1
|
Head ST, Leslie EJ, Cutler DJ, Epstein MP. POIROT: a powerful test for parent-of-origin effects in unrelated samples leveraging multiple phenotypes. Bioinformatics 2023; 39:btad199. [PMID: 37067493 PMCID: PMC10148680 DOI: 10.1093/bioinformatics/btad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023] Open
Abstract
MOTIVATION There is widespread interest in identifying genetic variants that exhibit parent-of-origin effects (POEs) wherein the effect of an allele on phenotype expression depends on its parental origin. POEs can arise from different phenomena including genomic imprinting and have been documented for many complex traits. Traditional tests for POEs require family data to determine parental origins of transmitted alleles. As most genome-wide association studies (GWAS) sample unrelated individuals (where allelic parental origin is unknown), the study of POEs in such datasets requires sophisticated statistical methods that exploit genetic patterns we anticipate observing when POEs exist. We propose a method to improve discovery of POE variants in large-scale GWAS samples that leverages potential pleiotropy among multiple correlated traits often collected in such studies. Our method compares the phenotypic covariance matrix of heterozygotes to homozygotes based on a Robust Omnibus Test. We refer to our method as the Parent of Origin Inference using Robust Omnibus Test (POIROT) of multiple quantitative traits. RESULTS Through simulation studies, we compared POIROT to a competing univariate variance-based method which considers separate analysis of each phenotype. We observed POIROT to be well-calibrated with improved power to detect POEs compared to univariate methods. POIROT is robust to non-normality of phenotypes and can adjust for population stratification and other confounders. Finally, we applied POIROT to GWAS data from the UK Biobank using BMI and two cholesterol phenotypes. We identified 338 genome-wide significant loci for follow-up investigation. AVAILABILITY AND IMPLEMENTATION The code for this method is available at https://github.com/staylorhead/POIROT-POE.
Collapse
Affiliation(s)
- S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
2
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Hofmeister RJ, Rubinacci S, Ribeiro DM, Buil A, Kutalik Z, Delaneau O. Parent-of-Origin inference for biobanks. Nat Commun 2022; 13:6668. [PMID: 36335127 PMCID: PMC9637181 DOI: 10.1038/s41467-022-34383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Identical genetic variations can have different phenotypic effects depending on their parent of origin. Yet, studies focusing on parent-of-origin effects have been limited in terms of sample size due to the lack of parental genomes or known genealogies. We propose a probabilistic approach to infer the parent-of-origin of individual alleles that does not require parental genomes nor prior knowledge of genealogy. Our model uses Identity-By-Descent sharing with second- and third-degree relatives to assign alleles to parental groups and leverages chromosome X data in males to distinguish maternal from paternal groups. We combine this with robust haplotype inference and haploid imputation to infer the parent-of-origin for 26,393 UK Biobank individuals. We screen 99 phenotypes for parent-of-origin effects and replicate the discoveries of 6 GWAS studies, confirming signals on body mass index, type 2 diabetes, standing height and multiple blood biomarkers, including the known maternal effect at the MEG3/DLK1 locus on platelet phenotypes. We also report a novel maternal effect at the TERT gene on telomere length, thereby providing new insights on the heritability of this phenotype. All our summary statistics are publicly available to help the community to better characterize the molecular mechanisms leading to parent-of-origin effects and their implications for human health.
Collapse
Affiliation(s)
- Robin J Hofmeister
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simone Rubinacci
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Diogo M Ribeiro
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark.,Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Olivier Delaneau
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
4
|
Machens A, Lorenz K, Weber F, Dralle H. Medullary thyroid cancer and pheochromocytoma in MEN2A: are there parent of origin effects on disease expression? Fam Cancer 2022; 21:473-478. [PMID: 34677728 DOI: 10.1007/s10689-021-00282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023]
Abstract
There are no data on the impact of parent-of-origin effects on the expression of multiple endocrine neoplasia type 2A (MEN2A). The present study aimed to explore effects of parent-of-origin and offspring gender in MEN2A. In total, 224 carriers harbored heterozygous RET (REarranged during Transfection) p.Cys634 missense variants, for 169 of whom information on parent-of-origin gender was available. Altogether, offspring from affected fathers harbored more often node metastases from medullary thyroid cancer (45 vs. 19%; P = 0.006) and bilateral pheochromocytoma (24 vs. 10%; P = 0.021) than offspring from affected mothers. The former also also tended to be older at most recent follow-up (medians of 21 vs. 14 years; P = 0.056) and tended to have more often pheochromocytoma (33 vs. 19 yrs.; P = 0.051) and primary hyperparathyroidism (13 vs. 4%; P = 0.090) than the latter. Daughters from affected fathers harbored more often node metastases (39 vs. 15%; P = 0.043) than daughters from affected mothers. This difference decreased in male offspring when sons from affected fathers were compared with sons from affected mothers (52 vs. 40%; P = 0.111). There was also a slight deficit of male offspring: 1.1 sons each per affected mother and father vs. 1.2 daughters per affected mother and 1.4 daughters per affected father. These data suggest a parent-of-origin effect in MEN2A, warranting international collaborative research.
Collapse
Affiliation(s)
- Andreas Machens
- Medical Faculty, Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany.
| | - Kerstin Lorenz
- Medical Faculty, Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany
| | - Frank Weber
- Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University of Duisburg-Essen, 45122, Essen, Germany
| | - Henning Dralle
- Medical Faculty, Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Germany.,Department of General, Visceral and Transplantation Surgery, Section of Endocrine Surgery, University of Duisburg-Essen, 45122, Essen, Germany
| |
Collapse
|
5
|
Braun M, Shoshani S, Teixeira J, Mellul Shtern A, Miller M, Granot Z, Fischer SE, Garcia SMA, Tabach Y. Asymmetric inheritance of RNA toxicity in C. elegans expressing CTG repeats. iScience 2022; 25:104246. [PMID: 35494247 PMCID: PMC9051633 DOI: 10.1016/j.isci.2022.104246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide repeat expansions are a hallmark of over 40 neurodegenerative diseases and cause RNA toxicity and multisystemic symptoms that worsen with age. Through an unclear mechanism, RNA toxicity can trigger severe disease manifestation in infants if the repeats are inherited from their mother. Here we use Caenorhabditis elegans bearing expanded CUG repeats to show that this asymmetric intergenerational inheritance of toxicity contributes to disease pathogenesis. In addition, we show that this mechanism is dependent on small RNA pathways with maternal repeat-derived small RNAs causing transcriptomic changes in the offspring, reduced motility, and shortened lifespan. We rescued the toxicity phenotypes in the offspring by perturbing the RNAi machinery in the affected hermaphrodites. This points to a novel mechanism linking maternal bias and the RNAi machinery and suggests that toxic RNA is transmitted to offspring, causing disease phenotypes through intergenerational epigenetic inheritance. Maternal origin of expanded CUG repeats induces RNA toxicity in Caenorhabditis elegans offspring Offspring of affected hermaphrodites show molecular and phenotypic disease phenotypes The RNAi machinery is directly related to the maternal inheritance of RNA toxicity Altering the RNAi machinery in affected hermaphrodites rescues toxicity in offspring
Collapse
Affiliation(s)
- Maya Braun
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shachar Shoshani
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
| | - Anna Mellul Shtern
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Miller
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sylvia E.J. Fischer
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana M.D. A. Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790 Finland
- Corresponding author
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Corresponding author
| |
Collapse
|
6
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
7
|
Hashimoto N, Michaels TI, Hancock R, Kusumi I, Hoeft F. Maternal cerebellar gray matter volume is associated with daughters' psychotic experience. Psychiatry Clin Neurosci 2020; 74:392-397. [PMID: 32353195 PMCID: PMC7424852 DOI: 10.1111/pcn.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
AIM A substantial portion of children and adolescents show subthreshold psychotic symptoms called psychotic experience (PE). Because PE shares its biological and environmental risk factors with psychotic spectrum disorders, parental neuroanatomical variation could reflect a heritable biological underpinning of PE that may predict an offspring's PE. METHODS A total of 94 participants from 35 families without a diagnosis of major neuropsychiatric disorders were examined, including 14 mother-daughter, 17 mother-son, 12 father-daughter, and 16 father-son dyads. An offspring's PE was assessed with the Atypicality subscale of the Behavior Assessment System for Children - 2nd Edition, Self-Report of Personality form (BASCaty). We examined correlations between voxel-by-voxel parental gray matter volume and their offspring's BASCaty score. RESULTS Maternal cerebellar gray matter volume using voxel-based morphometry was positively correlated with their daughters' BASCaty scores. The findings were significant in a more robust approach using cerebellum-specific normalization known. We did not find significant correlation between paternal gray matter volume and BASCaty scores or between offspring gray matter volumes and their BASCaty scores. CONCLUSION Expanding upon parent-of-origin effects in psychosis, maternal neuroanatomical variation was associated with daughters' PE. The nature of this sex-specific intergenerational effect is unknown, but maternally transmitted genes may relate cerebellum development to PE pathogenesis.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Timothy I Michaels
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA.,Department of Pediatrics, University of California, Davis, Medical Center, Sacramento, USA
| | - Roeland Hancock
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Fumiko Hoeft
- Brain Imaging Research Center, University of Connecticut, Storrs, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, USA.,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, USA.,Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Gjerdevik M, Gjessing HK, Romanowska J, Haaland ØA, Jugessur A, Czajkowski NO, Lie RT. Design efficiency in genetic association studies. Stat Med 2020; 39:1292-1310. [PMID: 31943314 DOI: 10.1002/sim.8476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/07/2022]
Abstract
Selecting the best design for genetic association studies requires careful deliberation; different study designs can be used to scan for different genetic effects, and each design has its own set of strengths and limitations. A variety of family and unrelated control configurations are amenable to genetic association analyses, including the case-control design, case-parent triads, and case-parent triads in combination with unrelated controls or control-parent triads. Ultimately, the goal is to choose the design that achieves the highest statistical power using the lowest cost. For given parameter values and genotyped individuals, designs can be compared directly by computing the power. However, a more informative and general design comparison can be achieved by studying the relative efficiency, defined as the ratio of variances of two different parameter estimators, corresponding to two separate designs. Using log-linear modeling, we derive the relative efficiency from the asymptotic variance of the parameter estimators and relate it to the concept of Pitman efficiency. The relative efficiency takes into account the fact that different designs impose different costs relative to the number of genotyped individuals. We show that while optimal efficiency for analyses of regular autosomal effects is achieved using the standard case-control design, the case-parent triad design without unrelated controls is efficient when searching for parent-of-origin effects. Due to the potential loss of efficiency, maternal genes should generally not be adjusted for in an initial genome-wide association study scan of offspring genes but instead checked post hoc. The relative efficiency calculations are implemented in our R package Haplin.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Nikolai O Czajkowski
- Department of Psychology, University of Oslo, Oslo, Norway.,Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Maternal gastric intrinsic factor A68G and paternal cubilin C758T variants increase the risk for neural tube defects in the fetus: A family-triad study from South India. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Fang G, Yu H, Zhi S, Xi M, Peng Z, Cai M, Wu W, Wang Y. Sex Differences in Intergenerational Transfer Risk of Major Depressive Disorder. Med Sci Monit 2019; 25:9887-9892. [PMID: 31869319 PMCID: PMC6939441 DOI: 10.12659/msm.917888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background The children of depressed parents are more likely to suffer from mental illness, particularly major depressive disorder (MDD). However, most data come from adolescent and young-adult populations, and published studies have reported inconsistent results regarding intergenerational transmission. Material/Methods We retrospectively investigated hospitalized depressed patients with positive family history (FHP) from 1 Jan 2008 to 31 Dec 2017 and analyzed the differences in sex distribution in the intergenerational transfer risk of major depressive disorder. Results We enrolled 528 patients with maternal or paternal positive FHP from a total of 4856 patients, and divided them into 4 groups: female patients with maternal FHP (FM: 220, 41.7%), female patients with paternal FHP (FP: 116, 22.0%), male patients with maternal FHP (MM: 96, 18.2%), and male patients with paternal FHP (MP: 96, 18.2%). In this study, 12.2% of hospitalized depressed patients had an FHP. The ratio of male: female patients with FHP was 2: 3. The ratio of male: female patients with maternal FHP was almost 1: 2. Analyses showed that the risk of depression in daughters was higher than in sons. Compared with children of depressed fathers, the children of depressed mothers were at higher risk of depression. Daughters and sons share an equal risk of depression with paternal FHP. Conclusions The results suggest a clear interaction of sex between patients and their depressed parents. Daughters of depressed mothers had the highest risk of suffering from depression compared with other offspring.
Collapse
Affiliation(s)
- Guoxiang Fang
- Department of Emergency Medicine, Xi'an No. 3 Hospital (The Affiliated Hospital of Northwest University), Xi'an, Shaanxi, China (mainland)
| | - Houyou Yu
- Department of Emergency Medicine, Xi'an No. 3 Hospital (The Affiliated Hospital of Northwest University), Xi'an, Shaanxi, China (mainland)
| | - Shaomin Zhi
- Department of Emergency Medicine, Xi'an No. 3 Hospital (The Affiliated Hospital of Northwest University), Xi'an, Shaanxi, China (mainland)
| | - Min Xi
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Zhengwu Peng
- Department of Emergency Medicine, Xi'an No. 3 Hospital (The Affiliated Hospital of Northwest University), Xi'an, Shaanxi, China (mainland)
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Wenjun Wu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
11
|
Introducing M-GCTA a Software Package to Estimate Maternal (or Paternal) Genetic Effects on Offspring Phenotypes. Behav Genet 2019; 50:51-66. [DOI: 10.1007/s10519-019-09969-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
12
|
Kalig-Amir M, Berger I, Rigbi A, Bar-Shalita T. An exploratory study of parent-child association in sensory modulation disorder involving ADHD-related symptoms. Pediatr Res 2019; 86:221-226. [PMID: 30986817 DOI: 10.1038/s41390-019-0397-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sensory modulation disorder (SMD) and attention deficit hyperactivity disorder (ADHD) can co-occur and have overlapping symptoms, thus challenging practitioners. This study aimed to phenotypically explore parent-child associations in SMD, and the interplay between SMD- and ADHD-related symptoms in children with SMD and their parents. METHODS A cross-sectional study examined 70 parents (n = 35 mothers; n = 35 fathers) and their 35 children with and without SMD, aged 4-6 years. Parents completed care-giver reports: The Short Sensory Profile (SSP) and the ADHD Rating Scale, and self-reports: The Sensory Responsiveness Questionnaire (SRQ) and the ADHD Self-Report Scale (ASRS). RESULTS In the entire sample, we found a mother-offspring correlation between SSP and SRQ-Aversive scores (rs = -0.68; p < 0.001), but no such father-offspring correlation. However, when testing the ADHD Rating Scale and ASRS scores, we found correlations between mothers and offspring (rs = 0.54, p = 0.0008), and between fathers and offspring (rs = 0.34, p = 0.0494). In the entire sample a high correlation was found between SSP and ADHD Rating Scale scores (rs = -0.837, p < 0.001). We further found a high correlation in mothers (rs = 0.70, p < 0.001), and a moderate correlation in fathers (rs = 0.40, p = 0.019) between SRQ-Aversive and ASRS scores. CONCLUSIONS Novel findings reveal that parents-offspring heritability patterns differ in both these related conditions. These may contribute to familial practice and research.
Collapse
Affiliation(s)
- Merav Kalig-Amir
- Child Development Unit, Clalit Health Services, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology Service, Pediatric Division, Asssuta Ashdod University Hospital Faculty of Health Sciences, Ben-Gurion University, Beer-Sheba, Israel
| | - Amihai Rigbi
- Faculty of Education, Beit-Berl Academic College, Kfar Saba, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Haaland ØA, Romanowska J, Gjerdevik M, Lie RT, Gjessing HK, Jugessur A. A genome-wide scan of cleft lip triads identifies parent-of-origin interaction effects between ANK3 and maternal smoking, and between ARHGEF10 and alcohol consumption. F1000Res 2019; 8:960. [PMID: 31372216 PMCID: PMC6662680 DOI: 10.12688/f1000research.19571.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Although both genetic and environmental factors have been reported to influence the risk of isolated cleft lip with or without cleft palate (CL/P), the exact mechanisms behind CL/P are still largely unaccounted for. We recently developed new methods to identify parent-of-origin (PoO) interactions with environmental exposures (PoOxE) and now apply them to data from a genome-wide association study (GWAS) of families with children born with isolated CL/P. Methods: Genotypes from 1594 complete triads and 314 dyads (1908 nuclear families in total) with CL/P were available for the current analyses. Of these families, 1024 were Asian, 825 were European and 59 had other ancestries. After quality control, 341,191 SNPs remained from the original 569,244. The exposures were maternal cigarette smoking, use of alcohol, and use of vitamin supplements in the periconceptional period. Our new methodology detects if PoO effects are different across environmental strata and is implemented in the R-package Haplin. Results: Among Europeans, there was evidence of a PoOxSmoke effect for ANK3 with three SNPs (rs3793861, q=0.20, p=2.6e-6; rs7087489, q=0.20, p=3.1e-6; rs4310561, q=0.67, p=4.0e-5) and a PoOxAlcohol effect for ARHGEF10 with two SNPs (rs2294035, q=0.32, p=2.9e-6; rs4876274, q=0.76, p=1.3e-5). Conclusion: Our results indicate that the detected PoOxE effects have a plausible biological basis, and thus warrant replication in other independent cleft samples. Our demonstration of the feasibility of identifying complex interactions between relevant environmental exposures and PoO effects offers new avenues for future research aimed at unravelling the complex etiology of cleft lip defects.
Collapse
Affiliation(s)
- Øystein Ariansen Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Computational Biology Unit, University of Bergen, Bergen, N-5020, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Skøyen, Oslo, Skøyen, N-0213, Norway
| | - Rolv Terje Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| | - Håkon Kristian Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Skøyen, Oslo, Skøyen, N-0213, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| |
Collapse
|
14
|
Haaland ØA, Romanowska J, Gjerdevik M, Lie RT, Gjessing HK, Jugessur A. A genome-wide scan of cleft lip triads identifies parent-of-origin interaction effects between ANK3 and maternal smoking, and between ARHGEF10 and alcohol consumption. F1000Res 2019; 8:960. [PMID: 31372216 PMCID: PMC6662680 DOI: 10.12688/f1000research.19571.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Although both genetic and environmental factors have been reported to influence the risk of isolated cleft lip with or without cleft palate (CL/P), the exact mechanisms behind CL/P are still largely unaccounted for. We recently developed new methods to identify parent-of-origin (PoO) interactions with environmental exposures (PoOxE) and applied them to families with children born with isolated cleft palate only. Here, we used the same genome-wide association study (GWAS) dataset and methodology to screen for PoOxE effects in the larger sample of CL/P triads. Methods: Genotypes from 1594 complete triads and 314 dyads (1908 nuclear families in total) with CL/P were available for the current analyses. Of these families, 1024 were Asian, 825 were European and 59 had other ancestries. After quality control, 341,191 SNPs remained from the original 569,244. The exposures were maternal cigarette smoking, use of alcohol, and use of vitamin supplements in the periconceptional period. The methodology applied in the analyses is implemented in the R-package Haplin. Results: Among Europeans, there was evidence of a PoOxSmoke effect for ANK3 with three SNPs (rs3793861, q=0.20, p=2.6e-6; rs7087489, q=0.20, p=3.1e-6; rs4310561, q=0.67, p=4.0e-5) and a PoOxAlcohol effect for ARHGEF10 with two SNPs (rs2294035, q=0.32, p=2.9e-6; rs4876274, q=0.76, p=1.3e-5). Conclusion: Our results indicate that the detected PoOxE effects have a plausible biological basis, and thus warrant replication in other independent cleft samples. Our demonstration of the feasibility of identifying complex interactions between relevant environmental exposures and PoO effects offers new avenues for future research aimed at unravelling the complex etiology of cleft lip defects.
Collapse
Affiliation(s)
- Øystein Ariansen Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Computational Biology Unit, University of Bergen, Bergen, N-5020, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Skøyen, Oslo, Skøyen, N-0213, Norway
| | - Rolv Terje Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| | - Håkon Kristian Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, N-5020, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Skøyen, Oslo, Skøyen, N-0213, Norway
- Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Skøyen, Oslo, N-0213, Norway
| |
Collapse
|
15
|
Zhou R, Zheng HC, Li WY, Wang MY, Wang SY, Li N, Li J, Zhou ZB, Wu T, Zhu HP. [Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:564-570. [PMID: 31209432 DOI: 10.19723/j.issn.1671-167x.2019.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To explore the association between SPRY gene family and the risk of non-syndromic oral clefts among Chinese populations, in respect of single nucleotide polymorphisms (SNPs) association and parent-of-origin effects. METHODS Based on case-parent design, this study used the data of SPRY gene family in a next generation sequencing study of 183 non-syndromic cleft lip with or without cleft palate (NSCL/P) case-parent trios (549 participants) recruited from 2016 to 2018, to analyze the effects of SNP association and parent-of-origin. The sequencing study adopted a two-stage design. In the first stage, whole exome sequencing was conducted among 24 NSCL/P trios with family history to explore potential signals. Then in the second stage, another 159 NSCL/P trios were used as validation samples to verify the signals found in the first stage. The data of general information, disease features and parental environmental exposures for participants were collected through questionnaires. Blood samples were collected from each participant for DNA extraction and sequencing. Transmission disequilibrium tests (TDT) were conducted to test for the association between SNPs and NSCL/P, while Z score tests were applied to analyze parent-of-origin effects. The analyses were performed using Plink (v1.07). TRIO package in R (v3.5.1). Besides, famSKAT analyses were conducted in the first stage to combine the effect of SNPs located on the same gene, using famSKAT package in R(V3.5.1). Bonferroni method was adopted to correct multiple tests in the second stage. RESULTS Twenty-two SNPs in SPRY gene family were included for analyses after the quality control process in the first stage. Based on the variants annotation, functional prediction and statistical analysis, rs1298215244 (SPRY1) and rs504122 (SPRY2) were included in the second verification stage. TDTs in the verification stage revealed that rs1298215244: T>C, rs504122: G>C and rs504122: G>T were associated with the risk of NSCL/P after Bonferroni corrections, where rs504122: G>T was a rare variation. Although the test for parent-of-origin effect of rs1298215244: T>C reached nominal significance level, no SNP showed significant association with NSCL/P through parent-of-origin effect after Bonferroni corrections. CONCLUSION This study found that SNPs (including both common and rare variants) among the SPRY gene family were associated with the risk of NSCL/P among Chinese populations. This study failed to detect parent-of-origin effects among the SPRY gene family.
Collapse
Affiliation(s)
- R Zhou
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - H C Zheng
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - W Y Li
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - M Y Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - S Y Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - N Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - J Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Z B Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - T Wu
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - H P Zhu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
16
|
Gjerdevik M, Jugessur A, Haaland ØA, Romanowska J, Lie RT, Cordell HJ, Gjessing HK. Haplin power analysis: a software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinformatics 2019; 20:165. [PMID: 30940094 PMCID: PMC6444579 DOI: 10.1186/s12859-019-2727-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 01/22/2023] Open
Abstract
Background Log-linear and multinomial modeling offer a flexible framework for genetic association analyses of offspring (child), parent-of-origin and maternal effects, based on genotype data from a variety of child-parent configurations. Although the calculation of statistical power or sample size is an important first step in the planning of any scientific study, there is currently a lack of software for genetic power calculations in family-based study designs. Here, we address this shortcoming through new implementations of power calculations in the R package Haplin, which is a flexible and robust software for genetic epidemiological analyses. Power calculations in Haplin can be performed analytically using the asymptotic variance-covariance structure of the parameter estimator, or else by a straightforward simulation approach. Haplin performs power calculations for child, parent-of-origin and maternal effects, as well as for gene-environment interactions. The power can be calculated for both single SNPs and haplotypes, either autosomal or X-linked. Moreover, Haplin enables power calculations for different child-parent configurations, including (but not limited to) case-parent triads, case-mother dyads, and case-parent triads in combination with unrelated control-parent triads. Results We compared the asymptotic power approximations to the power of analysis attained with Haplin. For external validation, the results were further compared to the power of analysis attained by the EMIM software using data simulations from Haplin. Consistency observed between Haplin and EMIM across various genetic scenarios confirms the computational accuracy of the inference methods used in both programs. The results also demonstrate that power calculations in Haplin are applicable to genetic association studies using either log-linear or multinomial modeling approaches. Conclusions Haplin provides a robust and reliable framework for power calculations in genetic association analyses for a wide range of genetic effects and etiologic scenarios, based on genotype data from a variety of child-parent configurations. Electronic supplementary material The online version of this article (10.1186/s12859-019-2727-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway. .,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
18
|
Zhang BH, Shi JY, Lin YS, Shi B, Jia ZL. VAX1 gene associated non-syndromic cleft lip with or without palate in Western Han Chinese. Arch Oral Biol 2018; 95:40-43. [DOI: 10.1016/j.archoralbio.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
|
19
|
K RP, T S, B S, T MK, A J. LRP2 gene variants and their haplotypes strongly influence the risk of developing neural tube defects in the fetus: a family-triad study from South India. Metab Brain Dis 2018; 33:1343-1352. [PMID: 29728895 DOI: 10.1007/s11011-018-0242-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
Neural tube defects (NTDs) are the leading cause of infant deaths worldwide. Lipoprotein related receptor 2 (LRP2) has been shown to play a crucial role in neural tube development in mouse models. However, the role of LRP2 gene in the development of human NTDs is not yet known. In view of this, family-based triad approach has been followed considering 924 subjects comprising 124 NTD case-parent trios and 184 control-parent trios diagnosed at Institute of Genetics and Hospital for Genetic Diseases, Hyderabad. Blood and tissue samples were genotyped for rs3755166 (-G759A) and rs2544390 (C835T) variants of LRP2 gene for their association with NTDs. Assessment of maternal-paternal genotype incompatibility risk for NTD revealed 3.77-folds risk with a combination of maternal GA and paternal GG genotypes (GAxGG = GA,p < 0.001), while CT genotypes of both the parents showed 4.19-folds risk for NTDs (CTxCT = CT,p = 0.009). Haplotype analysis revealed significant risk of maternal A-T (OR = 4.48,p < 0.001) and paternal G-T haplotypes (OR = 5.22,p < 0.001) for NTD development. Further, linkage analysis for parent-of-origin effects (POE) also revealed significant transmission of maternal 'A' allele (OR = 2.33,p = 0.028) and paternal 'T' allele (OR = 6.00,p = 0.016) to NTDs. Analysis of serum folate and active-B12 levels revealed significant association with LRP2 gene variants in the causation of NTDs. In conclusion, the present family-based triad study provides the first report on association of LRP2 gene variants with human NTDs.
Collapse
Affiliation(s)
- Rebekah Prasoona K
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana State, 500016, India
| | - Sunitha T
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana State, 500016, India
| | - Srinadh B
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana State, 500016, India
| | - Muni Kumari T
- Modern Government Maternity Hospital, Hyderabad, Telangana, 500012, India
| | - Jyothy A
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, Telangana State, 500016, India.
| |
Collapse
|
20
|
Ford JJ, Richards MC, Surkitt LD, Chan AYP, Slater SL, Taylor NF, Hahne AJ. Development of a Multivariate Prognostic Model for Pain and Activity Limitation in People With Low Back Disorders Receiving Physiotherapy. Arch Phys Med Rehabil 2018; 99:2504-2512.e12. [PMID: 29852152 DOI: 10.1016/j.apmr.2018.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/19/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To identify predictors for back pain, leg pain, and activity limitation in patients with early persistent low back disorders (LBDs). DESIGN Prospective inception cohort study. SETTING Primary care private physiotherapy clinics in Melbourne, Australia. PARTICIPANTS Individuals (N=300) aged 18-65 years with low back and/or referred leg pain of ≥6 weeks and ≤6 months duration. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Numeric rating scales for back pain and leg pain as well as the Oswestry Disability Scale. RESULTS Prognostic factors included sociodemographics, treatment related factors, subjective/physical examination, subgrouping factors, and standardized questionnaires. Univariate analysis followed by generalized estimating equations were used to develop a multivariate prognostic model for back pain, leg pain, and activity limitation. Fifty-eight prognostic factors progressed to the multivariate stage where 15 showed significant (P<.05) associations with at least 1 of the 3 outcomes. There were 5 indicators of positive outcome (2 types of LBD subgroups, paresthesia below waist, walking as an easing factor, and low transversus abdominis tone) and 10 indicators of negative outcome (both parents born overseas, deep leg symptoms, longer sick leave duration, high multifidus tone, clinically determined inflammation, higher back and leg pain severity, lower lifting capacity, lower work capacity, and higher pain drawing percentage coverage). The preliminary model identifying predictors of LBDs explained up to 37% of the variance in outcome. CONCLUSIONS This study evaluated a comprehensive range of prognostic factors reflective of both the biomedical and psychosocial domains of LBDs. The preliminary multivariate model requires further validation before being considered for clinical use.
Collapse
Affiliation(s)
- Jon J Ford
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia.
| | - Matt C Richards
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Luke D Surkitt
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Alexander Y P Chan
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Sarah L Slater
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Nicholas F Taylor
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| | - Andrew J Hahne
- Low Back Research Team, College of Science, Health & Engineering, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
21
|
Prasoona KR, Sunitha T, Srinadh B, Muni Kumari T, Jyothy A. Maternal association and influence of DHFR 19 bp deletion variant predisposes foetus to anencephaly susceptibility: a family-based triad study. Biomarkers 2018; 23:640-646. [PMID: 29708443 DOI: 10.1080/1354750x.2018.1471619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Previous studies have not used family-based methods to evaluate maternal-paternal genetic effects of the folate metabolizing enzyme, dihydro folate reductase (DHFR) essential during embryogenesis. Present study focuses on evaluating the association and influence of parental genetic effects of DHFR 19 bp deletion in the development of foetal neural tube defects (NTDs) using family-based triad approach. MATERIALS AND METHODS The study population (n = 924) including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana, India, was genotyped for DHFR 19 bp deletion. Statistical analysis was used by SPSS and parent-of-origin effects (POE). RESULTS Foetuses with deletion genotype (DD) were at risk of developing anencephaly (OR = 3.26, p = 0.020). Among parents, increased maternal risk of having an anencephaly foetus (OR = 2.66, p = 0.028) was observed in mothers with DD genotype. In addition, POE analysis also demonstrated higher risk of maternal transmission of the deletion allele to anencephaly foetus compared with paternal transmission (OR = 6.00, p = 0.016). Interestingly, maternal-paternal-offspring genotype incompatibility revealed maternal deletion genotype (DD) in association with paternal heterozygous deletion genotype (WD) significantly increased risk for NTDs (OR = 5.29, p = 0.013). CONCLUSIONS This study, using family-based case-parent and control-parent triad approach, is the first to report influence of maternal transmission of DHFR 19 bp deletion in the development of anencephaly in the foetus.
Collapse
Affiliation(s)
- K R Prasoona
- a Institute of Genetics and Hospital for Genetic Diseases, Osmania University , Hyderabad , India
| | - T Sunitha
- a Institute of Genetics and Hospital for Genetic Diseases, Osmania University , Hyderabad , India
| | - B Srinadh
- a Institute of Genetics and Hospital for Genetic Diseases, Osmania University , Hyderabad , India
| | - T Muni Kumari
- b Modern Government Maternity Hospital , Hyderabad , India
| | - A Jyothy
- a Institute of Genetics and Hospital for Genetic Diseases, Osmania University , Hyderabad , India
| |
Collapse
|
22
|
Skare Ø, Lie RT, Haaland ØA, Gjerdevik M, Romanowska J, Gjessing HK, Jugessur A. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2. Front Genet 2018. [PMID: 29520293 PMCID: PMC5827165 DOI: 10.3389/fgene.2018.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" (DMD, Xp21.2-p21.1), "Fibroblast growth factor 13" (FGF13, Xq26.3-q27.1) and "EGF-like domain multiple 6" (EGFL6, Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6, the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" (OFD1) and "Midline 1" (MID1)]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations with DMD, EGF16, and FGF13. Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.
Collapse
Affiliation(s)
- Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
23
|
Laurin C, Cuellar-Partida G, Hemani G, Smith GD, Yang J, Evans DM. Partitioning Phenotypic Variance Due to Parent-of-Origin Effects Using Genomic Relatedness Matrices. Behav Genet 2018; 48:67-79. [PMID: 29098496 PMCID: PMC5752821 DOI: 10.1007/s10519-017-9880-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/21/2017] [Indexed: 12/28/2022]
Abstract
We propose a new method, G-REMLadp, to estimate the phenotypic variance explained by parent-of-origin effects (POEs) across the genome. Our method uses restricted maximum likelihood analysis of genome-wide genetic relatedness matrices based on individuals' phased genotypes. Genome-wide SNP data from parent child duos or trios is required to obtain relatedness matrices indexing the parental origin of offspring alleles, as well as offspring phenotype data to partition the trait variation into variance components. To calibrate the power of G-REMLadp to detect non-null POEs when they are present, we provide an analytic approximation derived from Haseman-Elston regression. We also used simulated data to quantify the power and Type I Error rates of G-REMLadp, as well as the sensitivity of its variance component estimates to violations of underlying assumptions. We subsequently applied G-REMLadp to 36 phenotypes in a sample of individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC). We found that the method does not seem to be inherently biased in estimating variance due to POEs, and that substantial correlation between parental genotypes is necessary to generate biased estimates. Our empirical results, power calculations and simulations indicate that sample sizes over 10000 unrelated parent-offspring duos will be necessary to detect POEs explaining < 10% of the variance with moderate power. We conclude that POEs tagged by our genetic relationship matrices are unlikely to explain large proportions of the phenotypic variance (i.e. > 15%) for the 36 traits that we have examined.
Collapse
Affiliation(s)
- Charles Laurin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gabriel Cuellar-Partida
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - George Davey Smith
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Jian Yang
- Institute for Molecular Bioscience and Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Faculty of Medicine, Translational Research Institute, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia.
| |
Collapse
|
24
|
Gjerdevik M, Haaland ØA, Romanowska J, Lie RT, Jugessur A, Gjessing HK. Parent-of-origin-environment interactions in case-parent triads with or without independent controls. Ann Hum Genet 2017; 82:60-73. [PMID: 29094765 PMCID: PMC5813215 DOI: 10.1111/ahg.12224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 01/31/2023]
Abstract
With case–parent triad data, one can frequently deduce parent of origin of the child's alleles. This allows a parent‐of‐origin (PoO) effect to be estimated as the ratio of relative risks associated with the alleles inherited from the mother and the father, respectively. A possible cause of PoO effects is DNA methylation, leading to genomic imprinting. Because environmental exposures may influence methylation patterns, gene–environment interaction studies should be extended to allow for interactions between PoO effects and environmental exposures (i.e., PoOxE). One should thus search for loci where the environmental exposure modifies the PoO effect. We have developed an extensive framework to analyze PoOxE effects in genome‐wide association studies (GWAS), based on complete or incomplete case–parent triads with or without independent control triads. The interaction approach is based on analyzing triads in each exposure stratum using maximum likelihood estimation in a log‐linear model. Interactions are then tested applying a Wald‐based posttest of parameters across strata. Our framework includes a complete setup for power calculations. We have implemented the models in the R software package Haplin. To illustrate our PoOxE test, we applied the new methodology to top hits from our previous GWAS, assessing whether smoking during the periconceptional period modifies PoO effects on cleft palate only.
Collapse
Affiliation(s)
- Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetic Research and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computional Biology Unit, University of Bergen, Bergen, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Health Registries, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetic Research and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
25
|
Sacco C, Viroli C, Falchi M. A statistical test for detecting parent-of-origin effects when parental information is missing. Stat Appl Genet Mol Biol 2017; 16:275-289. [PMID: 28862993 DOI: 10.1515/sagmb-2017-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that leads to differential contributions of maternal and paternal alleles to offspring gene expression in a parent-of-origin manner. We propose a novel test for detecting the parent-of-origin effects (POEs) in genome wide genotype data from related individuals (twins) when the parental origin cannot be inferred. The proposed method exploits a finite mixture of linear mixed models: the key idea is that in the case of POEs the population can be clustered in two different groups in which the reference allele is inherited by a different parent. A further advantage of this approach is the possibility to obtain an estimation of parental effect when the parental information is missing. We will also show that the approach is flexible enough to be applicable to the general scenario of independent data. The performance of the proposed test is evaluated through a wide simulation study. The method is finally applied to known imprinted genes of the MuTHER twin study data.
Collapse
|
26
|
Marcotte EL, Pankratz N, Amatruda JF, Frazier AL, Krailo M, Davies S, Starr JR, Lau CC, Roesler M, Langer E, Hallstrom C, Hooten AJ, Poynter JN. Variants in BAK1, SPRY4, and GAB2 are associated with pediatric germ cell tumors: A report from the children's oncology group. Genes Chromosomes Cancer 2017; 56:548-558. [PMID: 28295819 DOI: 10.1002/gcc.22457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Germ cell tumors (GCT) are a rare form of childhood cancer that originate from the primordial germ cell. Recent genome-wide association studies (GWAS) have identified susceptibility alleles for adult testicular GCT (TGCT). We test whether these SNPs are associated with GCT in pediatric and adolescent populations. This case-parent triad study includes individuals with GCT diagnosed between ages 0 and 19. We evaluated 26 SNPs from GWAS of adult TGCT and estimated main effects for pediatric GCT within complete trios (N = 366) using the transmission disequilibrium test. We used Estimation of Maternal, Imprinting and interaction effects using Multinomial modelling to evaluate maternal effects in non-Hispanic white trios and dyads (N = 244). We accounted for multiple comparisons using a Bonferroni correction. A variant in SPRY4 (rs4624820) was associated with reduced risk of GCT (OR [95% CI]: 0.70 [0.57, 0.86]). A variant in BAK1 (rs210138) was positively associated with GCT (OR [95% CI]: 1.70 [1.32, 2.18]), with a strong estimated effect for testis tumors (OR [95% CI]: 3.31 [1.89, 5.79]). Finally, a SNP in GAB2 (rs948662) was associated with increased risk for GCT (OR [95% CI]: 1.56 [1.20, 2.03]). Nominal associations (P < 0.05) were noted for eight additional loci. A maternal effect was observed for KITLG SNP rs4474514 (OR [95% CI]: 1.66 [1.21, 2.28]) and a paternal parent-of-origin effect was observed for rs7221274 (P = 0.00007), near TEX14, RAD51C, and PPM1E. We observed associations between SNPs in SPRY4, BAK1, and GAB2 and GCTs. This analysis suggests there may be common genetic risk factors for GCT in all age groups.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Mark Krailo
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Stella Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Ching C Lau
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Michelle Roesler
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Erica Langer
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Caroline Hallstrom
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Anthony J Hooten
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jenny N Poynter
- Division of Epidemiology & Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
27
|
Connolly S, Anney R, Gallagher L, Heron EA. A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. Eur J Hum Genet 2017; 25:234-239. [PMID: 27876814 PMCID: PMC5255953 DOI: 10.1038/ejhg.2016.153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is known to be a heritable neurodevelopmental disorder affecting more than 1% of the population but in the majority of ASD cases, the genetic cause has not been identified. Parent-of-origin effects have been highlighted as an important mechanism in the pathology of neurodevelopmental disorders such as Prader-Willi and Angelman syndrome, with individuals with these syndromes often exhibiting ASD symptoms. Consequently, systematic investigation of these effects in ASD is clearly an important line of investigation in elucidating the underlying genetic mechanisms. Using estimation of maternal, imprinting and interaction effects using multinomial modelling (EMIM), we simultaneously investigated imprinting, maternal genetic effects and associations in the Autism Genome Project and Simons Simplex Consortium genome-wide association data sets. To avoid using the overly stringent genome-wide association study significance level, we used a Bayesian threshold that takes into account the sample size, allele frequency and any available prior knowledge. Between the two data sets, we identified a total of 18 imprinting effects and 68 maternal genetic effects that met this Bayesian threshold criteria, but none met the threshold in both data sets. We identified imprinting and maternal genetic effects for regions that have previously shown evidence for parent-of-origin effects in ASD. Together with these findings, we have identified maternal genetic effects not previously identified in ASD at a locus in SHANK3 on chromosome 22 and a locus in WBSCR17 on chromosome 7 (associated with Williams syndrome). Both genes have previously been associated with ASD.
Collapse
Affiliation(s)
- Siobhan Connolly
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Richard Anney
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Hadyn Ellis Building, Cathays, Cardiff, UK
| | - Louise Gallagher
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Centre for Health Sciences, Dublin, Ireland
| |
Collapse
|
28
|
Prasoona KR, Sunitha T, Srinadh B, Deepika MLN, Kumari TM, Jyothy A. Paternal transmission of MTHFD1 G1958A variant predisposes to neural tube defects in the offspring. Dev Med Child Neurol 2016; 58:625-31. [PMID: 26394717 DOI: 10.1111/dmcn.12929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 01/15/2023]
Abstract
AIM This study aimed to evaluate the role of methylenetetrahydrofolate dehydrogenase (MTHFD1) G1958A variant (rs2236225) as a 'maternal, paternal, or embryonic' genetic risk factor for neural tube defect (NTD) susceptibility. It also estimated differential associations based on type of NTD, offspring sex, maternal-paternal-offspring genotype incompatibility, and parent-of-origin effects (POE) using both case-control and family-based approach. In addition, genotype impact on serum folate levels was also assessed. METHOD The study population (n=900) consisted of 120 NTD case-parent triads (n=120×3=360) and 180 healthy control-parent triads (n=180×3=540) from South India. Umbilical cord tissues were collected from those with NTD and control newborn infants, and blood samples from case and control parents. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis used were SPSS, transmission disequilibrium test and POE. Serum folate levels were estimated using enzyme-linked immunosorbent assay. RESULTS In the case-control study, those with the MTHFD1 G1958A variant were associated with around twofold risk of anencephaly (p=0.01) and spina bifida (p<0.01). Among parents, fathers were associated with around twofold risk of having an offspring with anencephaly (p<0.01). Considering offspring sex, the A allele in single or double dose conferred around two- to fourfold risk of anencephaly (p=0.01), spina bifida (p<0.01), and encephalocele (p<0.05) in females only. Maternal AA genotype was not associated independently but conferred threefold risk when combined with paternal GA genotype (p=0.01). Transmission disequilibrium and POE were not observed in controls (p>0.05) but revealed excess total (odds ratio [OR]=2.21; p<0.01) and paternal transmission (OR=7.00; p<0.01) of the G1958A allele to those with spina bifida, which remained the same for female cases (total transmission OR=3.00, p=0.01; paternal transmission OR=12.00, p<0.01). Increased serum folate levels were observed in case fathers with GA and AA genotypes than control fathers (p<0.01). INTERPRETATION Our research provides the first evidence supporting a paternal, rather than a maternal, transmission bias of MTHFD1 G1958A variant for NTD susceptibility in the offspring.
Collapse
Affiliation(s)
- Kattekola R Prasoona
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Tella Sunitha
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Buragadda Srinadh
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | - Madireddy L N Deepika
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| | | | - Akka Jyothy
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
29
|
Abstract
UNLABELLED Parents have large genetic and environmental influences on offspring's cognition, behavior, and brain. These intergenerational effects are observed in mood disorders, with particularly robust association in depression between mothers and daughters. No studies have thus far examined the neural bases of these intergenerational effects in humans. Corticolimbic circuitry is known to be highly relevant in a wide range of processes, including mood regulation and depression. These findings suggest that corticolimbic circuitry may also show matrilineal transmission patterns. Therefore, we examined human parent-offspring association in this neurocircuitry and investigated the degree of association in gray matter volume between parent and offspring. We used voxelwise correlation analysis in a total of 35 healthy families, consisting of parents and their biological offspring. We found positive associations of regional gray matter volume in the corticolimbic circuit, including the amygdala, hippocampus, anterior cingulate cortex, and ventromedial prefrontal cortex between biological mothers and daughters. This association was significantly greater than mother-son, father-daughter, and father-son associations. The current study suggests that the corticolimbic circuitry, which has been implicated in mood regulation, shows a matrilineal-specific transmission patterns. Our preliminary findings are consistent with what has been found behaviorally in depression and may have clinical implications for disorders known to have dysfunction in mood regulation such as depression. Studies such as ours will likely bridge animal work examining gene expression in the brains and clinical symptom-based observations and provide promising ways to investigate intergenerational transmission patterns in the human brain. SIGNIFICANCE STATEMENT Parents have large genetic and environmental influences on the offspring, known as intergenerational effects. Specifically, depression has been shown to exhibit strong matrilineal transmission patterns. Although intergenerational transmission patterns in the human brain are virtually unknown, this would suggest that the corticolimbic circuitry relevant to a wide range of processes including mood regulation may also show matrilineal transmission patterns. Therefore, we examined the degree of association in corticolimbic gray matter volume (GMV) between parent and offspring in 35 healthy families. We found that positive correlations in maternal corticolimbic GMV with daughters were significantly greater than other parent-offspring dyads. Our findings provide new insight into the potential neuroanatomical basis of circuit-based female-specific intergenerational transmission patterns in depression.
Collapse
|
30
|
Hu Y, Rosa GJM, Gianola D. Incorporating parent-of-origin effects in whole-genome prediction of complex traits. Genet Sel Evol 2016; 48:34. [PMID: 27091137 PMCID: PMC4834899 DOI: 10.1186/s12711-016-0213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Background Parent-of-origin effects are due to differential contributions of paternal and maternal lineages to offspring phenotypes. Such effects include, for example, maternal effects in several species. However, epigenetically induced parent-of-origin effects have recently attracted attention due to their potential impact on variation of complex traits. Given that prediction of genetic merit or phenotypic performance is of interest in the study of complex traits, it is relevant to consider parent-of-origin effects in such predictions. We built a whole-genome prediction model that incorporates parent-of-origin effects by considering parental allele substitution effects of single nucleotide polymorphisms and gametic relationships derived from a pedigree (the POE model). We used this model to predict body mass index in a mouse population, a trait that is presumably affected by parent-of-origin effects, and also compared the prediction performance to that of a standard additive model that ignores parent-of-origin effects (the ADD model). We also used simulated data to assess the predictive performance of the POE model under various circumstances, in which parent-of-origin effects were generated by mimicking an imprinting mechanism. Results The POE model did not predict better than the ADD model in the real data analysis, probably due to overfitting, since the POE model had far more parameters than the ADD model. However, when applied to simulated data, the POE model outperformed the ADD model when the contribution of parent-of-origin effects to phenotypic variation increased. The superiority of the POE model over the ADD model was up to 8 % on predictive correlation and 5 % on predictive mean squared error. Conclusions The simulation and the negative result obtained in the real data analysis indicated that, in order to gain benefit from the POE model in terms of prediction, a sizable contribution of parent-of-origin effects to variation is needed and such variation must be captured by the genetic markers fitted. Recent studies, however, suggest that most parent-of-origin effects stem from epigenetic regulation but not from a change in DNA sequence. Therefore, integrating epigenetic information with genetic markers may help to account for parent-of-origin effects in whole-genome prediction.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.,Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| |
Collapse
|
31
|
Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, Haroutunian V, Sharp AJ. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med 2016; 8:5. [PMID: 26803900 PMCID: PMC4719699 DOI: 10.1186/s13073-015-0258-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alzheimer's disease affects ~13% of people in the United States 65 years and older, making it the most common neurodegenerative disorder. Recent work has identified roles for environmental, genetic, and epigenetic factors in Alzheimer's disease risk. METHODS We performed a genome-wide screen of DNA methylation using the Illumina Infinium HumanMethylation450 platform on bulk tissue samples from the superior temporal gyrus of patients with Alzheimer's disease and non-demented controls. We paired a sliding window approach with multivariate linear regression to characterize Alzheimer's disease-associated differentially methylated regions (DMRs). RESULTS We identified 479 DMRs exhibiting a strong bias for hypermethylated changes, a subset of which were independently associated with aging. DMR intervals overlapped 475 RefSeq genes enriched for gene ontology categories with relevant roles in neuron function and development, as well as cellular metabolism, and included genes reported in Alzheimer's disease genome-wide and epigenome-wide association studies. DMRs were enriched for brain-specific histone signatures and for binding motifs of transcription factors with roles in the brain and Alzheimer's disease pathology. Notably, hypermethylated DMRs preferentially overlapped poised promoter regions, marked by H3K27me3 and H3K4me3, previously shown to co-localize with aging-associated hypermethylation. Finally, the integration of DMR-associated single nucleotide polymorphisms with Alzheimer's disease genome-wide association study risk loci and brain expression quantitative trait loci highlights multiple potential DMRs of interest for further functional analysis. CONCLUSION We have characterized changes in DNA methylation in the superior temporal gyrus of patients with Alzheimer's disease, highlighting novel loci that facilitate better characterization of pathways and mechanisms underlying Alzheimer's disease pathogenesis, and improve our understanding of epigenetic signatures that may contribute to the development of disease.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel J Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nidha Azam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel L Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Escott-Price V, Kirov G, Rees E, Isles AR, Owen MJ, O’Donovan MC. No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci. PLoS One 2015; 10:e0144172. [PMID: 26633303 PMCID: PMC4669201 DOI: 10.1371/journal.pone.0144172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world's largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles.
Collapse
Affiliation(s)
- Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- MRC Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
33
|
Zayats T, Johansson S, Haavik J. Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes? Behav Brain Funct 2015; 11:33. [PMID: 26475699 PMCID: PMC4609130 DOI: 10.1186/s12993-015-0078-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association (GWA) studies have shown that many different genetic variants cumulatively contribute to the risk of psychiatric disorders. It has also been demonstrated that various parent-of-origin effects (POE) may differentially influence the risk of these disorders. Together, these observations have provided important new possibilities to uncover the genetic underpinnings of such complex phenotypes. As POE so far have received little attention in neuropsychiatric disorders, there is still much progress to be made. Here, we mainly focus on the new and emerging role of POE in attention-deficit hyperactivity disorder (ADHD). We review the current evidence that POE play an imperative role in vulnerability to ADHD and related disorders. We also discuss how POE can be assessed using statistical genetics tools, expanding the resources of modern psychiatric genetics. We propose that better comprehension and inspection of POE may offer new insight into the molecular basis of ADHD and related phenotypes, as well as the potential for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Tetyana Zayats
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Stefan Johansson
- Department of Clinical Science, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Haavik
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
34
|
Howey R, Mamasoula C, Töpf A, Nudel R, Goodship J, Keavney B, Cordell H. Increased Power for Detection of Parent-of-Origin Effects via the Use of Haplotype Estimation. Am J Hum Genet 2015; 97:419-34. [PMID: 26320892 PMCID: PMC4564992 DOI: 10.1016/j.ajhg.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
Parent-of-origin (or imprinting) effects relate to the situation in which traits are influenced by the allele inherited from only one parent and the allele from the other parent has little or no effect. Given SNP genotype data from case-parent trios, the parent of origin of each allele in the offspring can often be deduced unambiguously; however, this is not true when all three individuals are heterozygous. Most existing methods for investigating parent-of-origin effects operate on a SNP-by-SNP basis and either perform some sort of averaging over the possible parental transmissions or else discard ambiguous trios. If the correct parent of origin at a SNP could be determined, this would provide extra information and increase the power for detecting the effects of imprinting. We propose making use of the surrounding SNP information, via haplotype estimation, to improve estimation of parent of origin at a test SNP for case-parent trios, case-mother duos, and case-father duos. This extra information is then used in a multinomial modeling approach for estimating parent-of-origin effects at the test SNP. We show through computer simulations that our approach has increased power over previous approaches, particularly when the data consist only of duos. We apply our method to two real datasets and find a decrease in significance of p values in genomic regions previously thought to possibly harbor imprinting effects, thus weakening the evidence that such effects actually exist in these regions, although some regions retain evidence of significant effects.
Collapse
|
35
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
36
|
Milne E, Greenop KR, Scott RJ, Haber M, Norris MD, Attia J, Jamieson SE, Miller M, Bower C, Bailey HD, Dawson S, McCowage GB, de Klerk NH, van Bockxmeer FM, Armstrong BK. Folate pathway gene polymorphisms, maternal folic acid use, and risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 2015; 24:48-56. [PMID: 25395472 DOI: 10.1158/1055-9965.epi-14-0680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several studies suggest that maternal folic acid supplementation before or during pregnancy protects against childhood acute lymphoblastic leukemia (ALL). We investigated associations between ALL risk and folate pathway gene polymorphisms, and their modification by maternal folic acid supplements, in a population-based case-control study (2003-2007). METHODS All Australian pediatric oncology centers provided cases; controls were recruited by national random digit dialing. Data from 392 cases and 535 controls were included. Seven folate pathway gene polymorphisms (MTHFR 677C>T, MTHFR 1298A>C, MTRR 66A>G, MTR 2756 A>G, MTR 5049 C>A, CBS 844 Ins68, and CBS 2199 T>C) were genotyped in children and their parents. Information on prepregnancy maternal folic acid supplement use was collected. ORs were estimated with unconditional logistic regression adjusted for frequency-matched variables and potential confounders. Case-parent trios were also analyzed. RESULTS There was some evidence of a reduced risk of ALL among children who had, or whose father had, the MTRR 66GG genotype: ORs 0.60 [95% confidence interval (CI) 0.39-0.91] and 0.64 (95% CI, 0.40-1.03), respectively. The ORs for paternal MTHFR 677CT and TT genotypes were 1.41 (95% CI, 1.02-1.93) and 1.81 (95% CI, 1.06-3.07). ORs varied little by maternal folic acid supplementation. CONCLUSIONS Some folate pathway gene polymorphisms in the child or a parent may influence ALL risk. While biologically plausible, underlying mechanisms for these associations need further elucidation. IMPACT Folate pathway polymorphisms may be related to risk of childhood ALL, but larger studies are needed for conclusive results.
Collapse
Affiliation(s)
- Elizabeth Milne
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| | - Kathryn R Greenop
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, John Hunter Hospital, New Lambton, New South Wales, Australia. School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia. Hunter Area Pathology Service, HNEHealth, Newcastle, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - John Attia
- Hunter Medical Research Institute, John Hunter Hospital, New Lambton, New South Wales, Australia. School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Margaret Miller
- School of Exercise and Health Sciences, Edith Cowan University, Mount Lawley, Western Australia, Australia
| | - Carol Bower
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Helen D Bailey
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia. Section of Environment and Radiation, International Agency for Research on Cancer, Lyon, France
| | - Somer Dawson
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Nicholas H de Klerk
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Frank M van Bockxmeer
- Department of Clinical Biochemistry, Royal Perth Hospital and the School of Surgery, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce K Armstrong
- Sax Institute, Haymarket, New South Wales, Australia. Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Novel approach identifies SNPs in SLC2A10 and KCNK9 with evidence for parent-of-origin effect on body mass index. PLoS Genet 2014; 10:e1004508. [PMID: 25078964 PMCID: PMC4117451 DOI: 10.1371/journal.pgen.1004508] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
The phenotypic effect of some single nucleotide polymorphisms (SNPs) depends on their parental origin. We present a novel approach to detect parent-of-origin effects (POEs) in genome-wide genotype data of unrelated individuals. The method exploits increased phenotypic variance in the heterozygous genotype group relative to the homozygous groups. We applied the method to >56,000 unrelated individuals to search for POEs influencing body mass index (BMI). Six lead SNPs were carried forward for replication in five family-based studies (of ∼4,000 trios). Two SNPs replicated: the paternal rs2471083-C allele (located near the imprinted KCNK9 gene) and the paternal rs3091869-T allele (located near the SLC2A10 gene) increased BMI equally (beta = 0.11 (SD), P<0.0027) compared to the respective maternal alleles. Real-time PCR experiments of lymphoblastoid cell lines from the CEPH families showed that expression of both genes was dependent on parental origin of the SNPs alleles (P<0.01). Our scheme opens new opportunities to exploit GWAS data of unrelated individuals to identify POEs and demonstrates that they play an important role in adult obesity.
Collapse
|
38
|
Connolly S, Heron EA. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide association data with binary disease traits. Brief Bioinform 2014; 16:429-48. [PMID: 24903222 DOI: 10.1093/bib/bbu017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
The detection of parent-of-origin effects aims to identify whether the functionality of alleles, and in turn associated phenotypic traits, depends on the parental origin of the alleles. Different parent-of-origin effects have been identified through a variety of mechanisms and a number of statistical methodologies for their detection have been proposed, in particular for genome-wide association studies (GWAS). GWAS have had limited success in explaining the heritability of many complex disorders and traits, but successful identification of parent-of-origin effects using trio (mother, father and offspring) GWAS may help shed light on this missing heritability. However, it is important to choose the most appropriate parent-of-origin test or methodology, given knowledge of the phenotype, amount of available data and the type of parent-of-origin effect(s) being considered. This review brings together the parent-of-origin detection methodologies available, comparing them in terms of power and type I error for a number of different simulated data scenarios, and finally offering guidance as to the most appropriate choice for the different scenarios.
Collapse
|
39
|
Garg P, Ludwig KU, Böhmer AC, Rubini M, Steegers-Theunissen R, Mossey PA, Mangold E, Sharp AJ. Genome-wide analysis of parent-of-origin effects in non-syndromic orofacial clefts. Eur J Hum Genet 2014; 22:822-30. [PMID: 24169523 PMCID: PMC4023210 DOI: 10.1038/ejhg.2013.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 02/04/2023] Open
Abstract
Parent-of-origin (PofO) effects, such as imprinting are a phenomenon where the effect of variants depends on parental origin. Conventional association studies assume that phenotypic effects are independent of parental origin, and are thus severely underpowered to detect such non-Mendelian effects. Risk of orofacial clefts is influenced by genetic and environmental effects, the latter including maternal-specific factors such as perinatal smoking and folate intake. To identify variants showing PofO effects in orofacial clefts we have used a modification of the family-based transmission disequilibrium test to screen for biased transmission from mothers and fathers to affected offspring, biased ratios of maternal versus paternal transmission, and biased frequencies of reciprocal classes of heterozygotes among offspring. We applied these methods to analyze published genome-wide single-nucleotide polymorphism (SNP) data from ∼2500 trios mainly of European and Asian ethnicity with non-syndromic orofacial clefts, followed by analysis of 64 candidate SNPs in a replication cohort of ∼1200 trios of European origin. In our combined analysis, we did not identify any SNPs achieving conventional genome-wide significance (P<5 × 10(-8)). However, we observed an overall excess of loci showing maternal versus paternal transmission bias (P=0.013), and identified two loci that showed nominally significant effects in the same direction in both the discovery and replication cohorts, raising the potential for PofO effects. These include a possible maternal-specific transmission bias associated with rs12543318 at 8q21.3, a locus identified in a recent meta-analysis of non-syndromic cleft (maternal-specific P=1.5 × 10(-7), paternal-specific P=0.17). Overall, we conclude from this analysis that there are subtle hints of PofO effects in orofacial clefting.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| | - Kerstin U Ludwig
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Anne C Böhmer
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Michele Rubini
- Department of Experimental and Diagnostic Medicine, Medical Genetics Unit, University of Ferrara, Ferrara, Italy
| | - Regine Steegers-Theunissen
- Department of Obstetrics and Gynaecology, and Clinical Genetics, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Peter A Mossey
- Orthodontic Unit, Dental Hospital and School, University of Dundee, Dundee, UK
| | | | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| |
Collapse
|
40
|
Boddicker NJ, Garrick DJ, Rowland RRR, Lunney JK, Reecy JM, Dekkers JCM. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim Genet 2013; 45:48-58. [PMID: 23914972 DOI: 10.1111/age.12079] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 12/01/2022]
Abstract
Infectious diseases are costly to the swine industry; porcine reproductive and respiratory syndrome (PRRS) is the most devastating. In earlier work, a quantitative trait locus associated with resistance/susceptibility to PRRS virus was identified on Sus scrofa chromosome 4 using approximately 560 experimentally infected animals from a commercial cross. The favorable genotype was associated with decreased virus load and increased weight gain (WG). The objective here was to validate and further characterize the association of the chromosome 4 region with PRRS resistance using data from two unrelated commercial crossbred populations. The validation populations consisted of two trials each of approximately 200 pigs sourced from different breeding companies that were infected with PRRS virus and followed for 42 days post-infection. Across all five trials, heritability estimates were 0.39 and 0.34 for viral load (VL; area under the curve of log-transformed viremia from 0 to 21 days post-infection) and WG to 42 days post-infection respectively. Effect estimates of SNP WUR10000125 in the chromosome 4 region were in the same directions and of similar magnitudes in the two new trials as had been observed in the first three trials. Across all five trials, the 1-Mb region on chromosome 4 explained 15 percent of genetic variance for VL and 11 percent for WG. The effect of the favorable minor allele at SNP WUR10000125 was dominant. Ordered genotypes for SNP WUR10000125 showed that the effect was present irrespective of whether the favorable allele was paternally or maternally inherited. These results demonstrate that selection for host response to PRRS virus infection could reduce the economic impact of PRRS.
Collapse
Affiliation(s)
- N J Boddicker
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | |
Collapse
|
41
|
Barnes DR, Barrowdale D, Beesley J, Chen X, James PA, Hopper JL, Goldgar D, Chenevix-Trench G, Antoniou AC, Mitchell G. Estimating single nucleotide polymorphism associations using pedigree data: applications to breast cancer. Br J Cancer 2013; 108:2610-22. [PMID: 23756864 PMCID: PMC3694253 DOI: 10.1038/bjc.2013.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pedigrees with multiple genotyped family members have been underutilised in breast cancer (BC) genetic-association studies. We developed a pedigree-based analytical framework to characterise single-nucleotide polymorphism (SNP) associations with BC risk using data from 736 BC families ascertained through multiple affected individuals. On average, eight family members had been genotyped for 24 SNPs previously associated with BC. METHODS Breast cancer incidence was modelled on the basis of SNP effects and residual polygenic effects. Relative risk (RR) estimates were obtained by maximising the retrospective likelihood (RL) of observing the family genotypes conditional on all disease phenotypes. Models were extended to assess parent-of-origin effects (POEs). RESULTS Thirteen SNPs were significantly associated with BC under the pedigree RL approach. This approach yielded estimates consistent with those from large population-based studies. Logistic regression models ignoring pedigree structure generally gave larger RRs and association P-values. SNP rs3817198 in LSP1, previously shown to exhibit POE, yielded maternal and paternal RR estimates that were similar to those previously reported (paternal RR=1.12 (95% confidence interval (CI): 0.99-1.27), P=0.081, one-sided P=0.04; maternal RR=0.94 (95% CI: 0.84-1.06), P=0.33). No other SNP exhibited POE. CONCLUSION Our pedigree-based methods provide a valuable and efficient tool for characterising genetic associations with BC risk or other diseases and can complement population-based studies.
Collapse
Affiliation(s)
- D R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - D Barrowdale
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - J Beesley
- Department of Genetics, Institute of Medical Research, Brisbane, Queensland, Australia
| | - X Chen
- Department of Genetics, Institute of Medical Research, Brisbane, Queensland, Australia
| | - kConFab Investigators
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Genetics, Institute of Medical Research, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Sydney, New South Wales, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Australian Ovarian Cancer Study Group
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Genetics, Institute of Medical Research, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Sydney, New South Wales, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- Familial Cancer Centre, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - P A James
- Familial Cancer Centre, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - J L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria, Australia
| | - D Goldgar
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - G Chenevix-Trench
- Department of Genetics, Institute of Medical Research, Brisbane, Queensland, Australia
| | - A C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - G Mitchell
- Familial Cancer Centre, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
42
|
Andreassen KE, Kristiansen W, Karlsson R, Aschim EL, Dahl O, Fosså SD, Adami HO, Wiklund F, Haugen TB, Grotmol T. Genetic variation in AKT1, PTEN and the 8q24 locus, and the risk of testicular germ cell tumor. Hum Reprod 2013; 28:1995-2002. [PMID: 23639623 DOI: 10.1093/humrep/det127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is there an association between testicular germ cell tumor (TGCT) and genetic polymorphisms in AKT1, PTEN and the 8q24 locus? SUMMARY ANSWER Our findings suggest that genetic variation in PTEN may influence the risk of TGCT. WHAT IS KNOWN ALREADY There is strong evidence that genetic variation influences the risk of TGCT. The oncogene, AKT1, the tumor suppressor gene, PTEN and the chromosome 8q24 locus play important roles in cancer development in general. STUDY DESIGN, SIZE, DURATION We have conducted a population-based Norwegian-Swedish case-parent study, based on cases diagnosed in 1990-2008, including 831 triads (TGCT case and both parents), 474 dyads (TGCT case and one parent) and 712 singletons (only the TGCT case). In addition we expanded the study to include 3922 unrelated male controls from the TwinGene project. PARTICIPANTS/MATERIALS, SETTING, METHODS We genotyped 26 single nucleotide polymorphisms (SNPs) in AKT1, PTEN and the 8q24 locus. First, triads and dyads were included in a likelihood-based association test. To increase the statistical power, case singletons and controls from the TwinGene project were included in a single test for association. We examined if the allelic effect on TGCT risk differed by histological subgroup, country of origin or parent of origin. Odds ratios (ORs) and 95% confidence intervals (CI) were calculated with Bonferroni correction (P bonf) for multiple testing. MAIN RESULTS AND THE ROLE OF CHANCE In the case-parent analyses, none of the 26 SNPs were significantly associated with TGCT. Of the 23 SNPs investigated in the combined study, one SNP in PTEN (rs11202586) remained associated with TGCT risk after adjusting for multiple testing (OR = 1.16, 95% CI = 1.06-1.28, P bonf = 0.040). We found no difference in risk according to histological subgroup, parent of origin or between countries. LIMITATIONS, REASONS FOR CAUTION Our study is strengthened by the population-based design and large sample size, which gives high power to detect risk alleles. The reported association was not highly significant, and although it was based on an a priori hypothesis of this tumor suppressor gene being implicated in the etiology of TGCT, replication studies, as well as functional studies of this polymorphism, are warranted. WIDER IMPLICATIONS OF THE FINDINGS We report, to our knowledge, a novel association between TGCT and a marker in the tumor suppressor gene PTEN. Previous studies have linked PTEN to TGCT etiology, and there is also a link between PTEN and KITLG, which contains TGCT susceptibility loci revealed through recent genome-wide studies.
Collapse
Affiliation(s)
- K E Andreassen
- Department of Oncology, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo NO-0434, Norway. kristine.engen.andreassen@ous
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Karlsson R, Andreassen KE, Kristiansen W, Aschim EL, Bremnes RM, Dahl O, Fosså SD, Klepp O, Langberg CW, Solberg A, Tretli S, Magnusson PK, Adami HO, Haugen TB, Grotmol T, Wiklund F. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum Mol Genet 2013; 22:3373-80. [DOI: 10.1093/hmg/ddt188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Chiu CL, Morgan CT, Lupton SJ, Lind JM. Parent of origin influences the cardiac expression of vascular endothelial growth factor (Vegfa). BMC MEDICAL GENETICS 2013; 14:43. [PMID: 23560444 PMCID: PMC3626619 DOI: 10.1186/1471-2350-14-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
Background Vascular endothelial growth factor A (VEGFA) is a major regulator of both physiological and pathological angiogenesis. Associations between polymorphisms in VEGFA and complex disease have been inconsistent. The parent from whom the allele was inherited may account for these inconsistencies. This study examined the parent of origin effect on the expression of murine Vegfa. Methods Two homozygous, inbred mouse strains A/J (AJ) and 129x1/SvJ (129) were crossed to produce reciprocal AJ129 and 129AJ offspring, respectively. RNA was extracted from cardiac tissue of 6 week old male (n = 8) and female (n = 8) parental, and male and female F1 offspring mice (AJ129 n = 8 and 129AJ n = 8). Vegfa and Hif1a expression levels were measured by qPCR and compared between the F1 offspring from the reciprocal crosses. Results We found significant differences in the expression of Vegfa in F1 offspring (AJ129 and 129AJ mice) of the reciprocal crosses between AJ and 129 mice. Offspring of male AJ mice had significantly higher expression of Vegfa than offspring of male 129 mice (p = 0.006). This difference in expression was not the result of preferential allele expression (allelic imbalance). Expression of Hif1a, a transcriptional regulator of Vegfa expression, was also higher in F1 offspring of an AJ father (p = 0.004). Conclusion Differences in Vegfa and Hif1a gene expression are likely the result of an upstream angiogenic regulator gene that is influenced by the parent of origin. These results highlight the importance of including inheritance information, such as parent of origin, when undertaking allelic association studies.
Collapse
Affiliation(s)
- Christine L Chiu
- University of Western Sydney, School of Medicine, Penrith, NSW 2751, Locked Bag 1797, Australia.
| | | | | | | |
Collapse
|
45
|
Suazo J, Pardo R, Castillo S, Martin LM, Rojas F, Santos JL, Rotter K, Solar M, Tapia E. Family-based association study between SLC2A1, HK1, and LEPR polymorphisms with myelomeningocele in Chile. Reprod Sci 2013; 20:1207-14. [PMID: 23427181 DOI: 10.1177/1933719113477489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Obese/diabetic mothers present a higher risk to develop offspring with myelomeningocele (MM), evidence supporting the role of energy homeostasis-related genes in neural tube defects. Using polymerase chain reaction-restriction fragment length polymorphism, we have genotyped SLC2A1, HK1, and LEPR single-nucleotide polymorphisms in 105 Chilean patients with MM and their parents in order to evaluate allele-phenotype associations by means of allele/haplotype transmission test (TDT) and parent-of-origin effects. We detected an undertransmission for the SLC2A1 haplotype T-A (rs710218-rs2229682; P = .040), which was not significant when only lower MM (90% of the cases) was analyzed. In addition, the leptin receptor rs1137100 G allele showed a significant increase in the risk of MM for maternal-derived alleles in the whole sample (2.43-fold; P = .038) and in lower MM (3.20-fold; P = .014). Our results support the role of genes involved in energy homeostasis in the risk of developing MM, thus sustaining the hypothesis of diverse pathways and genetic mechanisms acting in the expression of such birth defect.
Collapse
Affiliation(s)
- José Suazo
- 1Departmento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Limited evidence for parent-of-origin effects in inflammatory bowel disease associated loci. PLoS One 2012; 7:e45287. [PMID: 23028907 PMCID: PMC3459955 DOI: 10.1371/journal.pone.0045287] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/14/2012] [Indexed: 12/23/2022] Open
Abstract
Background Genome-wide association studies of two main forms of inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC), have identified 99 susceptibility loci, but these explain only ∼23% of the genetic risk. Part of the ‘hidden heritability’ could be in transmissible genetic effects in which mRNA expression in the offspring depends on the parental origin of the allele (genomic imprinting), since children whose mothers have CD are more often affected than children with affected fathers. We analyzed parent-of-origin (POO) effects in Dutch and Indian cohorts of IBD patients. Methods We selected 28 genetic loci associated with both CD and UC, and tested them for POO effects in 181 Dutch IBD case-parent trios. Three susceptibility variants in NOD2 were tested in 111 CD trios and a significant finding was re-evaluated in 598 German trios. The UC-associated gene, BTNL2, reportedly imprinted, was tested in 70 Dutch UC trios. Finally, we used 62 independent Indian UC trios to test POO effects of five established Indian UC risk loci. Results We identified POO effects for NOD2 (L1007fs; OR = 21.0, P-value = 0.013) for CD; these results could not be replicated in an independent cohort (OR = 0.97, P-value = 0.95). A POO effect in IBD was observed for IL12B (OR = 3.2, P-value = 0.019) and PRDM1 (OR = 5.6, P-value = 0.04). In the Indian trios the IL10 locus showed a POO effect (OR = 0.2, P-value = 0.03). Conclusions Little is known about the effect of genomic imprinting in complex diseases such as IBD. We present limited evidence for POO effects for the tested IBD loci. POO effects explain part of the hidden heritability for complex genetic diseases but need to be investigated further.
Collapse
|
47
|
Abstract
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.
Collapse
Affiliation(s)
- Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA.
| |
Collapse
|
48
|
The effect of parental allergy on childhood allergic diseases depends on the sex of the child. J Allergy Clin Immunol 2012; 130:427-34.e6. [PMID: 22607991 DOI: 10.1016/j.jaci.2012.03.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/10/2012] [Accepted: 03/21/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND The parent-of-origin effect is important in understanding the genetic basis of childhood allergic diseases and improving our ability to identify high-risk children. OBJECTIVE We sought to investigate the parent-of-origin effect in childhood allergic diseases. METHODS The Isle of Wight Birth Cohort (n= 1456) has been examined at 1, 2, 4, 10, and 18 years of age. Information on the prevalence of asthma, eczema, rhinitis, and environmental factors was obtained by using validated questionnaires. Skin prick tests were carried out at ages 4, 10, and 18 years, and total IgE measurement was carried out at 10 and 18 years. Parental history of allergic disease was assessed soon after the birth of the child, when maternal IgE levels were also measured. Prevalence ratios (PRs) and their 95% CIs were estimated, applying log-linear models adjusted for confounding variables. RESULTS When stratified for sex of the child, maternal asthma was associated with asthma in girls (PR, 1.91; 95% CI, 1.34-2.72; P= .0003) but not in boys (PR, 1.29; 95% CI, 0.85-1.96; P= .23), whereas paternal asthma was associated with asthma in boys (PR, 1.99; 95% CI, 1.42-2.79; P< .0001) but not in girls (PR, 1.03; 95% CI, 0.59-1.80; P= .92). Maternal eczema increased the risk of eczema in girls (PR, 1.92; 95% CI, 1.37-2.68; P= .0001) only, whereas paternal eczema did the same for boys (PR, 2.07; 95% CI, 1.32-3.25; P = .002). Similar trends were observed when the effect of maternal and paternal allergic disease was assessed for childhood atopy and when maternal total IgE levels were related to total IgE levels in children at ages 10 and 18 years. CONCLUSIONS The current study indicates a sex-dependent association of parental allergic conditions with childhood allergies, with maternal allergy increasing the risk in girls and paternal allergy increasing the risk in boys. This has implications for childhood allergy prediction and prevention.
Collapse
|