal AK, Gani U, Sharma P, Kundan M, Fayaz M, Lattoo SK, Misra P. Comprehensive transcriptome analysis provides insights into metabolic and gene regulatory networks in trichomes of Nicotiana tabacum. PLANT MOLECULAR BIOLOGY 2020; 102:625-644. [PMID: 31965448 DOI: 10.1007/s11103-020-00968-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/14/2020] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Comprehensive transcriptome analysis suggested that the primary metabolism is modulated to augment the supply of substrates towards secondary metabolism operating in the glandular trichomes of Nicotiana tabacum. The comparative gene expression and co-expression network analysis revealed that certain members of transcription factor genes belonging to the MYB, HD-ZIP, ERF, TCP, SRS, WRKY and DOF families may be involved in the regulation of metabolism and/other aspects in the glandular trichomes of N. tabacum The glandular trichomes of Nicotiana tabacum are highly productive in terms of secondary metabolites and therefore have been projected to be used as a prognostic platform for metabolic engineering of valuable natural products. For obvious reasons, detailed studies pertaining to the metabolic and gene regulatory networks operating in the glandular trichomes of N. tabacum are of pivotal significance to be undertaken. We have carried out next-generation sequencing of glandular trichomes of N. tabcaum and investigated differential gene expression among different tissues, including trichome-free leaves. We identified a total of 37,269 and 37,371 genes, expressing in trichome free leaf and glandular trichomes, respectively, at a cutoff of FPKM ≥ 1. The analysis revealed that different pathways involved with the primary metabolism are modulated in glandular trichomes of N. tabacum, providing a plausible explanation for the enhanced biosynthesis of secondary metabolism in the glandular trichomes. Further, comparative gene expression analysis revealed several genes, which display preferential expression in the glandular trichomes and thereby seem to be potential candidate genes for future studies in connection to the discovery of novel trichome specific promoters. The present study also led to the comprehensive identification of 1750 transcription factor genes expressing at a cutoff of FPKM ≥ 1 in the glandular trichomes of N. tabacum. The clustering and co-expression analysis suggested that transcription factor genes belonging to HD-ZIP, ERF, WRKY, MYB, TCP, SRS and DOF families may be the major players in the regulation of gene expression in the glandular trichomes of N. tabacum. To the best of our knowledge, the present work is the first effort towards detailed identification of genes, especially regulatory genes expressing in the glandular trichomes of N. tabacum. The data resource and the empirical findings from present work in all probability must, therefore, provide a reference and background context for future work aiming at deciphering molecular mechanism of regulation of secondary metabolism and gene expression in the glandular trichomes of N. tabacum.
Collapse
Affiliation(s)
- Abhishek Kumar Nautiyal
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Umar Gani
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Priyanka Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Maridul Kundan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mohd Fayaz
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India
| | - Prashant Misra
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
34
|
Schuurink R, Tissier A. Glandular trichomes: micro-organs with model status? THE NEW PHYTOLOGIST 2020; 225:2251-2266. [PMID: 31651036 DOI: 10.1111/nph.16283] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are epidermal outgrowths that are the site of biosynthesis and storage of large quantities of specialized metabolites. Besides their role in the protection of plants against biotic and abiotic stresses, they have attracted interest owing to the importance of the compounds they produce for human use; for example, as pharmaceuticals, flavor and fragrance ingredients, or pesticides. Here, we review what novel concepts investigations on glandular trichomes have brought to the field of specialized metabolism, particularly with respect to chemical and enzymatic diversity. Furthermore, the next challenges in the field are understanding the metabolic network underlying the high productivity of glandular trichomes and the transport and storage of metabolites. Another emerging area is the development of glandular trichomes. Studies in some model species, essentially tomato, tobacco, and Artemisia, are now providing the first molecular clues, but many open questions remain: How is the distribution and density of different trichome types on the leaf surface controlled? When is the decision for an epidermal cell to differentiate into one type of trichome or another taken? Recent advances in gene editing make it now possible to address these questions and promise exciting discoveries in the near future.
Collapse
Affiliation(s)
- Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Science Research Cluster, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, the Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| |
Collapse
|
35
|
Pottier M, Laterre R, Van Wessem A, Ramirez AM, Herman X, Boutry M, Hachez C. Identification of two new trichome-specific promoters of Nicotiana tabacum. PLANTA 2020; 251:58. [PMID: 32020353 DOI: 10.1007/s00425-020-03347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION: pRbcS-T1 and pMALD1, two new trichome-specific promoters of Nicotiana tabacum, were identified and their strength and specificity were compared to those of previously described promoters in this species. Nicotiana tabacum has emerged as a suitable host for metabolic engineering of terpenoids and derivatives in tall glandular trichomes, which actively synthesize and secrete specialized metabolites. However, implementation of an entire biosynthetic pathway in glandular trichomes requires the identification of trichome-specific promoters to appropriately drive the expression of the transgenes needed to set up the desired pathway. In this context, RT-qPCR analysis was carried out on wild-type N. tabacum plants to compare the expression pattern and gene expression level of NtRbcS-T1 and NtMALD1, two newly identified genes expressed in glandular trichomes, with those of NtCYP71D16, NtCBTS2α, NtCPS2, and NtLTP1, which were reported in the literature to be specifically expressed in glandular trichomes. We show that NtRbcS-T1 and NtMALD1 are specifically expressed in glandular trichomes like NtCYP71D16, NtCBTS2α, and NtCPS2, while NtLTP1 is also expressed in other leaf tissues as well as in the stem. Transcriptional fusions of each of the six promoters to the GUS-VENUS reporter gene were introduced in N. tabacum by Agrobacterium-mediated transformation. Almost all transgenic lines displayed GUS activity in tall glandular trichomes, indicating that the appropriate cis regulatory elements were included in the selected promoter regions. However, unlike for the other promoters, no trichome-specific line was obtained for pNtLTP1:GUS-VENUS, in agreement with the RT-qPCR data. These data thus provide two new transcription promoters that could be used in metabolic engineering of glandular trichomes.
Collapse
Affiliation(s)
- Mathieu Pottier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- InBioS-PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, 4000, Liège, Belgium
| | - Raphaëlle Laterre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Astrid Van Wessem
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Aldana M Ramirez
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Xavier Herman
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
36
|
Ma LT, Lee YR, Tsao NW, Wang SY, Zerbe P, Chu FH. Biochemical characterization of diterpene synthases of Taiwania cryptomerioides expands the known functional space of specialized diterpene metabolism in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1254-1272. [PMID: 31448467 DOI: 10.1111/tpj.14513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 05/20/2023]
Abstract
Taiwania cryptomerioides is a monotypic gymnosperm species, valued for the high decay resistance of its wood. This durability has been attributed to the abundance of terpenoids, especially the major diterpenoid metabolite ferruginol, with antifungal and antitermite activity. Specialized diterpenoid metabolism in gymnosperms primarily recruits bifunctional class-I/II diterpene synthases (diTPSs), whereas monofunctional class-II and class-I enzymes operate in angiosperms. In this study, we identified a previously unrecognized group of monofunctional diTPSs in T. cryptomerioides, which suggests a distinct evolutionary divergence of the diTPS family in this species. Specifically, five monofunctional diTPS functions not previously observed in gymnosperms were characterized, including monofunctional class-II enzymes forming labda-13-en-8-ol diphosphate (LPP, TcCPS2) and (+)-copalyl diphosphate (CPP, TcCPS4), and three class-I diTPSs producing biformene (TcKSL1), levopimaradiene (TcKSL3) and phyllocladanol (TcKSL5), respectively. Methyl jasmonate (MeJA) elicited the accumulation of levopimaradiene and the corresponding biosynthetic diTPS genes, TcCPS4 and TcKSL3, is consistent with a possible role in plant defense. Furthermore, TcCPS4 and TcKSL3 are likely to contribute to abietatriene biosynthesis via levopimaradiene as an intermediate in ferruginol biosynthesis in Taiwania. In conclusion, this study provides deeper insight into the functional landscape and molecular evolution of specialized diterpenoid metabolism in gymnosperms as a basis to better understand the role of these metabolites in tree chemical defense.
Collapse
Affiliation(s)
- Li-Ting Ma
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Ru Lee
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Philipp Zerbe
- Department of Plant Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
37
|
Papaefthimiou D, Diretto G, Demurtas OC, Mini P, Ferrante P, Giuliano G, Kanellis AK. Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii. PHYTOCHEMISTRY 2019; 167:112082. [PMID: 31421542 DOI: 10.1016/j.phytochem.2019.112082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Labdane diterpenes (LDs), and especially sclareol, are important feedstocks for the pharmaceutical and cosmetic industries, and therefore several lines of research have led to their heterologous production in non-photosynthetic microbes and higher plants. The potential of microalgae as bioreactors of natural products has been established for a variety of bioactive metabolites, including terpenes. In this work, a codon optimized sequence encoding a key plant labdane-type diterpene (LD) cyclase, copal-8-ol diphosphate synthase from Cistus creticus (CcCLS), was introduced into the chloroplast genome of Chlamydomonas reinhardtii. Of 49 transplastomic algal lines, 12 produced variable amounts of four LD compounds, namely ent-manoyl oxide, sclareol, labda-13-ene-8α,15-diol and ent-13-epi-manoyl oxide. The total LD concentrations measured in the transplastomic lines reached 1.172 ± 0.05 μg/mg cell DW for the highest overall producer, while the highest yield for sclareol was 0.038 ± 0.001 μg/mg cell DW. Thus, transplastomic expression of a key plant labdane diterpene cyclase in the C. reinhardtii chloroplast genome enabled the production of important plant-specific LD compounds.
Collapse
Affiliation(s)
- Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Gianfranco Diretto
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Paola Mini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
38
|
Cai Y, Whitehead P, Chappell J, Chapman KD. Mouse lipogenic proteins promote the co-accumulation of triacylglycerols and sesquiterpenes in plant cells. PLANTA 2019; 250:79-94. [PMID: 30919065 DOI: 10.1007/s00425-019-03148-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Mouse FIT2 protein redirects the cytoplasmic terpene biosynthetic machinery to lipid-droplet-forming domains in the ER and this relocalization supports the efficient compartmentalization and accumulation of sesquiterpenes in plant cells. Mouse (Mus musculus) fat storage-inducing transmembrane protein 2 (MmFIT2), an endoplasmic reticulum (ER)-resident protein with an important role in lipid droplet (LD) biogenesis in mammals, can function in plant cells to promote neutral lipid compartmentalization. Surprisingly, in affinity capture experiments, the Nicotiana benthamiana 5-epi-aristolochene synthase (NbEAS), a soluble cytoplasm-localized sesquiterpene synthase, was one of the most abundant proteins that co-precipitated with GFP-tagged MmFIT2 in transient expression assays in N. benthamiana leaves. Consistent with results of pull-down experiments, the subcellular location of mCherry-tagged NbEAS was changed from the cytoplasm to the LD-forming domains in the ER, only when co-expressed with MmFIT2. Ectopic co-expression of NbEAS and MmFIT2 together with mouse diacylglycerol:acyl-CoA acyltransferase 2 (MmDGAT2) in N. benthamiana leaves substantially increased the numbers of cytoplasmic LDs and supported the accumulation of the sesquiterpenes, 5-epi-aristolochene and capsidiol, up to tenfold over levels elicited by Agrobacterium infection alone. Taken together, our results suggest that MmFIT2 recruits sesquiterpene synthetic machinery to ER subdomains involved in LD formation and that this process can enhance the efficiency of sesquiterpene biosynthesis and compartmentalization in plant cells. Further, MmFIT2 and MmDGAT2 represent cross-kingdom lipogenic protein factors that may be used to engineer terpene accumulation more broadly in the cytoplasm of plant vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Payton Whitehead
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA
| | - Joe Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kent D Chapman
- Department of Biological Sciences, Biodiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA.
| |
Collapse
|
39
|
Li L, Wang X, Li X, Shi H, Wang F, Zhang Y, Li X. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6523-6531. [PMID: 31117507 DOI: 10.1021/acs.jafc.9b02156] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Identification of diterpene synthase-encoding genes together with synthetic biology technology offers an opportunity for the biosynthesis of cis-abienol. The methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways were both engineered for cis-abienol production in Escherichia coli, which improved the cis-abienol yield by approximately 7-fold and 31-fold, respectively, compared to the yield obtained by overexpression of the MEP pathway alone or the original MEP pathway. Furthermore, systematic optimization of cis-abienol biosynthesis was performed, such as diterpene synthase screening and two-phase cultivation. The combination of bifunctional class I/II cis-abienol synthase from Abies balsamea ( AbCAS) and class II abienol synthase from Salvia sclarea ( SsTPS2) was found to be the most effective. By using isopropyl myristate as a solvent in two-phase cultivation, cis-abienol production reached 634.7 mg/L in a fed-batch bioreactor. This work shows the possibility of E. coli utilizing glucose as a carbon source for cis-abienol biosynthesis through a modified pathway.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xun Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xinyang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , Huaiyin Institute of Technology , Huaian 223003 , China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Xun Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass , Nanjing Forestry University , Nanjing 210037 , China
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals , Nanjing Forestry University , Nanjing 210037 , China
- College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| |
Collapse
|
40
|
Bac-Molenaar JA, Mol S, Verlaan MG, van Elven J, Kim HK, Klinkhamer PGL, Leiss KA, Vrieling K. Trichome Independent Resistance against Western Flower Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:1011-1024. [PMID: 30715458 PMCID: PMC6534821 DOI: 10.1093/pcp/pcz018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/29/2019] [Indexed: 05/26/2023]
Abstract
Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.
Collapse
Affiliation(s)
- Johanna A Bac-Molenaar
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Selena Mol
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Maarten G Verlaan
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Joke van Elven
- Rijk Zwaan Breeding B.V, Burgemeester Crezeelaan 40, KX De Lier, The Netherlands
| | - Hye Kyong Kim
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
- Wageningen University and Research, Violierenweg 1, MV Bleiswijk, The Netherlands
| | - Klaas Vrieling
- Plant Sciences and Natural Products Lab, Institute of Biology Leiden, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
41
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:315-327. [PMID: 30304528 PMCID: PMC6305188 DOI: 10.1093/jxb/ery347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
42
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
43
|
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA. Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2018; 59:2462-2475. [PMID: 30124946 PMCID: PMC6290487 DOI: 10.1093/pcp/pcy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.
Collapse
Affiliation(s)
- Roc�o Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Jasmijn Ruijgrok
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Nicole M Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
44
|
Chen G, Klinkhamer PGL, Escobar-Bravo R, Leiss KA. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:87-98. [PMID: 30348331 DOI: 10.1016/j.plantsci.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 05/08/2023]
Abstract
Variation in the induction of plant defenses along the plant canopy can determine distribution and colonization of arthropod herbivores within the plant. In tomato, type VI glandular trichomes, which are epidermal defensive structures, and their derived volatiles are induced by the phytohormone jasmonic acid (JA). How JA-mediated induction of these trichome-associated chemical defenses depends on the leaf developmental stage and correlates with resistance against herbivory is unknown. We showed that application of JA reduced thrips-associated damage, however the amplitude of this response was reduced in the fully developed leaves compared to those still developing. Although JA increased type-VI trichome densities in all leaf developmental stages, as well as JA-inducible defensive proteins, these increases were stronger in developing leaves. Remarkably, the concentration of trichome-derived volatiles was induced by JA to a larger degree in developing leaves than in fully developed leaves. In fully developed leaves, the increase in trichome-derived volatiles was explained by an enhanced production per trichome, while in developing leaves this was mainly caused by increases in type-VI trichome densities. Together, we showed that JA-mediated induction of trichome density and chemistry depends on leaf development stage, and it might explain the degree of thrips-associated leaf damage in tomato.
Collapse
Affiliation(s)
- Gang Chen
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| |
Collapse
|
45
|
Niinemets Ü. Storage of defense metabolites in the leaves of Myrtaceae: news of the eggs in different baskets. TREE PHYSIOLOGY 2018; 38:1445-1450. [PMID: 30307578 DOI: 10.1093/treephys/tpy115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, Estonia
| |
Collapse
|
46
|
Martínez-Jarquín S, Herrera-Ubaldo H, de Folter S, Winkler R. In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta 2018; 185:324-327. [PMID: 29759207 DOI: 10.1016/j.talanta.2018.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
Abstract
Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we monitored the auxin-regulated nicotine biosynthesis in tobacco (Nicotiana tabacum) and evaluated possible biological effects. The measured nicotine concentrations in different experiments were comparable to literature data obtained with conventional methods. The observed compounds suggest the rupture of trichomes, and cell damage was observed on the spots exposed to LTP. However, the lesions only affected a negligible proportion of the leaf surface area and no systemic reaction was noted. Thus, our study provides the proof-of-concept for measuring the biosynthetic activity of plant surfaces in vivo.
Collapse
Affiliation(s)
- Sandra Martínez-Jarquín
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA) - Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA) - Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| | - Robert Winkler
- Center for Research and Advanced Studies (CINVESTAV) Irapuato, Department of Biochemistry and Biotechnology, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36824 Irapuato Gto., Mexico.
| |
Collapse
|
47
|
Dluge KL, Song Z, Wang B, Tyler Steede W, Xiao B, Liu Y, Dewey RE. Characterization of Nicotiana tabacum genotypes possessing deletion mutations that affect potyvirus resistance and the production of trichome exudates. BMC Genomics 2018; 19:484. [PMID: 29925313 PMCID: PMC6011258 DOI: 10.1186/s12864-018-4839-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Advances in genomics technologies are making it increasingly feasible to characterize breeding lines that carry traits of agronomic interest. Tobacco germplasm lines that carry loci designated VAM and va have been extensively investigated due to their association with potyvirus resistance (both VAM and va) and defects in leaf surface compounds originating from glandular trichomes (VAM only). Molecular studies and classical genetic analyses are consistent with the model that VAM and va represent deletion mutations in the same chromosomal region. In this study, we used RNA-seq analysis, together with emerging tobacco reference genome sequence information to characterize the genomic regions deleted in tobacco lines containing VAM and va. RESULTS Tobacco genotypes TI 1406 (VAM), K326-va and K326 (wild type) were analyzed using RNA-seq to generate a list of genes differentially expressed in TI 1406 and K326-va, versus the K326 control. Candidate genes were localized onto tobacco genome scaffolds and validated as being absent in only VAM, or missing in both VAM and va, through PCR analysis. These results enabled the construction of a map that predicted the relative extent of the VAM and va mutations on the distal end of chromosome 21. The RNA-seq analyses lead to the discovery that members of the cembratrienol synthase gene family are deleted in TI 1406. Transformation of TI 1406 with a cembratrienol synthase cDNA, however, did not recover the leaf chemistry phenotype. Common to both TI 1406 and K326-va was the absence of a gene encoding a specific isoform of a eukaryotic translation initiation factor (eiF4E1.S). Transformation experiments showed that ectopic expression of eiF4E1.S is sufficient to restore potyvirus susceptibility in plants possessing either the va or VAM mutant loci. CONCLUSIONS We have demonstrated the feasibility of using RNA-seq and emerging whole genome sequence resources in tobacco to characterize the VAM and va deletion mutants. These results lead to the discovery of genes underlying some of the phenotypic traits associated with these historically important loci. Additionally, initial size estimations were made for the deleted regions, and dominant markers were developed that are very close to one of the deletion junctions that defines va.
Collapse
Affiliation(s)
- Kurtis L. Dluge
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - W. Tyler Steede
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, No. 33 Yuantong St., Kunming, 650021 People’s Republic of China
| | - Ralph E. Dewey
- Department of Crop and Soils Sciences, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
48
|
Li S, Tosens T, Harley PC, Jiang Y, Kanagendran A, Grosberg M, Jaamets K, Niinemets Ü. Glandular trichomes as a barrier against atmospheric oxidative stress: Relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species. PLANT, CELL & ENVIRONMENT 2018; 41:1263-1277. [PMID: 29292838 PMCID: PMC5936637 DOI: 10.1111/pce.13128] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 05/03/2023]
Abstract
There is a spectacular variability in trichome types and densities and trichome metabolites across species, but the functional implications of this variability in protecting from atmospheric oxidative stresses remain poorly understood. The aim of this study was to evaluate the possible protective role of glandular and non-glandular trichomes against ozone stress. We investigated the interspecific variation in types and density of trichomes and how these traits were associated with elevated ozone impacts on visible leaf damage, net assimilation rate, stomatal conductance, chlorophyll fluorescence, and emissions of lipoxygenase pathway products in 24 species with widely varying trichome characteristics and taxonomy. Both peltate and capitate glandular trichomes played a critical role in reducing leaf ozone uptake, but no impact of non-glandular trichomes was observed. Across species, the visible ozone damage varied 10.1-fold, reduction in net assimilation rate 3.3-fold, and release of lipoxygenase compounds 14.4-fold, and species with lower glandular trichome density were more sensitive to ozone stress and more vulnerable to ozone damage compared to species with high glandular trichome density. These results demonstrate that leaf surface glandular trichomes constitute a major factor in reducing ozone toxicity and function as a chemical barrier that neutralizes the ozone before it enters the leaf.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Peter C. Harley
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Mirjam Grosberg
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Kristen Jaamets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
49
|
Kännaste A, Laanisto L, Pazouki L, Copolovici L, Suhorutšenko M, Azeem M, Toom L, Borg-Karlson AK, Niinemets Ü. Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes. PHYTOCHEMISTRY 2018; 147:80-88. [PMID: 29304384 PMCID: PMC6020065 DOI: 10.1016/j.phytochem.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish 'non diterpenoid pines', 'high isoabienol pines', 'manoyl oxide - isoabienol pines' and 'other diterpenoid pines'. 'Non diterpenoid pines', 'high isoabienol pines' and 'other diterpenoid pines' were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented 'high isoabienol pines'. 'Manoyl oxide - isoabienol pines' were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (NM) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar NM in 'manoyl oxide - isoabienol pines', and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response.
Collapse
Affiliation(s)
- Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Institute of Technical and Natural Sciences Research-Development of "Aurel Vlaicu" University, 2 Elena Dragoi St., Arad 310330, Romania.
| | - Marina Suhorutšenko
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Muhammad Azeem
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan; Ecological Chemistry Group, Department of Chemistry, KTH, Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Lauri Toom
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | - Anna-Karin Borg-Karlson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Ecological Chemistry Group, Department of Chemistry, KTH, Royal Institute of Technology, 100 44 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
50
|
Plant secretory structures: more than just reaction bags. Curr Opin Biotechnol 2018; 49:73-79. [DOI: 10.1016/j.copbio.2017.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
|