1
|
Klein M, Gagnon PA, Salem M, Rouabhia M, Chakir J. MicroRNA-155-5p Differentially Regulates IL-13Rα1 and IL-13Rα2 Expression and Signaling Driving Abnormal Lung Epithelial Cell Phenotype in Severe Asthma. Am J Respir Cell Mol Biol 2024; 71:603-616. [PMID: 39051933 DOI: 10.1165/rcmb.2024-0089oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024] Open
Abstract
MicroRNA (miR)-155-5p increases in innate and adaptive immune cells in response to IL-13 and is associated with the severity of asthma. However, little is known about its role in airway structural cells. Bronchial epithelial cells (BECs) isolated from healthy donors and patients with severe asthma were stimulated with IL-13. miR-155-5p expression and release were measured by real-time (RT)-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13 receptor α1 (IL-13Rα1), IL-13Rα2, MUC5AC, IL-8, and eotaxin-1 expression was measured by RT-PCR and Western blot analysis. The BEC repair process was assessed by a wound-healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by Western blot analysis. A dual luciferase assay was used to identify miR-155-5p target genes associated with IL-13R signaling. BECs from patients with severe asthma showed increased expression and exosomal release of miR-155-5p at baseline with amplification by IL-13 stimulation. BECs from patients with asthma expressed more IL-13Rα1 and less IL-13Rα2 than those from healthy donors, and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. miR-155-5p overexpression favored MUC5AC, IL-8, and Eotaxin-1 through the IL-13Rα1/SOCS1/STAT6 pathway while delaying the repair process by downregulating IL-13Rα2/MAPK14/c-Jun/c-fos signaling. The dual luciferase assay confirmed that miR-155-5p modulates both IL-13R pathways by directly targeting SOCS1, c-fos, and MAPK14. miR-155-5p is overexpressed in BECs from patients with severe asthma and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin- and eosinophil-related genes to the detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in patients with severe asthma.
Collapse
Affiliation(s)
- Martin Klein
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| | | | - Mabrouka Salem
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| | - Mahmoud Rouabhia
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Jamila Chakir
- Institut Universitaire de Cardiologie et de Pneumologie de Québec; and
| |
Collapse
|
2
|
Shang L, Du Y, Zhao Y, Zhang Y, Liu C. The Interaction of OTUB1 and TRAF3 Mediates NLRP3 Inflammasome Activity to Regulate TGF-β1-induced BEAS-2B Cell Injury. Appl Biochem Biotechnol 2023; 195:7060-7074. [PMID: 36976509 DOI: 10.1007/s12010-023-04434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Asthma is a frequently chronic respiratory disease with inflammation and remodeling in the airway. OTUB1 has been reported to be associated with pulmonary diseases. However, the role and potential mechanism of OTUB1 in asthma remain unclear. The expressions of OTUB1 in the bronchial mucosal tissues of asthmatic children and TGF-β1-induced BEAS-2B cells were determined. The biological behaviors were assessed in an asthma in vitro model using a loss-function approach. The contents of inflammatory cytokines were detected by ELISA kits. The related protein expressions were performed using western blot assay. Besides, the interaction between OTUB1 and TRAF3 was detected by Co-IP and ubiquitination assays. Our results showed that OTUB1 level was increased in asthmatic bronchial mucosal tissues and TGF-β1-induced BEAS-2B cells. OTUB1 knockdown promoted proliferation, inhibited apoptosis and EMT of TGF-β1-treated cells. The inhibition of OTUB1 attenuated the TGF-β1-induced inflammation and remodeling. Furthermore, OTUB1 knockdown inhibited the deubiquitination of TRAF3 and further suppressed the activation of NLRP3 inflammasome. The overexpression of TRAF3 or NLRP3 reversed the positive role of OTUB1 knockdown in TGF-β1-induced cells injury. Collectively, OTUB1 deubiquitinates TRAF3 to activate NLRP3 inflammasome, thereby leading to inflammation and remodeling of TGF-β1-induced cells, and further promoting the pathogenesis of asthma.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yujie Du
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yali Zhao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yongqing Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Cuicui Liu
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
3
|
Alassaf M, Alqahtani SM, Al Khulaifi RS, Saeed WS, Alsubaie FS, Semlali A, Aouak T. Mevacor/Poly(vinyl acetate/2-hydroxyethyl methacrylate) as Solid Solution: Preparation, Solubility Enhancement and Drug Delivery. Polymers (Basel) 2023; 15:3927. [PMID: 37835976 PMCID: PMC10575455 DOI: 10.3390/polym15193927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Mevacor/Poly(vinyl acetate-co-2-hydroxyethyl methacrylate) drug carrier systems (MVR/VAC-HEMA) containing different Mevacor (MVR) contents were prepared in one pot by free radical copolymerization of vinyl acetate with 2-hydroxyethyl methacrylate using an LED lamp light in the presence of camphorquinone as a photoinitiator and Mevacor as a drug filler. The prepared material was characterized by FTIR, 1H NMR, DSC, SEM and XRD methods. Different parameters influencing the efficiency in the Mecvacor-water solubility and the drug delivery of this system, such as the swelling capacity of the carrier, the amount of Mevacor loaded and the pH medium have been widely investigated. The results obtained revealed that the Mevacor particles were uniformly dispersed in their molecular state in the copolymer matrix forming a solid solution; the cell toxicity of the virgin poly(vinyl acetate-co-2-hydroxy ethyl methacrylate) (VAC-HEMA) and MVR/VAC-HEMA drug carrier system exhibited no significant effect on their viability when between 0.25 and 2.00 wt% was loaded in these materials; the average swelling capacity of VAC-HEMA material in water was found to be 45.16 wt%, which was practically unaffected by the pH medium and the solubility of MVR deduced from the release process reached more than 22 and 37 times that of the powder dissolved directly in pH 1 and 7 media, respectively. The in vitro MVR release kinetic study revealed that the MVR/VAC-HEMA system containing 0.5 wt% MVR exhibited the best performance in the short gastrointestinal transit (GITT), while that containing 2.0 wt% is for the long transit as they were able to considerably reduce the minimum release of this drug in the stomach (pH1).
Collapse
Affiliation(s)
- Mohammed Alassaf
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| | - Saad Mohammed Alqahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| | - Rana Salem Al Khulaifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| | - Waseem Sharaf Saeed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| | - Faisal S. Alsubaie
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Taieb Aouak
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.A.); (S.M.A.); (R.S.A.K.); (W.S.S.)
| |
Collapse
|
4
|
Arellano-Orden E, Calero Acuña C, Sánchez-López V, López Ramírez C, Otero-Candelera R, Marín-Hinojosa C, López Campos J. Cellular mechanisms involved in the pathogenesis of airway remodeling in chronic lung disease. Eur Clin Respir J 2022; 9:2097377. [PMID: 35832729 PMCID: PMC9272929 DOI: 10.1080/20018525.2022.2097377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- E. Arellano-Orden
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Calero Acuña
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - V. Sánchez-López
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. López Ramírez
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - R. Otero-Candelera
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Marín-Hinojosa
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jl López Campos
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Aljubailah A, Alharbi WNO, Haidyrah AS, Al-Garni TS, Saeed WS, Semlali A, Alqahtani SMS, Al-Owais AA, Karami AM, Aouak T. Copolymer Involving 2-Hydroxyethyl Methacrylate and 2-Chloroquinyl Methacrylate: Synthesis, Characterization and In Vitro 2-Hydroxychloroquine Delivery Application. Polymers (Basel) 2021; 13:4072. [PMID: 34883576 PMCID: PMC8659029 DOI: 10.3390/polym13234072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Poly(2-chloroquinyl methacrylate-co-2-hydroxyethyl methacrylate) (CQMA-co-HEMA) drug carrier system was prepared with different compositions through a free-radical copolymerization route involving 2-chloroquinyl methacrylate (CQMA) and 2-hydroxyethyl methacrylate) (HEMA) using azobisisobutyronitrile as the initiator. 2-Chloroquinyl methacrylate monomer (CQMA) was synthesized from 2-hydroxychloroquine (HCQ) and methacryloyl chloride by an esterification reaction using triethylenetetramine as the catalyst. The structure of the CQMA and CQMA-co-HEMA copolymers was confirmed by a CHN elementary analysis, Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis. The absence of residual aggregates of HCQ or HCQMA particles in the copolymers prepared was confirmed by a differential scanning calorimeter (DSC) and XR-diffraction (XRD) analyses. The gingival epithelial cancer cell line (Ca9-22) toxicity examined by a lactate dehydrogenase (LDH) assay revealed that the grafting of HCQ onto PHEMA slightly affected (4.2-9.5%) the viability of the polymer carrier. The cell adhesion and growth on the CQMA-co-HEMA drug carrier specimens carried out by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay revealed the best performance with the specimen containing 3.96 wt% HCQ. The diffusion of HCQ through the polymer matrix obeyed the Fickian model. The solubility of HCQ in different media was improved, in which more than 5.22 times of the solubility of HCQ powder in water was obtained. According to Belzer, the in vitro HCQ dynamic release revealed the best performance with the drug carrier system containing 4.70 wt% CQMA.
Collapse
Affiliation(s)
- Abeer Aljubailah
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia; (A.A.); (W.N.O.A.)
| | - Wafa Nazzal Odis Alharbi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia; (A.A.); (W.N.O.A.)
| | - Ahmed S. Haidyrah
- Nuclear and Radiological Control Unit, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Tahani Saad Al-Garni
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecin Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Saad M. S. Alqahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Ahmad Abdulaziz Al-Owais
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Abdulnasser Mahmoud Karami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| |
Collapse
|
6
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Hamid Q, Hamoudi R. Derangement of cell cycle markers in peripheral blood mononuclear cells of asthmatic patients as a reliable biomarker for asthma control. Sci Rep 2021; 11:11873. [PMID: 34088958 PMCID: PMC8178351 DOI: 10.1038/s41598-021-91087-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
In asthma, most of the identified biomarkers pertain to the Th2 phenotype and no known biomarkers have been verified for severe asthmatics. Therefore, identifying biomarkers using the integrative phenotype-genotype approach in severe asthma is needed. The study aims to identify novel biomarkers as genes or pathways representing the core drivers in asthma development, progression to the severe form, resistance to therapy, and tissue remodeling regardless of the sample cells or tissues examined. Comprehensive reanalysis of publicly available transcriptomic data that later was validated in vitro, and locally recruited patients were used to decipher the molecular basis of asthma. Our in-silicoanalysis revealed a total of 10 genes (GPRC5A, SFN, ABCA1, KRT8, TOP2A, SERPINE1, ANLN, MKI67, NEK2, and RRM2) related to cell cycle and proliferation to be deranged in the severe asthmatic bronchial epithelium and fibroblasts compared to their healthy counterparts. In vitro, RT qPCR results showed that (SERPINE1 and RRM2) were upregulated in severe asthmatic bronchial epithelium and fibroblasts, (SFN, ABCA1, TOP2A, SERPINE1, MKI67, and NEK2) were upregulated in asthmatic bronchial epithelium while (GPRC5A and KRT8) were upregulated only in asthmatic bronchial fibroblasts. Furthermore, MKI76, RRM2, and TOP2A were upregulated in Th2 high epithelium while GPRC5A, SFN, ABCA1 were upregulated in the blood of asthmatic patients. SFN, ABCA1 were higher, while MKI67 was lower in severe asthmatic with wheeze compared to nonasthmatics with wheezes. SERPINE1 and GPRC5A were downregulated in the blood of eosinophilic asthmatics, while RRM2 was upregulated in an acute attack of asthma. Validation of the gene expression in PBMC of locally recruited asthma patients showed that SERPINE1, GPRC5A, SFN, ABCA1, MKI67, and RRM2 were downregulated in severe uncontrolled asthma. We have identified a set of biologically crucial genes to the homeostasis of the lung and in asthma development and progression. This study can help us further understand the complex interplay between the transcriptomic data and the external factors which may deviate our understanding of asthma heterogeneity.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, UK
| |
Collapse
|
7
|
GAS5 regulates viability and apoptosis in TGF-β1-stimulated bronchial epithelial cells by regulating miR-217/HDAC4 axis. Genes Genomics 2021; 43:837-846. [PMID: 33864612 DOI: 10.1007/s13258-021-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Asthma is a serious respiratory disease that affects the physical and mental health of children. Airway epithelial apoptosis concomitantly mediated by transforming growth factor-β1 (TGF-β1) is a crucial component of asthma pathogenesis. LncRNA growth Arrest Specific 5 (GAS5), microRNA-217 (miR-217) and Histone deacetylase 4 (HDAC4) shown a close relationship with TGF-β1-induced injury of airway epithelial. However, the mechanism underlying TGF-β1-induced injury of airway epithelial in asthma still needs to be investigated. OBJECTIVE We aimed to investigate the effect and underlying mechanism of GAS5/miR-217/HDAC4 axis in TGF-β1-stimulated bronchial epithelial cells. METHODS The levels of were detected by quantitative real-time polymerase chain reaction (RT-qPCR). All protein levels were determined by western blot. Cell viability and apoptosis rate were assessed by Methyl thiazolyl tetrazolium (MTT) and Flow cytometry, respectively. The targeting relationship between miR-217 and GAS5 or HDAC4 was examined with dual-luciferase reporter assay. RESULTS TGF-β1, GAS5, HDAC4 were up-regulated, while miR-217 was down-regulated in bronchial mucosal tissues of asthmatic children and TGF-β1-treated BEAS-2B cells. TGF-β1 could reduce cell viability and induce apoptosis, while these effects could be reversed by downregulation of GAS5 or HDAC4. Mechanically, GAS5 acted as a sponge for miR-217 to regulate the expression of HDAC4. Furthermore, overexpression of HDAC4 rescued the effects of GAS5 knockdown on viability and apoptosis of TGF-β1-induced BEAS-2B cells. GAS5 knockdown induced cell viability and hampered cell apoptosis in TGF-β1-stimulated BEAS-2B cells by regulating the miR-217/HDAC4 axis. CONCLUSIONS The lncRNA GAS5/miR-217/HDAC4 axis played an important role in regulating TGF-β1-induced bronchial epithelial cells injury, thus contributing to asthma.
Collapse
|
8
|
What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells 2020; 9:cells9071694. [PMID: 32679790 PMCID: PMC7408556 DOI: 10.3390/cells9071694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the lung develops, epithelial-mesenchymal crosstalk is essential for the developmental processes that drive cell proliferation, differentiation, and extracellular matrix (ECM) production within the lung epithelial-mesenchymal trophic unit (EMTU). In asthma, a number of the lung EMTU developmental signals have been associated with airway inflammation and remodeling, which has led to the hypothesis that aberrant activation of the asthmatic EMTU may lead to disease pathogenesis. Monoculture studies have aided in the understanding of the altered phenotype of airway epithelial and mesenchymal cells and their contribution to the pathogenesis of asthma. However, 3-dimensional (3D) co-culture models are needed to enable the study of epithelial-mesenchymal crosstalk in the setting of the in vivo environment. In this review, we summarize studies using 3D co-culture models to assess how defective epithelial-mesenchymal communication contributes to chronic airway inflammation and remodeling within the asthmatic EMTU.
Collapse
|
9
|
Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD, Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol 2019; 316:L826-L842. [PMID: 30785345 PMCID: PMC6589594 DOI: 10.1152/ajplung.00424.2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence results in cell cycle arrest with secretion of cytokines, chemokines, growth factors, and remodeling proteins (senescence-associated secretory phenotype; SASP) that have autocrine and paracrine effects on the tissue microenvironment. SASP can promote remodeling, inflammation, infectious susceptibility, angiogenesis, and proliferation, while hindering tissue repair and regeneration. While the role of senescence and the contributions of senescent cells are increasingly recognized in the context of aging and a variety of disease states, relatively less is known regarding the portfolio and influences of senescent cells in normal lung growth and aging per se or in the induction or progression of lung diseases across the age spectrum such as bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, or pulmonary fibrosis. In this review, we introduce concepts of cellular senescence, the mechanisms involved in the induction of senescence, and the SASP portfolio that are relevant to lung cells, presenting the potential contribution of senescent cells and SASP to inflammation, hypercontractility, and remodeling/fibrosis: aspects critical to a range of lung diseases. The potential to blunt lung disease by targeting senescent cells using a novel class of drugs (senolytics) is discussed. Potential areas for future research on cellular senescence in the lung are identified.
Collapse
Affiliation(s)
- Pavan Parikh
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rodney D. Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Ali Alghamdi A, Al-Soulami A, Saeed WS, Al-Odayni AB, Elsamlali A, Abdulaziz Al-Owaais A, Aouak T. Grafting of sulfamethoxazole on acrylic acid−vinyl methyl ketone copolymer using the schiff base reaction−application as a drug delivery system. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1443929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Abdulillah Al-Soulami
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wassem Sharaf Saeed
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelhabib Elsamlali
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Huang H, Lu H, Liang L, Zhi Y, Huo B, Wu L, Xu L, Shen Z. MicroRNA-744 Inhibits Proliferation of Bronchial Epithelial Cells by Regulating Smad3 Pathway via Targeting Transforming Growth Factor-β1 (TGF-β1) in Severe Asthma. Med Sci Monit 2019; 25:2159-2168. [PMID: 30903795 PMCID: PMC6441316 DOI: 10.12659/msm.912412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bronchial epithelial cells proliferation plays a pivotal role in airway remodeling in children with severe asthma. MicroRNAs (miRNAs) have gained great attention for many diseases, including asthma. The purpose of this study was to explore the mechanisms that underlie miR-744 modulating bronchial epithelial cells proliferation in severe asthma in children. MATERIAL AND METHODS Bronchial epithelial cells were isolated from bronchial biopsies of normal controls and asthmatic subjects. miR-744 and transforming growth factor-ß1 (TGF-ß1) expressions were measured by quantitative reverse transcription PCR (qRT-PCR). Proliferating cell nuclear antigen (PCNA), phosphorylation or total of mothers against decapentaplegic homolog3 (Smad3) and production of Smad anchor for receptor activation (SARA) were measured via Western blot analysis. A link between miR-744 and TGF-ß1 was probed by luciferase activity and RNA immunoprecipitation. Cell proliferation was evaluated using the Cell Proliferation Assay Kit. RESULTS Severe asthma showed a significantly elevated cell proliferation rate and reduced abundance of miR-744, which in turn inhibited cell proliferation of bronchial epithelial cells. In particular, TGF-ß1 might be a candidate target of miR-744, and enrichment of miR-744 lowered the expression of TGF-ß1 at mRNA and protein levels. Indeed, overexpression of miR-744 lowered the proliferation rate of bronchial epithelial cells via driving TGF-ß1. Moreover, addition of miR-744 limited phosphorylation of Smad3 but reversed SARA protein abundance by regulating TGF-ß1. CONCLUSIONS The presence of miR-744 repressed bronchial epithelial cells proliferation through mediating the Smad3 pathway by modulating TGF-ß1, providing a promising therapeutic approach for epithelial function in severe asthma.
Collapse
Affiliation(s)
- Han Huang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Hongxia Lu
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lihong Liang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yueli Zhi
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Beibei Huo
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Linlin Wu
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liping Xu
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhaobo Shen
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
12
|
Alghamdi AA, Saeed WS, Al-Odayni AB, Alharthi FA, Semlali A, Aouak T. Poly(ethylene- co-vinylalcohol)/Poly(δ-valerolactone)/Aspirin Composite: Model for a New Drug-Carrier System. Polymers (Basel) 2019; 11:E439. [PMID: 30960423 PMCID: PMC6473899 DOI: 10.3390/polym11030439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/20/2023] Open
Abstract
The release dynamics of aspirin(ASP), used as a drug model, from the poly(ethylene-co-vinyl alcohol)/poly(δ-valerolactone) (PE-co-VAL/Pδ-VL) hydrogel blend was controlled by varying the blend's degree of swelling through a gradual loading of Pδ-VL (hydrophobic polymer) in this copolymer matrix. To achieve this goal, a series of PE-co-VAL/Pδ-VL blends with different ratios was prepared through the solvent casting method, and the miscibility of this polymer blend was evaluated by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electronic microscopy methods. The tests of cell adhesion and growth on the PE-co-VAL/Pδ-VL specimens were performed using the 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the results obtained were the best performance in terms of cell viability, cell adhesion, and growth of the PE-co-VAL/Pδ-VL50 material. The dynamic mechanical properties of the prepared material were also examined by dynamic mechanical analysis; the results obtained showed a material having intermediary mechanical properties between those of the two components. On the basis of these characterizations, the blend showing the best performance, such as the PE-co-VAL/Pδ-VL50 system, was chosen as a carrier to study the in vitro control of the release dynamics of ASP from the ASP/PE-co-VAL/Pδ-VL drug-carrier system when administered orally, in which the influences of the ASP content and the degree of swelling of the PE-co-VAL/Pδ-VL blend were investigated. Based on the data obtained and the gastrointestinal transit time reported by Beltzer et al., it was possible to estimate the distribution of the in vitro cumulative ASP released in different digestive system organs regardless of the actions of any enzymes and microorganisms and select the best-performing drug-carrier system.
Collapse
Affiliation(s)
- Abdulaziz Ali Alghamdi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Waseem Sharaf Saeed
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdel-Basit Al-Odayni
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Fahad A Alharthi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecin Dentaire, Université Laval, G1V 0A6, QC, Canada.
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
13
|
Preparation and Characterization of Poly(δ-Valerolactone)/TiO 2 Nanohybrid Material with Pores Interconnected for Potential Use in Tissue Engineering. MATERIALS 2019; 12:ma12030528. [PMID: 30744189 PMCID: PMC6385029 DOI: 10.3390/ma12030528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/23/2022]
Abstract
Titanium dioxide/poly(δ-valerolactone) (TiO2/Pδ-VL) nanohybrid material containing interconnected pores with sizes in the range 80–150 μm were prepared by the solvent casting and polymer melting routes, and the dispersion of the TiO2 nanofiller in the Pδ-VL matrix and its adhesion were characterized by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. A significant depression in the glass transition temperature (Tg) and melting temperature (Tm) values were revealed for the polymer nanocomposites prepared by the solvent casting technique. For the potential application of the prepared materials in the biomedical domain, complementary analyses were performed to examine the dynamic mechanical properties, and cell adhesion (using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay), and the results obtained for the samples prepared by the two methods were compared. Interconnected pores were successively produced in the new material by employing naphthalene microparticles as a porogen for the first time, and the results obtained were very promising.
Collapse
|
14
|
Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro – a microarray approach. ACTA ACUST UNITED AC 2018. [DOI: 10.2478/acb-2018-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
The oral mucosa is a compound tissue composed of several cells types, including fibroblasts and keratinocytes, that are characterized by different morphology, as well as biochemical and metabolomic properties. The oral mucosal cells are the most important factors mediated between transport and drugs delivery. The changes in cellular ion homeostasis may significantly affect the bioavailability of administrated drugs and their transport across the mucous membrane. Therefore we investigated the expression profile of genes involved in ion transport and homeostasis in porcine buccal pouch mucosal cells.
The oral mucosa was separated surgically and isolated enzymatically. The cells were examined during long-term in vitro culture (IVC). The cultured cells were collected at 7, 15 and 30 days of IVC and subsequently transferred to RNA isolation and next, the gene expression profile was measured using Affymetrix microarray assays.
In the results, we can extract genes belonging to four ontology groups: “ion homeostasis”, “ion transport”, “metal ion transport”, and “inorganic ion homeostasis”. For TGFB1 and CCL2, we observed up-regulation after 7 days of IVC, down-regulation after 15 days of IVC and upregulation again after 30 days of IVC. The ATP13A3, ATP1B1, CCL8, LYN, STEAP1, PDPN, PTGS2, and SLC5A3genes showed high activity after day 7 of IVC, and in the days 15 and 30 of IVC showed low activity.
We showed an expression profile of genes associated with the effects of ion influence on the porcine normal oral mucosal cell development in IVC. These studies may be the starting point for further research into oral diseases and will allow for the comparison of the gene expression profile of normal and disease altered cells.
Collapse
|
15
|
Alghamdi AA, Alsolami A, Saeed WS, Al-Odayni ABM, Semlali A, Aouak T. Miscibility of poly(acrylic acid)/poly(methyl vinyl ketone) blend and in vitro application as drug carrier system. Des Monomers Polym 2018; 21:145-162. [PMID: 30275803 PMCID: PMC6161612 DOI: 10.1080/15685551.2018.1521563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/31/2018] [Indexed: 11/04/2022] Open
Abstract
A series of poly(acrylic acid)/poly(methyl vinyl ketone) (PAA/PMVK) blends with different compositions were prepared by the solvent casting method. The miscibility of this pair of polymers was investigated by differential scanning calorimetry(DSC), Fourier transform infra-red (FTIR) and X-Ray diffraction (XRD) techniques. An in-vitro cytotoxicity test of the drug-carrier system via MTT (3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed no significant cytotoxic effects at concentrations up to 100 µg· ml−1. The STX/PAA-50 drug carrier systems were also prepared by solvent casting of solutions containing the sulfamethoxazole (STX) used as drug model and PAA/PMVK blend in N.N-dimethylformamide then crosslinked with acidified ethylene glycol. The release dynamic of STX from the prepared hydrogels was investigated in which the diffusion through the polymer matrix, the enhancement of the water solubility of STX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamic was evaluated. According to the total gastrointestinal transit time estimated by Belzer, the estimate distribution of STX released in the different organs indicated that the performance is obtained with the drug – carrier-system containing equal ratios of polymer and 10 wt% of STX (STX-10/PAA-50).
Collapse
Affiliation(s)
| | - Abdulellah Alsolami
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Waseem Sharaf Saeed
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdelhabib Semlali
- Biochemistry department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Johansson K, Weidner J, Rådinger M. MicroRNAs in type 2 immunity. Cancer Lett 2018; 425:116-124. [PMID: 29604393 DOI: 10.1016/j.canlet.2018.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Type 2 immunity drives the pathology of allergic diseases and is necessary for expulsion of parasitic worms as well as having important implications in tumor progression. Over the last decade, a new research field has emerged describing a significant link between type 2 immunity and cancer development, called AllergoOncology. Thus, type 2 immune responses must be carefully regulated to mediate effective protection against damaging environmental factors, yet avoid excessive activation and immunopathology. Regulation of gene expression by microRNAs is required for normal behavior of most mammalian cells and has been studied extensively in the context of cancer. Although microRNA regulation of the immune system in cancer is well established and includes type 2 immune reactions in the tumor microenvironment, the involvement of microRNAs in these responses initiated by allergens, parasites or other environmental factors is just emerging. In this review, we focus on recent advances which increase the understanding of microRNA-mediated regulation of key mechanisms of type 2 immunity.
Collapse
Affiliation(s)
- Kristina Johansson
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Haj‐Salem I, Plante S, Gounni AS, Rouabhia M, Chakir J. Fibroblast-derived exosomes promote epithelial cell proliferation through TGF-β2 signalling pathway in severe asthma. Allergy 2018. [PMID: 28649804 DOI: 10.1111/all.13234] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bronchial fibroblasts play a key role in airway remodelling in asthma. They regulate epithelial cell functions such as proliferation through growth factors, cytokines, chemokines and exosomes. The role of exosomes in the communication between epithelial cells and fibroblasts by vehiculing these mediators in asthma remains to be determined. OBJECTIVE To evaluate the role of exosomes released by bronchial fibroblasts on epithelial cell proliferation in severe asthma. METHODS Exosomes were obtained from culture media of primary bronchial fibroblasts and characterized using Western blot, electron microscopy and flow cytometry. Uptake profile of fluorescent-labelled exosomes in epithelial cells was assessed by flow cytometry. Exosome cytokine content was analysed by Cytokine Arrays. Bronchial epithelial cell proliferation was evaluated by BrdU incorporation test. Exosome biogenesis/release was blocked using sphingomyelinase inhibitor. Plasmid transfection was used to modulate transforming growth factor beta 2 (TGF-β2) gene expression. RESULTS We showed that bronchial fibroblasts secreted exosomes, which were internalized by bronchial epithelial cells. Exosomes of severe asthmatic subjects' fibroblasts showed a lower level of TGF-β2 and significantly increased the epithelial cell proliferation of both healthy and severe asthmatic subjects compared to healthy controls' exosomes. Overexpression of TGF-β2 in severe asthmatics' fibroblasts induced enhanced TGF-β2 in exosomes leading to a reduced proliferation of epithelial cells, whereas knockdown of TGF-β2 enhanced epithelial cell proliferation. CONCLUSION Our study shows that exosomes are involved in fine-tuning intercellular communication in asthma. Exosomes of severe eosinophilic asthmatics' fibroblasts can contribute to airway remodelling, at least in part, by modulating epithelial cell proliferation observed in severe asthma.
Collapse
Affiliation(s)
- I. Haj‐Salem
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| | - S. Plante
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| | - A. S. Gounni
- Rady Faculty of Health SciencesDepartment of Immunology Max Rady College of Medicine University of Manitoba Winnipeg MB Canada
| | - M. Rouabhia
- Faculty of dentistry Oral Ecology Research Group Laval University Quebec QC Canada
| | - J. Chakir
- Centre de recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada
| |
Collapse
|
18
|
Reeves SR, Kolstad T, Lien TY, Herrington-Shaner S, Debley JS. Fibroblast-myofibroblast transition is differentially regulated by bronchial epithelial cells from asthmatic children. Respir Res 2015; 16:21. [PMID: 25849331 PMCID: PMC4333174 DOI: 10.1186/s12931-015-0185-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/29/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs. METHODS BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition. RESULTS Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone. CONCLUSION These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.
Collapse
|
19
|
Haj-Salem I, Fakhfakh R, Bérubé JC, Jacques E, Plante S, Simard MJ, Bossé Y, Chakir J. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma. Allergy 2015; 70:212-9. [PMID: 25443138 DOI: 10.1111/all.12551] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Allergic asthma is characterized by inflammation and airway remodeling. Bronchial epithelium is considered a key player in coordinating airway wall remodeling. In mild asthma, the epithelium is damaged and fails to proliferate and to repair, whereas in severe asthma, the epithelium is highly proliferative and thicker. This may be due to different regulatory mechanisms. The purpose of our study was to determine the role of miRNAs in regulating proliferation of bronchial epithelial cells obtained from severe asthmatic subjects in comparison with cells obtained from mild asthmatics and healthy controls. METHODS Human bronchial epithelial cells (BEC) were isolated by bronchoscopy from bronchial biopsies of healthy donors and patients with mild and severe asthma. MiRNA expression was evaluated using the TaqMan low-density arrays and qRT-PCR. Transfection studies of bronchial epithelial cells were performed to determine the target genes. Cell proliferation was evaluated by BrdU incorporation test. RESULTS MiR-19a was upregulated in epithelia of severe asthmatic subjects compared with cells from mild asthmatics and healthy controls. Functional studies based on luciferase reporter and Western blot assays suggest that miR-19a enhances cell proliferation of BEC in severe asthma through targeting TGF-β receptor 2 mRNA. Moreover, repressed expression of miR-19a increased SMAD3 phosphorylation through TGF-β receptor 2 signaling and abrogated BEC proliferation. CONCLUSION Our study uncovers a new regulatory pathway involving miR-19a that is critical to the severe phenotype of asthma and indicates that downregulating miR-19a expression could be explored as a potential new therapy to modulate epithelium repair in asthma.
Collapse
Affiliation(s)
- I. Haj-Salem
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - R. Fakhfakh
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - J.-C. Bérubé
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - E. Jacques
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - S. Plante
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - M. J. Simard
- St-Patrick Research Group in Basic Oncology; Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec); Laval University; Cancer Research Center; Quebec City Québec Canada
| | - Y. Bossé
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| | - J. Chakir
- Centre de recherche; Institut Universitaire de Cardiologie et de Pneumologie de Québec; Université Laval; Quebec City Québec Canada
| |
Collapse
|
20
|
Leydon C, Imaizumi M, Bartlett RS, Wang SF, Thibeault SL. Epithelial cells are active participants in vocal fold wound healing: an in vivo animal model of injury. PLoS One 2014; 9:e115389. [PMID: 25514022 PMCID: PMC4267843 DOI: 10.1371/journal.pone.0115389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vocal fold epithelial cells likely play an important, yet currently poorly defined, role in healing following injury, irritation and inflammation. In the present study, we sought to identify a possible role for growth factors, epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGFβ1), in epithelial regeneration during wound healing as a necessary first step for uncovering potential signaling mechanisms of vocal fold wound repair and remodeling. Using a rat model, we created unilateral vocal fold injuries and examined the timeline for epithelial healing and regeneration during early and late stages of wound healing using immunohistochemistry (IHC). We observed time-dependent secretion of the proliferation marker, ki67, growth factors EGF and TGFβ1, as well as activation of the EGF receptor (EGFR), in regenerating epithelium during the acute phase of injury. Ki67, growth factor, and EGFR expression peaked at day 3 post-injury. Presence of cytoplasmic and intercellular EGF and TGFβ1 staining occurred up to 5 days post-injury, consistent with a role for epithelial cells in synthesizing and secreting these growth factors. To confirm that epithelial cells contributed to the cytokine secretion, we examined epithelial cell growth factor secretion in vitro using polymerase chain reaction (PCR). Cultured pig vocal fold epithelial cells expressed both EGF and TGFβ1. Our in vivo and in vitro findings indicate that epithelial cells are active participants in the wound healing process. The exact mechanisms underlying their roles in autocrine and paracrine signaling guiding wound healing await study in a controlled, in vitro environment.
Collapse
Affiliation(s)
- Ciara Leydon
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mitsuyoshi Imaizumi
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Rebecca S. Bartlett
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sarah F. Wang
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
21
|
Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014; 108:1409-23. [PMID: 25240764 DOI: 10.1016/j.rmed.2014.08.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease involving complex interplay between resident and infiltrative cells, which in turn are regulated by a wide range of host mediators. Identifying useful biomarkers correlating with clinical symptoms and degree of airway obstruction remain important to effective future asthma treatments. Transforming growth factor β (TGF-β) is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling within the asthmatic lung. Its role however, as a therapeutic target remains controversial. The aim of this review is to highlight its role in severe asthma including interactions with adaptive T-helper cells, cytokines and differentiation through regulatory T-cells. Associations between TGF-β and eosinophils will be addressed and the effects of genetic polymorphisms of the TGF-β1 gene explored in the context of asthma. We highlight TGF-β1 as a potential future therapeutic target in severe asthma including its importance in identifying emerging clinical phenotypes in asthmatic subjects who may be suitable for individualized therapy through TGF-β modulation.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
22
|
Yang Y, Zhang N, Lan F, Van Crombruggen K, Fang L, Hu G, Hong S, Bachert C. Transforming growth factor-beta 1 pathways in inflammatory airway diseases. Allergy 2014; 69:699-707. [PMID: 24750111 DOI: 10.1111/all.12403] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-beta 1 (TGF-β1) has been reported being involved in the remodeling and immunosuppression processes of inflammatory airway diseases; understanding the regulation of TGF-β1 is therefore a key to unravel the pathomechanisms of these diseases. This review briefly summarizes the current knowledge on the influencing factors for driving TGF-β1 and its regulatory pathways in inflammatory airway diseases and discusses possible therapeutic approaches to TGF-β1 control. The factors include smoking and oxidative stress, prostaglandins (PGs), leukotrienes (LTs), bradykinin (BK), and microRNAs (miRs). Based on the summary, new innovative treatment strategies may be developed for inflammatory airway diseases with an impaired expression of TGF-β1.
Collapse
Affiliation(s)
- Y. Yang
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - N. Zhang
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - F. Lan
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - K. Van Crombruggen
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| | - L. Fang
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - G. Hu
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - S. Hong
- Department of Oto-Rhino-Laryngology; The First Affiliated Hospital; Chongqing Medical University; Chongqing China
| | - C. Bachert
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent Belgium
- Division of Nose, Throat and Ear Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
23
|
Reeves SR, Kolstad T, Lien TY, Elliott M, Ziegler SF, Wight TN, Debley JS. Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol 2014; 134:663-670.e1. [PMID: 24875618 DOI: 10.1016/j.jaci.2014.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 04/06/2014] [Accepted: 04/11/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Airway remodeling might explain lung function decline among asthmatic children. Extracellular matrix (ECM) deposition by human lung fibroblasts (HLFs) is implicated in airway remodeling. Airway epithelial cell (AEC) signaling might regulate HLF ECM expression. OBJECTIVES We sought to determine whether AECs from asthmatic children differentially regulate HLF expression of ECM constituents. METHODS Primary AECs were obtained from well-characterized atopic asthmatic (n = 10) and healthy (n = 10) children intubated during anesthesia for an elective surgical procedure. AECs were differentiated at an air-liquid interface for 3 weeks and then cocultured with HLFs from a healthy child for 96 hours. Collagen I (COL1A1), collagen III (COL3A1), hyaluronan synthase (HAS) 2, and fibronectin expression by HLFs and prostaglandin E2 synthase (PGE2S) expression by AECs were assessed by using RT-PCR. TGF-β1 and TGF-β2 concentrations in media were measured by using ELISA. RESULTS COL1A1 and COL3A1 expression by HLFs cocultured with AECs from asthmatic patients was greater than that by HLFs cocultured with AECs from healthy subjects (2.2-fold, P < .02; 10.8-fold, P < .02). HAS2 expression by HLFs cocultured with AECs from asthmatic patients was 2.5-fold higher than that by HLFs cocultured with AECs from healthy subjects (P < .002). Fibronectin expression by HLFs cocultured with AECs from asthmatic patients was significantly greater than that by HLFs alone. TGF-β2 activity was increased in cocultures of HLFs with AECs from asthmatic patients (P < .05), whereas PGES2 was downregulated in AEC-HLF cocultures (2.2-fold, P < .006). CONCLUSIONS HLFs cocultured with AECs from asthmatic patients showed differential expression of the ECM constituents COL1A1 and COL3A1 and HAS2 compared with HLFs cocultured with AECs from healthy subjects. These findings support a role for altered ECM production in asthmatic airway remodeling, possibly regulated by unbalanced AEC signaling.
Collapse
Affiliation(s)
- Stephen R Reeves
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Tessa Kolstad
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Tin-Yu Lien
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Molly Elliott
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | | | | | - Jason S Debley
- Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash.
| |
Collapse
|
24
|
Wu J, Dong F, Wang RA, Wang J, Zhao J, Yang M, Gong W, Cui R, Dong L. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One 2013; 8:e77795. [PMID: 24167583 PMCID: PMC3805661 DOI: 10.1371/journal.pone.0077795] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
Background Airway remodeling is a repair process that occurs after injury resulting in increased airway hyper-responsiveness in asthma. Thymic stromal lymphopoietin (TSLP), a vital cytokine, plays a critical role in orchestrating, perpetuating and amplifying the inflammatory response in asthma. TSLP is also a critical factor in airway remodeling in asthma. Objectives To examine the role of TSLP-induced cellular senescence in airway remodeling of asthma invitro and invivo. Methods Cellular senescence and airway remodeling were examined in lung specimens from patients with asthma using immunohischemical analysis. Both small molecule and shRNA approaches that target the senescent signaling pathways were used to explore the role of cellular senescence in TSLP-induced airway remodeling invitro. Senescence-Associated β-galactosidase (SA-β-Gal) staining, and BrdU assays were used to detect cellular senescence. In addition, the Stat3-targeted inhibitor, WP1066, was evaluated in an asthma mouse model to determine if inhibiting cellular senescence influences airway remodeling in asthma. Results Activation of cellular senescence as evidenced by checkpoint activation and cell cycle arrest was detected in airway epithelia samples from patients with asthma. Furthermore, TSLP-induced cellular senescence was required for airway remodeling invitro. In addition, a mouse asthma model indicates that inhibiting cellular senescence blocks airway remodeling and relieves airway resistance. Conclusion TSLP stimulation can induce cellular senescence during airway remodeling in asthma. Inhibiting the signaling pathways of cellular senescence overcomes TSLP-induced airway remodeling.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fangzheng Dong
- University of Iowa College of Liberal Arts and Sciences, Iowa City, Iowa, United States of America
- Department of Dermatology & Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Rui-An Wang
- Department of Pathology, Fourth Military Medical University, Xian, Shanxi, China
| | - Junfei Wang
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiping Zhao
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengmeng Yang
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Gong
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rutao Cui
- Longhua Hospital, Shanghai University of TCM, Shanghai, China
- Department of Dermatology & Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (RC); (LD)
| | - Liang Dong
- Department of Respiratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail: (RC); (LD)
| |
Collapse
|
25
|
Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One 2013; 8:e71660. [PMID: 23990967 PMCID: PMC3747189 DOI: 10.1371/journal.pone.0071660] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/01/2013] [Indexed: 01/15/2023] Open
Abstract
Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing.
Collapse
Affiliation(s)
- Mahmoud Rouabhia
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
| | - Hyunjin Park
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Shiyun Meng
- College of Environment and Biotechnology, Chongqing Technology and Business University, Chongqing, China
| | - Habib Derbali
- Faculty of Dentistry, Research Group on Oral Ecology, Laval University, Quebec City, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| | - Ze Zhang
- Faculty of Medicine, Department of Surgery, Laval University, Saint-François d’Assise Hospital Research Center, CHU, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
Tanabe T, Kanoh S, Moskowitz WB, Rubin BK. Cardiac asthma: transforming growth factor-β from the failing heart leads to squamous metaplasia in human airway cells and in the murine lung. Chest 2013; 142:1274-1283. [PMID: 22505689 DOI: 10.1378/chest.11-1710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cardiac asthma describes symptoms of airflow obstruction due to heart failure. Chronic heart failure is associated with decreased FEV 1 , and FEV 1 improves after heart transplantation. Fibrotic remodeling of the heart and airways is mediated, in part, through transforming growth factor (TGF)- β . Blood TGF- b 1 concentration correlates with ventricular remodeling in cardiac disease, and TGF- β decreases after repair. METHODS We established a coculture of normal human bronchial epithelial (NHBE) cells differentiated at air-liquid interface with submerged basal cardiomyoblasts. Airway cells were immunostained with cytokeratin, actin, and involucrin. TGF- β synthesis was assayed using enzyme-linked immunosorbent assay. Phosphorylation of Smad in NHBE cells was determined by Western blotting.Mice given doxorubicin developed cardiac failure, and their airways were histologically examined. RESULTS Coculture induced involucrin-positive squamous metaplasia of NHBE cells, and this was attenuated by TGF- β antibody. Total TGF- β 1 was increased in coculture conditioned medium( P < .001). After 14 days of exposure to recombinant TGF- β 1 , there was squamous transformation of NHBE cells. One week after removing cardiomyoblasts from culture, squamous metaplasia resolved into normal ciliated epithelia. Smad was phosphorylated in NHBE cells with cardiomyoblasts or with recombinant TGF- β 1 exposure. The airways of mice with heart failure also demonstrated involucrin-positive squamous transformation. CONCLUSIONS TGF- β from cardiomyoblasts or from the failing heart can cause airway squamous metaplasia via Smad signaling, and this is blocked by anti-TGF- b antibody and reversed when cardiac cells are removed from culture. This appears to be an important mechanism for airflow obstruction with heart failure, sometimes described as cardiac asthma.
Collapse
Affiliation(s)
- Tsuyoshi Tanabe
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Soichiro Kanoh
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - William B Moskowitz
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bruce K Rubin
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA.
| |
Collapse
|
27
|
Golebski K, Röschmann KIL, Toppila-Salmi S, Hammad H, Lambrecht BN, Renkonen R, Fokkens WJ, van Drunen CM. The multi-faceted role of allergen exposure to the local airway mucosa. Allergy 2013; 68:152-60. [PMID: 23240614 DOI: 10.1111/all.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses.
Collapse
Affiliation(s)
- K. Golebski
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - K. I. L. Röschmann
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - S. Toppila-Salmi
- Helsinki University Central Hospital, Skin and Allergy Hospital & Transplantation Laboratory, Haartman Institute, University of Helsinki; Helsinki; Finland
| | | | | | - R. Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki & Helsinki University Central Hospital, HUSLAB; Helsinki; Finland
| | - W. J. Fokkens
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| | - C. M. van Drunen
- Department of Otorhinolanyngology; Academic Medical Center, University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
28
|
Diao B, Liu Y, Zhang Y, Liu Q, Lu WJ, Xu G. Functional network analysis with the subcellular location and gene ontology information in human allergic asthma. Genet Test Mol Biomarkers 2012; 16:1287-92. [PMID: 23057572 DOI: 10.1089/gtmb.2011.0325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, tissue remodeling, and airflow obstruction. The pathogenesis of asthma is only partly understood, and there is an urgent need for improved therapeutic strategies for this disease. The protein-protein interaction (PPI) network has considerable promise as a tool for discovery of novel asthma therapeutic targets and their relationship. Among the genes that have been identified by PPI studies, APP, CDKN1B, and SP3 displayed up-regulated expression. Further study depicted that CDKN1B localized in the nucleus or cytoplasm could interact with GRB2 and CASP8, but SP3 localized in the nucleus could interact with histone deacetylase 1, SP1, and E2F1. We anticipate that these types of analyses will provide considerable insight into asthma pathogenesis and will provide a wealth of new molecules for downstream analyses.
Collapse
Affiliation(s)
- Bo Diao
- Wuhan General Hospital Guangzhou Military Region, Wuhan, China
| | | | | | | | | | | |
Collapse
|
29
|
Yang YC, Zhang N, Van Crombruggen K, Hu GH, Hong SL, Bachert C. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy 2012; 67:1193-202. [PMID: 22913656 DOI: 10.1111/j.1398-9995.2012.02880.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2012] [Indexed: 01/07/2023]
Abstract
Airway diseases such as chronic rhinosinusitis, asthma, and chronic obstructive pulmonary disorder are characterized by inflammation and remodeling. Among inflammatory and extracellular matrix regulatory cytokines, transforming growth factor-beta (TGF-β) stands central, as it possesses both important immunomodulatory and fibrogenic activities, and should be considered a key for understanding inflammation and remodeling processes. This review will briefly summarize the recent findings on the role of TGF-β1, from the view points of inflammation and remodeling, and discuss the role of TGF-β in the upper and lower airway diseases. This may reveal new perspectives in the understanding of airway inflammation and remodeling processes and may open innovative treatment strategies for the regulation of TGF-β1.
Collapse
Affiliation(s)
| | - N. Zhang
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| | - K. Van Crombruggen
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| | - G. H. Hu
- Department of Oto-Rhino-Laryngology; the First affiliated Hospital; Chongqing Medical University; Chongqing; China
| | - S. L. Hong
- Department of Oto-Rhino-Laryngology; the First affiliated Hospital; Chongqing Medical University; Chongqing; China
| | - C. Bachert
- Upper Airway Research Laboratory; Department of Oto-Rhino-Laryngology; Ghent University; Ghent; Belgium
| |
Collapse
|
30
|
Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis. Mediators Inflamm 2012; 2012:398207. [PMID: 22665950 PMCID: PMC3361342 DOI: 10.1155/2012/398207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 12/25/2022] Open
Abstract
In this study we demonstrated that ΔCaecm33 double mutant showed reduced biofilm formation and causes less damage to gingival mucosa tissues. This was confirmed by the reduced level of necrotic cells and Bax/Bcl2 gene expression as apoptotic markers. In contrast, parental and Caecm33 mutant strains decreased basement membrane protein production (laminin 5 and type IV collagen). We thus propose that ECM33 gene/protein represents a novel target for the prevention and treatment of infections caused by Candida.
Collapse
|
31
|
Semlali A, Chakir J, Goulet JP, Chmielewski W, Rouabhia M. Whole cigarette smoke promotes human gingival epithelial cell apoptosis and inhibits cell repair processes. J Periodontal Res 2011; 46:533-41. [PMID: 21517857 DOI: 10.1111/j.1600-0765.2011.01370.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Smoking cigarettes increases the risk of developing various types of human diseases, including cancers and periodontitis. As gingival epithelial cells are known to play an active role in innate immunity via the secretion of a wide variety of mediators, and as these cells are the first ones exposed to environmental stimuli such as cigarette smoke, we sought to investigate the effects of whole cigarette smoke on normal human gingival epithelial cells and tissue. MATERIAL AND METHODS Human gingival epithelial cells were extracted from healthy nonsmokers and used either as a monolayer or as an engineered human oral mucosa to investigate the effect of whole cigarette smoke on cell growth, apoptosis and wound repair/migration. RESULTS Our findings show that when gingival epithelial cells were exposed once to whole cigarette smoke, this resulted in a significant inhibition of cell growth through an apoptotic pathway, as confirmed by an increase of Bax and a decrease of Bcl-xL and caspase-3 activity. Cigarette smoke also inhibited epithelial cell migration. These effects may explain the disorganization of the engineered human oral mucosa tissue when exposed to whole cigarette smoke. CONCLUSION Exposure to whole cigarette smoke markedly inhibits epithelial cell growth through an apoptosis/necrosis pathway that involves Bax and Bcl-xL proteins and caspase-3 activity. Cigarette smoke also disrupts epithelial cell migration, which may negatively affect periodontal wound healing.
Collapse
Affiliation(s)
- A Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
32
|
Semlali A, Chakir J, Rouabhia M. Effects of whole cigarette smoke on human gingival fibroblast adhesion, growth, and migration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:848-62. [PMID: 21598170 DOI: 10.1080/15287394.2011.570230] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aim of this study was to investigate the effects of a single exposure to whole cigarette smoke on human gingival fibroblast behavior. Normal oral mucosa fibroblasts were exposed once to whole cigarette smoke for 5, 15, or 30 min, and then were used to analyze cell adhesion, β1-integrin expression, cell growth and viability, cell capacity to contract collagen gel, and cell migration following wound infliction. Our findings showed that when gingival fibroblasts were exposed once to whole cigarette smoke, this resulted in a significant inhibition of cell adhesion, a decrease in the number of β1-integrin-positive cells, increased LDH activity in the target cells, and reduced growth. The smoke-exposed fibroblasts were also not able to contract collagen gel matrix and migrate following insult. Overall results demonstrate that a single exposure to whole cigarette smoke produced significant morphological and functional deregulation in gingival fibroblasts. This may explain the higher predisposition of tobacco users to oral infections and diseases such as cancer.
Collapse
|