1
|
Ye W, Wu J, Jiang Q, Su Z, Liao H, Liu Z, Tao R, Yong X. Antibacterial activity of corydalis saxicola bunting total alkaloids against Porphyromonas gingivalis in vitro. Future Microbiol 2024; 19:595-606. [PMID: 38629885 PMCID: PMC11229583 DOI: 10.2217/fmb-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/16/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: To investigate the antibacterial effects of Corydalis Saxicola bunting total alkaloid (CSBTA) on Porphyromonas gingivalis. Methods: SEM, chemical staining, RT-qPCR and ELISA were used to detect effects of CSBTA on P. gingivalis. Results: CSBTA treatment caused shrinkage and rupture of P. gingivalis morphology, decreased biofilm density and live bacteria in biofilm, as well as reduced mRNA expression of virulence genes hagA, hagB, kgp, rgpA and rgpB of P. gingivalis. Furthermore, NOK cells induced by CSBTA-treated P. gingivalis exhibited lower IL-6 and TNF-α expression levels. Conclusion: CSBTA is able to kill free P. gingivalis, disrupt the biofilm and weaken the pathogenicity of P. gingivalis. It has the potential to be developed as a drug against P. gingivalis infection.
Collapse
Affiliation(s)
- Wenli Ye
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Jiaxuan Wu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Qiaozhi Jiang
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Haiqing Liao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Zhenmin Liu
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Renchuan Tao
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| | - Xiangzhi Yong
- Department of Periodontics & Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention & Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of Oral & Maxillofacial Rehabilitation & Reconstruction, Nanning, China
| |
Collapse
|
2
|
Eltigani SA, Eltayeb MM, Bito T, Ichiyanagi T, Ishihara A, Arima J. Argeloside I inhibits the pathogenicity of Porphyromonas gingivalis TDC60. J Biosci Bioeng 2020; 130:644-649. [PMID: 32847740 DOI: 10.1016/j.jbiosc.2020.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
Abstract
Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis, produces several virulence agents in the outer cell membrane, including gingipains and hemagglutinins. These virulence factors enable the bacteria to adhere to periodontal tissue and degrade host proteins to obtain the nutrients needed for dental plaque formation. P. gingivalis TDC60 was recently identified as the most aggressive P. gingivalis strain to dates. In this study, we isolated a known pregnane glycoside, argeloside I, from the aqueous extract of Solenostemma argel leaves. Argeloside I completely hindered the growth of P. gingivalis TDC60 and inhibited the production of hemagglutinins as well as Arg- and Lys-specific gingipains. Our results demonstrate a new function of pregnane glycosides. Argeloside I may be a candidate for reducing the risk associated with P. gingivalis TDC60 and its adhesion factors.
Collapse
Affiliation(s)
- Sara A Eltigani
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Mohamed M Eltayeb
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 14413, Sudan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Jiro Arima
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
3
|
Mendez KN, Hoare A, Soto C, Bugueño I, Olivera M, Meneses C, Pérez-Donoso JM, Castro-Nallar E, Bravo D. Variability in Genomic and Virulent Properties of Porphyromonas gingivalis Strains Isolated From Healthy and Severe Chronic Periodontitis Individuals. Front Cell Infect Microbiol 2019; 9:246. [PMID: 31355151 PMCID: PMC6635597 DOI: 10.3389/fcimb.2019.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis has been extensively associated with both the onset and progression of periodontitis. We previously isolated and characterized two P. gingivalis strains, one from a patient exhibiting severe chronic periodontitis (CP3) and another from a periodontally healthy individual (H3). We previously showed that CP3 and H3 exhibit differences in virulence since H3 showed a lower resistance to cationic peptides compared with CP3, and a lower ability to induce proliferation in gingival epithelial cells. Here, we aimed to determine whether differences in virulence between these two strains are associated with the presence or absence of specific genes encoding virulence factors. We sequenced the whole genomes of both P. gingivalis CP3 and H3 and conducted a comparative analysis regarding P. gingivalis virulence genetic determinants. To do so, we performed a homology search of predicted protein sequences in CP3 and H3 genomes against the most characterized virulence genes for P. gingivalis available in the literature. In addition, we performed a genomic comparison of CP3 and H3 with all the 62 genomes of P. gingivalis found in NCBI's RefSeq database. This approach allowed us to determine the evolutionary relationships of CP3 and H3 with other virulent and avirulent strains; and additionally, to detect variability in presence/absence of virulence genes among P. gingivalis genomes. Our results show genetic variability in the hemagglutinin genes. While CP3 possesses one copy of hagA and two of hagC, H3 has no hagA and only one copy of hagC. Experimentally, this finding is related to lower in vitro hemmaglutination ability of H3 compared to CP3. Moreover, while CP3 encodes a gene for a major fimbrium subunit FimA type 4 (CP3_00160), H3 possess a FimA type 1 (H3_01400). Such genetic differences are in agreement with both lower biofilm formation ability and less intracellular invasion to oral epithelial cells exhibited by H3, compared with the virulent strain CP3. Therefore, here we provide new results on the genome sequences, comparative genomics analyses, and phenotypic analyses of two P. gingivalis strains. The genomics comparison of these two strains with the other 62 genomes included in the analysis provided relevant results regarding genetic determinants and their association with P. gingivalis virulence.
Collapse
Affiliation(s)
- Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Anilei Hoare
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cristopher Soto
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Isaac Bugueño
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marcela Olivera
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Jose Manuel Pérez-Donoso
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Martins CHG, Abrão F, Moraes TS, Oliveira PF, Tavares DC, Magalhães LG, Galvão FC, Veneziani RCS, Ambrósio SR. Kaurenoic acid and its sodium salt derivative: antibacterial activity against Porphyromonas gingivalis and their mechanism of action. Future Microbiol 2018; 13:1585-1601. [DOI: 10.2217/fmb-2018-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To evaluate the antibacterial activity of 12 kaurane-type diterpenes against a panel of bacteria that cause endodontic infection. Methods & materials: We conducted tests against bacteria in the planktonic or in the sessile mode, cytotoxic assays for the most promising compounds against human normal lung fibroblast cells, and Porphyromonas gingivalis (ATCC 33277) proteomic analysis. Results & conclusion: Kaurenoic acid and its salt exhibited satisfactory antibacterial action against the evaluated bacteria. Proteomic analysis suggested that these compounds might interfere in bacterial metabolism and virulence factor expression. Kaurane-type diterpenes are an important class of natural products and should be considered in the search for new irrigating solutions to treat endodontic infections.
Collapse
Affiliation(s)
- Carlos HG Martins
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Fariza Abrão
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Thaís S Moraes
- Research Laboratory of Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Pollyanna F Oliveira
- Laboratory of Mutagenesis, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Denise C Tavares
- Laboratory of Mutagenesis, University of Franca - UNIFRAN, Franca, 14404-600, São Paulo, Brazil
| | - Lizandra G Magalhães
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| | - Fábio C Galvão
- Department of Biological Sciences, São Paulo State University - UNESP, Araraquara, 14800-901, São Paulo, Brazil
| | - Rodrigo CS Veneziani
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| | - Sérgio R Ambrósio
- Nucleus of Research in Sciences & Technology, University of Franca - UNIFRAN, 14404-600, São Paulo, Brazil
| |
Collapse
|
5
|
Connolly E, Millhouse E, Doyle R, Culshaw S, Ramage G, Moran GP. The Porphyromonas gingivalis hemagglutinins HagB and HagC are major mediators of adhesion and biofilm formation. Mol Oral Microbiol 2016; 32:35-47. [PMID: 28051836 DOI: 10.1111/omi.12151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis is a bacterium associated with chronic periodontitis that possesses a family of genes encoding hemagglutinins required for heme acquisition. In this study we generated ΔhagB and ΔhagC mutants in strain W83 and demonstrate that both hagB and hagC are required for adherence to oral epithelial cells. Unexpectedly, a double ΔhagB/ΔhagC mutant had less severe adherence defects than either of the single mutants, but was found to exhibit increased expression of the gingipain-encoding genes rgpA and kgp, suggesting that a ΔhagB/ΔhagC mutant is only viable in populations of cells that exhibit increased expression of genes involved in heme acquisition. Disruption of hagB in the fimbriated strain ATCC33277 demonstrated that HagB is also required for stable attachment of fimbriated bacteria to oral epithelial cells. Mutants of hagC were also found to form defective single and multi-species biofilms that had reduced biomass relative to biofilms formed by the wild-type strain. This study highlights the hitherto unappreciated importance of these genes in oral colonization and biofilm formation.
Collapse
Affiliation(s)
- E Connolly
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - E Millhouse
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - R Doyle
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S Culshaw
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - G Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, School of Dental Science, University of Glasgow, Glasgow, UK
| | - G P Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, School of Dental Science, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Belibasakis G, Thurnheer T, Bostanci N. Porphyromonas gingivalis: a heartful oral pathogen? Virulence 2014; 5:463-4. [PMID: 24759693 PMCID: PMC4063808 DOI: 10.4161/viru.28930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Georgios Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| |
Collapse
|
7
|
Bélanger M, Kozarov E, Song H, Whitlock J, Progulske-Fox A. Both the unique and repeat regions of the Porphyromonas gingivalis hemagglutin A are involved in adhesion and invasion of host cells. Anaerobe 2012; 18:128-34. [PMID: 22100486 PMCID: PMC3278541 DOI: 10.1016/j.anaerobe.2011.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/07/2011] [Accepted: 10/29/2011] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis is one of the major etiologic agents of adult periodontitis and has been associated with cardiovascular diseases. It expresses multiple hemagglutinins that are significant virulence factors and play an important role in bacterial attachment and invasion of host cells. The objective of this study was to determine the impact of P. gingivalis hemagglutinin A (HagA) on the attachment to and invasion of human coronary artery endothelial cells (HCAEC) and gingival epithelial cells (GEC). Bacterial strains expressing the HagA protein (or subunits), including Escherichia coli carrying plasmid pEKS5, E. coli carrying plasmid ST2, and Salmonella enterica serovar Typhimurium with plasmid pNM1.1 were used in this study. The strains were tested for their ability to attach to and invade HCAEC and GEC using antibiotic protection assays. In addition, the unique 5' N-terminal non-repeated segment of HagA was purified in recombinant form and a monoclonal antibody was created against the polypeptide. The monoclonal antibody against the unique portion of HagA was tested for inhibitory activity in these assays. The attachment of both E. coli strains expressing HagA fragment to host cells was significantly increased compared to their respective controls. However, they did not invade GEC or HCAEC. Interestingly, HagA expression in the Salmonella strain increased both adherence to and invasion of HCAEC, which may be due to the presence of the entire hagA ORF. A monoclonal antibody against the unique 5' N-terminal portion of HagA reduced invasion. Further experiments are needed to determine the role of the unique and the repeat segments of P. gingivalis HagA.
Collapse
Affiliation(s)
- Myriam Bélanger
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Emil Kozarov
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Hong Song
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Joan Whitlock
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| | - Ann Progulske-Fox
- University of Florida, Center for Molecular Microbiology and Department of Oral Biology, Box 100424, Gainesville, FL 32610-0424, USA
| |
Collapse
|
8
|
Comprehensive transcriptome analysis of the periodontopathogenic bacterium Porphyromonas gingivalis W83. J Bacteriol 2011; 194:100-14. [PMID: 22037400 DOI: 10.1128/jb.06385-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-density tiling microarray and RNA sequencing technologies were used to analyze the transcriptome of the periodontopathogenic bacterium Porphyromonas gingivalis. The compiled P. gingivalis transcriptome profiles were based on total RNA samples isolated from three different laboratory culturing conditions, and the strand-specific transcription profiles generated covered the entire genome, including both protein coding and noncoding regions. The transcription profiles revealed various operon structures, 5'- and 3'-end untranslated regions (UTRs), differential expression patterns, and many novel, not-yet-annotated transcripts within intergenic and antisense regions. Further transcriptome analysis identified the majority of the genes as being expressed within operons and most 5' and 3' ends to be protruding UTRs, of which several 3' UTRs were extended to overlap genes carried on the opposite/antisense strand. Extensive antisense RNAs were detected opposite most insertion sequence (IS) elements. Pairwise comparative analyses were also performed among transcriptome profiles of the three culture conditions, and differentially expressed genes and metabolic pathways were identified. With the growing realization that noncoding RNAs play important biological functions, the discovery of novel RNAs and the comprehensive transcriptome profiles compiled in this study may provide a foundation to further understand the gene regulation and virulence mechanisms in P. gingivalis. The transcriptome profiles can be viewed at and downloaded from the Microbial Transcriptome Database website, http://bioinformatics.forsyth.org/mtd.
Collapse
|
9
|
Gaddis DE, Michalek SM, Katz J. TLR4 signaling via MyD88 and TRIF differentially shape the CD4+ T cell response to Porphyromonas gingivalis hemagglutinin B. THE JOURNAL OF IMMUNOLOGY 2011; 186:5772-83. [PMID: 21498664 DOI: 10.4049/jimmunol.1003192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
10
|
Nasal immunization with a fusion protein consisting of the hemagglutinin A antigenic region and the maltose-binding protein elicits CD11c(+) CD8(+) dendritic cells for induced long-term protective immunity. Infect Immun 2010; 79:895-904. [PMID: 21115722 DOI: 10.1128/iai.01203-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the efficacy of a fusion protein consisting of the 25-kDa antigenic region of Porphyromonas gingivalis hemagglutinin A and the Escherichia coli maltose-binding protein (25k-hagA-MBP) as a nasal vaccine for the prevention of oral infection with P. gingivalis. Nasal immunization with 25k-hagA-MBP induced high levels of 25k-hagA-specific serum IgG, serum IgA, and salivary IgA antibodies in a Toll-like receptor 4 (TLR4)-dependent manner. These antibody responses were maintained for at least 1 year after immunization. Analysis of cytokine responses showed that nasal administration of 25k-hagA-MBP induced antigen-specific CD4(+) T cells producing interleukin 4 (IL-4) and IL-5, but not gamma interferon (IFN-γ), in the spleen and cervical lymph nodes (CLNs). Furthermore, increased numbers of CD11c(+) CD8α(+), but not CD11c(+) CD11b(+) or CD11c(+) B220(+), dendritic cells with upregulated expression of CD80, CD86, CD40, and major histocompatibility complex class II (MHC II) molecules were noted in the spleen, CLNs, and nasopharynx-associated lymphoreticular tissues (NALT). Interestingly, when 25k-hagA-MBP or cholera toxin (CT) was given intranasally to enable examination of their presence in neuronal tissues, the amounts of 25k-hagA-MBP were significantly lower than those of CT. Importantly, mice given 25k-hagA-MBP nasally showed a significant reduction in alveolar bone loss caused by oral infection with P. gingivalis, even 1 year after the immunization. These results suggest that 25k-hagA-MBP administered nasally would be an effective and safe mucosal vaccine against P. gingivalis infection and may be an important tool for the prevention of chronic periodontitis in humans.
Collapse
|
11
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Hemin-binding protein 35 (HBP35) plays an important role in bacteria–mammalian cells interactions in Porphyromonas gingivalis. Microb Pathog 2010; 48:116-23. [DOI: 10.1016/j.micpath.2010.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 11/23/2022]
|
13
|
Gaddis DE, Michalek SM, Katz J. Requirement of TLR4 and CD14 in dendritic cell activation by Hemagglutinin B from Porphyromonas gingivalis. Mol Immunol 2009; 46:2493-504. [PMID: 19540594 DOI: 10.1016/j.molimm.2009.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/18/2009] [Indexed: 01/04/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that is one of the causative agents of chronic adult periodontal disease. Among the potential virulence factors of P. gingivalis are the hemagglutinins. Recombinant Hemagglutinin B (rHagB) from P. gingivalis has been shown to activate the immune system by inducing specific antibodies that protect against experimental periodontal bone loss following P. gingivalis infection. Since different microbial products can stimulate dendritic cells (DC) through Toll-like receptors (TLRs), subsequently leading to T cell activation and antibody production, we wanted to investigate the immunostimulatory effect of rHagB on DC and the role of TLR signaling in this process. Using an endotoxin free rHagB preparation, our results show that stimulation of murine bone marrow-derived DC with rHagB leads to upregulation of the costimulatory molecules CD86 and CD40, activation of p38 and ERK MAP kinases, transcription factors NF-kappaB, CREB and IRF-3 and the production of IL-6, TNF-alpha, IL-12p40 and to a lesser extent IL-10 and IFN-beta. This activation process was absolutely dependent on TLR4 and CD14. While upregulation of CD86 was independent of the adaptor molecule MyD88, CD40 upregulation and optimal cytokine (IL-6, TNF-alpha, IL-12p40, IL-10 and IFN-beta) production required both MyD88 and TRIF molecules. These results are of importance since they are the first to provide insights into the interaction of rHagB with DC and TLRs. The information from this study will aid in the design of effective vaccines strategies against chronic adult periodontal disease.
Collapse
Affiliation(s)
- Dalia E Gaddis
- Department of Microbiology, University of Alabama at Birmingham, 35294-2170, United States
| | | | | |
Collapse
|
14
|
Pathangey L, Kohler JJ, Isoda R, Brown TA. Effect of expression level on immune responses to recombinant oral Salmonella enterica serovar Typhimurium vaccines. Vaccine 2009; 27:2707-11. [PMID: 19428883 DOI: 10.1016/j.vaccine.2009.02.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/30/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Live, attenuated Salmonella has been used to express heterologous antigens for development of oral vaccines. Often, expression must be regulated because of deleterious effects on the Salmonella vector. The effect of varying expression levels on immune response parameters has not been well defined. In this study we introduced mutations in the -10 region of the trc promoter in the expression plasmid to generate series of vaccine strains with different levels of expression of a model antigen, the hemagglutinin HagB from Porphyromonas gingivalis. There was no difference in growth rates of the Salmonella vaccine strains containing the wild-type, the mutant plasmids or the empty expression vector. The primary IgG response in serum in mice orally immunized with the wild-type strain peaked 3-4 weeks earlier than the intermediate expression level strains, suggesting that high expression levels may favor an earlier response. While there was a trend for anti-HagB recall responses to correlate with higher expression level, the peak levels were not significantly different even for expression levels as low as 33% of wild-type. A similar trend in terms of response level was seen with serum and salivary IgA. The subclass of the IgG response was predominately IgG2a regardless of expression level, consistent with a Th1 response. These data suggest that isotype distribution, immune response level and T helper cell profile are largely unaffected over a wide range of expression levels.
Collapse
Affiliation(s)
- Latha Pathangey
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States
| | | | | | | |
Collapse
|
15
|
Mahale S, Dani N, Ansari SS, Kale T. Gene therapy and its implications in Periodontics. J Indian Soc Periodontol 2009; 13:1-5. [PMID: 20376232 PMCID: PMC2846667 DOI: 10.4103/0972-124x.51886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 04/11/2009] [Indexed: 11/05/2022] Open
Abstract
Gene therapy is a field of Biomedicine. With the advent of gene therapy in dentistry, significant progress has been made in the control of periodontal diseases and reconstruction of dento-alveolar apparatus.Implementation in periodontics include:-As a mode of tissue engineering with three approaches: cell, protein-based and gene delivery approach.-Genetic approach to Biofilm Antibiotic Resistance.Future strategies of gene therapy in preventing periodontal diseases:-Enhances host defense mechanism against infection by transfecting host cells with an antimicrobial peptide protein-encoding gene.-Periodontal vaccination.Gene therapy is one of the recent entrants and its applications in the field of periodontics are reviewed in general here.
Collapse
Affiliation(s)
- Swapna Mahale
- Professor and Guide, MGV's KBH Dental College and Hospital, Panchavati, Nashik - 422 003, Maharashtra, India
| | - Nitin Dani
- Professor and HOD, MGV's KBH Dental College and Hospital, Panchavati, Nashik - 422 003, Maharashtra, India
| | - Shumaila S. Ansari
- PG Student, MGV's KBH Dental College and Hospital, Panchavati, Nashik - 422 003, Maharashtra, India
| | - Triveni Kale
- Lecturer, MGV's KBH Dental College and Hospital, Panchavati, Nashik - 422 003, Maharashtra, India
| |
Collapse
|
16
|
Human alpha- and beta-defensins bind to immobilized adhesins from Porphyromonas gingivalis. Infect Immun 2008; 76:5714-20. [PMID: 18852241 DOI: 10.1128/iai.00997-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human neutrophil peptide alpha-defensins (HNPs) and human beta-defensins (HBDs) are small well-characterized peptides with broad antimicrobial activities and a diversity of innate immune functions. Although the interactions of defensins with bacteria and their membranes have been well characterized, the interactions of defensins with bacterial adhesins have not. Here we determine if HNPs and HBDs bind to the immobilized adhesins of Porphyromonas gingivalis strain 381, recombinant hemagglutinin B (rHagB) and recombinant fimbrillin A (rFimA), by surface plasmon resonance spectroscopy. Association of HNPs and HBDs with rHagB or rFimA was dose dependent and defensin specific. HBD3, HNP-2, and HNP-1 bound more readily to immobilized rHagB than HBD2 and HBD1 did. HNP-2, HNP-1, and HBD3 bound more readily to immobilized rFimA than HBD1 and HBD2 did. Binding of defensins to adhesins may serve to prevent microbial adherence to tissues, attenuate proinflammatory cytokine responses, and facilitate delivery of bound antigen to antigen-presenting cells with defensin receptors.
Collapse
|
17
|
McAlister AD, Sroka A, Fitzpatrick RE, Quinsey NS, Travis J, Potempa J, Pike RN. Gingipain enzymes from Porphyromonas gingivalis preferentially bind immobilized extracellular proteins: a mechanism favouring colonization? J Periodontal Res 2008; 44:348-53. [PMID: 18973544 DOI: 10.1111/j.1600-0765.2008.01128.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Porphyromonas gingivalis, an anaerobic bacterium associated with adult periodontal disease, employs a number of pathogenic mechanisms, including protease/adhesin complexes (gingipains), fimbriae and hemagglutinins, to maintain attachment within colonized hosts. Here we examined the binding of gingipains and whole, live P. gingivalis cells to immobilized extracellular matrix proteins in the presence of soluble forms of the same proteins, to investigate whether this may constitute a colonization mechanism in the oral environment. MATERIAL AND METHODS Binding of purified gingipain molecules and whole bacterial cells to immobilized matrix proteins was examined in the presence and absence of soluble competitors using enzyme-linked immunosorbent assays. RESULTS Purified gingipains or whole, live bacteria preferentially bound immobilized forms of matrix proteins, even in the presence of soluble forms of the same proteins. Fimbriae appeared to be redundant for adhesion to immobilized proteins in the presence of the gingipains, indicating that the protease/adhesins and hemagglutinins may be more important for adhesion under these conditions. CONCLUSION The data presented here provide evidence for a model of adhesion for P. gingivalis within the fluid environment of the oral cavity, where preferential binding of matrix-located proteins over soluble forms facilitates colonization of the host.
Collapse
Affiliation(s)
- A D McAlister
- Department of Biochemistry and Molecular Biology and CRC for Oral Health Sciences, Monash University, Clayton, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Isoda R, Simanski SP, Pathangey L, Stone AES, Brown TA. Expression of a Porphyromonas gingivalis hemagglutinin on the surface of a Salmonella vaccine vector. Vaccine 2007; 25:117-26. [PMID: 16942819 DOI: 10.1016/j.vaccine.2006.06.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 06/19/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Live, attenuated Salmonella strains can serve as vectors for the delivery of recombinant vaccine antigens for development of oral mucosal vaccines. Various vaccine parameters can affect the immune responses elicited by Salmonella vectors, including the expression level, location and timing of expressed antigens. We have previously established immunogenic Salmonella enterica serovar Typhimurium strains which cytoplasmically express hemagglutinin B (HagB) of Porphyromonas gingivalis, a putative periodontal pathogen. In this study, we sought to determine whether the 39 kDa HagB protein could be stably expressed on the surface of an avirulent Salmonella vaccine strain. The hagB gene was cloned into an expression plasmid as a C-terminal fusion with Lpp-OmpA, a hybrid surface display system. High expression of Lpp-OmpA-HagB proved to be toxic to the vaccine strain, and it was necessary to introduce attenuating mutations in the trc promoter. Stable expression was obtained in transformants with promoter mutations that resulted in low levels of expression. The expression of Lpp-OmpA-HagB was confirmed by ELISA and Western blot. Localization to the outer membrane/periplasm was confirmed by transmission electron microscopy using immunogold labeling, surface labeling of whole mounts using electron microscopy, flow cytometry, and by quantitation of HagB in cytoplasmic, as well as inner and outer cell membrane fractions. When delivered orally in mice, the surface-expressing strain induced higher serum IgG and IgA responses to HagB than a cytoplasmic expressing strain, while responses in secretions were comparable. These results suggest that surface localization may differentially enhance the immunogenicity of antigens expressed by live, avirulent Salmonella vaccine vectors.
Collapse
Affiliation(s)
- Ryutaro Isoda
- Department of Oral Biology, P.O. Box 100424, University of Florida, Gainesville, FL 32610, United States
| | | | | | | | | |
Collapse
|
19
|
Kobayashi T, Kaneko S, Tahara T, Hayakawa M, Abiko Y, Yoshie H. Antibody responses to Porphyromonas gingivalis hemagglutinin A and outer membrane protein in chronic periodontitis. J Periodontol 2006; 77:364-9. [PMID: 16512750 DOI: 10.1902/jop.2006.050138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hemagglutinin and outer membrane protein (OMP) are major virulence factors associated with colonization of Porphyromonas gingivalis in the gingival crevice. The genes for the 200-kDa antigenic protein (200-kDa AP) and 40-kDa OMP of P. gingivalis have been successfully cloned. Additionally, the 200-kDa AP gene has been shown to constitute the hemagglutinin A (hagA) gene of P. gingivalis. Therefore, this study was constructed to evaluate the distributions and serum levels of immnoglobulin G (IgG) antibodies specific for 200-kDa AP and 40-kDa OMP in periodontitis patients. METHODS Fifty patients with chronic periodontitis and 59 controls without periodontal destruction were enrolled in this study. We cloned the genes for 200-kDa AP and 40-kDa OMP from P. gingivalis and constructed the purified recombinant proteins. Serum levels of IgG subclass antibodies specific for both recombinant 200-kDa and 40-kDa OMP were determined in patients and controls by an enzyme-linked immunosorbent assay (ELISA). RESULTS The serum IgG subclass distribution for patients and controls was IgG1>IgG4>IgG2>IgG3 in the anti-200-kDa AP response, which was almost identical to that in the anti-40-kDa OMP response. The patient group showed significantly higher serum IgG responses to the 40-kDa OMP than the control group (P<0.01). In contrast, IgG subclass responses to the 200-kDa AP were not different between the patients and controls. Serum levels of antibodies reactive with both 200-kDa and 40-kDa proteins did not have a significant association with mean probing depth. CONCLUSION These results suggested that serum IgG responses against P. gingivalis OMP rather than the hagA may be more active in chronic periodontitis.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, and General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Song H, Bélanger M, Whitlock J, Kozarov E, Progulske-Fox A. Hemagglutinin B is involved in the adherence of Porphyromonas gingivalis to human coronary artery endothelial cells. Infect Immun 2005; 73:7267-73. [PMID: 16239522 PMCID: PMC1273858 DOI: 10.1128/iai.73.11.7267-7273.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis is a periodontopathogen that may play a role in cardiovascular diseases. Hemagglutinins may function as adhesins and are required for virulence of several bacterial pathogens. The aim of this study was to determine the role of hemagglutinin B (HagB) in adherence of P. gingivalis to human coronary artery endothelial (HCAE) cells. P. gingivalis strain 381, a P. gingivalis 381 HagB mutant, Escherichia coli JM109 expressing HagB (E. coli-HagB), and E. coli JM109 containing pUC9 (E. coli-pUC9) were tested for their ability to attach to HCAE cells. Inhibition assays were performed to determine the ability of purified recombinant HagB (rHagB) as well as antibodies to HagB, including the polyclonal antibody (PAb) A7985 and the monoclonal antibody (MAb) HL1858, to inhibit the attachment of P. gingivalis to HCAE cells. As expected, when the attachment of P. gingivalis and the HagB mutant were compared, no statistical significance was observed between the two groups (P = 0.331), likely due to the expression of the hagB homolog hagC. However, E. coli-HagB adhered significantly better to HCAE cells than did E. coli-pUC9, the control strain. In a competition assay, the presence of purified rHagB decreased bacterial adhesion of P. gingivalis or E. coli-HagB to HCAE cells. The presence of PAb A7985 or MAb HL1858 also significantly decreased attachment of P. gingivalis and E. coli-HagB to host cells. These results indicate that HagB is involved in the adherence of P. gingivalis to human primary endothelial cells.
Collapse
Affiliation(s)
- Hong Song
- University of Florida, Center for Molecular Microbiology, Department of Oral Biology, College of Dentistry, P.O. Box 100424, Gainesville, FL 32610-0424, USA
| | | | | | | | | |
Collapse
|
21
|
Zhang P, Yang QB, Balkovetz DF, Lewis JP, Clements JD, Michalek SM, Katz J. Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 2005; 23:4734-44. [PMID: 15955601 DOI: 10.1016/j.vaccine.2005.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/03/2005] [Accepted: 05/09/2005] [Indexed: 11/21/2022]
Abstract
The hemagglutinin/adhesin HArep domain is present in the gingipains HRgpA and Kgp and in the hemagglutinin HagA of Porphyromonas gingivalis and is felt to be important in the virulence of this bacterium. In the present study, we determined the immunogenicity of recombinant HArep from the gingipain Kgp (termed Kgp-rHArep) and the effectiveness of the B subunit of cholera toxin (CTB), compared to other adjuvants in potentiating a specific response to Kgp-rHArep following intranasal (i.n.) immunization of mice. Furthermore, we determined the effectiveness of anti-Kgp-rHArep antibodies in protection against P. gingivalis invasion of epithelial cells. Evidence is provided that Kgp-rHArep was effective in inducing immune responses following systemic or mucosal immunization. Kgp-rHArep induced both a Th1- and Th2-type response following i.n. immunization. Immunization of mice with Kgp-rHArep and CTB, either admixed or chemically conjugated to the antigen, via the i.n. route, resulted in a significant augmentation of the systemic and mucosal immune response to Kgp-rHArep, which was similar to or higher than the responses seen in mice immunized with antigen and the other adjuvants tested. CTB and the heat-labile toxin of Escherichia coli potentiated a Th1- and Th2-type response to Kgp-rHArep, whereas the adjuvant monophosphoryl lipid A preferentially promoted a Th1-type response to the antigen. Furthermore, anti-Kgp-rHArep antibodies were shown to protect against P. gingivalis invasion of epithelial cells in an in vitro system. These results demonstrate the effectiveness of certain mucosal adjuvants in potentiating and in altering the nature of the immune response to Kgp-rHArep following i.n. immunization, and provide evidence for the potential usefulness of Kgp-rHArep for the development of a vaccine against periodontal disease.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pediatric Dentistry, University of Alabama at Birmingham, 845 19th Street South, BBRB258/5, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Vanterpool E, Roy F, Fletcher HM. Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun 2005; 73:3971-82. [PMID: 15972484 PMCID: PMC1168568 DOI: 10.1128/iai.73.7.3971-3982.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|
23
|
Abe N, Baba A, Takii R, Nakayama K, Kamaguchi A, Shibata Y, Abiko Y, Okamoto K, Kadowaki T, Yamamoto K. Roles of Arg- and Lys-gingipains in coaggregation of Porphyromonas gingivalis: identification of its responsible molecules in translation products of rgpA, kgp, and hagA genes. Biol Chem 2005; 385:1041-7. [PMID: 15576324 DOI: 10.1515/bc.2004.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arg- (Rgp) and Lys-gingipains (Kgp) are two individual cysteine proteinases produced by Porphyromonas gingivalis , an oral anaerobic bacterium, and are implicated as major virulence factors in a wide range of pathologies of adult periodontitis. Coaggregation of this bacterium with other oral bacteria is an initial and critical step in infectious processes, yet the factors and mechanisms responsible for this process remain elusive. Here we show that the initial translation products of the rgpA , kgp and hemagglutinin hagA genes are responsible for coaggregation of P. gingivalis and that the proteolytic activity of Rgp and Kgp is indispensable in this process. The rgpA rgpB kgp- and rgpA kgp hagA -deficient triple mutants exhibited no coaggregation activity with Actinomyces viscosus , whereas the kgp -null and rgpA rgpB -deficient double mutants significantly retained this activity. Consistently, the combined action of Rgp- and Kgp-specific inhibitors strongly inhibited the coaggregation activity of the bacterium, although single use of Rgp- or Kgp-specific inhibitor significantly retained this activity. We also demonstrate that the 47- and 43-kDa proteins produced from the translation products of the rgpA , kgp , and hagA genes by proteolytic activity of both Rgp and Kgp are responsible for the coaggregation of P. gingivalis.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Pharmacology, Graduate School of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kiyama-Kishikawa M, Hiratsuka K, Abiko Y. Gene expression profiling and characterization under hemin limitation in Porphyromonas gingivalis. J Oral Sci 2005; 47:191-7. [PMID: 16415563 DOI: 10.2334/josnusd.47.191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Hemin is an important nutrient for Porphyromonas gingivalis growth and pathogenicity. We examined the gene expression profile of P. gingivalis, including genes involved in its pathogenicity, at various growth stages under hemin-standard and limited conditions by using a custom-made microarray. The transcription of many genes decreased after late-log and mid-log phases under hemin-standard and limited conditions, respectively. We focused on two groups of genes while comparing gene expression profiles under hemin-standard and limited conditions by gene tree analysis. Genes belonging to group A maintained high transcriptional levels, whereas genes in group B were expressed at low levels under standard hemin conditions. However, group B genes increased remarkably under hemin-limited conditions. Groups A and B contained genes involved in regulatory functions and protein fate, respectively. Genes related to energy metabolism, transport, and protein binding were present in both groups. Our results suggest that P. gingivalis experienced severe stress under hemin-limited conditions, and growth phase-dependent changes in transcription levels were observed for many genes. Moreover, increased expression of genes involved in energy metabolism suggests that hemin is related not only to pathogenicity, but also energy metabolism.
Collapse
Affiliation(s)
- Michiko Kiyama-Kishikawa
- Department of Biochemistry, and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Japan
| | | | | |
Collapse
|
25
|
Vanterpool E, Roy F, Fletcher HM. The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun 2004; 72:5555-64. [PMID: 15385452 PMCID: PMC517529 DOI: 10.1128/iai.72.10.5555-5564.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A unique 1.3-kb open reading frame downstream of the bcp-recA-vimA transcriptional unit was cloned, insertionally inactivated with the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, the growth rate of the mutant strain (designated FLL93) was reduced, and when plated on Brucella blood agar it was nonpigmented and nonhemolytic. Arginine- and lysine-specific gingipain activities were reduced by approximately 90 and 85%, respectively, relative to activities of the parent strain. These activities were unaffected by the culture's growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92, which has increased proteolytic activity in stationary phase. Expression of the rgpA, rgpB, and kgp gingipain genes was unaltered in P. gingivalis FLL93 compared to that of the wild-type strain. Further, in extracellular protein fractions a 64-kDa band was identified that was immunoreactive with the RgpB-specific proenzyme antibodies. Active-site labeling with dansyl-glutamyl-glycyl-arginyl chloromethyl ketone or immunoblot analysis showed no detectable protein band representing the gingipain catalytic domain. In vitro protease activity could be slightly induced by a urea denaturation-renaturation cycle in an extracellular protein fraction, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of flanking genes, including recA, vimA, and Pg0792, was unaltered by the mutation. Taken together, these results suggest that the vimA downstream gene, designated vimE (for virulence-modulating gene E), is involved in the regulation of protease activity in P. gingivalis.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
26
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
27
|
Sugano N, Ikeda K, Oshikawa M, Sawamoto Y, Tanaka H, Ito K. Differential cytokine induction by two types of Porphyromonas gingivalis. ACTA ACUST UNITED AC 2004; 19:121-3. [PMID: 14871353 DOI: 10.1046/j.0902-0055.2003.00119.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of Porphyromonas gingivalis with type II fimA is strongly associated with adult periodontitis. However, the importance of specific fimA types in the immune response is unknown. Two types of P. gingivalis (type I and type II) and Actinomyces naeslundii were assessed for their degree of cytokine induction in the macrophage-like human cell line U937. Real-time reverse transcriptase polymerase chain reaction was used to determine mRNA expression of 12 cytokines. Significant levels of interleukin (IL)-8 induction and a similar cytokine expression pattern were observed at 6 h postinfection for all three bacterial strains. However, type II P. gingivalis infection showed statistically higher levels of IL-1beta, IL-8, IL-12 and tumor necrosis factor-alpha mRNA induction than those of control at 24 h postinfection, whereas type I P. gingivalis and A. naeslundii showed no significant induction of these cytokines. These data suggest that compared with A. naeslundii and type I P. gingivalis, type II P. gingivalis prolongs the cytokine response. Although other factors may also be involved, the sustained cytokine response induced by type II P. gingivalis may play an important role in enhanced periodontal tissue inflammation and destruction.
Collapse
Affiliation(s)
- N Sugano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Vågnes KS, Vågnes ØB, Vasstrand EN, Bakken V. Expression of the beta-adhesin part of HRgpA in Sprague Dawley rats induces a specific antibody response. ORAL MICROBIOLOGY AND IMMUNOLOGY 2004; 19:77-82. [PMID: 14871345 DOI: 10.1046/j.0902-0055.2002.00117.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beta-adhesin part of the Porphyromonas gingivalis W50 (ATCC 53978) protease HRgpA was cloned in an eukaryotic expression vector and expressed in COS-7 cells. The monoclonal antibody MAb (61BG1.3), specific for the hemagglutinating domain of beta-adhesin, recognized the expressed beta-adhesin in the transfected cells both by immunoblot and immunofluorescence. Sprague Dawley rats were immunized intramuscularly with beta-adhesin encoding expression plasmid and expression plasmid without beta-adhesin insert. Skeletal muscle tissue at the site of immunization in the beta-adhesin immunized animals was shown to express this protein. The immunization induced a beta-adhesin-specific antibody response. Sera from the immunized animals were tested for hemagglutination inhibiting activity. Due to high natural inhibiting activity in all rat sera tested, no increased hemagglutination inhibition was detected in sera from the beta-adhesin immunized animals.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- COS Cells
- Chlorocebus aethiops
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/immunology
- Fluorescent Antibody Technique, Direct
- Genetic Vectors
- Gingipain Cysteine Endopeptidases
- Hemagglutination
- Hemagglutinins/genetics
- Hemagglutinins/immunology
- Immunization
- Immunoblotting
- Muscle, Skeletal/metabolism
- Plasmids
- Porphyromonas gingivalis/immunology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Transfection
Collapse
Affiliation(s)
- K S Vågnes
- Department of Odontology-Oral Microbiology, University of Bergen, Norway.
| | | | | | | |
Collapse
|
29
|
Induction of Hemagglutination by Recombinant Porphyromonas Gingivalis 40-kDa Outer Membrane Protein. ACTA ACUST UNITED AC 2004. [DOI: 10.5466/ijoms.2.54] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Suyama T, Hayakawa M, Abiko Y. Subcloning of the 200-kDa Porphyromonas gingivalis antigen gene and inhibition of hemagglutination by an antibody against the recombinant protein. J Oral Sci 2004; 46:163-9. [PMID: 15508749 DOI: 10.2334/josnusd.46.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Porphyromonas gingivalis is a major etiologic agent of periodontitis and exhibits hemagglutinating and adherence activities. We previously succeeded in molecular cloning the 200-kDa cell-surface antigenic protein (200-k AP), designated pMD101, that is recognized in sera from periodontitis patients, and identified the 200-k AP as a hemagglutinin A (HagA) derivative. HagA is one of the hemagglutinins known to be a useful vaccine against periodontitis. HagA has four large, contiguous, direct repeats and the repeat unit is believed to contain the hemagglutinin domain. Because production of 200-k AP was low in the Escherichia coli host, it was difficult to obtain large amounts of recombinant protein. In this study, we attempt to subclone the gene encoding the useful antigen from pMD101 in an effort to obtain large quantities. A subclone, designated pMD160, encoding a fusion protein of 80-kDa HagA and maltose-binding protein was successfully constructed, and the novel clone produced relatively large amounts of recombinant protein. DNA nucleotide sequences of the pMD160 insert demonstrated that the 80-kDa protein contained a short hemagglutinin motif and a direct repeat unit region. The recombinant protein was purified to homogeneity and rabbit antiserum was raised. The antibody was capable of inhibiting the hemagglutinating activity of P. gingivalis. These findings suggest that novel 80-kDa HagA derivative proteins can be produced efficiently from E. coli hosts and these may be useful in developing immunotherapy against periodontitis infected by P. gingivalis.
Collapse
Affiliation(s)
- Tsutomu Suyama
- Departments of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | |
Collapse
|
31
|
Jain A, Batista EL, Serhan C, Stahl GL, Van Dyke TE. Role for periodontitis in the progression of lipid deposition in an animal model. Infect Immun 2003; 71:6012-8. [PMID: 14500522 PMCID: PMC201045 DOI: 10.1128/iai.71.10.6012-6018.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiologic studies have implicated periodontitis as a risk factor for the development of cardiovascular disease. However, no prospective studies investigating this potential relationship have been carried out. Age- and sex-matched New Zealand White rabbits were maintained on a diet consisting of 0.5% fat for 13 weeks to induce the accumulation of lipid deposits in the aorta as a model for atherogenesis. One-half of the animals received silk ligatures around their mandibular premolars followed by an application of a periodontal pathogen, Porphyromonas gingivalis, to induce periodontitis. Animals were sacrificed after 14 weeks. Periodontal disease severity was quantified radiographically, histologically, and by direct visualization of bone loss on defleshed skulls. Lipid deposition was evaluated by computer-assisted morphometry in the aortas en face after lipid deposits were stained with Sudan IV. Animals with experimentally induced periodontitis had more extensive accumulations of lipids in the aorta than did nonperiodontitis animals (P < 0.05), and there was a positive correlation between the severity of periodontal disease and the extent of lipid deposition (r(2) = 0.9501). The results provide direct evidence that periodontitis may be a risk factor and may contribute to the pathogenesis of atherosclerosis. The data support the concept that infections at remote locations can modulate atherosclerotic events distantly.
Collapse
Affiliation(s)
- Ashish Jain
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, 100 East Newton Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
32
|
Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, Haft DH, Kolonay JF, Nelson WC, Mason T, Tallon L, Gray J, Granger D, Tettelin H, Dong H, Galvin JL, Duncan MJ, Dewhirst FE, Fraser CM. Complete genome sequence of the oral pathogenic Bacterium porphyromonas gingivalis strain W83. J Bacteriol 2003; 185:5591-601. [PMID: 12949112 PMCID: PMC193775 DOI: 10.1128/jb.185.18.5591-5601.2003] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete 2,343,479-bp genome sequence of the gram-negative, pathogenic oral bacterium Porphyromonas gingivalis strain W83, a major contributor to periodontal disease, was determined. Whole-genome comparative analysis with other available complete genome sequences confirms the close relationship between the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum and the green-sulfur bacteria. Within the CFB phyla, the genomes most similar to that of P. gingivalis are those of Bacteroides thetaiotaomicron and B. fragilis. Outside of the CFB phyla the most similar genome to P. gingivalis is that of Chlorobium tepidum, supporting the previous phylogenetic studies that indicated that the Chlorobia and CFB phyla are related, albeit distantly. Genome analysis of strain W83 reveals a range of pathways and virulence determinants that relate to the novel biology of this oral pathogen. Among these determinants are at least six putative hemagglutinin-like genes and 36 previously unidentified peptidases. Genome analysis also reveals that P. gingivalis can metabolize a range of amino acids and generate a number of metabolic end products that are toxic to the human host or human gingival tissue and contribute to the development of periodontal disease.
Collapse
Affiliation(s)
- Karen E Nelson
- The Institute for Genomic Research, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang QB, Martin M, Michalek SM, Katz J. Mechanisms of monophosphoryl lipid A augmentation of host responses to recombinant HagB from Porphyromonas gingivalis. Infect Immun 2002; 70:3557-65. [PMID: 12065496 PMCID: PMC128110 DOI: 10.1128/iai.70.7.3557-3565.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative, black-pigmented anaerobe, is among the microorganisms implicated in the etiology of adult periodontal disease. This bacterium possesses a number of factors, including hemagglutinins, of potential importance in virulence. Our laboratory has shown the induction of protection to P. gingivalis infection after subcutaneous immunization with recombinant hemagglutinin B (rHagB). The purpose of this study was to determine if humoral antibody responses are induced after intranasal (i.n.) immunization of rHagB and if monophosphoryl lipid A (MPL), a nontoxic derivative of the lipid A region of lipopolysaccharide, acts as a mucosal adjuvant and potentiates responses to rHagB. Further, the effects of MPL on the nature of the response to HagB and on the costimulatory molecules B7-1 and B7-2 on different antigen-presenting cells (APC) were evaluated. Groups of BALB/c mice were immunized three times (2-week intervals) by the i.n. route with HagB (20 microg) alone or with MPL (25 microg). A group of nonimmunized mice served as control. Serum and saliva samples were collected prior to immunization and at approximately 2-week intervals and evaluated for serum immunoglobulin G (IgG) and IgG subclass and for salivary IgA antibody activity by enzyme-linked immunosorbent assay. Mice immunized with rHagB plus MPL had significantly higher salivary IgA (P < 0.05) and serum IgG (P < 0.05) anti-HagB responses than mice immunized with rHagB alone. The IgG1 and IgG2a subclass responses seen in mice immunized with rHagB plus MPL were significantly higher (P < 0.05) than those seen in mice immunized with rHagB only. Further, the IgG2a/IgG1 ratio in the latter group was approximately 1, whereas in mice immunized with rHagB plus MPL the ratio was <1. These results provide evidence for the participation of T helper (Th) 1 and Th2 cells in responses to rHagB and that MPL potentiates a type 2 response to HagB. MPL was also shown to preferentially up-regulate B7-2 expression on B cells, whereas a preferential increase in B7-1 costimulatory molecule was seen on macrophages and dendritic cells. These results provide evidence that MPL exerts a differential regulation in the expression of costimulatory molecules on APC.
Collapse
Affiliation(s)
- Qiu-Bo Yang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
34
|
Abiko Y. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 11:140-58. [PMID: 12002812 DOI: 10.1177/10454411000110020101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Indigenous micro-organisms in the oral cavity can cause two major diseases, dental caries and periodontal diseases. There is neither agreement nor consensus as to the actual mechanisms of pathogenesis of the specific virulence factors of these micro-organisms. The complexity of the bacterial community in dental plaque has made it difficult for the single bacterial agent of dental caries to be determined. However, there is considerable evidence that Streptococcus mutans is implicated as the primary causative organism of dental caries, and the cell-surface protein antigen (SA I/II) as well as glucosyltransferases (GTFs) produced by S. mutans appear to be major colonization factors. Various forms of periodontal diseases are closely associated with specific subgingival bacteria. Porphyromonas gingivalis has been implicated as an important etiological agent of adult periodontitis. Adherence of bacteria to host tissues is a prerequisite for colonization and one of the important steps in the disease process. Bacterial coaggregation factors and hemagglutinins likely play major roles in colonization in the subgingival area. Emerging evidence suggests that inhibition of these virulence factors may protect the host against caries and periodontal disease. Active and passive immunization approaches have been developed for immunotherapy of these diseases. Recent advances in mucosal immunology and the introduction of novel strategies for inducing mucosal immune responses now raise the possibility that effective and safe vaccines can be constructed. In this regard, some successful results have been reported in animal experimental models. Nevertheless, since the public at large might be skeptical about the seriousness of oral diseases, immunotherapy must be carried out with absolute safety. For this goal to be achieved, the development of safe antibodies for passive immunization is significant and important. In this review, salient advances in passive immunization against caries and periodontal diseases are summarized, and the biotechnological approaches for developing recombinant and human-type antibodies are introduced. Furthermore, our own attempts to construct single-chain variable fragments (ScFv) and human-type antibodies capable of neutralizing virulence factors are discussed.
Collapse
Affiliation(s)
- Y Abiko
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
35
|
Van Tilburg ML, Kozarov EV, Progulske-Fox A, Brady LJ. The effect of monoclonal antibody and route of immunization on the humoral immune response againstPorphyromonas gingivalis. ACTA ACUST UNITED AC 2001; 16:153-62. [PMID: 11358537 DOI: 10.1034/j.1399-302x.2001.016003153.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immunomodulation mediated by exogenous antibodies has been proposed as a vaccine strategy to improve immune protection against pathogenic microorganisms and suggested to contribute to protection following passive immunization. To test whether a monoclonal antibody directed against an adhesion epitope of the periodontal pathogen Porphyromonas gingivalis could influence the humoral immune response following mucosal immunization, BALB/c mice were immunized orally or intranasally with P. gingivalis alone or P. gingivalis coated with monoclonal antibody 61BG1.3. Differences in antigenic specificity of anti- P. gingivalis serum immunoglobulin G (IgG) were demonstrated between groups of mice that received monoclonal antibody-coated P. gingivalis versus those that received P. gingivalis alone by either route of immunization. Binding of monoclonal antibody 61BG1.3 to P. gingivalis prior to immunization did not influence the serum IgG subclass distribution. However, minor differences in subclass distribution were observed between the various routes of mucosal immunization. These results support the hypothesis that specific monoclonal antibody bound to a bacterial vaccine can alter the quality of the humoral immune response to that organism.
Collapse
Affiliation(s)
- M L Van Tilburg
- Department of Oral Biology, University of Florida, Gainseville FL 32610, USA
| | | | | | | |
Collapse
|
36
|
Curtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:192-216. [PMID: 11497373 DOI: 10.1177/10454411010120030101] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cysteine proteases of Porphyromonas gingivalis are extracellular products of an important etiological agent in periodontal diseases. Many of the in vitro actions of these enzymes are consistent with the observed deregulated inflammatory and immune features of the disease. They are significant targets of the immune responses of affected individuals and are viewed by some as potential molecular targets for therapeutic approaches to these diseases. Furthermore, they appear to represent a complex group of genes and protein products whose transcriptional and translational control and maturation pathways may have a broader relevance to virulence determinants of other persistent bacterial pathogens of human mucosal surfaces. As a result, the genetics, chemistry, and virulence-related properties of the cysteine proteases of P. gingivalis have been the focus of much research effort over the last ten years. In this review, we describe some of the progress in their molecular characterization and how their putative biological roles, in relation to the in vivo growth and survival strategies of P. gingivalis, may also contribute to the periodontal disease process.
Collapse
Affiliation(s)
- M A Curtis
- Department of Medical Microbiology, Bart's and The London, Queen Mary School of Medicine and Dentistry, UK.
| | | | | |
Collapse
|
37
|
Forng RY, Champagne C, Simpson W, Genco CA. Environmental cues and gene expression in Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Dis 2001; 6:351-65. [PMID: 11355267 DOI: 10.1111/j.1601-0825.2000.tb00127.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microorganisms typically adapt to environmental cues by turning on and off the expression of virulence genes which, in turn, allows for optimal growth and survival within different environmental niches. This adaptation strategy includes sensing and responding to changes in nutrients, pH, temperature, oxygen tension, redox potential, microbial flora, and osmolarity. For a bacterium to adhere to, penetrate, replicate in, and colonize host cells, it is critical that virulence genes are expressed during certain periods of the infection process. Thus, throughout the different stages of an infection, different sets of virulence factors are turned on and off in response to different environmental signals, allowing the bacterium to effectively adapt to its varying niche. In this review, we focus on the regulation of virulence gene expression in two pathogens which have been implicated as major etiological agents in adult and juvenile periodontal diseases: Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Understanding the mechanisms of virulence gene expression in response to the local environment of the host will provide crucial information in the development of effective treatments targeted at eradication of these periodontal disease pathogens.
Collapse
Affiliation(s)
- R Y Forng
- Department of Plasma Derivatives, Jerome H. Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | |
Collapse
|
38
|
Abaibou H, Chen Z, Olango GJ, Liu Y, Edwards J, Fletcher HM. vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun 2001; 69:325-35. [PMID: 11119521 PMCID: PMC97887 DOI: 10.1128/iai.69.1.325-335.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 0.9-kb open reading frame encoding a unique 32-kDa protein was identified downstream of the recA gene of Porphyromonas gingivalis. Reverse transcription-PCR and Northern blot analysis showed that both the recA gene and this open reading frame are part of the same transcriptional unit. This cloned fragment was insertionally inactivated using the ermF-ermAM antibiotic resistance cassette to create a defective mutant by allelic exchange. When plated on Brucella blood agar, the mutant strain, designated P. gingivalis FLL92, was non-black pigmented and showed significant reduction in beta-hemolysis compared with the parent strain, P. gingivalis W83. Arginine- and lysine-specific cysteine protease activities, which were mostly soluble, were approximately 90% lower than that of the parent strain. Expression of the rgpA, rgpB, and kgp protease genes was the same in P. gingivalis FLL92 as in the wild-type strain. In contrast to the parent strain, P. gingivalis FLL92 showed increased autoaggregration in addition to a significant reduction in hemagglutinating and hemolysin activities. In in vivo experiments using a mouse model, P. gingivalis FLL92 was dramatically less virulent than the parent strain. A molecular survey of this mutant and the parent strain using all known P. gingivalis insertion sequence elements as probes suggested that no intragenomic changes due to the movement of these elements have occurred in P. gingivalis FLL92. Taken together, these results suggest that the recA downstream gene, designated vimA (virulence-modulating gene), plays an important role in virulence modulation in P. gingivalis W83, possibly representing a novel posttranscriptional or translational regulation of virulence factors in P. gingivalis.
Collapse
Affiliation(s)
- H Abaibou
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:341-9. [PMID: 11154429 DOI: 10.1034/j.1399-302x.2000.150601.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a major causative agent in the initiation and progression of severe forms of periodontal disease. In order to cause periodontal disease, P. gingivalis must colonize the subgingival region, a process that involves several distinct steps and multiple gene products. The organism must first navigate within the oral fluids in order to reach the hard or soft tissues of the mouth. Retention and growth of bacteria on these surfaces is facilitated by a repertoire of adhesins including fimbriae, hemagglutinins and proteinases. Once established subgingivally, P. gingivalis cells participate in intercellular communication networks with other oral prokaryotic cells and with eukaryotic cells. The establishment of these multiple interactive interfaces can lead to biofilm formation, invasion of root dentin and internalization within gingival epithelial cells. The resulting bacterial and host cellular locations, products and fate contribute to the success of P. gingivalis in colonizing the periodontal region.
Collapse
Affiliation(s)
- R J Lamont
- Department of Oral Biology, Box 357132, University of Washington, Seattle, WA 98195-7132, USA
| | | |
Collapse
|
40
|
Abstract
In common with many bacterial virulence genes, the fimbrillin (fimA) gene of Porphyromonas gingivalis is modulated in response to environmental fluctuation. The trans-acting components that comprise the regulatory system for transcriptional activity of the fimA gene in P. gingivalis were investigated. Three major proteins were found to bind to the upstream region of the fimA promoter. One of these proteins was fimbrillin itself, and the other two were a major arginine protease (Rgp) and lysine protease (Kgp). Production of these proteins was necessary for maximal fimA transcription. An exogenous fimA promoter-lacZ reporter was inactive when introduced into a strain of P. gingivalis carrying a mutation in the indigenous fimA gene. Furthermore, fimA mRNA levels were significantly decreased in rgp and kgp mutant strains. These data indicate that P. gingivalis has evolved multiple levels of control of fimbrial gene expression to enhance its survival in hostile environments.
Collapse
Affiliation(s)
- H Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | |
Collapse
|
41
|
Kozarov E, Miyashita N, Burks J, Cerveny K, Brown TA, McArthur WP, Progulske-Fox A. Expression and immunogenicity of hemagglutinin A from Porphyromonas gingivalis in an avirulent Salmonella enterica serovar typhimurium vaccine strain. Infect Immun 2000; 68:732-9. [PMID: 10639440 PMCID: PMC97199 DOI: 10.1128/iai.68.2.732-739.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a major etiologic agent of periodontitis, a chronic inflammatory disease that ultimately results in the loss of the supporting tissues of the teeth. Previous work has demonstrated the usefulness of avirulent Salmonella enterica serovar Typhimurium strains as antigen delivery systems for protective antigens of pathogens that colonize or cross mucosal surfaces. In this study, we constructed and characterized a recombinant S. enterica serovar Typhimurium avirulent vaccine strain which expresses hemagglutinin A and carries no antibiotic resistance markers. HagA, a major virulence-associated surface protein, is a potentially useful immunogen that contains an antigenic epitope which, in humans, elicits an immune response that is protective against subsequent colonization by P. gingivalis. The hagA gene, including its promoter, was cloned into a balanced-lethal Salmonella vector and transferred to the vaccine strain. Heterologous expression of HagA was demonstrated in both Escherichia coli JM109 and S. enterica serovar Typhimurium vaccine strain chi4072. The HagA epitope was present in its native configuration as determined by immunochemistry and immunoelectron microscopy. Purified recombinant HagA was recognized by sera from mice immunized with the S. enterica serovar Typhimurium vaccine strain. The HagA-specific antigen of the vaccine was also found to be recognized by serum from a periodontal patient. This vaccine strain, which expresses the functional hemagglutinin protein, induces a humoral immune response against HagA and may be useful for developing a protective vaccine against periodontal diseases associated with P. gingivalis.
Collapse
Affiliation(s)
- E Kozarov
- Department of Oral Biology and the Periodontal Disease Research Center, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Progulske-Fox A, Kozarov E, Dorn B, Dunn W, Burks J, Wu Y. Porphyromonas gingivalis virulence factors and invasion of cells of the cardiovascular system. J Periodontal Res 1999; 34:393-9. [PMID: 10685367 DOI: 10.1111/j.1600-0765.1999.tb02272.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our laboratory is interested in the genes and gene products involved in the interactions between Porphyromonas gingivalis (Pg) and the host. These interactions may occur in either the periodontal tissues or other non-oral host tissues such as those of the cardiovascular system. We have previously reported the cloning of several genes encoding hemagglutinins, surface proteins that interact with the host tissues, and are investigating their roles in the disease process. Primary among these is HagA, a very large protein with multiple functional groups that have significant sequence homology to protease genes of this species. Preliminary evidence indicates that an avirulent Salmonella typhimurium strain containing hagA is virulent in mice. These data indicate that HagA may be a key virulence factor of Pg. Additionally, we are investigating the invasion of primary human coronary artery endothelial cells (HCAEC) by Pg because of the recent epidemiological studies indicating a correlation between periodontal disease (PD) and coronary heart disease (CHD). We found that some, but not all, strains of Pg are able to invade these cells. Scanning electron microsopy of the infected HCAEC demonstrated that the invading organisms initially attached to the host cell surface as aggregates and by a "pedestal"-like structure. By transmission electronmicroscopy it could be seen that internalized bacteria were present within multimembranous compartments localized with rough endoplasmic reticulum. In addition, invasion of the HCAEC by Pg resulted in an increase in the degradation of long-lived cellular proteins. These data indicate that Pg are present within autophagosomes and may use components of the autophagic pathway as a means to survive intracellularly. However, Pg presence within autophagosomes in KB cells could not be observed or detected. It is therefore likely that Pg uses different invasive mechanisms for different host cells. This and the role of HagA in invasion is currently being investigated further.
Collapse
Affiliation(s)
- A Progulske-Fox
- University of Florida, Department of Oral Biology, Gainesville 32606, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Katz J, Black KP, Michalek SM. Host responses to recombinant hemagglutinin B of Porphyromonas gingivalis in an experimental rat model. Infect Immun 1999; 67:4352-9. [PMID: 10456874 PMCID: PMC96752 DOI: 10.1128/iai.67.9.4352-4359.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative, black-pigmented anaerobe, is among the microorganisms implicated in the etiology of adult periodontal disease. This bacterium possesses a number of factors, including hemagglutinins, of potential importance in virulence. Several hemagglutinin genes have been identified, cloned, and expressed in Escherichia coli. The purpose of this study was to characterize host responses to purified recombinant hemagglutinin B (rHag B), using the conventional Fischer rat as the experimental animal model. The effectiveness of immunization with rHag B on protection against experimental periodontal bone loss following infection with P. gingivalis was also evaluated. Groups of rats were immunized by the subcutaneous route with rHag B in complete Freund's adjuvant, immunized with rHag B and orally infected with P. gingivalis, nonimmunized and noninfected, or orally infected with P. gingivalis only. Serum and saliva samples were collected throughout the experiment and evaluated for serum immunoglobulin G (IgG) and IgM and salivary IgA antibody activity by enzyme-linked immunosorbent assay. No salivary IgA anti-Hag B activity was detected in the various groups of rats. A slight serum IgM response similar to that seen in preimmune samples was observed. Serum IgG antibody activity to Hag B was detected only in samples from rats immunized with rHag B. This response was primarily of the IgG1 and IgG2a subclasses, followed by IgG2b and low levels of IgG2c. Supernatants from rHag B-stimulated splenic lymphoid cell cultures from immunized rats contained high levels of gamma interferon, followed by interleukin-2 (IL-2), IL-10, and then IL-4. These results are consistent with the induction of T helper type 1 (Th1)- and Th2-like responses. Western blot analysis of sera derived from rHag B-immunized rats reacted with trichloroacetic acid (TCA) precipitates of P. gingivalis 33277, 381, A7A1-28, and W50, revealing a 50-kDa band reflective of Hag B. However, sera derived from rats immunized with P. gingivalis whole cells or from rats infected with P. gingivalis only did not react with rHag B but did react with TCA precipitates of P. gingivalis strains. Finally, radiographic measurements of periodontal bone loss indicated that rats immunized with rHag B had less bone loss than those infected with P. gingivalis only. These results demonstrate the effectiveness of purified rHag B in inducing a protective immune response and support the potential usefulness of this component of P. gingivalis in the development of a vaccine against adult periodontitis.
Collapse
Affiliation(s)
- J Katz
- Department of Oral Biology, School of Dentistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
44
|
Shi Y, Ratnayake DB, Okamoto K, Abe N, Yamamoto K, Nakayama K. Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 1999; 274:17955-60. [PMID: 10364243 DOI: 10.1074/jbc.274.25.17955] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis produces arginine-specific cysteine proteinase (Arg-gingipain, RGP) and lysine-specific cysteine proteinase (Lys-gingipain, KGP) in the extracellular and cell-associated forms. Two separate genes (rgpA and rgpB) and a single gene (kgp) have been found to encode RGP and KGP, respectively. We constructed rgpA rgpB kgp triple mutants by homologous recombination with cloned rgp and kgp DNA interrupted by drug resistance gene markers. The triple mutants showed no RGP or KGP activity in either cell extracts or culture supernatants. The culture supernatants of the triple mutants grown in a rich medium had no proteolytic activity toward bovine serum albumin or gelatin derived from human type I collagen. Moreover, the mutants did not grow in a defined medium containing bovine serum albumin as the sole carbon/energy source. These results indicate that the proteolytic activity of P. gingivalis toward bovine serum albumin and gelatin derived from human type I collagen appears to be attributable to RGP and KGP. The hemagglutinin gene hagA of P. gingivalis possesses the adhesin domain regions responsible for hemagglutination and hemoglobin binding that are also located in the C-terminal regions of rgpA and kgp. A rgpA kgp hagA triple mutant constructed in this study exhibited no hemagglutination using sheep erythrocytes or hemoglobin binding activity, as determined by a solid-phase binding assay with horseradish peroxidase-conjugated human hemoglobin, indicating that the adhesin domains seem to be particularly important for P. gingivalis cells to agglutinate erythrocytes and bind hemoglobin, leading to heme acquisition.
Collapse
Affiliation(s)
- Y Shi
- Department of Microbiology, Faculty of Dentistry, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- S C Holt
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Graduate School of Biomedical Sciences, USA
| | | | | | | |
Collapse
|
46
|
Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998; 62:1244-63. [PMID: 9841671 PMCID: PMC98945 DOI: 10.1128/mmbr.62.4.1244-1263.1998] [Citation(s) in RCA: 772] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a major etiological agent in the initiation and progression of severe forms of periodontal disease. An opportunistic pathogen, P. gingivalis can also exist in commensal harmony with the host, with disease episodes ensuing from a shift in the ecological balance within the complex periodontal microenvironment. Colonization of the subgingival region is facilitated by the ability to adhere to available substrates such as adsorbed salivary molecules, matrix proteins, epithelial cells, and bacteria that are already established as a biofilm on tooth and epithelial surfaces. Binding to all of these substrates may be mediated by various regions of P. gingivalis fimbrillin, the structural subunit of the major fimbriae. P. gingivalis is an asaccharolytic organism, with a requirement for hemin (as a source of iron) and peptides for growth. At least three hemagglutinins and five proteinases are produced to satisfy these requirements. The hemagglutinin and proteinase genes contain extensive regions of highly conserved sequences, with posttranslational processing of proteinase gene products contributing to the formation of multimeric surface protein-adhesin complexes. Many of the virulence properties of P. gingivalis appear to be consequent to its adaptations to obtain hemin and peptides. Thus, hemagglutinins participate in adherence interactions with host cells, while proteinases contribute to inactivation of the effector molecules of the immune response and to tissue destruction. In addition to direct assault on the periodontal tissues, P. gingivalis can modulate eucaryotic cell signal transduction pathways, directing its uptake by gingival epithelial cells. Within this privileged site, P. gingivalis can replicate and impinge upon components of the innate host defense. Although a variety of surface molecules stimulate production of cytokines and other participants in the immune response, P. gingivalis may also undertake a stealth role whereby pivotal immune mediators are selectively inactivated. In keeping with its strict metabolic requirements, regulation of gene expression in P. gingivalis can be controlled at the transcriptional level. Finally, although periodontal disease is localized to the tissues surrounding the tooth, evidence is accumulating that infection with P. gingivalis may predispose to more serious systemic conditions such as cardiovascular disease and to delivery of preterm infants.
Collapse
Affiliation(s)
- R J Lamont
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
47
|
Lu B, McBride BC. Expression of the tpr protease gene of Porphyromonas gingivalis is regulated by peptide nutrients. Infect Immun 1998; 66:5147-56. [PMID: 9784516 PMCID: PMC108642 DOI: 10.1128/iai.66.11.5147-5156.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tpr protease of Porphyromonas gingivalis W83 is a membrane-associated enzyme capable of hydrolyzing chromogenic substrates for trypsin and bacterial collagenases. A previous study by us indicated that Tpr expression was increased under conditions of nutrient limitation. In the present study, we further characterized expression of the tpr gene using a tpr::lacZ reporter gene construct under a range of nutrient conditions. In P. gingivalis, transcription of tpr was initiated 215 bp upstream of the coding region and regulation of tpr expression was at the level of transcription. Deletion mutations in the tpr upstream region identified the promoter region immediately upstream of the transcription start site, determined by primer extension analysis. Three identical 17-bp direct repeats identified within the 5' end of tpr mRNA were involved in tpr regulation. In an Escherichia coli background, tpr transcription was initiated after an AT-rich region upstream of tpr but not at the P. gingivalis start site. Tpr expression in P. gingivalis was suppressed by the addition of peptide and protein nutrients to a peptide-limited growth medium but was only slightly affected by addition of free amino acids. Low-molecular-weight fractions of brain heart infusion rich in phenylalanine, proline, and alanine had the greatest inhibitory effects on expression of the tpr::lacZ construct. Addition of the dipeptide phenylalanyl-phenylalanine to the growth medium resulted in a 10-fold decrease in tpr expression. This suggests that specific phenylalanine-containing peptides are a major factor controlling Tpr expression. Neither hemin starvation, heat shock, nor pH change had significant effects on Tpr expression.
Collapse
Affiliation(s)
- B Lu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
48
|
Kozarov E, Whitlock J, Dong H, Carrasco E, Progulske-Fox A. The number of direct repeats in hagA is variable among Porphyromonas gingivalis strains. Infect Immun 1998; 66:4721-5. [PMID: 9746569 PMCID: PMC108580 DOI: 10.1128/iai.66.10.4721-4725.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/1998] [Accepted: 07/16/1998] [Indexed: 11/20/2022] Open
Abstract
The coding sequence for the surface protein hemagglutinin A (HagA) of Porphyromonas gingivalis 381 has previously been shown to contain four direct 1.35-kb repeats, designated repHA. This study was performed to determine if the number of repHA units in hagA is consistently 4 or if allelic polymorphism exists among strains and/or upon multiple passage of P. gingivalis. To this end, primers which were homologous to the regions directly 5' and 3' of the repeat domain in hagA were synthesized. PCR conditions which allowed amplification of the 8.4-kb repeat region between the primers in P. gingivalis 381 were established. Genomic DNA templates from 13 other P. gingivalis strains and 9 fresh clinical isolates from patients were analyzed under the same conditions as used above. Analysis of these PCR products demonstrated that the strains tested had different numbers (two to four) of repHA units in the respective hagA genes. The PCR products of 8.4, 7.0, and 5.7 kb represent four, three, and two repeats, respectively. One strain from each group (381, four repeats; W83, three repeats; and AJW4, two repeats) was also tested to determine if the number of repeats remained invariant upon passaging onto solid medium. No variability in the number of repeats in hagA within a strain was detected after 18 passages. P. gingivalis 381 was chosen for further testing in a mouse abscess model to determine if conditions of in vivo growth would select for deletions or duplications of the repeated sequences. Five days after infection, no change in the number of repeats was detected in cells recovered from either nonimmunized or preimmunized mice. This data indicates an interstrain variability of the number of repeat units and hence a size variability of the HagA protein of P. gingivalis, but unlike some surface antigens of other pathogenic species, the number of repeats remains relatively stable given the conditions of growth tested here.
Collapse
Affiliation(s)
- E Kozarov
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610,
| | | | | | | | | |
Collapse
|
49
|
Han N, Lepine G, Whitlock J, Wojciechowski L, Progulske-Fox A. The porphyromonas gingivalis prtP/kgp homologue exists as two open reading frames in strain 381. Oral Dis 1998; 4:170-9. [PMID: 9972167 DOI: 10.1111/j.1601-0825.1998.tb00275.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
P. gingivalis is considered to be a major pathogen of adult periodontitis. Among its cadre of putative virulence factors are hemagglutinins (adhesins) and proteases. We here report the cloning, sequencing and characterization of two genes, designated kgp(381) and hagD. Kgp(381), an open reading frame (ORF) of 1095 bp encoding a 40.1 kda protein, has high homology to the proteolytic domain of cysteine protease/hemagglutinin genes. HagD, an ORF of 4077 bp encoding a 147.1 kda protein, contains one HArep sequence which establishes it as an additional member of the HArep multigene family. Although similar in sequence to kgp and prtP which were identified from strains HG66 and W12, respectively, the kgp(381)-hagD genes have several characteristics which distinguish them from kgp and prtP. Foremost among these is a single base difference which produces a termination codon and an immediate frame shift resulting in two ORFs in strain 381 as compared to one ORF in strains HG66 and W12. In addition, a 172 amino acid sequence near the C-terminal end of hagD has very low identity (20.5-27.8%) to the corresponding region of kgp and prtP. These demonstrate that the homologue of kgp and prtP in strain 381 occurs as two separate genes which may genetically separate the adhesive and enzymatic domains of Kgp and PrtP proteins. Reverse polymerase chain reaction (PCR) analysis indicates that hagD expression is regulated by hemin concentration.
Collapse
Affiliation(s)
- N Han
- Department of Oral Biology, University of Florida, Gainesville 32610-0424, USA
| | | | | | | | | |
Collapse
|
50
|
Shibata Y, Kurihara K, Takiguchi H, Abiko Y. Construction of a functional single-chain variable fragment antibody against hemagglutinin from Porphyromonas gingivalis. Infect Immun 1998; 66:2207-12. [PMID: 9573109 PMCID: PMC108183 DOI: 10.1128/iai.66.5.2207-2212.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hemagglutinin is a major glycoprotein of Porphyromonas gingivalis vesicles and likely confers the ability to adsorb and penetrate into host tissue cells. To protect this bacterial invasion, murine monoclonal antibody (MAb) Pg-vc, which inhibited the hemagglutinating activity, was prepared by using P. gingivalis vesicles as an antigen. Western blot analysis revealed that when both MAb Pg-vc and anti-HA-Ag2 antibody raised against the P. gingivalis hemagglutinin adhesin (M. Deslauriers and C. Mouton, Infect. Immun. 60:2791-2799, 1992) were allowed to react with protein blots from P. gingivalis vesicles, a superimposable profile was observed. To obtain a recombinant antibody, cDNAs coding for the variable domains of the L and H chains of MAb Pg-vc were cloned by PCR, and a plasmid specifying a single-chain variable fragment (ScFv) was constructed. Following transformation of Escherichia coli cells, a recombinant ScFv protein was successfully expressed. The immunological properties of this protein were identical to those of the parental murine MAb, specifically recognizing the two proteins (43 and 49 kDa) originating from P. gingivalis vesicles. In addition, the ScFv antibody inhibited the P. gingivalis vesicle-associated hemagglutinating activity. The amino acid sequences deduced from nucleotide sequencing experiments confirmed that variable heavy-chain and variable light-chain regions belonged to VH1 and Vkappa12/13 families, respectively. Since the expression system used in this study can readily provide large quantities of single-chain recombinant antibody, it may be a useful in developing a therapeutic agent for passive immunization in humans.
Collapse
Affiliation(s)
- Y Shibata
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|