1
|
Ye C, Clements SA, Gu W, Geurts AM, Mathews CE, Serreze DV, Chen YG, Driver JP. Deletion of Vβ3 +CD4 + T cells by endogenous mouse mammary tumor virus 3 prevents type 1 diabetes induction by autoreactive CD8 + T cells. Proc Natl Acad Sci U S A 2023; 120:e2312039120. [PMID: 38015847 PMCID: PMC10710095 DOI: 10.1073/pnas.2312039120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2023] [Indexed: 11/30/2023] Open
Abstract
In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vβ3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vβ3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vβ3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vβ repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL32611
| | - Sadie A. Clements
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| | - Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI53226
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610
| | | | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| |
Collapse
|
2
|
Li F, Niu B, Liu L, Zhu M, Yang H, Qin B, Peng X, Chen L, Xu C, Zhou X. Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC class II genes upon Staphylococcus aureus pneumonia. Animal Model Exp Med 2023; 6:585-597. [PMID: 37246733 PMCID: PMC10757210 DOI: 10.1002/ame2.12331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in "carrier" or "pathogenic" states. HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S. aureus infection. However, the contribution of HLA DP to S. aureus infection is unknown yet. METHODS In this study, we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes. Neo-floxed IAβ+/- mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice. After several rounds of traditional crossbreeding, we finally obtained HLA DP401-IAβ-/- and HLA DRA-IAβ-/- humanized mice, in which human DP401 or DRA0101 molecule was introduced into IAβ-/- mice deficient in endogenous murine MHC class II molecules. A transnasal infection murine model of S. aureus pneumonia was induced in the humanized mice by administering 2 × 108 CFU of S. aureus Newman dropwise into the nasal cavity. The immune responses and histopathology changes were further assessed in lungs in these infected mice. RESULTS We evaluated the local and systemic effects of S. aureus delivered intranasally in HLA DP401-IAβ-/- and HLA DRA-IAβ-/- transgenic mice. S. aureus Newman infection significantly increased the mRNA level of IL 12p40 in lungs in humanized mice. An increase in IFN-γ and IL-6 protein was observed in HLA DRA-IAβ-/- mice. We observed a declining trend in the percentage of F4/80+ macrophages in lungs in HLA DP401-IAβ-/- mice and a decreasing ratio of CD4+ to CD8+ T cells in lungs in IAβ-/- mice and HLA DP401-IAβ-/- mice. A decreasing ratio of Vβ3+ to Vβ8+ T cells was also found in the lymph node of IAβ-/- mice and HLA DP401-IAβ-/- mice. S. aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/- genetic background mice. CONCLUSION These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S. aureus pneumonia and study what role DP molecule plays in S. aureus infection.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Bowen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lingling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Mengmin Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Boyin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiuhua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lixiang Chen
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Chunhua Xu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| |
Collapse
|
3
|
Knopick P, Terman D, Riha N, Alvine T, Larson R, Badiou C, Lina G, Ballantyne J, Bradley D. Endogenous HLA-DQ8αβ programs superantigens (SEG/SEI) to silence toxicity and unleash a tumoricidal network with long-term melanoma survival. J Immunother Cancer 2021; 8:jitc-2020-001493. [PMID: 33109631 PMCID: PMC7592263 DOI: 10.1136/jitc-2020-001493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background As the most powerful T cell agonists known, superantigens (SAgs) have enormous potential for cancer immunotherapy. Their development has languished due to high incidence (60%–80%) of seroreactive neutralizing antibodies in humans and tumor necrosis factor-α (TNFα)-mediated cardiopulmonary toxicity. Such toxicity has narrowed their therapeutic index while neutralizing antibodies have nullified their therapeutic effects. Methods Female HLA-DQ8 (DQA*0301/DQB*0302) tg mice expressing the human major histocompatibility complex II (MHCII) HLA-DQ8 allele on a high proportion of PBL, spleen and lymph node cells were used. In the established tumor model, staphylococcal enterotoxin G and staphylococcal enterotoxin I (SEG/ SEI) (50 µg each) were injected on days 6 and 9 following tumor inoculation. Lymphoid, myeloid cells and tumor cell digests from tumor tissue were assayed using flow cytometry or quantitated using a cytometric bead array. Tumor density, necrotic and viable areas were quantitated using the ImageJ software. Results In a discovery-driven effort to address these problems we introduce a heretofore unrecognized binary complex comprizing SEG/SEI SAgs linked to the endogenous human MHCII HLA-DQ8 allele in humanized mice. By contrast to staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) deployed previously in clinical trials, SEG and SEI does not exhibit neutralizing antibodies in humans or TNFα-mediated toxicity in humanized HLA-DQ8 mice. In the latter model wherein SAg behavior is known to be ‘human-like’, SEG/SEI induced a powerful tumoricidal response and long-term survival against established melanoma in 82% of mice. Other SAgs deployed in the same model displayed toxic shock. Initially, HLA-DQ8 mediated melanoma antigen priming, after which SEG/SEI unleashed a broad CD4+ and CD8+ antitumor network marked by expansion of melanoma reactive T cells and interferon-γ (IFNy) in the tumor microenvironment (TME). SEG/SEI further initiated chemotactic recruitment of tumor reactive T cells to the TME converting the tumor from ‘cold’ to a ‘hot’. Long-term survivors displayed remarkable resistance to parental tumor rechallenge along with the appearance of tumor specific memory and tumor reactive T memory cells. Conclusions Collectively, these findings show for the first time that the SEG/SEI-(HLA-DQ8) empowers priming, expansion and recruitment of a population of tumor reactive T cells culminating in tumor specific memory and long-term survival devoid of toxicity. These properties distinguish SEG/SEI from other SAgs used previously in human tumor immunotherapy. Consolidation of these principles within the SEG/SEI-(HLA-DQ8) complex constitutes a conceptually new therapeutic weapon with compelling translational potential.
Collapse
Affiliation(s)
- Peter Knopick
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - David Terman
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Nathan Riha
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Travis Alvine
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Riley Larson
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Cedric Badiou
- University of Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Gerard Lina
- University of Lyon 1 University Institute of Tecnology Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | | | - David Bradley
- Biomedical Sciences, Universtiy of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| |
Collapse
|
4
|
Toxic Shock Syndrome Toxin 1 Evaluation and Antibiotic Impact in a Transgenic Model of Staphylococcal Soft Tissue Infection. mSphere 2019; 4:4/5/e00665-19. [PMID: 31597722 PMCID: PMC6796978 DOI: 10.1128/msphere.00665-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Staphylococcal toxic shock syndrome (TSS) is a life-threatening illness causing fever, rash, and shock, attributed to toxins produced by the bacterium Staphylococcus aureus, mainly toxic shock syndrome toxin 1 (TSST-1). TSS was in the past commonly linked with menstruation and high-absorbency tampons; now, TSS is more frequently triggered by other staphylococcal infections, particularly of skin and soft tissue. Investigating the progress and treatment of TSS in patients is challenging, as TSS is rare; animal models do not mimic TSS adequately, as toxins interact best with human immune cells. We developed a new model of staphylococcal soft tissue infection in mice producing human immune cell proteins, rendering them TSST-1 sensitive, to investigate TSS. The significance of our research was that TSST-1 was found in soft tissues and immune organs of mice and that early treatment of mice with the antibiotic clindamycin altered TSST-1 production. Therefore, the early treatment of patients suspected of having TSS with clindamycin may influence their response to treatment. Nonmenstrual toxic shock syndrome (nmTSS), linked to TSST-1-producing CC30 Staphylococcus aureus, is the leading manifestation of toxic shock syndrome (TSS). Due to case rarity and a lack of tractable animal models, TSS pathogenesis is poorly understood. We developed an S. aureus abscess model in HLA class II transgenic mice to investigate pathogenesis and treatment. TSST-1 sensitivity was established using murine spleen cell proliferation assays and cytokine assays following TSST-1 injection in vivo. HLA-DQ8 mice were infected subcutaneously with a tst-positive CC30 methicillin-sensitive S. aureus clinical TSS-associated isolate. Mice received intraperitoneal flucloxacillin, clindamycin, flucloxacillin and clindamycin, or a control reagent. Abscess size, bacterial counts, TSST-1 expression, and TSST-1 bioactivity were measured in tissues. Antibiotic effects were compared with the effects of control reagent. Purified TSST-1 expanded HLA-DQ8 T-cell Vβ subsets 3 and 13 in vitro and instigated cytokine release in vivo, confirming TSST-1 sensitivity. TSST-1 was detected in abscesses (0 to 8.0 μg/ml) and draining lymph nodes (0 to 0.2 μg/ml) of infected mice. Interleukin 6 (IL-6), gamma interferon (IFN-γ), KC (CXCL1), and MCP-1 were consistent markers of inflammation during infection. Clindamycin-containing antibiotic regimens reduced abscess size and TSST-1 production. Infection led to detectable TSST-1 in soft tissues, and TSST-1 was detected in draining lymph nodes, events which may be pivotal to TSS pathogenesis. The reduction in TSST-1 production and lesion size after a single dose of clindamycin underscores a potential role for adjunctive clindamycin at the start of treatment of patients suspected of having TSS to alter disease progression. IMPORTANCE Staphylococcal toxic shock syndrome (TSS) is a life-threatening illness causing fever, rash, and shock, attributed to toxins produced by the bacterium Staphylococcus aureus, mainly toxic shock syndrome toxin 1 (TSST-1). TSS was in the past commonly linked with menstruation and high-absorbency tampons; now, TSS is more frequently triggered by other staphylococcal infections, particularly of skin and soft tissue. Investigating the progress and treatment of TSS in patients is challenging, as TSS is rare; animal models do not mimic TSS adequately, as toxins interact best with human immune cells. We developed a new model of staphylococcal soft tissue infection in mice producing human immune cell proteins, rendering them TSST-1 sensitive, to investigate TSS. The significance of our research was that TSST-1 was found in soft tissues and immune organs of mice and that early treatment of mice with the antibiotic clindamycin altered TSST-1 production. Therefore, the early treatment of patients suspected of having TSS with clindamycin may influence their response to treatment.
Collapse
|
5
|
Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, Rosales SL, Anderson EL, LaRock CN, Vijayanand P, Seumois G, Layfield D, Cutress RI, Ottensmeier CH, Lindestam Arlehamn CS, Sette A, Nizet V, Bothwell M, Brigger M, Crotty S. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T FH cells. Sci Transl Med 2019; 11:eaau3776. [PMID: 30728285 PMCID: PMC6561727 DOI: 10.1126/scitranslmed.aau3776] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022]
Abstract
"Strep throat" is highly prevalent among children, yet it is unknown why only some children develop recurrent tonsillitis (RT), a common indication for tonsillectomy. To gain insights into this classic childhood disease, we performed phenotypic, genotypic, and functional studies on pediatric group A Streptococcus (GAS) RT and non-RT tonsils from two independent cohorts. GAS RT tonsils had smaller germinal centers, with an underrepresentation of GAS-specific CD4+ germinal center T follicular helper (GC-TFH) cells. RT children exhibited reduced antibody responses to an important GAS virulence factor, streptococcal pyrogenic exotoxin A (SpeA). Risk and protective human leukocyte antigen (HLA) class II alleles for RT were identified. Lastly, SpeA induced granzyme B production in GC-TFH cells from RT tonsils with the capacity to kill B cells and the potential to hobble the germinal center response. These observations suggest that RT is a multifactorial disease and that contributors to RT susceptibility include HLA class II differences, aberrant SpeA-activated GC-TFH cells, and lower SpeA antibody titers.
Collapse
Affiliation(s)
- Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Rita Al-Kolla
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Ericka L Anderson
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Human Longevity Inc., San Diego, CA 92121, USA
| | - Christopher N LaRock
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - David Layfield
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | - Ramsey I Cutress
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, UK
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, CA 92037, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92037, USA
| | - Marcella Bothwell
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Matthew Brigger
- Division of Pediatric Otolaryngology, Rady Children's Hospital, San Diego, CA 92123, USA
- Department of Surgery, UCSD, La Jolla, CA 92037, USA
- Department of Otolaryngology, Head and Neck Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
7
|
Krogman A, Tilahun A, David CS, Chowdhary VR, Alexander MP, Rajagopalan G. HLA-DR polymorphisms influence in vivo responses to staphylococcal toxic shock syndrome toxin-1 in a transgenic mouse model. HLA 2016; 89:20-28. [PMID: 27863161 DOI: 10.1111/tan.12930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/06/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome toxin-1 (TSST-1) is a potent superantigen produced by Staphylococcus aureus. In addition to menstrual and nonmenstrual toxic shock syndromes, TSST-1 is also implicated in the immunopathogenesis of pneumonia, infective endocarditis, neonatal exanthematous disease, and atopic dermatitis among others. Superantigens first bind to major histocompatibility complex (MHC) class II molecules and then activate a large proportion of T cells by cross-linking their T cell receptor. As binding to MHC class II molecules is a critical step in the robust activation of the immune system by TSST-1 and other superantigens, polymorphic variations between different HLA-DR alleles could potentially influence the magnitude of immune activation and immunopathology caused by TSST-1. As TSST-1 is highly toxic to humans and given that multiple variations of alleles of HLA-DR and HLA-DQ are expressed in each individual, it is difficult to determine how HLA-DR polymorphisms quantitatively and qualitatively impact immune activation caused by TSST-1 in humans. However, such investigations can be conducted on transgenic mice lacking all endogenous MHC class II molecules and expressing specific HLA class II alleles. Therefore, transgenic mice expressing different HLA-DRB1 alleles (HLA-DRB1*15:01, HLA-DRB1*15:02, HLA-DRB1*03:01, HLA-DRB1*04:01), and sharing HLA-A1*01:01 chain, were systemically challenged with purified TSST-1 and multiple immune parameters were assessed. Among the HLA-DR alleles, mice expressing HLA-DRB1*15:01 allele elicited a significantly higher serum cytokine/chemokine response; greater splenic T cell expansion and most severe organ pathology. Our study highlights the potential utility of human leukocyte antigen (HLA) transgenic mice in understanding the impact of HLA polymorphisms on the outcomes of diseases caused by TSST-1 and other superantigens.
Collapse
Affiliation(s)
- A Krogman
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - A Tilahun
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - C S David
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - M P Alexander
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - G Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
8
|
Cenit MC, Olivares M, Codoñer-Franch P, Sanz Y. Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution? Nutrients 2015; 7:6900-23. [PMID: 26287240 PMCID: PMC4555153 DOI: 10.3390/nu7085314] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
It is widely recognized that the intestinal microbiota plays a role in the initiation and perpetuation of intestinal inflammation in numerous chronic conditions. Most studies report intestinal dysbiosis in celiac disease (CD) patients, untreated and treated with a gluten-free diet (GFD), compared to healthy controls. CD patients with gastrointestinal symptoms are also known to have a different microbiota compared to patients with dermatitis herpetiformis and controls, suggesting that the microbiota is involved in disease manifestation. Furthermore, a dysbiotic microbiota seems to be associated with persistent gastrointestinal symptoms in treated CD patients, suggesting its pathogenic implication in these particular cases. GFD per se influences gut microbiota composition, and thus constitutes an inevitable confounding factor in studies conducted in CD patients. To improve our understanding of whether intestinal dysbiosis is the cause or consequence of disease, prospective studies in healthy infants at family risk of CD are underway. These studies have revealed that the CD host genotype selects for the early colonizers of the infant’s gut, which together with environmental factors (e.g., breast-feeding, antibiotics, etc.) could influence the development of oral tolerance to gluten. Indeed, some CD genes and/or their altered expression play a role in bacterial colonization and sensing. In turn, intestinal dysbiosis could promote an abnormal response to gluten or other environmental CD-promoting factors (e.g., infections) in predisposed individuals. Here, we review the current knowledge of host-microbe interactions and how host genetics/epigenetics and environmental factors shape gut microbiota and may influence disease risk. We also summarize the current knowledge about the potential mechanisms of action of the intestinal microbiota and specific components that affect CD pathogenesis.
Collapse
Affiliation(s)
- María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
- Department of Pediatrics, Dr. Peset University Hospital, Avda. Gaspar Aguilar, 80, 46017 Valencia, Spain.
| | - Marta Olivares
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Dr. Peset University Hospital, Avda. Gaspar Aguilar, 80, 46017 Valencia, Spain.
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Av Blasco Ibáñez, 13, 46010 Valencia, Spain.
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
9
|
Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 2014; 12:585-91. [PMID: 24998740 DOI: 10.1038/nrmicro3308] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Staphylococcus aureus is a highly successful bacterial pathogen owing to its abundance of cell surface and secreted virulence factors. It is estimated that 30% of the population is colonized with S. aureus, usually on mucosal surfaces, and methicillin-resistant S. aureus is a major public health concern. There have been multiple attempts to develop an S. aureus vaccine using one or more cell surface virulence factors as antigens; all of these vaccine trials have failed. In this Opinion article, we suggest that an over-reliance on rodent models and a focus on targeting cell surface components have been major contributing factors to this failure.
Collapse
|
10
|
Gu L, Yue J, Zheng Y, Zheng X, Wang J, Wang Y, Li J, Jiang Y, Jiang H. Evaluation of a recombinant double mutant of staphylococcal enterotoxin B (SEB-H32Q/K173E) with enhanced antitumor activity effects and decreased pyrexia. PLoS One 2013; 8:e55892. [PMID: 23405232 PMCID: PMC3566101 DOI: 10.1371/journal.pone.0055892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunotherapy has been used to improve patient immune function, inhibit tumor growth and has become a highly promising method of cancer treatment. Highly agglutinative staphylococcin (HAS), a mixture of Staphylococcus aureus culture filtrates, which include staphylococcal enterotoxin (SE) C as the active ingredient, has been used clinically as an immunomodifier in the treatment of a number of tumors for many years. However, the use of HAS has been associated with some unavoidable side-effects such as fever. Previous studies have shown that SEB stimulates a more potent activation of T lymphocytes than SEC3, and mutations of the histidine residues eliminated the toxicity of SEB. SE mutants with decreased side-effects and/or more potent antitumor activities are required. METHODOLOGY/PRINCIPAL FINDINGS We built a structural model of the MHC II-SEB-TCR complex and found that a mutation of SEB at Lys173 might decrease the repulsion force between the SEB-TCR, which would facilitate their interaction. From the above results, we designed SEB-H32Q/K173E (mSEB). Analysis of in vitro stimulation of the proliferation of human peripheral blood mononuclear cells (PBMCs), IFN-γ secretion and inhibition of the growth of various tumor cell lines demonstrated that mSEB exhibited higher antitumor activity compared with wild-type SEB (wtSEB). Notably, mSEB inhibited the growth of various tumors at an extremely low concentration with little cytotoxicity against normal cells. Three animal tumor models (C57BL/6 mouse, New Zealand rabbit and a humanized NOD/SCID mouse) were used to evaluate the in vivo immunotherapeutic effects. Compared with wtSEB, mSEB significantly enhanced antitumor effect in more than one animal model with reduced pyrexia toxicity and prolonged the survival of tumor-bearing mice. CONCLUSIONS/SIGNIFICANCE Our results suggest that SEB-H32Q/K173E retains superantigen (SAg) characteristics and enhances the host immune response to neoplastic diseases while reducing associated pyrogenic toxicity.
Collapse
MESH Headings
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Female
- Fever/genetics
- Fever/immunology
- Fever/therapy
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Humans
- Immunotherapy
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mutant Proteins/therapeutic use
- Mutation/genetics
- Rabbits
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/therapeutic use
- Staphylococcus aureus/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Liwei Gu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Traditional Chinese Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Junjie Yue
- Beijing Institute of Biotechnology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Zheng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzi Wang
- Department of Pharmacy, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, China
| | - Jianchun Li
- Department of Traditional Chinese Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail: (JCL); (YQJ); (HJ)
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (JCL); (YQJ); (HJ)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (JCL); (YQJ); (HJ)
| |
Collapse
|
11
|
Chowdhary VR, Tilahun AY, Clark CR, Grande JP, Rajagopalan G. Chronic exposure to staphylococcal superantigen elicits a systemic inflammatory disease mimicking lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2054-62. [PMID: 22798666 DOI: 10.4049/jimmunol.1201097] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic nasal and skin colonization with superantigen (SAg)-producing Staphylococcus aureus is well documented in humans. Given that trans-mucosal and trans-cutaneous absorption of SAgs can occur, we determined whether chronic exposure to small amounts of SAg per se could activate autoreactive CD4(+) and CD8(+) T cells and precipitate any autoimmune disease without further external autoantigenic stimulation. Because HLA class II molecules present SAg more efficiently than do mouse MHC class II molecules, HLA-DQ8 transgenic mice were implanted s.c. with mini-osmotic pumps capable of continuously delivering the SAg, staphylococcal enterotoxin B (total of 10 μg/mouse), or PBS over 4 wk. Chronic exposure to staphylococcal enterotoxin B resulted in a multisystem autoimmune inflammatory disease with features similar to systemic lupus erythematosus. The disease was characterized by mononuclear cell infiltration of lungs, liver, and kidneys, accompanied by the production of anti-nuclear Abs and deposition of immune complexes in the renal glomeruli. The inflammatory infiltrates in various organs predominantly consisted of CD4(+) T cells bearing TCR Vβ8. The extent of immunopathology was markedly reduced in mice lacking CD4(+) T cells and CD28, indicating that the disease is CD4(+) T cell mediated and CD28 dependent. The absence of disease in STAT4-deficient, as well as IFN-γ-deficient, HLA-DQ8 mice suggested the pathogenic role of Th1-type cytokines, IL-12 and IFN-γ. In conclusion, our study suggests that chronic exposure to extremely small amounts of bacterial SAg could be an etiological factor for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vaidehi R Chowdhary
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
12
|
De Palma G, Capilla A, Nova E, Castillejo G, Varea V, Pozo T, Garrote JA, Polanco I, López A, Ribes-Koninckx C, Marcos A, García-Novo MD, Calvo C, Ortigosa L, Peña-Quintana L, Palau F, Sanz Y. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: the PROFICEL study. PLoS One 2012; 7:e30791. [PMID: 22319588 PMCID: PMC3272021 DOI: 10.1371/journal.pone.0030791] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/29/2011] [Indexed: 12/18/2022] Open
Abstract
Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder.
Collapse
Affiliation(s)
- Giada De Palma
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Amalia Capilla
- Instituto de Biomedicina de Valencia (CSIC), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Esther Nova
- Department Metabolismo y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - Gemma Castillejo
- Unidad de Gastroenterología Pediátrica, Hospital Universitario Sant Joan de Reus, Tarragona, Spain
| | - Vicente Varea
- Gastroenterología, Nutrición y Hepatología Pediátrica, Hospital Universitario Sant Joan de Deu and Unidad de Gastroenterología Pediátrica del Institut Dexeus, Barcelona, Spain
| | - Tamara Pozo
- Department Metabolismo y Nutrición, ICTAN-CSIC, Madrid, Spain
| | - José Antonio Garrote
- Unidad de Gastroenterología Pediátrica, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Isabel Polanco
- Servicio de Gastroenterología y Nutrición Pediátrica, Hospital Universitario La Paz, Madrid, Spain
| | - Ana López
- Unidad de Gastroenterología Pediátrica, Hospital Universitario La Fe, Valencia, Spain
| | - Carmen Ribes-Koninckx
- Unidad de Gastroenterología Pediátrica, Hospital Universitario La Fe, Valencia, Spain
| | | | | | - Carmen Calvo
- Unidad de Gastroenterología Pediátrica, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Luis Ortigosa
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Canarias, Spain
| | - Luis Peña-Quintana
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Materno-Infantil de Canarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francesc Palau
- Instituto de Biomedicina de Valencia (CSIC), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Yolanda Sanz
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| |
Collapse
|
13
|
Antigen targeting to major histocompatibility complex class II with streptococcal mitogenic exotoxin Z-2 M1, a superantigen-based vaccine carrier. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:574-86. [PMID: 22301693 DOI: 10.1128/cvi.05446-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcal mitogenic exotoxin Z-2 (SMEZ-2) is a streptococcal superantigen that primarily stimulates human T cells bearing Vβ8 and mouse T cells bearing Vβ11. Mutagenesis of T cell receptor (TCR)-binding residues (W75L, K182Q, D42C) produced a mutant called M1 that was >10(5)-fold less active toward human peripheral blood lymphocytes and splenocytes from transgenic mice that express human CD4 and either human HLA-DR3-DQ2 or HLA-DR4-DQ8. Similarly, cytokine production in response to M1 in lymphocyte culture was rendered undetectable, and no change in the frequency of Vβ11-bearing T cells in mice receiving M1 was observed. M1 toxoid was tested as a potential vaccine conjugate. Vaccination with 1 to 10 μg M1 conjugated to ovalbumin (M1-ovalbumin) resulted in more rapid and quantitatively higher levels of anti-ovalbumin IgG, with endpoint titers being 1,000- to 10,000-fold greater than those in animals immunized with unconjugated ovalbumin. Substantially higher levels of anti-ovalbumin IgG were observed in mice transgenic for human major histocompatibility complex (MHC) class II. Substitution of M1 with an MHC class II binding mutant (DM) eliminated enhanced immunity, suggesting that M1 enhanced the delivery of antigen via MHC class II-positive antigen-presenting cells that predominate within lymphoid tissue. Immunization of animals with a conjugate consisting of M1 and ovalbumin peptide from positions 323 to 339 generated levels of anti-peptide IgG 100-fold higher than those in animals immunized with peptide alone. Coupling of a TCR-defective superantigen toxoid presents a new strategy for conjugate vaccines with the additional benefit of targeted delivery to MHC class II-bearing cells.
Collapse
|
14
|
Tilahun AY, Karau MJ, Clark CR, Patel R, Rajagopalan G. The impact of tacrolimus on the immunopathogenesis of staphylococcal enterotoxin-induced systemic inflammatory response syndrome and pneumonia. Microbes Infect 2012; 14:528-36. [PMID: 22273732 DOI: 10.1016/j.micinf.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/28/2011] [Accepted: 01/02/2012] [Indexed: 01/24/2023]
Abstract
Staphylococcal superantigens (SAg) are a family of potent exotoxins produced by Staphylococcus aureus. They play an important role in the pathogenesis of staphylococcal shock and pneumonia by causing a robust activation of the immune system and eliciting a strong surge in systemic cytokine and chemokine levels. Given the biological functions of SAg, we evaluated the efficacy of tacrolimus, a potent immunosuppressive agent, in the prophylaxis and therapy of staphylococcal TSS and pneumonia using human leukocyte antigen (HLA)-DR3 transgenic mice. Tacrolimus significantly inhibited staphylococcal SAg induced T cell activation in vitro. In vivo, tacrolimus significantly suppressed the SAg-induced elevation in serum cytokine and chemokine levels when given prophylactically, when administered immediately or even 2 h following systemic SAg challenge. Paradoxically, neither the prophylactic nor post-exposure treatment with tacrolimus protected mice from lethal SAg-induced TSS. A closer examination revealed that tacrolimus failed to suppress SAg-induced T cell proliferation and systemic pathology, including gut dysfunction. Tacrolimus also failed to protect from lethal pneumonia induced by a SAg-producing S. aureus strain. Thus, our study showed that even though T cell activation by SAg plays a major role in the immunopathogenesis of TSS and pneumonia, tacrolimus alone has no beneficial effect.
Collapse
|
15
|
Suenaga T, Suzuki H, Shibuta S, Takeuchi T, Yoshikawa N. Detection of multiple superantigen genes in stools of patients with Kawasaki disease. J Pediatr 2009; 155:266-70. [PMID: 19446844 DOI: 10.1016/j.jpeds.2009.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/21/2009] [Accepted: 03/06/2009] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate whether superantigens (SAgs) are involved in the development of Kawasaki disease (KD) by examining SAg genes in the stool of patients with KD. STUDY DESIGN Stool specimens were obtained from 60 patients with KD and 62 age-matched children (36 children with acute illness and 26 healthy children). Total DNA was extracted from these stool samples. Using polymerase chain reaction, we examined genes of 5 SAgs: streptococcal pyrogenic exotoxin-A (SPE-A), SPE-C, SPE-G, SPE-J, and toxic shock syndrome toxin-1. RESULTS At least 1 of the 5 SAg genes was detected in 42 (70%) specimens from patients with KD, 14 (38.9%) from the febrile group, and 7 (26.9%) from the healthy group. The detection rate between subjects with and without KD was of at least 1 of the 5 SAg genes (P < .001), and more than 2 SAg genes were significantly different (P = .002). CONCLUSIONS SAg may be involved in the development of KD; data suggest that multiple SAgs may trigger KD.
Collapse
Affiliation(s)
- Tomohiro Suenaga
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | |
Collapse
|
16
|
Staphylococcus aureus superantigens elicit redundant and extensive human Vbeta patterns. Infect Immun 2009; 77:2043-50. [PMID: 19255190 DOI: 10.1128/iai.01388-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus can produce a wide variety of exotoxins, including toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxins, and staphylococcal enterotoxin-like toxins. These toxins share superantigenic activity. To investigate the beta chain (Vbeta) specificities of each of these toxins, TSST-1 and all known S. aureus enterotoxins and enterotoxin-like toxins were produced as recombinant proteins and tested for their ability to induce the selective in vitro expansion of human T cells bearing particular Vbeta T-cell receptors (TCR). Although redundancies were observed between the toxins and the Vbeta populations, each toxin induced the expansion of distinct Vbeta subsets, including enterotoxin H and enterotoxin-like toxin J. Surprisingly, the Vbeta signatures were not associated with a specific phylogenic group of toxins. Interestingly, each human Vbeta analyzed in this study was stimulated by at least one staphylococcal superantigen, suggesting that the bacterium derives a selective advantage from targeting the entire human TCR Vbeta panel.
Collapse
|