1
|
Muntinga CLP, de Vos van Steenwijk PJ, Bekkers RLM, van Esch EMG. Importance of the Immune Microenvironment in the Spontaneous Regression of Cervical Squamous Intraepithelial Lesions (cSIL) and Implications for Immunotherapy. J Clin Med 2022; 11:jcm11051432. [PMID: 35268523 PMCID: PMC8910829 DOI: 10.3390/jcm11051432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Cervical high-grade squamous intraepithelial lesions (cHSILs) develop as a result of a persistent high-risk human papilloma virus (hrHPV) infection. The natural course of cHSIL is hard to predict, depending on a multitude of viral, clinical, and immunological factors. Local immunity is pivotal in the pathogenesis, spontaneous regression, and progression of cervical dysplasia; however, the underlying mechanisms are unknown. The aim of this review is to outline the changes in the immune microenvironment in spontaneous regression, persistence, and responses to (immuno)therapy. In lesion persistence and progression, the immune microenvironment of cHSIL is characterized by a lack of intraepithelial CD3+, CD4+, and CD8+ T cell infiltrates and Langerhans cells compared to the normal epithelium and by an increased number of CD25+FoxP3+ regulatory T cells (Tregs) and CD163+ M2 macrophages. Spontaneous regression is characterized by low numbers of Tregs, more intraepithelial CD8+ T cells, and a high CD4+/CD25+ T cell ratio. A ‘hot’ immune microenvironment appears to be essential for spontaneous regression of cHSIL. Moreover, immunotherapy, such as imiquimod and therapeutic HPV vaccination, may enhance a preexisting pro-inflammatory immune environment contributing to lesion regression. The preexisting immune composition may reflect the potential for lesion regression, leading to a possible immune biomarker for immunotherapy in cHSILs.
Collapse
Affiliation(s)
- Caroline L. P. Muntinga
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Peggy J. de Vos van Steenwijk
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department of Gynecology and Obstetrics, Maastricht Universitair Medisch Centrum, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Ruud L. M. Bekkers
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- GROW—School for Oncology and Reproduction, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Edith M. G. van Esch
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands; (C.L.P.M.); (R.L.M.B.)
- Correspondence: ; Tel.: +31-402-399-111
| |
Collapse
|
2
|
Rafael TS, Rotman J, Brouwer OR, van der Poel HG, Mom CH, Kenter GG, de Gruijl TD, Jordanova ES. Immunotherapeutic Approaches for the Treatment of HPV-Associated (Pre-)Cancer of the Cervix, Vulva and Penis. J Clin Med 2022; 11:1101. [PMID: 35207374 PMCID: PMC8876514 DOI: 10.3390/jcm11041101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in almost all cervical cancers and a fraction of vulvar and penile cancers. Due to increasing incidence and low vaccination rates, many will still have to face HPV-related morbidity and mortality in the upcoming years. Current treatment options (i.e., surgery and/or chemoradiation) for urogenital (pre-)malignancies can have profound psychosocial and psychosexual effects on patients. Moreover, in the setting of advanced disease, responses to current therapies remain poor and nondurable, highlighting the unmet need for novel therapies that prevent recurrent disease and improve clinical outcome. Immunotherapy can be a useful addition to the current therapeutic strategies in various settings of disease, offering relatively fewer adverse effects and potential improvement in survival. This review discusses immune evasion mechanisms accompanying HPV infection and HPV-related tumorigenesis and summarizes current immunotherapeutic approaches for the treatment of HPV-related (pre-)malignant lesions of the uterine cervix, vulva, and penis.
Collapse
Affiliation(s)
- Tynisha S. Rafael
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Jossie Rotman
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Oscar R. Brouwer
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
| | - Constantijne H. Mom
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Gemma G. Kenter
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Ekaterina S. Jordanova
- Department of Urology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (T.S.R.); (O.R.B.); (H.G.v.d.P.)
- Department of Obstetrics and Gynecology, Center for Gynecological Oncology Amsterdam (CGOA), Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (J.R.); (C.H.M.); (G.G.K.)
| |
Collapse
|
3
|
Jee B, Yadav R, Pankaj S, Shahi SK. Immunology of HPV-mediated cervical cancer: current understanding. Int Rev Immunol 2020; 40:359-378. [PMID: 32853049 DOI: 10.1080/08830185.2020.1811859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human papilloma virus (HPV) has emerged as a primary cause of cervical cancer worldwide. HPV is a relatively small (55 nm in diameter) and non-enveloped virus containing approximately 8 kb long double stranded circular DNA genome. To date, 228 genotypes of HPV have been identified. Although all HPV infections do not lead to the development of malignancy of cervix, only persistent infection of high-risk types of HPV (mainly with HPV16 and HPV18) results in the disease. In addition, the immunity of the patients also acts as a key determinant in the carcinogenesis. Since, no HPV type specific medication is available for the patient suffering with cervical cancer, hence, a deep understanding of the disease etiology may be vital for developing an effective strategy for its prevention and management. From the immunological perspectives, the entire mechanisms of disease progression still remain unclear despite continuous efforts. In the present review, the recent developments in immunology of HPV-mediated cervix carcinoma were discussed. At the end, the prevention of disease using HPV type specific recombinant vaccines was also highlighted.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Renu Yadav
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Sangeeta Pankaj
- Department of Gynecological Oncology, Regional Cancer Centre, Indira Gandhi Institute of Medical Sciences, Patna, India
| | - Shivendra Kumar Shahi
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, India
| |
Collapse
|
4
|
Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo) 2018; 73:e549s. [PMID: 30328949 PMCID: PMC6157093 DOI: 10.6061/clinics/2018/e549s] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus infections are readily cleared by the host immune response. However, in some individuals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillomavirus infection is the major risk factor for cervical cancer development. These viruses have developed mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we address both the main innate immune response mechanisms involved in HPV infection clearance and the viral strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the possibility of exploiting this knowledge to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Rafaella Almeida Lima Nunes
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Gabriela Ávila Fernandes Silva
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Luisa Lina Villa
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Lara Termini
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- *Corresponding author. E-mail:
| |
Collapse
|
5
|
Amador-Molina A, Hernández-Valencia JF, Lamoyi E, Contreras-Paredes A, Lizano M. Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses 2013; 5:2624-42. [PMID: 24169630 PMCID: PMC3856406 DOI: 10.3390/v5112624] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023] Open
Abstract
During the early stages of human papillomavirus (HPV) infections, the innate immune system creates a pro-inflammatory microenvironment by recruiting innate immune cells to eliminate the infected cells, initiating an effective acquired immune response. However, HPV exhibits a wide range of strategies for evading immune-surveillance, generating an anti-inflammatory microenvironment. The administration of new adjuvants, such as TLR (Toll-like receptors) agonists and alpha-galactosylceramide, has been demonstrated to reverse the anti-inflammatory microenvironment by down-regulating a number of adhesion molecules and chemo-attractants and activating keratinocytes, dendritic (DC), Langerhans (LC), natural killer (NK) or natural killer T (NKT) cells; thus, promoting a strong specific cytotoxic T cell response. Therefore, these adjuvants show promise for the treatment of HPV generated lesions and may be useful to elucidate the unknown roles of immune cells in the natural history of HPV infection. This review focuses on HPV immune evasion mechanisms and on the proposed response of the innate immune system, suggesting a role for the surrounding pro-inflammatory microenvironment and the NK and NKT cells in the clearance of HPV infections.
Collapse
Affiliation(s)
- Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - José Fernando Hernández-Valencia
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Edmundo Lamoyi
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan 14080, México; E-Mails: (A.A.-M.); (J.F.H.-V.); (A.C.-P.)
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado postal 70228, Ciudad Universitaria, Distrito Federal CP 04510, México; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+52-55-5573-4662
| |
Collapse
|
6
|
Zhou JH, Ye F, Chen HZ, Zhou CY, Lu WG, Xie X. Altered expression of cellular membrane molecules of HLA-DR, HLA-G and CD99 in cervical intraepithelial neoplasias and invasive squamous cell carcinoma. Life Sci 2006; 78:2643-9. [PMID: 16434060 DOI: 10.1016/j.lfs.2005.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 10/12/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of HLA-DR, HLA-G and CD99 during cervical carcinogenesis and to examine the prognostic significance of these protein expressions in invasive squamous cell carcinoma (SCC). METHODS Using specific antibodies for HLA-DR, HLA-G and CD99, we examined protein expressions in 19 normal cervix, 15 mild dysplasia (CIN I), 22 moderate dysplasia (CIN II), 23 severe dysplasia (CIN III), and 34 invasive squamous cell carcinoma by immunohistochemistry. And we detected the expression of Ki67 in the same specimens. RESULTS None of normal cervix and CINs except three cases of CIN III expressed HLA-DR. HLA-DR expression increased progressively with the grade of the tumor, and significant differences could be observed between grade 1 and grade 2 (P<0.01) and between grade 1 and grade 3 (P<0.05). In all normal epithelial control samples, HLA-G expression was seen in ectocervical squamous and endocervical columnar epithelium and the staining was strong and uniform. Only a small proportion of CINs and SCCs showed reduced expression of HLA-G. Compared with the results in the control samples, CINs and SCCs showed significantly reduced expression of HLA-G (P<0.001). SCCs showed significantly increased expression of CD99 when compared with normal cervix and CINs (P<0.05). Ki67 was expressed in all specimens. Significant differences were observed between CINs and normal cervix (P<0.001) and SCCs and controls (P<0.001), but no significant differences could be observed between SCCs and CINs. None of the expressions of these proteins was associated with any of clinicopathological parameters. CONCLUSIONS These results indicate that increased expression of HLA-DR and CD99 may be related to the evolution of cervical cancer. All protein expressions were not associated with clinicopathological parameters.
Collapse
Affiliation(s)
- Jian-hong Zhou
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 2 Xueshi Road, Hangzhou, 310006, China
| | | | | | | | | | | |
Collapse
|
7
|
Gonçalves MAG, Soares EG, Fernandes APM, Fonseca BAL, Bettini JSR, Simões RTS, Donadi EA. Langerhans' cell count and HLA class II profile in cervical intraepithelial neoplasia in the presence or absence of HIV infection. Eur J Obstet Gynecol Reprod Biol 2004; 114:221-7. [PMID: 15140519 DOI: 10.1016/j.ejogrb.2003.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Revised: 08/01/2003] [Accepted: 10/21/2003] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The progression of immunosuppression in human immunodeficiency virus (HIV)+ women has been correlated with elevated incidence of squamous intraepithelial lesions (SIL), probably indicating the role of local immune milieu. In this study, we analysed S100, and HLA class II molecule expression in cervical biopsies according to HIV status, to the severity of SIL and to human papillomavirus (HPV) type. METHODS Biopsies from 34 HIV+ and 44 HIV- patients with normal cervix or low- or high-grade SIL were studied. Langerhans' cells (LC) (S100), HLA class II and HLA-DQ molecules were evaluated by immunohistochemistry. HPV detection was performed using polymerase chain reaction (PCR). For statistical analysis Mann-Whitney (P< or =0.05) and Spearman test were used. RESULTS Epithelial S100 and HLA class II density were significantly increased with the severity of lesion (P=0.032; P=0.005). Epithelial S100+ increased in HPV+ (P=0.038), and HLA class II density decreased in HPV 16+ (P=0.035) or 18+ (P<0.0001) samples. HIV infection was associated with increased stromal S100+ (P=0.0005) and decreased HLA class II densities (P=0.0001). Decreased stromal S100+ was observed in women with CD4<500 cells/microl (P=0.050). Among HIV+ patients with SIL, the lowest S100 and epithelial HLA class II densities were detected in women with CD4<200 cells/microl (P=0.045). CONCLUSIONS After the establishment of AIDS, increased numbers of immature LCs and a reduction in HLA class II occurred, possibly turning the cervical milieu more favourable to HPV persistence. HPV 16 and 18 infections may interfere with the antigen presenting activity, possibly as an evasion mechanism.
Collapse
Affiliation(s)
- M A G Gonçalves
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
8
|
Offringa R, de Jong A, Toes REM, van der Burg SH, Melief CJM. Interplay between human papillomaviruses and dendritic cells. Curr Top Microbiol Immunol 2003; 276:215-40. [PMID: 12797450 DOI: 10.1007/978-3-662-06508-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of the human papillomavirus (HPV) infection cycle is tightly fitted to the differentiation program of its natural host, the keratinocyte. This has important consequences for the role of antigen-presenting cells in the priming of antiviral immunity. The confinement of HPV infection to epithelia puts the epithelial dendritic cell, the Langerhans cell (LC), in charge of the induction of T cell-dependent immunity. Because HPV-infected keratinocytes cannot reach the regional lymphoid organs, and HPV-infection of LCs does not result in viral gene expression, priming of antiviral T cells exclusively depends on cross-presentation of viral antigens by the LC. Sensitization of the immune system in the regional lymphoid organs elicits systemic anti-HPV immunity as well as intraepithelial immune surveillance by memory-type intraepithelial T cells and locally produced antibodies. The high rate of spontaneous rejections of high-risk HPV-infections and HPV-positive premalignant lesions indicates that in general the LC-driven antigen presentation machinery is capable of raising an effective immune defense against HPV. Epidemiological studies also reveal that a decrease in the vigilance of the immune system is readily exploited by HPV to escape immune destruction, resulting in persistent infections and development of HPV-positive cancers. In view of the inherent antigenicity of HPV, immune intervention strategies constitute a promising approach for both the prevention and the therapeutic treatment of HPV-induced diseases. Importantly, the mechanisms that govern the induction and effector phases of the intraepithelial immune surveillance against HPV must be taken into account when designing such strategies.
Collapse
Affiliation(s)
- R Offringa
- Tumor Immunology Group, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Nicholls PK, Moore PF, Anderson DM, Moore RA, Parry NR, Gough GW, Stanley MA. Regression of canine oral papillomas is associated with infiltration of CD4+ and CD8+ lymphocytes. Virology 2001; 283:31-9. [PMID: 11312659 DOI: 10.1006/viro.2000.0789] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canine oral papillomavirus (COPV) infection is used in vaccine development against mucosal papillomaviruses. The predictable, spontaneous regression of the papillomas makes this an attractive system for analysis of cellular immunity. Immunohistochemical analysis of the timing and phenotype of immune cell infiltration revealed a marked influx of leukocytes during wart regression, including abundant CD4+ and CD8+ cells, with CD4+ cells being most numerous. Comparison of these findings, and those of immunohistochemistry using TCRalphabeta-, TCRgammadelta-, CD1a-, CD1c-, CD11a-, CD11b-, CD11c-, CD18-, CD21-, and CD49d-specific monoclonal antibodies, with previously published work in the human, ox, and rabbit models revealed important differences between these systems. Unlike bovine papillomavirus lesions, those of COPV do not have a significant gamma/delta T-cell infiltrate. Furthermore, COPV lesions had numerous CD4+ cells, unlike cottontail rabbit papillomavirus lesions. The lymphocyte infiltrate in the dog resembled that in human papillomavirus lesions, indicating that COPV is an appropriate model for human papillomavirus immunity.
Collapse
Affiliation(s)
- P K Nicholls
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mota F, Rayment N, Chong S, Singer A, Chain B. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol 1999; 116:33-40. [PMID: 10209502 PMCID: PMC1905217 DOI: 10.1046/j.1365-2249.1999.00826.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/1998] [Indexed: 01/22/2023] Open
Abstract
The activation of HPV-specific T cells within the cervical microenvironment is likely to play an important part in the natural history of cervical intraepithelial neoplasia (CIN). The extent and the type of T cell activation will depend critically on the expression of MHC, costimulatory cell surface molecules and cytokines by keratinocytes and Langerhans cells within the cervical lesion. Expression of MHC class II (HLA-A-DR and -DQ), costimulatory/adhesion molecules (CD11a/18, CD50, CD54, CD58 and CD86) and cytokines (tumour necrosis factor-alpha (TNF-alpha) and IL-10) was therefore investigated by immunohistochemistry in normal squamous epithelium (n = 12), low-grade (n = 23) and high-grade (n = 18) squamous intraepithelial lesions of the cervix. CIN progression was associated with de novo expression of HLA-DR and CD54, and increased expression of CD58 by keratinocytes. However, significantly, there was no expression of any adhesion/costimulation molecule by epithelial Langerhans cells in any cervical biopsy studied. Furthermore, TNF-alpha, a potent activator of Langerhans cells, was expressed constitutively by basal keratinocytes in normal cervix (12+/12). but expression of this cytokine was absent in a number of CIN samples (20+/23 for low-grade, 12+/18 for high-grade CIN). Conversely, the suppressive cytokine IL-10 was absent in normal epithelium (0+/12), but was up-regulated in a number of CIN lesions (12+/23 for low-grade; 8+/18 for high-grade CIN). The restricted expression of costimulation/adhesion molecules and the nature of the cytokine microenvironment within the epithelium may act to limit effective immune responses in some CIN lesions.
Collapse
Affiliation(s)
- F Mota
- Department of Immunology, University College London, UK
| | | | | | | | | |
Collapse
|