1
|
Narita A, Asano H, Kudo H, Miyata S, Shutoh F, Miyoshi G. A novel quadrant spatial assay reveals environmental preference in mouse spontaneous and parental behaviors. Neurosci Res 2024:S0168-0102(24)00102-0. [PMID: 39134225 DOI: 10.1016/j.neures.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Environmental factors have well-documented impacts on brain development and mental health. Therefore, it is crucial to employ a reliable assay system to assess the spatial preference of model animals. In this study, we introduced an unbiased quadrant chamber assay system and discovered that parental pup-gathering behavior takes place in a very efficient manner. Furthermore, we found that test mice exhibited preferences for specific environments in both spontaneous and parental pup-gathering behavior contexts. Notably, the spatial preferences of autism spectrum disorder model animals were initially suppressed but later equalized during the spontaneous behavior assay, accompanied by increased time spent in the preferred chamber. In conclusion, our novel quadrant chamber assay system provides an ideal platform for investigating the spatial preference of mice, offering potential applications in studying environmental impacts and exploring neurodevelopmental and psychiatric disorder models.
Collapse
Affiliation(s)
- Aito Narita
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hirofumi Asano
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Hayato Kudo
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Shigeo Miyata
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan
| | - Fumihiro Shutoh
- Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi city, Gunma 371-0816, Japan
| | - Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi city, Gunma 371-8511, Japan.
| |
Collapse
|
2
|
Miyoshi G, Ueta Y, Yagasaki Y, Kishi Y, Fishell G, Machold RP, Miyata M. Developmental trajectories of GABAergic cortical interneurons are sequentially modulated by dynamic FoxG1 expression levels. Proc Natl Acad Sci U S A 2024; 121:e2317783121. [PMID: 38588430 PMCID: PMC11032493 DOI: 10.1073/pnas.2317783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.
Collapse
Affiliation(s)
- Goichi Miyoshi
- Department of Developmental Genetics and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi city, Gunma371-8511, Japan
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Yoshifumi Ueta
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yuki Yagasaki
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| | - Yusuke Kishi
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, University of Tokyo, Bunkyo, Tokyo113-0032, Japan
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo, Tokyo113-0033, Japan
| | - Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Stanley Center at the Broad Institute, Cambridge, MA02142
| | - Robert P. Machold
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY10016
| | - Mariko Miyata
- Department of Neurophysiology, Tokyo Women’s Medical University, Shinjuku, Tokyo162-8666, Japan
| |
Collapse
|
3
|
Kharrat M, Triki CC, Alila-Fersi O, Jallouli O, Khemakham B, Mallouli S, Maalej M, Ammar M, Frikha F, Kamoun F, Fakhfakh F. Combined in Silico Prediction Methods, Molecular Dynamic Simulation, and Molecular Docking of FOXG1 Missense Mutations: Effect on FoxG1 Structure and Its Interactions with DNA and Bmi-1 Protein. J Mol Neurosci 2022; 72:1695-1705. [PMID: 35654936 DOI: 10.1007/s12031-022-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
FoxG1 encoded by FOXG1 gene is a transcriptional factor interacting with the DNA of targeted genes as well as with several proteins to regulate the forebrain development. Mutations in the FOXG1 gene have been shown to cause a wide spectrum of brain disorders, including the congenital variant of Rett syndrome. In this study, the direct sequencing of FOXG1 gene revealed a novel c.645C > A (F215L) variant in the patient P1 and a de novo known one c.755G > A (G252D) in the patient P2. To investigate the putative impact of FOXG1 missense variants, a computational pipeline by the application of in silico prediction methods, molecular dynamic simulation, and molecular docking approaches was used. Bioinformatics analysis and molecular dynamics simulation have demonstrated that F215L and G252D variants found in the DNA binding domain are highly deleterious mutations that may cause the protein structure destabilization. On the other hand, molecular docking revealed that F215L mutant is likely to have a great impact on destabilizing the protein structure and the disruption of the Bmi-1 binding site quite significantly. Regarding G252D mutation, it seems to abolish the ability of FoxG1 to bind DNA target, affecting the transcriptional regulation of targeted genes. Our study highlights the usefulness of combined computational approaches, molecular dynamic simulation, and molecular docking for a better understanding of the dysfunctional effects of FOXG1 missense mutations and their role in the etiopathogenesis as well as in the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Marwa Kharrat
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| | - Chahnez Charfi Triki
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Olfa Alila-Fersi
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Olfa Jallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Bassem Khemakham
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - Salma Mallouli
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Kamoun
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia.,Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, Sfax University, Sfax, Tunisia.
| |
Collapse
|
4
|
FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nat Commun 2021; 12:3773. [PMID: 34145239 PMCID: PMC8213811 DOI: 10.1038/s41467-021-23987-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models. Cortical excitatory/inhibitory (E/I) imbalance is a feature of autism spectrum disorder (ASD). Here, the authors show that FoxG1 regulates the formation of cortical GABAergic circuits affecting social behaviour during a specific postnatal time window in mouse models of ASD.
Collapse
|
5
|
Akaba Y, Takahashi S, Takeguchi R, Tanaka R, Nabatame S, Saitsu H, Matsumoto N. Phenotypic overlap between pyruvate dehydrogenase complex deficiency and FOXG1 syndrome. Clin Case Rep 2021; 9:1711-1715. [PMID: 33768920 PMCID: PMC7981633 DOI: 10.1002/ccr3.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDHC) deficiency is a mitochondrial disorder. We report two cases of PDHC deficiency with clinical symptoms and brain imaging findings reminiscent of FOXG1 syndrome, suggesting a phenotypic overlap of these disorders.
Collapse
Affiliation(s)
- Yuichi Akaba
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Satoru Takahashi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryo Takeguchi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Tanaka
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Shin Nabatame
- Department of PediatricsGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| |
Collapse
|
6
|
Dai S, Li J, Zhang H, Chen X, Guo M, Chen Z, Chen Y. Structural Basis for DNA Recognition by FOXG1 and the Characterization of Disease-causing FOXG1 Mutations. J Mol Biol 2020; 432:6146-6156. [PMID: 33058871 DOI: 10.1016/j.jmb.2020.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Forkhead box G1 (FOXG1) is a transcription factor mainly expressed in the brain that plays a critical role in the development and regionalization of the forebrain. Aberrant expression of FOXG1 has implications in FOXG1 syndrome, a serious neurodevelopmental disorder. Here, we report the crystal structure of the FOXG1 DNA-binding domain (DBD) in complex with the forkhead consensus DNA site DBE2 at the resolution of 1.6 Å. FOXG1-DBD adopts a typical winged helix fold. Compared to those of other FOX-DBD/DBE2 structures, the N terminus, H3 helix and wing2 region of FOXG1-DBD exhibit differences in DNA recognition. The FOXG1-DBD wing2 region adopts a unique architecture composed of two β-strands that differs from all other known FOX-DBD wing2 folds. Mutation assays revealed that the disease-causing mutations within the FOXG1-DBD affect DNA binding, protein thermal stability, or both. Our report provides initial insight into how FOXG1 binds DNA and sheds light on how disease-causing mutations in FOXG1-DBD affect its DNA-binding ability.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Niu Y, Cao L, Zhao P, Cai C. A case of congenital Rett variant in a Chinese patient caused by a FOXG1 mutation. Ann Saudi Med 2020; 40:347-353. [PMID: 32757993 PMCID: PMC7410221 DOI: 10.5144/0256-4947.2020.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022] Open
Abstract
Rett syndrome (RTT) is a severe progressive neurodevelopmental disease characterized by psychomotor regression. The FOXG1 gene is one of the pathogenic genes associated with the congenital Rett variant, which is less studied. Only a few Chinese patients with FOXG1 mutation have been reported. In this study, we describe a Chinese female patient with congenital Rett variant who presented with psycho-motor retardation, developmental regression, microcephaly, seizure, stereotypic hand movement and hypotonia. Targeted high-throughput sequencing was conducted, and a heterozygous FOXG1 mutation [NM_005249.4: c.506dupG (P.G169Gfs* 286)] was identified. It was a frameshift mutation resulting in alteration of the reading frames downstream of the mutation. SIMILAR CASES PUBLISHED: 10. CONFLICT OF INTEREST: None.
Collapse
Affiliation(s)
- Yan Niu
- From the Department of Rehabilitation, Tianjin Children's Hospital, Tianjin, China
| | - Lirong Cao
- From the Affiliated Hospital of Hebei University, Hebei, China
| | - Peng Zhao
- From the Department of Rehabilitation, Tianjin Children's Hospital, Tianjin, China
| | - Chunquan Cai
- From the Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, China
| |
Collapse
|
8
|
Aldosary M, Al-Bakheet A, Al-Dhalaan H, Almass R, Alsagob M, Al-Younes B, AlQuait L, Mustafa OM, Bulbul M, Rahbeeni Z, Alfadhel M, Chedrawi A, Al-Hassnan Z, AlDosari M, Al-Zaidan H, Al-Muhaizea MA, AlSayed MD, Salih MA, AlShammari M, Faiyaz-Ul-Haque M, Chishti MA, Al-Harazi O, Al-Odaib A, Kaya N, Colak D. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:160-171. [PMID: 32105570 DOI: 10.1089/omi.2019.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - AlBandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hesham Al-Dhalaan
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Laila AlQuait
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Osama Mufid Mustafa
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa Bulbul
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed AlDosari
- Center for Pediatric Neurosciences, Cleveland Clinic, Cleveland, Ohio
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Moeenaldeen D AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mai AlShammari
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Mohammad Azhar Chishti
- Department of Biochemistry, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Mild presentation of the congenital variant Rett syndrome in a Pakistani male: expanding the phenotype of the forkhead box protein G1 spectrum. Clin Dysmorphol 2019; 29:111-113. [PMID: 31577544 DOI: 10.1097/mcd.0000000000000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
FOXG1-Related Syndrome: From Clinical to Molecular Genetics and Pathogenic Mechanisms. Int J Mol Sci 2019; 20:ijms20174176. [PMID: 31454984 PMCID: PMC6747066 DOI: 10.3390/ijms20174176] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022] Open
Abstract
Individuals with mutations in forkhead box G1 (FOXG1) belong to a distinct clinical entity, termed “FOXG1-related encephalopathy”. There are two clinical phenotypes/syndromes identified in FOXG1-related encephalopathy, duplications and deletions/intragenic mutations. In children with deletions or intragenic mutations of FOXG1, the recognized clinical features include microcephaly, developmental delay, severe cognitive disabilities, early-onset dyskinesia and hyperkinetic movements, stereotypies, epilepsy, and cerebral malformation. In contrast, children with duplications of FOXG1 are typically normocephalic and have normal brain magnetic resonance imaging. They also have different clinical characteristics in terms of epilepsy, movement disorders, and neurodevelopment compared with children with deletions or intragenic mutations. FOXG1 is a transcriptional factor. It is expressed mainly in the telencephalon and plays a pleiotropic role in the development of the brain. It is a key player in development and territorial specification of the anterior brain. In addition, it maintains the expansion of the neural proliferating pool, and also regulates the pace of neocortical neuronogenic progression. It also facilitates cortical layer and corpus callosum formation. Furthermore, it promotes dendrite elongation and maintains neural plasticity, including dendritic arborization and spine densities in mature neurons. In this review, we summarize the clinical features, molecular genetics, and possible pathogenesis of FOXG1-related syndrome.
Collapse
|
11
|
Han L, Chen M, Wang Y, Wu H, Quan Y, Bai T, Li K, Duan G, Gao Y, Hu Z, Xia K, Guo H. Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders. Mol Genet Genomic Med 2019; 7:e00789. [PMID: 31199603 PMCID: PMC6625093 DOI: 10.1002/mgg3.789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Forkhead box (FOX) proteins are a family of transcription factors. Mutations of three FOX genes, including FOXP1, FOXP2, and FOXG1, have been reported in neurodevelopmental disorders (NDDs). However, due to the lack of site‐specific statistical significance, the pathogenicity of missense mutations of these genes is difficult to determine. Methods DNA and RNA were extracted from peripheral blood lymphocytes. The mutation was detected by single‐molecule molecular inversion probe‐based targeted sequencing, and the variant was validated by Sanger sequencing. Real‐time quantitative PCR and western blot were performed to assay the expression of the mRNA and protein. To assess the pattern of disorder‐related missense mutations of NDD‐related FOX genes, we manually curated de novo and inherited missense or inframeshift variants within FOXP1, FOXP2, and FOXG1 that co‐segregated with phenotypes in NDDs. All variants were annotated by ANNOVAR. Results We detected a novel de novo missense mutation (NM_001244815: c.G1444A, p.E482K) of FOXP1 in a patient with intellectual disability and severe speech delay. Real‐time PCR and western blot revealed a dramatic reduction of mRNA and protein expression in patient‐derived lymphocytes, indicating a loss‐of‐function mechanism. We observed that the majority of the de novo or transmitted missense variants were located in the FOX domains, and 95% were classified as pathogenic mutations. However, 10 variants were located outside of the FOX domain and were classified as likely pathogenic or variants of uncertain significance. Conclusion Our study shows the pathogenicity of missense and inframeshift variants of NDD‐related FOX genes, which is important for clinical diagnosis and genetic counseling. Functional analysis is needed to determine the pathogenicity of the variants with uncertain clinical significance.
Collapse
Affiliation(s)
- Lin Han
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Meilin Chen
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yazhe Wang
- Center of Children Psychology and Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huidan Wu
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yingting Quan
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Bai
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Kuokuo Li
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Guiqin Duan
- Center of Children Psychology and Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Gao
- Child Psychobehavioural Rehabilitation Department, Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Medical Information Research, Central South University, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Pringsheim M, Mitter D, Schröder S, Warthemann R, Plümacher K, Kluger G, Baethmann M, Bast T, Braun S, Büttel HM, Conover E, Courage C, Datta AN, Eger A, Grebe TA, Hasse-Wittmer A, Heruth M, Höft K, Kaindl AM, Karch S, Kautzky T, Korenke GC, Kruse B, Lutz RE, Omran H, Patzer S, Philippi H, Ramsey K, Rating T, Rieß A, Schimmel M, Westman R, Zech FM, Zirn B, Ulmke PA, Sokpor G, Tuoc T, Leha A, Staudt M, Brockmann K. Structural brain anomalies in patients with FOXG1 syndrome and in Foxg1+/- mice. Ann Clin Transl Neurol 2019; 6:655-668. [PMID: 31019990 PMCID: PMC6469254 DOI: 10.1002/acn3.735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/22/2019] [Indexed: 01/11/2023] Open
Abstract
Objective FOXG1 syndrome is a rare neurodevelopmental disorder associated with heterozygous FOXG1 variants or chromosomal microaberrations in 14q12. The study aimed at assessing the scope of structural cerebral anomalies revealed by neuroimaging to delineate the genotype and neuroimaging phenotype associations. Methods We compiled 34 patients with a heterozygous (likely) pathogenic FOXG1 variant. Qualitative assessment of cerebral anomalies was performed by standardized re-analysis of all 34 MRI data sets. Statistical analysis of genetic, clinical and neuroimaging data were performed. We quantified clinical and neuroimaging phenotypes using severity scores. Telencephalic phenotypes of adult Foxg1+/- mice were examined using immunohistological stainings followed by quantitative evaluation of structural anomalies. Results Characteristic neuroimaging features included corpus callosum anomalies (82%), thickening of the fornix (74%), simplified gyral pattern (56%), enlargement of inner CSF spaces (44%), hypoplasia of basal ganglia (38%), and hypoplasia of frontal lobes (29%). We observed a marked, filiform thinning of the rostrum as recurrent highly typical pattern of corpus callosum anomaly in combination with distinct thickening of the fornix as a characteristic feature. Thickening of the fornices was not reported previously in FOXG1 syndrome. Simplified gyral pattern occurred significantly more frequently in patients with early truncating variants. Higher clinical severity scores were significantly associated with higher neuroimaging severity scores. Modeling of Foxg1 heterozygosity in mouse brain recapitulated the associated abnormal cerebral morphology phenotypes, including the striking enlargement of the fornix. Interpretation Combination of specific corpus callosum anomalies with simplified gyral pattern and hyperplasia of the fornices is highly characteristic for FOXG1 syndrome.
Collapse
Affiliation(s)
- Milka Pringsheim
- Klinik für Neuropädiatrie und Neurologische Rehabilitation Epilepsiezentrum für Kinder und Jugendliche Schön Klinik Vogtareuth Vogtareuth Germany.,Research Institute "Rehabilitation, Transition, Rehabilitation" Paracelsus Medical University Salzburg Austria
| | - Diana Mitter
- Institute of Human Genetics University of Leipzig Medical Center Leipzig Germany
| | - Simone Schröder
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders University Medical Center Göttingen Göttingen Germany
| | - Rita Warthemann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders University Medical Center Göttingen Göttingen Germany
| | - Kim Plümacher
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders University Medical Center Göttingen Göttingen Germany
| | - Gerhard Kluger
- Klinik für Neuropädiatrie und Neurologische Rehabilitation Epilepsiezentrum für Kinder und Jugendliche Schön Klinik Vogtareuth Vogtareuth Germany.,Research Institute "Rehabilitation, Transition, Rehabilitation" Paracelsus Medical University Salzburg Austria
| | | | - Thomas Bast
- Epilepsiezentrum Kork Kehl-Kork Germany.,Medical Faculty University of Freiburg Freiburg Germany
| | - Sarah Braun
- Asklepios Children's Hospital St. Augustin Germany
| | | | - Elizabeth Conover
- Department of Genetic Medicine Munroe Meyer Institute University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Carolina Courage
- Division of Human Genetics Department of Pediatrics, Inselspital University of Bern Bern Switzerland.,The Folkhälsan Institute of Genetics University of Helsinki Helsinki Finland
| | - Alexandre N Datta
- Department of Pediatric Neurology and Developmental Medicine University of Basel Children's Hospital Basel Switzerland
| | - Angelika Eger
- Sozialpädiatrisches Zentrum Leipzig (Frühe Hilfe Leipzig) Leipzig Germany
| | - Theresa A Grebe
- Division of Genetics and Metabolism Phoenix Children's Hospital Phoenix Arizona USA
| | | | - Marion Heruth
- Klinik für Kinder- und Jugendmedizin Sana Kliniken Leipziger Land Borna Germany
| | - Karen Höft
- Klinik für Kinder- und Jugendmedizin Klinikum Magdeburg gGmbH Magdeburg Germany
| | - Angela M Kaindl
- Klinik für Pädiatrie m.S. Neurologie Sozialpädiatrisches Zentrum Institut für Zell- und Neurobiologie Charité-Universitätsmedizin Berlin Berlin Germany
| | - Stephanie Karch
- Klinik für Kinder- und Jugendmedizin Sozialpädiatrisches Zentrum Universitätsklinikum Heidelberg Heidelberg Germany
| | | | - Georg C Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen Elisabeth Kinderkrankenhaus Klinikum Oldenburg Germany
| | - Bernd Kruse
- Neuropediatric Department Helios-Klinikum Hildesheim Hildesheim Germany
| | - Richard E Lutz
- Department of Genetic Medicine Munroe Meyer Institute University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Heymut Omran
- Department of General Pediatrics University Children's Hospital Muenster Muenster Germany
| | - Steffi Patzer
- Klinik für Kinder- und Jugendmedizin Krankenhaus St. Elisabeth und St. Barbara Halle/Saale Germany
| | - Heike Philippi
- Sozialpädiatrisches Zentrum Frankfurt Mitte Frankfurt am Main Germany
| | - Keri Ramsey
- Center for Rare Childhood Disorders Translational Genomics Research Institute Phoenix Arizona USA
| | - Tina Rating
- Sozialpädiatrisches Institut Klinikum Bremen-Mitte Bremen Germany
| | - Angelika Rieß
- Institut für Medizinische Genetik und angewandte Genomik Universitätsklinikum Tübingen Tübingen Germany
| | - Mareike Schimmel
- Children's Hospital Section of Neuropaediatrics Klinikum Augsburg Augsburg Germany
| | - Rachel Westman
- Children's Specialty Center St. Luke's Children's Hospital Boise Idaho USA
| | - Frank-Martin Zech
- Klinik für Kinder- und Jugendmedizin St. Vincenz-Krankenhaus Paderborn Paderborn Germany
| | - Birgit Zirn
- Genetic Counselling and Diagnostic, genetikum Stuttgart Stuttgart Germany
| | - Pauline A Ulmke
- Institute of Neuroanatomy University Medical Center Georg August University Göttingen Germany
| | - Godwin Sokpor
- Institute of Neuroanatomy University Medical Center Georg August University Göttingen Germany
| | - Tran Tuoc
- Institute of Neuroanatomy University Medical Center Georg August University Göttingen Germany
| | - Andreas Leha
- 'Core Facility Medical Biometry and Statistical Bioinformatics' Department of Medical Statistics University Medical Center Göttingen Göttingen Germany
| | - Martin Staudt
- Klinik für Neuropädiatrie und Neurologische Rehabilitation Epilepsiezentrum für Kinder und Jugendliche Schön Klinik Vogtareuth Vogtareuth Germany
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders University Medical Center Göttingen Göttingen Germany
| |
Collapse
|
13
|
Reuter CM, Brimble E, DeFilippo C, Dries AM, Enns GM, Ashley EA, Bernstein JA, Fisher PG, Wheeler MT. A New Approach to Rare Diseases of Children: The Undiagnosed Diseases Network. J Pediatr 2018; 196:291-297.e2. [PMID: 29331327 PMCID: PMC5924635 DOI: 10.1016/j.jpeds.2017.12.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Chloe M. Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elise Brimble
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Colette DeFilippo
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA,Stanford Children’s Health, Palo Alto, CA, 94304, USA
| | - Annika M. Dries
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Gregory M. Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Euan A. Ashley
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan A. Bernstein
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA,Stanford Children’s Health, Palo Alto, CA, 94304, USA
| | - Paul Graham Fisher
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew T. Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
15
|
He S, Stankowska DL, Ellis DZ, Krishnamoorthy RR, Yorio T. Targets of Neuroprotection in Glaucoma. J Ocul Pharmacol Ther 2017; 34:85-106. [PMID: 28820649 DOI: 10.1089/jop.2017.0041] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Progressive neurodegeneration of the optic nerve and the loss of retinal ganglion cells is a hallmark of glaucoma, the leading cause of irreversible blindness worldwide, with primary open-angle glaucoma (POAG) being the most frequent form of glaucoma in the Western world. While some genetic mutations have been identified for some glaucomas, those associated with POAG are limited and for most POAG patients, the etiology is still unclear. Unfortunately, treatment of this neurodegenerative disease and other retinal degenerative diseases is lacking. For POAG, most of the treatments focus on reducing aqueous humor formation, enhancing uveoscleral or conventional outflow, or lowering intraocular pressure through surgical means. These efforts, in some cases, do not always lead to a prevention of vision loss and therefore other strategies are needed to reduce or reverse the progressive neurodegeneration. In this review, we will highlight some of the ocular pharmacological approaches that are being tested to reduce neurodegeneration and provide some form of neuroprotection.
Collapse
Affiliation(s)
- Shaoqing He
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorota L Stankowska
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Dorette Z Ellis
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| | - Thomas Yorio
- North Texas Eye Research Institute, University of North Texas Health Science Center , Fort Worth, Texas
| |
Collapse
|
16
|
Pini G, Bigoni S, Congiu L, Romanelli AM, Scusa MF, Di Marco P, Benincasa A, Morescalchi P, Ferlini A, Bianchi F, Tropea D, Zappella M. Rett syndrome: a wide clinical and autonomic picture. Orphanet J Rare Dis 2016; 11:132. [PMID: 27682832 PMCID: PMC5041273 DOI: 10.1186/s13023-016-0499-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/09/2016] [Indexed: 01/16/2023] Open
Abstract
Background Rett Syndrome is a neurodevelopmental disorder almost exclusively affecting females, characterized by a broad clinical spectrum of signs and symptoms and a peculiar course. The disease affects different body systems: nervous, muscolo-skeletal, gastro-enteric. Moreover, part of the symptoms are related to the involvement of the autonomic nervous system. In the Tuscany Rett Center at Versilia Hospital, we collected data from 151 subjects with a clinical diagnosis of classical or variant RTT syndrome. For each subject, we assessed the severity of the condition with clinical-rating scales (ISS, PBZ), we quantified the performance of the autonomic nervous system, and we performed genetic analysis. We used multivariate statistical analysis of the data to evaluate the relation between the different clinical RTT forms, the cardiorespiratory phenotype, the different genetic mutations and the severity of the clinical picture. Individuals were classified according to existing forms: Classical RTT and three atypical RTT: Z-RTT, Hanefeld, Congenital. A correlation between C-Terminal deletions and lower severity of the clinical manifestations was evident, in the previous literature, but, considering the analysis of autonomic behaviour, the original classification can be enriched with a more accurate subdivision of Rett subgroups, which may be useful for early diagnosis. Results Present data emphasize some differences, not entirely described in the literature, among RTT variants. In our cohort the Z-RTT variant cases show clinical features (communication, growth, epilepsy and development), well documented by specific ISS items, less severe, if compared to classical RTT and show autonomic disorders, previously not reported in the literature. In this form epilepsy is rarely present. In contrast, Hanefeld variant shows the constant presence of epilepsy which has an earlier onset In Hanefeld variant the frequency of apneas was rare and, among the cardiorespiratory phenotypes, the feeble type is lacking. Conclusion A quantitative analysis of the different autonomic components reveals differences across typical and atypical forms of RTT that leads to a more accurate classification of the groups. In our cohort of RTT individuals, the inclusion of autonomic parameter in the classification leads to an improved diagnosis at earlier stages of development.
Collapse
Affiliation(s)
- G Pini
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy. .,Versilia Hospital, via Aurelia 335, Camaiore, Tuscany, Italy.
| | - S Bigoni
- Medical Genetics UOL, Ferrara University Hospital, Ferrara, Italy
| | - L Congiu
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| | | | - M F Scusa
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| | - P Di Marco
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| | - A Benincasa
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| | - P Morescalchi
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| | - A Ferlini
- Medical Genetics UOL, Ferrara University Hospital, Ferrara, Italy
| | - F Bianchi
- CNR, Istituto di Fisiologia Clinica, Pisa, Italy
| | - D Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Science, St James Hospital, D8 Dublin, Ireland
| | - M Zappella
- Tuscany Rett Center, Versilia Hospital, USL Toscana Nord Ovest, Pisa, Italy
| |
Collapse
|
17
|
Byun CK, Lee JS, Lim BC, Kim KJ, Hwang YS, Chae JH. FOXG1 Mutation is a Low-Incidence Genetic Cause in Atypical Rett Syndrome. Child Neurol Open 2015; 2:2329048X14568151. [PMID: 28503589 PMCID: PMC5417036 DOI: 10.1177/2329048x14568151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 11/15/2022] Open
Abstract
Due to the genetic and clinical heterogeneity of Rett syndrome, patients with nonclassic phenotypes are classified as an atypical Rett syndrome, that is, preserved speech variant, early seizure variant, and congenital variant. Respectively, MECP2, CDKL5, and FOXG1 have been found to be the causative genes, but FOXG1 variants are the rarest and least studied. We performed mutational analyses for FOXG1 on 11 unrelated patients without MECP2 and CDKL5 mutations, who were diagnosed with atypical Rett syndrome. One patient, who suffered from severe early-onset mental retardation and multiple-type intractable seizures, carried a novel, de novo FOXG1 mutation (p.Gln70Pro). This case concurs with previous studies that have reported yields of ∼10%. FOXG1-related atypical Rett syndrome is rare in Korean population, but screening of this gene in patients with severe mental retardation, microcephaly, and early-onset multiple seizure types without specific genetic causes can help broaden the phenotypic spectrum of the distinct FOXG1-related syndrome.
Collapse
Affiliation(s)
- Christine K. Byun
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Sook Lee
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Seung Hwang
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
- Jong-Hee Chae, MD, PhD, Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children’s Hospital, Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
18
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
19
|
Ellaway CJ, Ho G, Bettella E, Knapman A, Collins F, Hackett A, McKenzie F, Darmanian A, Peters GB, Fagan K, Christodoulou J. 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome-like phenotype. Eur J Hum Genet 2012; 21:522-7. [PMID: 22968132 DOI: 10.1038/ejhg.2012.208] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in ∼90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the CDKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant. We report the clinical features and array CGH findings of three atypical Rett syndrome patients who had severe intellectual impairment, early-onset developmental delay, postnatal microcephaly and hypotonia. In addition, the females had a seizure disorder, agenesis of the corpus callosum and subtle dysmorphism. All three were found to have an interstitial deletion of 14q12. The deleted region in common included the PRKD1 gene but not the FOXG1 gene. Gene expression analysis suggested a decrease in FOXG1 levels in two of the patients. Screening of 32 atypical Rett syndrome patients did not identify any pathogenic mutations in the PRKD1 gene, although a previously reported frameshift mutation affecting FOXG1 (c.256dupC, p.Gln86ProfsX35) was identified in a patient with the congenital Rett syndrome variant. There is phenotypic overlap between congenital Rett syndrome variants with FOXG1 mutations and the clinical presentation of our three patients with this 14q12 microdeletion, not encompassing the FOXG1 gene. We propose that the primary defect in these patients is misregulation of the FOXG1 gene rather than a primary abnormality of PRKD1.
Collapse
Affiliation(s)
- Carolyn J Ellaway
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Forbes-Lorman RM, Rautio JJ, Kurian JR, Auger AP, Auger CJ. Neonatal MeCP2 is important for the organization of sex differences in vasopressin expression. Epigenetics 2012; 7:230-8. [PMID: 22430799 DOI: 10.4161/epi.7.3.19265] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several neurodevelopmental disorders are marked by atypical Methyl-CpG-binding protein 2 (MeCP2) expression or function; however, the role of MeCP2 is complex and not entirely clear. Interestingly, there are sex differences in some of these disorders, and it appears that MeCP2 has sex-specific roles during development. Specifically, recent data indicate that a transient reduction in MeCP2 within developing amygdala reduces juvenile social play behavior in males to female-typical levels. These data suggest that MeCP2 within the amygdala is involved in programming lasting sex differences in social behavior. In the present study, we infused MeCP2 or control siRNA into the amygdala of male and female rats during the first three days of postnatal life in order to assess the impact of a transient reduction in MeCP2 on arginine vasopressin (AVP), a neural marker that is expressed differentially between males and females and is linked to a number of social behaviors. The expression of AVP, as well as several other genes, was measured in two-week old and adult animals. Two-week old males expressed more AVP and galanin mRNA in the amygdala than females, and a transient reduction in MeCP2 eliminated this sex difference by reducing the expression of both gene products in males. A transient reduction in MeCP2 also decreased androgen receptor (AR) mRNA in two-week old males. In adulthood, control males had more AVP-immunoreactive (AVP-ir) cells than females in the centromedial amygdala (CMA), bed nucleus of the stria terminalis (BST) and in the fibers that project from these cells to the lateral septum (LS). A transient reduction in MeCP2 eliminated this sex difference. Interestingly, there were no lasting differences in galanin or AR levels in adulthood. Reducing MeCP2 levels during development did not alter estrogen receptorα, neurofilament or Foxg1. We conclude that a transient reduction in MeCP2 expression in the developing male amygdala has a transient impact on galanin and AR expression but a lasting impact on AVP expression, highlighting the importance of MeCP2 in organizing sex differences in the amygdala.
Collapse
|
21
|
14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements. Eur J Hum Genet 2012; 20:1216-23. [PMID: 22739344 DOI: 10.1038/ejhg.2012.127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (-4 to-6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype.
Collapse
|