1
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang W, Ge Q, Wen J, Zhang H, Guo Y, Li Z, Xu Y, Ji D, Chen C, Guo L, Xu M, Shi C, Fan G, Xie C. Horizontal gene transfer and symbiotic microorganisms regulate the adaptive evolution of intertidal algae, Porphyra sense lato. Commun Biol 2024; 7:976. [PMID: 39128935 PMCID: PMC11317521 DOI: 10.1038/s42003-024-06663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intertidal algae may adapt to environmental challenges by acquiring genes from other organisms and relying on symbiotic microorganisms. Here, we obtained a symbiont-free and chromosome-level genome of Pyropia haitanensis (47.2 Mb), a type of intertidal algae, by using multiple symbiont screening methods. We identified 286 horizontal gene transfer (HGT) genes, 251 of which harbored transposable elements (TEs), reflecting the importance of TEs for facilitating the transfer of genes into P. haitanensis. Notably, the bulked segregant analysis revealed that two HGT genes, sirohydrochlorin ferrochelatase and peptide-methionine (R)-S-oxide reductase, play a significant role in the adaptation of P. haitanensis to heat stress. Besides, we found Pseudomonas, Actinobacteria, and Bacteroidetes are the major taxa among the symbiotic bacteria of P. haitanensis (nearly 50% of the HGT gene donors). Among of them, a heat-tolerant actinobacterial strain (Saccharothrix sp.) was isolated and revealed to be associated with the heat tolerance of P. haitanensis through its regulatory effects on the genes involved in proline synthesis (proC), redox homeostasis (ggt), and protein folding (HSP20). These findings contribute to our understanding of the adaptive evolution of intertidal algae, expanding our knowledge of the HGT genes and symbiotic microorganisms to enhance their resilience and survival in challenging intertidal environments.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Qijin Ge
- BGI Research, Qingdao, 266555, China
| | - Jian Wen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Han Zhang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yanling Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Zongtang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | | | | | - Chengcheng Shi
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
3
|
Chen Q, Zhu C, Guo L, Bu X, Yang W, Cheng S, Cong X, Xu F. Genome-wide identification of HMT gene family explores BpHMT2 enhancing selenium accumulation and tolerance in Broussonetia papyrifera. TREE PHYSIOLOGY 2024; 44:tpae030. [PMID: 38498335 DOI: 10.1093/treephys/tpae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Broussonetia papyrifera, a valuable feed resource, is known for its fast growth, wide adaptability, high protein content and strong selenium enrichment capacity. Selenomethionine (SeMet), the main selenium form in selenium fortification B. papyrifera, is safe for animals and this enhances its nutritional value as a feed resource. However, the molecular mechanisms underlying SeMet synthesis remain unclear. This study identified three homocysteine S-methyltransferase genes from the B. papyrifera genome. The phylogenetic tree demonstrated that BpHMTs were divided into two classes, and BpHMT2 in the Class 2-D subfamily evolved earlier and possesses more fundamental functions. On the basis of the correlation between gene expression levels and selenium content, BpHMT2 was identified as a key candidate gene associated with selenium tolerance. Subcellular localization experiments confirmed the targeting of BpHMT2 in nucleus, cell membrane and chloroplasts. Moreover, three BpHMT2 overexpression Arabidopsis thaliana lines were confirmed to enhance plant selenium tolerance and SeMet accumulation. Overall, our finding provides insights into the molecular mechanisms of selenium metabolism in B. papyrifera, highlighting the potential role of BpHMT2 in SeMet synthesis. This research contributes to our understanding of selenium-enriched feed resources, with increased SeMet content contributing to the improved nutritional value of B. papyrifera as a feed resource.
Collapse
Affiliation(s)
- Qiangwen Chen
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, Hubei 445000, China
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
| | - Longfei Guo
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
| | - Xianchen Bu
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
| | - Wei Yang
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
- Hubei National Se-rich Technology Development Co., Ltd, Enshi 445000, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei 445000, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, Hubei 445000, China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, JingZhou, Hubei 434025, China
| |
Collapse
|
4
|
Bouranis DL, Chorianopoulou SN. Foliar Application of Sulfur-Containing Compounds-Pros and Cons. PLANTS (BASEL, SWITZERLAND) 2023; 12:3794. [PMID: 38005690 PMCID: PMC10674314 DOI: 10.3390/plants12223794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application-these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, 11855 Athens, Greece;
- PlanTerra Institute for Plant Nutrition and Soil Quality, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
5
|
Qiu CW, Ma Y, Wang QQ, Fu MM, Li C, Wang Y, Wu F. Barley HOMOCYSTEINE METHYLTRANSFERASE 2 confers drought tolerance by improving polyamine metabolism. PLANT PHYSIOLOGY 2023; 193:389-409. [PMID: 37300541 DOI: 10.1093/plphys/kiad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Drought stress poses a serious threat to crop production worldwide. Genes encoding homocysteine methyltransferase (HMT) have been identified in some plant species in response to abiotic stress, but its molecular mechanism in plant drought tolerance remains unclear. Here, transcriptional profiling, evolutionary bioinformatics, and population genetics were conducted to obtain insight into the involvement of HvHMT2 from Tibetan wild barley (Hordeum vulgare ssp. agriocrithon) in drought tolerance. We then performed genetic transformation coupled with physio-biochemical dissection and comparative multiomics approaches to determine the function of this protein and the underlying mechanism of HvHMT2-mediated drought tolerance. HvHMT2 expression was strongly induced by drought stress in tolerant genotypes in a natural Tibetan wild barley population and contributed to drought tolerance through S-adenosylmethionine (SAM) metabolism. Overexpression of HvHMT2 promoted HMT synthesis and efficiency of the SAM cycle, leading to enhanced drought tolerance in barley through increased endogenous spermine and less oxidative damage and growth inhibition, thus improving water status and final yield. Disruption of HvHMT2 expression led to hypersensitivity under drought treatment. Application of exogenous spermine reduced accumulation of reactive oxygen species (ROS), which was increased by exogenous mitoguazone (inhibitor of spermine biosynthesis), consistent with the association of HvHMT2-mediated spermine metabolism and ROS scavenging in drought adaptation. Our findings reveal the positive role and key molecular mechanism of HvHMT2 in drought tolerance in plants, providing a valuable gene not only for breeding drought-tolerant barley cultivars but also for facilitating breeding schemes in other crops in a changing global climate.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qing-Qing Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R. China
| | - Man-Man Fu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
6
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song CP, Huang J. Major episodes of horizontal gene transfer drove the evolution of land plants. MOLECULAR PLANT 2022; 15:857-871. [PMID: 35235827 DOI: 10.1016/j.molp.2022.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
How horizontal gene transfer (HGT) has contributed to the evolution of animals and plants remains a major puzzle. Despite recent progress, defining the overall scale and pattern of HGT events in land plants has been largely elusive. In this study, we performed systematic analyses for acquired genes in different plant groups and throughout land plant evolution. We found that relatively recent HGT events occurred in charophytes and all major land plant groups, but their frequency declined rapidly in seed plants. Two major episodes of HGT events occurred in land plant evolution, corresponding to the early evolution of streptophytes and the origin of land plants, respectively. Importantly, a vast majority of the genes acquired in the two episodes have been retained in descendant groups, affecting numerous activities and processes of land plants. We analyzed some of the acquired genes involved in stress responses, ion and metabolite transport, growth and development, and specialized metabolism, and further assessed the cumulative effects of HGT in land plants.
Collapse
Affiliation(s)
- Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuanghua Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiaojing Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guiling Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Linhong Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shouzhou Zhang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
8
|
De la Peña M, Marín-Peña AJ, Urmeneta L, Coleto I, Castillo-González J, van Liempd SM, Falcón-Pérez JM, Álvarez-Fernández A, González-Moro MB, Marino D. Ammonium nutrition interacts with iron homeostasis in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:263-274. [PMID: 34570887 DOI: 10.1093/jxb/erab427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Most plant species develop stress symptoms when exposed to high ammonium (NH4+) concentrations. The root is the first organ in contact with high NH4+ and therefore the first barrier to cope with ammonium stress. In this work, we focused on root adaptation to ammonium nutrition in the model plant Brachypodium distachyon. Proteome analysis revealed changes associated with primary metabolism, cell wall remodelling, and redox homeostasis. In addition, it showed a strong induction of proteins related to methionine (Met) metabolism and phytosiderophore (PS) synthesis in ammonium-fed plants. In agreement with this, we show how ammonium nutrition impacts Met/S-adenosyl-Met and PS metabolic pathways together with increasing root iron content. Nevertheless, ammonium-fed plants displayed higher sensitivity to iron deficiency, suggesting that ammonium nutrition triggers impaired iron utilization and root to shoot transport, which entailed an induction in iron-related responses. Overall, this work demonstrates the importance of iron homeostasis during ammonium nutrition and paves a new way to better understand and improve ammonium use efficiency and tolerance.
Collapse
Affiliation(s)
- Marlon De la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
| | - Agustín Javier Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
| | - Leyre Urmeneta
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
| | - Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
| | - Jorge Castillo-González
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), E-50059, Zaragoza,Spain
| | | | - Juan M Falcón-Pérez
- Metabolomics Platform, CIC bioGUNE-BRTA, Derio,Spain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Madrid,Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao,Spain
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), E-50059, Zaragoza,Spain
| | - María Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), E-48940, Leioa,Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao,Spain
| |
Collapse
|
9
|
Zhu Y, Wang Q, Guo W, Gao Z, Wang Y, Xu Y, Liu Y, Ma Z, Yan F, Li J. Screening and identification of salt-tolerance genes in Sophora alopecuroides and functional verification of SaAQP. PLANTA 2021; 254:77. [PMID: 34535825 DOI: 10.1007/s00425-021-03726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of SaAQP can improve the salt tolerance of transgenic soybean hairy roots and A. thaliana. Salt stress severely affects crop yield and food security. There is a need to improve the salt tolerance of crops, but the discovery and utilization of salt-tolerance genes remains limited. Owing to its strong stress tolerance, Sophora alopecuroides is ideal for the identification of salt-tolerance genes. Therefore, we aimed to screen and identify the salt-tolerance genes in S. alopecuroides. With a yeast expression library of seedlings, salt-tolerant genes were screened using a salt-containing medium to simulate salt stress. By combining salt-treatment screening and transcriptome sequencing, 11 candidate genes related to salt tolerance were identified, including genes for peroxidase, inositol methyltransferase, aquaporin, cysteine synthase, pectinesterase, and WRKY. The expression dynamics of candidate genes were analyzed after salt treatment of S. alopecuroides, and salt tolerance was verified in yeast BY4743. The candidate genes participated in the salt-stress response in S. alopecuroides, and their overexpression significantly improved the salt tolerance of yeast. Salt tolerance mediated by SaAQP was further verified in soybean hairy roots and Arabidopsis thaliana, and it was found that SaAQP might enhance the salt tolerance of A. thaliana by participating in a reactive oxygen species scavenging mechanism. This result provides new genetic resources in plant breeding for salt resistance.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Wenyun Guo
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ziwei Gao
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Ying Wang
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yang Xu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Yajing Liu
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Zhipeng Ma
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China
| | - Fan Yan
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| | - Jingwen Li
- College of Plant Science, Jilin University, 5333 Xi'an Road, Changchun City, China.
| |
Collapse
|
10
|
Li M, Lu J, Tao M, Li M, Yang H, Xia EH, Chen Q, Wan X. Genome-Wide Identification of Seven Polyamine Oxidase Genes in Camellia sinensis (L.) and Their Expression Patterns Under Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:544933. [PMID: 33013966 PMCID: PMC7500180 DOI: 10.3389/fpls.2020.544933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/13/2020] [Indexed: 05/26/2023]
Abstract
Polyamines (PAs) in plant play a critical role in growth and development and in response to environmental stress. Polyamine oxidase (PAO) is a flavin adenine dinucleotide dependent enzyme that plays a major role in PA catabolism. For the first time, PAO genes in tea plant were screened for the whole genome-wide and seven CsPAO genes were identified, which were named CsPAO1-7. Phylogenetic tree analysis revealed seven CsPAO protein sequences classed into three groups, including clade I, III, and IV. Compared with other plants, the tea plant lacked clade II members. Genetic structure and tissue specific expression analysis showed that there were significant differences among members of the CsPAO gene family. Among members of the CsPAOs family, CsPAO4 and CsPAO5 contain more introns and are highly expressed in various organizations. CsPAO1, CsPAO4, and CsPAO5 genes were cloned and expressed heterologously to verify theirs function. Heat map showed high response of CsPAO5 to drought stress, while CsPAO1 and CsPAO2 were sensitive to changes in nitrogen nutrition. Furthermore, exogenous abscisic acid (ABA) treatment indicated that the expression of most CsPAO genes in roots and leaves was significantly induced. In the root, Spm content increased significantly, while Put and Spd content decreased, suggesting that ABA has great influence on the biosynthesis of PAs. Anaerobic treatment of picked tea leaves showed that the decomposition of PAs was promoted to a certain extent. The above data help to clarify the role of CsPAO in response abiotic and nitrogen nutritional stresses in tea plants, and provide a reference perspective for the potential influence of PAs on the tea processing quality.
Collapse
Affiliation(s)
- Mengshuang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jing Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mingmin Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Hua Yang
- College of Science, Anhui Agricultural University, Hefei, China
| | - En-hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Qiu CW, Liu L, Feng X, Hao PF, He X, Cao F, Wu F. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. Int J Mol Sci 2020; 21:E2795. [PMID: 32316632 PMCID: PMC7216285 DOI: 10.3390/ijms21082795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Drought stress is a major obstacle to agricultural production. Tibetan wild barley with rich genetic diversity is useful for drought-tolerant improvement of cereals. MicroRNAs (miRNAs) play critical roles in controlling gene expression in response to various environment perturbations in plants. However, the genome-wide expression profiles of miRNAs and their targets in response to drought stress are largely unknown in wild barley. In this study, a polyethylene glycol (PEG) induced drought stress hydroponic experiment was performed, and the expression profiles of miRNAs from the roots of two contrasting Tibetan wild barley genotypes XZ5 (drought-tolerant) and XZ54 (drought-sensitive), and one cultivated barley Tadmor (drought-tolerant) generated by high-throughput sequencing were compared. There were 69 conserved miRNAs and 1574 novel miRNAs in the dataset of three genotypes under control and drought conditions. Among them, seven conserved miRNAs and 36 novel miRNAs showed significantly genotype-specific expression patterns in response to drought stress. And 12 miRNAs were further regarded as drought tolerant associated miRNAs in XZ5, which mostly participate in gene expression, metabolism, signaling and transportation, suggesting that they and their target genes play important roles in plant drought tolerance. This is the first comparation study on the miRNA transcriptome in the roots of two Tibetan wild barley genotypes differing in drought tolerance and one drought tolerant cultivar in response to PEG treatment. Further results revealed the candidate drought tolerant miRNAs and target genes in the miRNA regulation mechanism in wild barley under drought stress. Our findings provide valuable understandings for the functional characterization of miRNAs in drought tolerance.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
| | - Li Liu
- Department of Applied Engineering, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China;
| | - Xue Feng
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
| | - Peng-Fei Hao
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
| | - Xiaoyan He
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
| | - Fangbin Cao
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
| | - Feibo Wu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (C.-W.Q.); (X.F.); (P.-F.H.); (X.H.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Song JH, Lee HR, Shim SM. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells. J Food Sci 2016; 82:36-43. [PMID: 27883364 DOI: 10.1111/1750-3841.13556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/25/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023]
Abstract
The objectives of the current study were to determine S-methyl-L-methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco-2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P-glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco-2 cells. The apparent coefficient permeability (Papp ) of SMM was 4.69 × 10-5 cm/s, indicating that it will show good oral absorption in in vivo.
Collapse
Affiliation(s)
- Ji-Hoon Song
- Dept. of Food Science and Technology, Sejong Univ, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Hae-Rim Lee
- Dept. of Food Science and Technology, Sejong Univ, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| | - Soon-Mi Shim
- Dept. of Food Science and Technology, Sejong Univ, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Republic of Korea
| |
Collapse
|
13
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganà A. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics 2014; 108:238-57. [PMID: 24859728 DOI: 10.1016/j.jprot.2014.04.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/11/2014] [Accepted: 04/26/2014] [Indexed: 12/01/2022]
Abstract
UNLABELLED Seed priming with ascorbic acid improves salt tolerance in durum wheat. For understanding the potential mechanisms underlying this priming effect a gel-free shotgun proteomic analysis was performed comparing unprimed to ascorbate-primed wheat seed during germination under saline and non-saline conditions. Since seed germination is the result of interplay or cross-talk between embryo and embryo-surrounding tissues, we studied the variation of metabolic proteome in both tissues separately. 167 of 697 identified and 69 of 471 identified proteins increase or decrease in abundance significantly in response to priming and/or salinity compared to untreated, unstressed control in embryo and embryo-surrounding tissues, respectively. In untreated wheat embryo salt stress was accompanied by change in 129 proteins, most of which are belonging to metabolism, energy, disease/defense, protein destination and storage categories. Ascorbate pretreatment prevents and counteracts the effects of salinity upon most of these proteins and changes specifically the abundance of 35 others proteins, most of which are involved in metabolism, protein destination and storage categories. Hierarchical clustering analysis revealed three and two major clusters of protein expression in embryo and embryo-surrounding tissues, respectively. This study opens promising new avenues to understand priming-induced salt tolerance in plants. BIOLOGICAL SIGNIFICANCE To clearly understand how ascorbate-priming enhance the salt tolerance of durum wheat during germination, we performed for the first time a comparative shotgun proteomic analysis between unprimed and ascorbate-primed wheat seeds during germination under saline and non-saline conditions. Furthermore, since seed germination is the result of interplay or cross-talk between embryo and embryo-surrounding tissues we analyzed the variation of metabolic proteome in both tissues separately. 1168 proteins exhibiting greater molecular weight diversity (ranging from 5 to 258kDa) were identified. Among them, 167 and 69 proteins were increased or decreased in abundance significantly by priming and/or salinity as compared to control, in embryo and embryo-surrounding tissues respectively. Ascorbate pretreatment alleviates the effects of salinity upon most of these proteins, particularly those involved in metabolism, energy, disease/defense, protein destination and storage functions. Hierarchical clustering analysis revealed three and two major clusters of protein accumulation in embryo and embryo-surrounding tissues, respectively. These results may provide new avenues for understanding and advancing priming-induced salt tolerance in crop plants.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, 40000 Khenchela, Algeria; Department of Biology, University of Mentouri Constantine, 25000 Constantine, Algeria
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Samperi
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
14
|
Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa T. Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res 2013; 12:5681-95. [PMID: 24251627 DOI: 10.1021/pr400654a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.
Collapse
Affiliation(s)
- Cinthya Mirella Pacheco
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Center for Biological Sciences, Universidade Federal de Pernambuco , Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Garcia-Jimenez P, Brito-Romano O, Robaina RR. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide. JOURNAL OF PHYCOLOGY 2013; 49:661-669. [PMID: 27007198 DOI: 10.1111/jpy.12083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/01/2013] [Indexed: 06/05/2023]
Abstract
The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula.
Collapse
Affiliation(s)
- Pilar Garcia-Jimenez
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| | - Olegario Brito-Romano
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| | - Rafael R Robaina
- Departamento de Biología, Facultad de Ciencias del Mar, Universidad of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, E-35017, Spain
| |
Collapse
|
16
|
Chang YL, Hsieh CL, Huang YM, Chiou WL, Kuo YH, Tseng MH. Modified method for determination of sulfur metabolites in plant tissues by stable isotope dilution-based liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Biochem 2013; 442:24-33. [PMID: 23911527 DOI: 10.1016/j.ab.2013.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/25/2022]
Abstract
A wide variety of sulfur metabolites play important roles in plant functions. We have developed a precise and sensitive method for the simultaneous measurement of several sulfur metabolites based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and (34)S metabolic labeling of sulfur-containing metabolites in Arabidopsis thaliana seedlings. However, some sulfur metabolites were unstable during the extraction procedure. Our proposed method does not allow for the detection of the important sulfur metabolite homocysteine because of its instability during sample extraction. Stable isotope-labeled sulfur metabolites of A. thaliana shoot were extracted and utilized as internal standards for quantification of sulfur metabolites with LC-MS/MS using S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), methionine (Met), glutathione (GSH), and glutathione disulfide (GSSG) as example metabolites. These metabolites were detected using electrospray ionization in positive mode. Standard curves were linear (r(2)>0.99) over a range of concentrations (SAM 0.01-2.0μM, SAH 0.002-0.10μM, Met 0.05-4.0μM, GSH 0.17-20.0μM, GSSG 0.07-20.0μM), with limits of detection for SAM, SAH, Met, GSH, and GSSG of 0.83, 0.67, 10, 0.56, and 1.1nM, respectively; and the within-run and between-run coefficients of variation based on quality control samples were less than 8%.
Collapse
Affiliation(s)
- Ya-Lan Chang
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG. A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 2013; 288:14032-14045. [PMID: 23532849 PMCID: PMC3656261 DOI: 10.1074/jbc.m113.465765] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-(3)H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA.
Collapse
Affiliation(s)
- Alexander N. Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | | | - Nancy P. Keller
- the Departments of Medical Microbiology and Immunology and ,Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Steven G. Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and , To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Dr. East, Los Angeles, CA. Tel.: 310-825-8754; Fax: 310-825-1968; E-mail:
| |
Collapse
|