1
|
Loshchilov I, Del Dottore E, Mazzolai B, Floreano D. Conditions for the emergence of circumnutations in plant roots. PLoS One 2021; 16:e0252202. [PMID: 34038485 PMCID: PMC8153425 DOI: 10.1371/journal.pone.0252202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
The plant root system shows remarkably complex behaviors driven by environmental cues and internal dynamics, whose interplay remains largely unknown. A notable example is circumnutation growth movements, which are growth oscillations from side to side of the root apex. Here we describe a model capable of replicating root growth behaviors, which we used to analyze the role of circumnuntations, revealing their emergence I) under gravitropic stress, as a combination of signal propagation and sensitivity to the signal carriers; II) as a result of the interplay between gravitropic and thigmotropic responses; and III) as a behavioral strategy to detect and react to resource gradients. The latter function requires the presence of a hypothetical internal oscillator whose parameters are regulated by the perception of environmental resources.
Collapse
Affiliation(s)
- Ilya Loshchilov
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Barbara Mazzolai
- Center for Micro-Biorobotics, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Dario Floreano
- Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Agostinelli D, DeSimone A, Noselli G. Nutations in Plant Shoots: Endogenous and Exogenous Factors in the Presence of Mechanical Deformations. FRONTIERS IN PLANT SCIENCE 2021; 12:608005. [PMID: 33833768 PMCID: PMC8023405 DOI: 10.3389/fpls.2021.608005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
We present a three-dimensional morphoelastic rod model capable to describe the morphogenesis of growing plant shoots driven by differential growth. We discuss the evolution laws for endogenous oscillators, straightening mechanisms, and reorientations to directional cues, such as gravitropic reactions governed by the avalanche dynamics of statoliths. We use this model to investigate the role of elastic deflections due to gravity loading in circumnutating plant shoots. We show that, in the absence of endogenous cues, pendular and circular oscillations arise as a critical length is attained, thus suggesting the occurrence of an instability triggered by exogenous factors. When also oscillations due to endogenous cues are present, their weight relative to those associated with the instability varies in time as the shoot length and other biomechanical properties change. Thanks to the simultaneous occurrence of these two oscillatory mechanisms, we are able to reproduce a variety of complex behaviors, including trochoid-like patterns, which evolve into circular orbits as the shoot length increases, and the amplitude of the exogenous oscillations becomes dominant.
Collapse
Affiliation(s)
| | - Antonio DeSimone
- SISSA–International School for Advanced Studies, Trieste, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
3
|
Abstract
In this article we advance a cutting-edge methodology for the study of the dynamics of plant movements of nutation. Our approach, unlike customary kinematic analyses of shape, period, or amplitude, is based on three typical signatures of adaptively controlled processes and motions, as reported in the biological and behavioral dynamics literature: harmonicity, predictability, and complexity. We illustrate the application of a dynamical methodology to the bending movements of shoots of common beans (Phaseolus vulgaris L.) in two conditions: with and without a support to climb onto. The results herewith reported support the hypothesis that patterns of nutation are influenced by the presence of a support to climb in their vicinity. The methodology is in principle applicable to a whole range of plant movements.
Collapse
Affiliation(s)
- Vicente Raja
- Rotman Institute of Philosophy, Western University, London, Canada.
| | - Paula L Silva
- Department of Psychology, University of Cincinnati, Cincinnati, USA
| | - Roghaieh Holghoomi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| | - Paco Calvo
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Wegner LH, Shabala S. Biochemical pH clamp: the forgotten resource in membrane bioenergetics. THE NEW PHYTOLOGIST 2020; 225:37-47. [PMID: 31393010 DOI: 10.1111/nph.16094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/01/2019] [Indexed: 05/08/2023]
Abstract
Solute uptake and release by plant cells are frequently energized by coupling to H+ influx supported by the proton motive force (pmf). The pmf results from a stable pH difference between the apoplast and the cytosol, with bulk values ranging from 4.9 to 5.8 and from 7.1 to 7.5, respectively, in combination with a negative electrical membrane potential. The P-type H+ ATPases pumping H+ from the cytosol into the apoplast at the expense of ATP hydrolysis are generally viewed as the only pmf source, exclusively linking membrane transport to energy metabolism. However, recent evidence suggests that pump activity may be insufficient to energize transport, particularly under stress conditions. Indeed, cytosolic H+ scavenging and apoplastic H+ generation by metabolism (denoted as 'active' buffering in contrast to the readily exhausted 'passive' matrix buffering) also stabilize the pH gradient. In the cytosol, H+ scavenging is mainly associated with malate decarboxylation catalyzed by malic enzyme, and via the GABA shunt of the tricarboxylic acid (TCA) cycle involving glutamate decarboxylation. In the apoplast, formation of bicarbonate from CO2 , the end-product of respiration, generates H+ at pH ≥ 6. Membrane potential is stabilized by K+ release and/or by anion uptake via ion channels. Finally, thermodynamic aspects of active buffering are discussed.
Collapse
Affiliation(s)
- Lars H Wegner
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| |
Collapse
|
5
|
Kobayashi A, Kim HJ, Tomita Y, Miyazawa Y, Fujii N, Yano S, Yamazaki C, Kamada M, Kasahara H, Miyabayashi S, Shimazu T, Fusejima Y, Takahashi H. Circumnutational movement in rice coleoptiles involves the gravitropic response: analysis of an agravitropic mutant and space-grown seedlings. PHYSIOLOGIA PLANTARUM 2019; 165:464-475. [PMID: 30159898 DOI: 10.1111/ppl.12824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Plants exhibit helical growth movements known as circumnutation in growing organs. Some studies indicate that circumnutation involves the gravitropic response, but this notion is a matter of debate. Here, using the agravitropic rice mutant lazy1 and space-grown rice seedlings, we found that circumnutation was reduced or lost during agravitropic growth in coleoptiles. Coleoptiles of wild-type rice exhibited circumnutation in the dark, with vigorous oscillatory movements during their growth. The gravitropic responses in lazy1 coleoptiles differed depending on the growth stage, with gravitropic responses detected during early growth and agravitropism during later growth. The nutation-like movements observed in lazy1 coleoptiles at the early stage of growth were no longer detected with the disappearance of the gravitropic response. To verify the relationship between circumnutation and gravitropic responses in rice coleoptiles, we conducted spaceflight experiments in plants under microgravity conditions on the International Space Station. Wild-type rice seeds were germinated, and the resulting seedlings were grown under microgravity or a centrifuge-generated 1 g environment in space. We began filming the seedlings 2 days after seed imbibition and obtained images of seedling growth every 15 min. The seed germination rate in space was 92-100% under both microgravity and 1 g conditions. LED-synchronized flashlight photography induced an attenuation of coleoptile growth and circumnutational movement due to cumulative light exposure. Nevertheless, wild-type rice coleoptiles still showed circumnutational oscillations under 1 g but not microgravity conditions. These results support the idea that the gravitropic response is involved in plant circumnutation.
Collapse
Affiliation(s)
- Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hye-Jeong Kim
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Yuta Tomita
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Sachiko Yano
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Sengen, Tsukuba 305-8505, Japan
| | - Chiaki Yamazaki
- Space Utilization Promotion Department, Japan Space Forum, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Corporation, Ltd., Takezono, Tsukuba 305-0032, Japan
| | - Haruo Kasahara
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Sengen, Tsukuba 305-8505, Japan
| | - Sachiko Miyabayashi
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuo Fusejima
- Space Utilization Promotion Department, Japan Space Forum, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 PMCID: PMC5651625 DOI: 10.3389/fpls.2017.01766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/04/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | |
Collapse
|
7
|
Zajączkowska U, Barlow PW. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:630-642. [PMID: 28258604 DOI: 10.1111/plb.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.
Collapse
Affiliation(s)
- U Zajączkowska
- Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland
| | - P W Barlow
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
Li LZ, Tu C, Wu LH, Peijnenburg WJGM, Ebbs S, Luo YM. Pathways of root uptake and membrane transport of Cd 2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1038-1046. [PMID: 27662630 DOI: 10.1002/etc.3625] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 05/19/2023]
Abstract
Uptake and membrane transport of cadmium (Cd) in roots of the hyperaccumulator Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu was characterized by assessing the impact of various inhibitors and ion channel blockers on Cd accumulation as well as the real-time net Cd2+ flux at the roots with application of the scanning ion-selective electrode technique. The uncouplers 2,4-dinitrophenol and P-type adenosine triphosphatase inhibitor Na3 VO4 significantly limited Cd2+ uptake and transport kinetics in the root of S. plumbizincicola. These findings indicate that Cd is actively taken up into the roots. The Cd content in plant was significantly decreased with pretreatments of the Ca2+ channel blocker La3+ or Gd3+ and the K+ channel blocker tetraethylammonium, as well as in the presence of higher concentration of Ca2+ and K+ . These findings indicated that uptake of Cd2+ into the root of S. plumbizincicola proceeds through ion channels that are permeable to both Ca2+ and K+ as confirmed by the direct evidence of real-time net Cd2+ fluxes at the root surface in the treatments with ion channel inhibitors, as well as in the presence of elevated concentrations of Ca2+ and K+ . In addition, the results suggested a role for phytochelatin and protein synthesis in mediating Cd2+ uptake by S. plumbizincicola. These findings increase the understanding of Cd2+ uptake and membrane transport pathways in roots of the Zn/Cd hyperaccumulator S. plumbizincicola. Environ Toxicol Chem 2017;36:1038-1046. © 2016 SETAC.
Collapse
Affiliation(s)
- Lian-Zhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| | - Chen Tu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| | - Long-Hua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Willie J G M Peijnenburg
- Center for Safety of Products and Substances, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Stephen Ebbs
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Yong-Ming Luo
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, People's Republic of China
| |
Collapse
|
9
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 DOI: 10.1007/s11738-017-2528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/21/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Halina Dziubinska
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
10
|
Bastien R, Meroz Y. The Kinematics of Plant Nutation Reveals a Simple Relation between Curvature and the Orientation of Differential Growth. PLoS Comput Biol 2016; 12:e1005238. [PMID: 27923062 PMCID: PMC5140061 DOI: 10.1371/journal.pcbi.1005238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022] Open
Abstract
Nutation is an oscillatory movement that plants display during their development. Despite its ubiquity among plants movements, the relation between the observed movement and the underlying biological mechanisms remains unclear. Here we show that the kinematics of the full organ in 3D give a simple picture of plant nutation, where the orientation of the curvature along the main axis of the organ aligns with the direction of maximal differential growth. Within this framework we reexamine the validity of widely used experimental measurements of the apical tip as markers of growth dynamics. We show that though this relation is correct under certain conditions, it does not generally hold, and is not sufficient to uncover the specific role of each mechanism. As an example we re-interpret previously measured experimental observations using our model. In his writings, Darwin considered nutation, the revolving movement of the apical tip of plants, as the most widespread plant movement. In spite of its ubiquity, plant nutation has not received as much attention as other plant movements, and its underlying mechanism remains unclear. A better understanding of this presumably growth-driven process is bound to shed light on basic growth processes in plants. In the work presented here we redefine the problem by describing the kinematics in three dimensions, as opposed to the typical description restricted to the horizontal plane. Within this framework we reveal a simple picture of the underlying dynamics, where the orientation of curvature follows the orientation of maximal differential growth. This parsimonious model recovers the major classes of nutation patterns, as shown both analytically and numerically. We then discuss the limitations of classical measurements where only the movement of the apical tip is tracked, suggesting more adequate measurements.
Collapse
Affiliation(s)
- Renaud Bastien
- Department of Collective Behaviour, Max Planck Institute for Ornithology and Department of Biology, University of Konstanz, Konstanz, Germany
- * E-mail:
| | - Yasmine Meroz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
11
|
Yan S, McLamore ES, Dong S, Gao H, Taguchi M, Wang N, Zhang T, Su X, Shen Y. The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:638-49. [PMID: 26088926 DOI: 10.1111/tpj.12915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/09/2015] [Indexed: 05/19/2023]
Abstract
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.
Collapse
Affiliation(s)
- Suli Yan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shanshan Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Haibo Gao
- College of Life Science, Linyi University, Linyi, 276005, China
| | - Masashige Taguchi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ningning Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Ting Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohua Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Kurenda A, Stolarz M, Zdunek A. Electrical potential oscillations--movement relations in circumnutating sunflower stem and effect of ion channel and proton pump inhibitors on circumnutation. PHYSIOLOGIA PLANTARUM 2015; 153:307-17. [PMID: 25211351 DOI: 10.1111/ppl.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/09/2014] [Accepted: 07/30/2014] [Indexed: 05/21/2023]
Abstract
The physiological control and molecular mechanism of circumnutation (CN) has not yet been fully understood. To gain information on the CN mechanism, the relationship between the changes of electrical potential and movement in the circumnutating sunflower stem and effect of ion channels and proton pump inhibitors on CN parameters were evaluated. Long-term electrophysiological measurements and injection of solutions of ion channel inhibitors (ICI) into sunflower stem with the simultaneous time-lapse recording of the movement were made. The oscillations of electrical potential (OEP) - movement relations - consist of cells depolarization on the deflected side of the stem and, at this same time, cells hyperpolarization on the opposite side of the stem. The delay of organ movement in relation to electrical changes of approximately 28 min (22% of the period) may indicate that the ionic fluxes causing the OEP are the primary phenomenon. The biggest decrease of CN period was observed after injection of proton pump (approximately 26%) and cation channel (approximately 25%) inhibitors, while length and amplitude were reduced mainly by calcium channel inhibitors (approximately 67%). Existence of OEP only in circumnutating part of sunflower stem and reduction of CN parameters and OEP amplitude after application of ICI prove that the CN cellular mechanism is associated with transmembrane ion transport.
Collapse
Affiliation(s)
- Andrzej Kurenda
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, 20-033, Lublin, Poland; Institute of Agrophysics, Polish Academy of Sciences, 20-290, Lublin, Poland
| | | | | |
Collapse
|
13
|
Russino A, Ascrizzi A, Popova L, Tonazzini A, Mancuso S, Mazzolai B. A novel tracking tool for the analysis of plant-root tip movements. BIOINSPIRATION & BIOMIMETICS 2013; 8:025004. [PMID: 23648942 DOI: 10.1088/1748-3182/8/2/025004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa.
Collapse
Affiliation(s)
- A Russino
- The BioRobotics Institute, Scuola Superiore Sant'Anna SSSA, I-56025 Pontedera, PI, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Shabala S, Shabala L, Bose J, Cuin T, Newman I. Ion flux measurements using the MIFE technique. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 953:171-83. [PMID: 23073883 DOI: 10.1007/978-1-62703-152-3_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Noninvasive microelectrode ion flux measurements (the MIFE™ technique) allow the concurrent quantification of net fluxes of several ions with high spatial (several μm) and temporal (ca 5 s) resolution. The MIFE technique has become a popular tool for studying the adaptive responses of plant cells and tissues to a large number of abiotic and biotic stresses. This chapter briefly summarizes some key findings on spatial and temporal organization of plant nutrient acquisition obtained by the MIFE technique, as well as the MIFE contribution towards elucidating the mechanisms behind a plant's perception and signaling of major abiotic stresses. The full protocols for microelectrode fabrication, calibration, and use are then given, and two basic routines for mapping root ion flux profiles and studying transient ion flux kinetics are given.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | |
Collapse
|
15
|
Migliaccio F, Tassone P, Fortunati A. Circumnutation as an autonomous root movement in plants. AMERICAN JOURNAL OF BOTANY 2013; 100:4-13. [PMID: 23243099 DOI: 10.3732/ajb.1200314] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although publications on circumnutation of the aerial parts of flowering plants are numerous and primarily from the time between Darwin (1880) and the 1950s, reports on circumnutation of roots are scarce. With the introduction of modern molecular biology techniques, many topics in the plant sciences have been revitalized; among these is root circumnutation. The most important research in this area has been done on Arabidopsis thaliana, which has roots that behave differently from those of many other plants; roots grown on inclined agar dishes produce a pattern of half waves slanted to one side. When grown instead on horizontally set dishes, the roots grow in loops or in tight right-handed coils that are characterized by a tight torsion to the left-hand. The roots of the few plants that differ from Arabidopsis and have been similarly tested do not present such patterns, because even if they circumnutate generally in a helical pattern, they subsequently straighten. Research on plants in space or on a clinostat has allowed the testing of these roots in a habitat lacking gravity or simulating the lack. Recently, molecular geneticists have started to connect various root behaviors to specific groups of genes. For example, anomalies in auxin responses caused by some genes can be overcome by complementation with wild-type genes. Such important studies contribute to understanding the mechanisms of growth and elongation, processes that are only superficially understood.
Collapse
Affiliation(s)
- Fernando Migliaccio
- Institute of Agro-Environmental and Forest Biology-National Research Council (IBAF-CNR) 00015 Monterotondo, Italy.
| | | | | |
Collapse
|
16
|
|
17
|
McLamore ES, Jaroch D, Chatni MR, Porterfield DM. Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. PLANTA 2010; 232:1087-99. [PMID: 20697740 DOI: 10.1007/s00425-010-1234-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 07/16/2010] [Indexed: 05/08/2023]
Abstract
The ability to non-invasively measure metabolic oxygen flux is a very important tool for physiologists interested in a variety of questions ranging from basic metabolism, growth/development, and stress adaptation. Technologies for measuring oxygen concentration near the surface of cells/tissues include electrochemical and optical techniques. A wealth of knowledge was gained using these tools for quantifying real-time physiology. Fiber-optic microprobes (optrodes) have recently been developed for measuring oxygen in a variety of biomedical and environmental applications. We have adopted the use of these optical microsensors for plant physiology applications, and used the microsensors in an advanced sensing modality known as self-referencing. Self-referencing is a non-invasive microsensor technique used for measuring real-time flux of analytes. This paper demonstrates the use of optical microsensors for non-invasively measuring rhizosphere oxygen flux associated with respiration in plant roots, as well as boundary layer oxygen flux in phytoplankton mats. Highly sensitive/selective optrodes had little to no hysteresis/calibration drift during experimentation, and an extremely high signal-to-noise ratio. We have used this new tool to compare various aspects of rhizosphere oxygen flux for roots of Glycine max, Zea mays, and Phaseolus vulgaris, and also mapped developmentally relevant profiles and distinct temporal patterns. We also characterized real-time respiratory patterns during inhibition of cytochrome and alternative oxidase pathways via pharmacology. Boundary layer oxygen flux was also measured for a phytoplankton mat during dark:light cycling and exposure to pharamacological inhibitors. This highly sensitive technology enables non-invasive study of oxygen transport in plant systems under physiologically relevant conditions.
Collapse
|
18
|
Stolarz M, Król E, Dziubinska H. Glutamatergic elements in an excitability and circumnutation mechanism. PLANT SIGNALING & BEHAVIOR 2010; 5:1108-11. [PMID: 20729637 PMCID: PMC3115078 DOI: 10.4161/psb.5.9.12417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, an electrical potential and circumnutation disturbances are a part of a response to environmental and internal stimuli. Precise relations between electrical potential changes and circumnutation mechanisms are unclear. We have found recently that glutamate (Glu) injection into Helianthus annuus stem induced a series of action potentials (APs) and a transient decrease in circumnutation activity. A theoretical explanation for this finding is discussed here taking into considerations data about the ion mechanism of AP and circumnutation as well as about the metabolic and signaling pathways of glutamate and their possible interactions.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Lublin, Poland.
| | | | | |
Collapse
|
19
|
Stolarz M, Król E, Dziubińska H, Kurenda A. Glutamate induces series of action potentials and a decrease in circumnutation rate in Helianthus annuus. PHYSIOLOGIA PLANTARUM 2010; 138:329-38. [PMID: 20051031 DOI: 10.1111/j.1399-3054.2009.01330.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reports concerning the function of glutamate (Glu) in the electrical and movement phenomena in plants are scarce. Using the method of extracellular measurement, we recorded electrical potential changes in the stem of 3-week-old Helianthus annuus L. plants after injection of Glu solution. Simultaneously, circumnutation movements of the stem were measured with the use of time-lapse images. Injection of Glu solution at millimolar (200, 50, 5 mM) concentrations in the basal part of the stem evoked a series of action potentials (APs). The APs appeared in the site of injection and in different parts of the stem and were propagated acropetally and/or basipetally along the stem. Glu injection also resulted in a transient, approximately 5-h-long decrease in the stem circumnutation rate. The APs initiated and propagating in the sunflower stem after Glu injection testify the existence of a Glu perception system in vascular plants and suggest its involvement in electrical, long-distance signaling. Our experiments also demonstrated that Glu is a factor affecting circumnutation movements.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, Poland.
| | | | | | | |
Collapse
|
20
|
Stolarz M. Circumnutation as a visible plant action and reaction: physiological, cellular and molecular basis for circumnutations. PLANT SIGNALING & BEHAVIOR 2009; 4:380-7. [PMID: 19816110 PMCID: PMC2676747 DOI: 10.4161/psb.4.5.8293] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/26/2009] [Indexed: 05/20/2023]
Abstract
Circumnutation is a helical organ movement widespread among plants. It is variable due to a different magnitude of trajectory (amplitude) outlined by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and clock- and counterclockwise direction of rotation. Some of those movement parameters are regulated by circadian clock and show daily and infradian rhythms. Circumnutation is influenced by light, temperature, chemicals and can depend on organ morphology. The diversity of this phenomenon is easier to see now that the digital time-lapse video method is developing fast. Whether circumnutation is an endogenous action, a reaction to exogenous stimuli or has a combined character has been discussed for a long time. Similarly, the relationship between growth and circumnutation is still unclear. In the mechanism of circumnutation, epidermal and endodermal cells as well as plasmodesmata, plasma membrane, ions (Ca(2+), K(+) and Cl(-)), ion channels and the proton pump (H(+)ATPase) are engaged. Based on these data, the hypothetical electrophysiological model of the circumnutation mechanism has been proposed here. In the recent circumnutation studies, gravitropic, auxin, clock and phytochrome mutants are used and new functions of circumnutation in plants' life have been investigated and described.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology, Maria Curie-Sklodowska University, Lublin, Poland.
| |
Collapse
|
21
|
Shabala S, Pang J, Zhou M, Shabala L, Cuin TA, Nick P, Wegner LH. Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. PLANT, CELL & ENVIRONMENT 2009; 32:194-207. [PMID: 19021884 DOI: 10.1111/j.1365-3040.2008.01914.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1-2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from -18 to -12 nmol m(-2) s(-1)) and K+ uptake (approximately 2 nmol m(-2) s(-1)) reverted to efflux (approximately -3 nmol m(-2) s(-1)). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a approximately 3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 mm NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (-50 nmol m(-2) s(-1)). Kinetin (2-4 microM), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:279-304. [PMID: 19575584 DOI: 10.1146/annurev.arplant.59.032607.092819] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Leaves and roots live in dramatically different habitats, but are parts of the same organism. Automated image processing of time-lapse records of these organs has led to understanding of spatial and temporal patterns of growth on time scales from minutes to weeks. Growth zones in roots and leaves show distinct patterns during a diel cycle (24 h period). In dicot leaves under nonstressful conditions these patterns are characterized by endogenous rhythms, sometimes superimposed upon morphogenesis driven by environmental variation. In roots and monocot leaves the growth patterns depend more strongly on environmental fluctuations. Because the impact of spatial variations and temporal fluctuations of above- and belowground environmental parameters must be processed by the plant body as an entire system whose individual modules interact on different levels, growth reactions of individual modules are often highly nonlinear. A mechanistic understanding of plant resource use efficiency and performance in a dynamically fluctuating environment therefore requires an accurate analysis of leaf and root growth patterns in conjunction with knowledge of major intraplant communication systems and metabolic pathways.
Collapse
Affiliation(s)
- Achim Walter
- Institute of Chemistry and Dynamics of Geosphere ICG-3: Phytosphere Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
23
|
Johnsson A, Solheim BGB, Iversen TH. Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. THE NEW PHYTOLOGIST 2009; 182:621-629. [PMID: 19320838 DOI: 10.1111/j.1469-8137.2009.02777.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In a microgravity experiment onboard the International Space Station, circumnutations of Arabidopsis thaliana were studied. Plants were cultivated on rotors under a light:dark (LD) cycle of 16 : 8 h, and it was possible to apply controlled centrifugation pulses. Time-lapse images of inflorescence stems (primary, primary axillary and lateral inflorescences) documented the effect of microgravity on the circumnutations. Self-sustained circumnutations of side stems were present in microgravity but amplitudes were mostly very small. In darkness, centrifugation at 0.8 g increased the amplitude by a factor of five to ten. The period at 0.8 g was c. 85 min, in microgravity roughly of the same magnitude. In white light the period decreased to c. 60 min at 0.8 g (microgravity value not measurable). Three-dimensional data showed that under 0.8 g side stems rotated in both clockwise and counter-clockwise directions. Circumnutation data for the main stem in light showed a doubling of the amplitude and a longer period at 0.8 g than in microgravity (c. 80 vs 60 min). For the first time, the importance of gravity in amplifying minute oscillatory movements in microgravity into high-amplitude circumnutations was unequivocally demonstrated. The importance of these findings for the modelling of gravity effects on self-sustained oscillatory movements is discussed.
Collapse
Affiliation(s)
- A Johnsson
- Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - B G B Solheim
- Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - T-H Iversen
- Department of Biology, The Plant BioCentre, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
24
|
Stolarz M, Krol E, Dziubinska H, Zawadzki T. Complex relationship between growth and circumnutations in Helianthus annuus stem. PLANT SIGNALING & BEHAVIOR 2008; 3:376-80. [PMID: 19513225 PMCID: PMC2634306 DOI: 10.4161/psb.3.6.5714] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 02/11/2008] [Indexed: 05/21/2023]
Abstract
The growth and circumnutation of the stem of three-week old Helianthus annuus in the 16:8 h light:dark photoperiod were monitored using an angular position-sensing transducer and a time lapse photography system. It was found that the rate of growth and circumnutation reached a high level in the dark stage; in the light stage, however, only the growth rate reached the same high level, whereas the circumnutations were weak. These results showed that in the light stage the stem circumnutation was downregulated more strongly than the growth. Short-term stem responses to darkening and illumination were a further display of the relation between growth and circumnutations. Switching off the light caused an increase in the growth and circumnutation rate. In some cases it was accompanied by changes in the rotation direction. On the other hand, switching the light on caused an immediate transient (several-minute long) decrease in the growth rate resulting in stem contraction, and this was accompanied by an almost complete pause of circumnutation. Additionally, under light, there occurred a subsequent decrease in the magnitude, disturbance of circumnutation trajectory and, in some cases, changes in the direction of rotation. The observed stem contraction and disturbance of circumnutation imply the occurrence of turgor changes in sunflower stem, which may be caused by a non-wounding, darkening or illumination stimulus. Our experiments indicate that the disturbances of the growth rate are accompanied by changes in circumnutation parameters but we have also seen that there is no simple quantitative relation between growth rate and circumnutation rate.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics; Institute of Biology; Maria Curie-Sklodowska University; Lublin, Poland
| | | | | | | |
Collapse
|
25
|
Lanfermeijer FC, Staal M, Malinowski R, Stratmann JW, Elzenga JTM. Micro-electrode flux estimation confirms that the Solanum pimpinellifolium cu3 mutant still responds to systemin. PLANT PHYSIOLOGY 2008; 146:129-39. [PMID: 18055585 PMCID: PMC2230550 DOI: 10.1104/pp.107.110643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/18/2007] [Indexed: 05/20/2023]
Abstract
In this study, we introduce the Micro-Electrode Ion Flux Estimation technique as a sensitive and accurate technique to study systemin-induced changes in ion fluxes from isolated nearly intact plant tissues. Our results demonstrate the effectiveness and value of the Micro-Electrode Ion Flux Estimation technique to monitor and characterize those elicitor-induced ion flux changes from intact tissues. We used the method to monitor the systemin-induced changes in ion fluxes from leaf tissue of various plant species, including wild-type and cu3 mutant tomato (Solanum pimpinellifolium) plants, and confirm previous observations, but now in intact leaf tissue. Upon exposure of leaf tissue of plant species from the subtribe solaneae to systemin, the H(+) influx and K(+) efflux were transiently strongly increased. Plant species of other clades did not show a response upon systemin exposure. Although it has been reported that the gene containing the cu3 null mutation is identical to the SR160/tBRI1 gene, which encodes the systemin/brassinosteroid receptor and is essential in systemin and brassinosteroid perception, we observed no differences in the response of H(+) and K(+) fluxes from both wild-type and mutant leaf tissue to systemin. Also, the effects of various pharmacological effectors on systemin-induced flux changes were similar. Moreover, a SR160/tBRI1 transgene-containing tobacco (Nicotiana tabacum) line was insensitive to systemin, whereas both this line and its wild-type predecessor were responsive to the elicitor flg22. Our results support the conclusion that the Cu3 receptor of tomato is not the systemin receptor, and, hence, another receptor is the principal systemin receptor.
Collapse
Affiliation(s)
- Frank C Lanfermeijer
- Laboratory of Plant Physiology, Centre for Ecological and Evolutionary Studies, University of Groningen, 9750 AA, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Pang JY, Newman I, Mendham N, Zhou M, Shabala S. Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. PLANT, CELL & ENVIRONMENT 2006; 29:1107-21. [PMID: 17080937 DOI: 10.1111/j.1365-3040.2005.01486.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hypoxia-induced changes in net H+, K+ and O2 fluxes across the plasma membrane (PM) of epidermal root cells were measured using the non-invasive microelectrode ion flux measurement (MIFE) system in elongation, meristem and mature root zones of two barley (Hordeum vulgare L.) varieties contrasting in their waterlogging (WL) tolerance. The ultimate goal of this study was to shed light on the mechanisms underlying effects of WL on plant nutrient acquisition and mechanisms of WL tolerance in barley. Our measurements revealed that functionally different barley root zones have rather different O2 requirements, with the highest O2 influx being in the elongation zone of the root at about 1 mm from the tip. Oxygen deprivation has qualitatively different effects on the activity of PM ion transporters in mature and elongation zones. In the mature zone, hypoxic treatment caused a very sharp decline in K+ uptake in the WL sensitive variety Naso Nijo, but did not reduce K+ influx in the WL tolerant TX9425 variety. In the elongation zone, onset of hypoxia enhanced K+ uptake from roots of both cultivars. Pharmacological experiments suggested that hypoxia-induced K+ flux responses are likely to be mediated by both K(+) -inward- (KIR) and non-selective cation channels (NSCC) in the elongation zone, while in the mature zone K(+) -outward- (KOR) channels are the key contributors. Overall, our results suggest that oxygen deprivation has an immediate and substantial effect on root ion flux patterns, and that this effect is different in WL-sensitive and WL-tolerant cultivars. To what extent this difference in ion flux response to hypoxia is a factor conferring WL tolerance in barley remains to be answered in future studies.
Collapse
Affiliation(s)
- Jia Yin Pang
- School of Agricultural Science and Tasmanian Institute of Agricultural Research, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | | | | | | | | |
Collapse
|
28
|
Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S. Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:171-84. [PMID: 16330526 DOI: 10.1093/jxb/erj022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although oscillations in membrane-transport activity are ubiquitous in plants, the ionic mechanisms of ultradian oscillations in plant cells remain largely unknown, despite much phenomenological data. The physiological role of such oscillations is also the subject of much speculation. Over the last decade, much experimental evidence showing oscillations in net ion fluxes across the plasma membrane of plant cells has been accumulated using the non-invasive MIFE technique. In this study, a recently proposed feedback-controlled oscillatory model was used. The model adequately describes the observed ion flux oscillations within the minute range of periods and predicts: (i) strong dependence of the period of oscillations on the rate constants for the H+ pump; (ii) a substantial phase shift between oscillations in net H+ and K+ fluxes; (iii) cessation of oscillations when H+ pump activity is suppressed; (iv) the existence of some 'window' of external temperatures and ionic concentrations, where non-damped oscillations are observed: outside this range, even small changes in external parameters lead to progressive damping and aperiodic behaviour; (v) frequency encoding of environmental information by oscillatory patterns; and (vi) strong dependence of oscillatory characteristics on cell size. All these predictions were successfully confirmed by direct experimental observations, when net ion fluxes were measured from root and leaf tissues of various plant species, or from single cells. Because oscillatory behaviour is inherent in feedback control systems having phase shifts, it is argued from this model that suitable conditions will allow oscillations in any cell or tissue. The possible physiological role of such oscillations is discussed in the context of plant adaptive responses to salinity, temperature, osmotic, hypoxia, and pH stresses.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Hayashi Y, Nishiyama H, Tanoi K, Ohya T, Nihei N, Tanioka K, Nakanishi TM. An aluminum influence on root circumnutation in dark revealed by a new super-HARP (high-gain avalanche rushing amorphous photoconductor) camera. PLANT & CELL PHYSIOLOGY 2004; 45:351-6. [PMID: 15047885 DOI: 10.1093/pcp/pch042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The circumnutation of a rice root under dark conditions was observed using a highly sensitive camera, a new super-HARP camera. A rice root showed regular rhythmic movement with fixed angle. When treated with Al (5 microM AlCl3), the rotation angle of the root tip was drastically decreased and then the movement was resumed again, whereas the root elongation rate was constant. With the increase of Al concentration, the cycle-fading period became shorter. This is the first report to show that an Al treatment ceased the rotation movement of the root but not elongation.
Collapse
Affiliation(s)
- Yoshitake Hayashi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Walter A, Spies H, Terjung S, Küsters R, Kirchgessner N, Schurr U. Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:689-98. [PMID: 11886889 DOI: 10.1093/jexbot/53.369.689] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A newly developed technique based on image sequence analysis allows automatic and precise quantification of the dynamics of the growth velocity of the root tip, the distribution of expansion growth rates along the entire growth zone and the oscillation frequencies of the root tip during growth without the need of artificial landmarks. These three major parameters characterizing expansion growth of primary roots can be analysed over several days with high spatial (20 microm) and temporal resolution (several minutes) as the camera follows the growing root by an image-controlled root tracking device. In combination with a rhizotron set up for hydroponic plant cultivation the impact of rapid changes of environmental factors can be assessed. First applications of this new system proved the absence of diurnal variation of root growth in Zea mays under constant temperature conditions. The distribution profile of relative elemental growth rate (REGR) showed two maxima under constant and varying growth conditions. Lateral oscillatory movements of growing root tips were present even under constant environmental conditions. Dynamic changes in velocity- and REGR-distribution within 1 h could be quantified after a step change in temperature from 21 degrees C to 26 degrees C. Most prominent growth responses were found in the zone of maximal root elongation.
Collapse
Affiliation(s)
- A Walter
- Biosphere 2 Center, Columbia University, Oracle, AZ 85623, USA
| | | | | | | | | | | |
Collapse
|
32
|
Morre DJ, Ternes P, Morre DM. Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of ca. 24 min. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2002; 38:18-28. [PMID: 12033221 DOI: 10.1079/ivp2001249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rate of plant cell enlargement, measured at intervals of 3 min using a sensitive linear transducer, oscillates with a minimum period of about 24 min that parallels the 24-min periodicity observed with the oxidation of NADH by the external plasma membrane NADH oxidase and of single cells measured previously by video-enhanced light microscopy. Also exhibiting 24-min oscillations is the steady-state rate of cell enlargement induced by the addition of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges. The length of the 24-min period is temperature compensated and remains constant at 24 min when measured at 15, 25 or 35 degrees C, despite the fact that the rate of cell enlargement approximately doubles for each 10 degree C rise over this same range of temperatures.
Collapse
Affiliation(s)
- D James Morre
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907-1333, USA.
| | | | | |
Collapse
|
33
|
Newman IA. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. PLANT, CELL & ENVIRONMENT 2001; 24:1-14. [PMID: 11762438 DOI: 10.1046/j.1365-3040.2001.00661.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The transport of mineral ions into and out of tissues and cells is central to the life of plants. Ion transport and the plasma membrane transporters themselves have been studied using a variety of techniques. In the last 15 years, measurement of specific ion fluxes has contributed to the characterization of transport systems. Progress in molecular genetics is allowing gene identification and controlled expression of transporter molecules. However the molecular expression of transporter gene products must be characterized at the functional level. The ion-selective microelectrode technique to measure specific ion fluxes non-invasively is ideally suited to this purpose. This technique, its theory, its links with others and its application and prospects in plant science, are discussed. Ions studied include hydrogen, potassium, sodium, ammonium, calcium, chloride and nitrate. Applications discussed include: solute ion uptake by roots; gravitropism and other processes in the root cap, meristematic and elongation zones; Nod factor effect on root hairs; osmotic and salt stresses; oscillations; the effects of light and temperature. Studies have included intact roots, leaf mesophyll and other tissues, protoplasts and bacterial biofilms. A multi-ion capability of the technique will greatly assist functional genomics, particularly when coupled with imaging techniques, patch clamping and the use of suitable mutants.
Collapse
Affiliation(s)
- I A Newman
- School of Mathematics and Physics, University of Tasmania, Hobart, Australia.
| |
Collapse
|
34
|
Maryani MM, Shabala SN, Gehring CA. Plant natriuretic peptide immunoreactants modulate plasma-membrane H(+) gradients in Solanum tuberosum L. leaf tissue vesicles. Arch Biochem Biophys 2000; 376:456-8. [PMID: 10775434 DOI: 10.1006/abbi.2000.1736] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M M Maryani
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | | | | |
Collapse
|
35
|
Pharmawati M, Shabala SN, Newman IA, Gehring CA. Natriuretic peptides and cGMP modulate K+, Na+, and H+ fluxes in Zea mays roots. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 2:53-7. [PMID: 10527892 DOI: 10.1006/mcbr.1999.0151] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that in plants, as in vertebrates, natriuretic peptides (NPs) regulate homeostasis. In this study noninvasive ion-selective vibrating microelectrodes were used to measure net fluxes of K+, Na+, and H+ in Zea mays root conductive tissue. Immunoreactant plant natriuretic peptides (irPNP) cause immediate net H+ influx and delayed net K+ and Na+ uptake. Delayed net K+ influx was also observed in response to 8-Br-cGMP, however, not accompanied by significant changes in net H+ fluxes. Furthermore, 8-Br-cGMP does not stimulate the plasma membrane H+-ATPase implying that cGMP directly affects cation channels. The data are consistent with NP and cGMP-dependent stimulation of nonselective cation channels with P(K) > P(Na) and point to a complex role for NPs in plant homeostasis.
Collapse
Affiliation(s)
- M Pharmawati
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Shabala, Newman. Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. PLANT PHYSIOLOGY 1999; 119:1115-24. [PMID: 10069851 PMCID: PMC32094 DOI: 10.1104/pp.119.3.1115] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1998] [Accepted: 12/04/1998] [Indexed: 05/20/2023]
Abstract
Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl- fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl- occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5-15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.
Collapse
Affiliation(s)
- Shabala
- School of Agricultural Science (S.S.), University of Tasmania, G.P.O. Box 252-54, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|