1
|
Argyropoulos GD, Christidi F, Karavasilis E, Bede P, Velonakis G, Antoniou A, Seimenis I, Kelekis N, Smyrnis N, Papakonstantinou O, Efstathopoulos E, Ferentinos P. A Magnetic Resonance Spectroscopy Study on Polarity Subphenotypes in Bipolar Disorder. Diagnostics (Basel) 2024; 14:1170. [PMID: 38893696 PMCID: PMC11172378 DOI: 10.3390/diagnostics14111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes.
Collapse
Affiliation(s)
- Georgios D. Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Foteini Christidi
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
- School of Medicine, Democritus University of Alexandroupolis, 681 00 Alexandroupolis, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, D08 NHY1 Dublin, Ireland;
- Department of Neurology, St James’s Hospital, D08 W9RT Dublin, Ireland
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Ioannis Seimenis
- Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Nikolaos Smyrnis
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece (E.K.); (G.V.); (N.K.); (O.P.); (E.E.)
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.A.); (N.S.); (P.F.)
| |
Collapse
|
2
|
Li Y, Pang J, Wang J, Wang W, Bo Q, Lei L, Wang X, Wang M. High-frequency rTMS over the left DLPFC improves the response inhibition control of young healthy participants: an ERP combined 1H-MRS study. Front Psychol 2023; 14:1144757. [PMID: 37275686 PMCID: PMC10233929 DOI: 10.3389/fpsyg.2023.1144757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Unlike the effect of repetitive transcranial magnetic stimulation (rTMS) in treating neuropsychiatric diseases, little is known about how personal factors might account for the disparity of results from studies of cognition and rTMS. In this study, we investigated the effects of high-frequency rTMS on response inhibition control and explored the time course changes in cognitive processing and brain metabolic mechanisms after rTMS using event-related potentials (ERPs) and magnetic resonance spectroscopy (1H-MRS). Methods Participants were all right-handed and were naive to rTMS and the Go/NoGo task. Twenty-five healthy young participants underwent one 10 Hz rTMS session per day in which stimulation was applied over the left dorsolateral prefrontal cortex (DLPFC), and a homogeneous participant group of 25 individuals received a sham rTMS treatment for 1 week. A Go/NoGo task was performed, an electroencephalogram (EEG) was recorded, and 1H-MRS was performed. Results The results revealed that there was a strong trend of decreasing commission errors of NoGo stimuli by high frequency rTMS over the left DLPFC, whereas there was no significant difference between before and after rTMS treatment with respect to these parameters in the sham rTMS group. High-frequency rTMS significantly increased the amplitude of NoGo-N2 but not Go-N2, Go-P3, or NoGo-P3. The myo-inositol /creatine complex (MI/Cr) ratio, indexing cerebral metabolism, in the left DLPFC was decreased in the rTMS treated group. Discussion This observation supports the view that high-frequency rTMS over the left DLPFC has the strong tendency of reducing commission errors behaviorally, increase the amplitude of NoGo-N2 and improve the response inhibition control of healthy young participants. The results are consistent with the excitatory properties of high frequency rTMS. We suggest that the increase in the NoGo-N2 amplitude may be related to the increased excitability of the DLPFC-anterior cingulate cortex (ACC) neural loop. Metabolic changes in the DLPFC may be a possible mechanism for the improvement of the response inhibition control of rTMS.
Collapse
Affiliation(s)
- Yanmin Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Jianmin Pang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Wang
- Department of Respiratory Medicine, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Wei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Qianlan Bo
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Licun Lei
- Department of Radiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiayue Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Terra Machado D, Bernardes Brustolini OJ, Côrtes Martins Y, Grivet Mattoso Maia MA, Ribeiro de Vasconcelos AT. Inference of differentially expressed genes using generalized linear mixed models in a pairwise fashion. PeerJ 2023; 11:e15145. [PMID: 37033732 PMCID: PMC10078460 DOI: 10.7717/peerj.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Background
Technological advances involving RNA-Seq and Bioinformatics allow quantifying the transcriptional levels of genes in cells, tissues, and cell lines, permitting the identification of Differentially Expressed Genes (DEGs). DESeq2 and edgeR are well-established computational tools used for this purpose and they are based upon generalized linear models (GLMs) that consider only fixed effects in modeling. However, the inclusion of random effects reduces the risk of missing potential DEGs that may be essential in the context of the biological phenomenon under investigation. The generalized linear mixed models (GLMM) can be used to include both effects.
Methods
We present DEGRE (Differentially Expressed Genes with Random Effects), a user-friendly tool capable of inferring DEGs where fixed and random effects on individuals are considered in the experimental design of RNA-Seq research. DEGRE preprocesses the raw matrices before fitting GLMMs on the genes and the derived regression coefficients are analyzed using the Wald statistical test. DEGRE offers the Benjamini-Hochberg or Bonferroni techniques for P-value adjustment.
Results
The datasets used for DEGRE assessment were simulated with known identification of DEGs. These have fixed effects, and the random effects were estimated and inserted to measure the impact of experimental designs with high biological variability. For DEGs’ inference, preprocessing effectively prepares the data and retains overdispersed genes. The biological coefficient of variation is inferred from the counting matrices to assess variability before and after the preprocessing. The DEGRE is computationally validated through its performance by the simulation of counting matrices, which have biological variability related to fixed and random effects. DEGRE also provides improved assessment measures for detecting DEGs in cases with higher biological variability. We show that the preprocessing established here effectively removes technical variation from those matrices. This tool also detects new potential candidate DEGs in the transcriptome data of patients with bipolar disorder, presenting a promising tool to detect more relevant genes.
Conclusions
DEGRE provides data preprocessing and applies GLMMs for DEGs’ inference. The preprocessing allows efficient remotion of genes that could impact the inference. Also, the computational and biological validation of DEGRE has shown to be promising in identifying possible DEGs in experiments derived from complex experimental designs. This tool may help handle random effects on individuals in the inference of DEGs and presents a potential for discovering new interesting DEGs for further biological investigation.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | - Yasmmin Côrtes Martins
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
4
|
Concerto C, Chiarenza C, Di Francesco A, Natale A, Privitera I, Rodolico A, Trovato A, Aguglia A, Fisicaro F, Pennisi M, Bella R, Petralia A, Signorelli MS, Lanza G. Neurobiology and Applications of Inositol in Psychiatry: A Narrative Review. Curr Issues Mol Biol 2023; 45:1762-1778. [PMID: 36826058 PMCID: PMC9955821 DOI: 10.3390/cimb45020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol is a natural sugar-like compound, commonly present in many plants and foods. It is involved in several biochemical pathways, most of them controlling vital cellular mechanisms, such as cell development, signaling and nuclear processes, metabolic and endocrine modulation, cell growth, signal transduction, etc. In this narrative review, we focused on the role of inositol in human brain physiology and pathology, with the aim of providing an update on both potential applications and current limits in its use in psychiatric disorders. Overall, imaging and biomolecular studies have shown the role of inositol levels in the pathogenesis of mood disorders. However, when administered as monotherapy or in addition to conventional drugs, inositol did not seem to influence clinical outcomes in both mood and psychotic disorders. Conversely, more encouraging results have emerged for the treatment of panic disorders. We concluded that, despite its multifaceted neurobiological activities and some positive findings, to date, data on the efficacy of inositol in the treatment of psychiatric disorders are still controversial, partly due to the heterogeneity of supporting studies. Therefore, systematic use of inositol in routine clinical practice cannot be recommended yet, although further basic and translational research should be encouraged.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Cecilia Chiarenza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Ivan Privitera
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Trovato
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical, Surgical, and Advanced Technology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
- CERNUT–Research Centre for Nutraceuticals and Health Products, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-3782448
| |
Collapse
|
5
|
Mahal P, Deep R, Kumaran SS, Khandelwal SK. Elevated choline in dorsolateral prefrontal cortex of lithium responders with bipolar I disorder. Asian J Psychiatr 2023; 79:103318. [PMID: 36402079 DOI: 10.1016/j.ajp.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Response to lithium maintenance varies widely across patients with bipolar disorder (BD). The studies on neurochemical correlates of long-term lithium response in BD remain scant. AIM To assess the neurochemical profile in DLPFC based on lithium response status among subjects with bipolar I disorder (BD-I) using in vivo MRS. MATERIALS AND METHOD This was an observational study of 40 right-handed, euthymic adult participants with DSM-5 BD-I on long-term lithium maintenance with no psychiatric comorbidities (MINI 7.0). Using Alda Lithium Response Scale (LRS), a cut-off ≥ 7 for excellent lithium response, the sample was grouped into study group I for responders and group II for non-responders. All participants were assessed using NIMH Life Chart Method and IGSLI typical/atypical features scale. 1H-MRS was carried out on a 3 T MR scanner (Achieva, Phillips) using a 32-channel head coil, with a voxel placed at the left DLPFC. LC model was used to measure absolute concentrations of neurochemicals and their ratios in relation to creatine. RESULTS Group I (n = 20) was comparable to Group II (n = 20) with respect to demographic and illness profile. The GPC/Cr+PCr ratio was significantly higher (p = 0.028) among excellent lithium responders (0.32 ± 0.20 mmol/l) compared to sub-optimal responders (0.25 ± 0.05 mmol/l). Choline-containing compounds reflect alterations in cell membrane synthesis or myelin turnover, and are a marker of overall cell density. No significant alterations were detected in NAA, glutamate, glutamine, myo-inositol and creatine. CONCLUSION The lithium responders exhibited elevated choline (GPC) in the left DLPFC compared to non-responders.
Collapse
Affiliation(s)
- Pankaj Mahal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Raman Deep
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S K Khandelwal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
6
|
Suliman M, Schmidtke MW, Greenberg ML. The Role of the UPR Pathway in the Pathophysiology and Treatment of Bipolar Disorder. Front Cell Neurosci 2021; 15:735622. [PMID: 34531727 PMCID: PMC8439382 DOI: 10.3389/fncel.2021.735622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bipolar disorder (BD) is a mood disorder that affects millions worldwide and is associated with severe mood swings between mania and depression. The mood stabilizers valproate (VPA) and lithium (Li) are among the main drugs that are used to treat BD patients. However, these drugs are not effective for all patients and cause serious side effects. Therefore, better drugs are needed to treat BD patients. The main barrier to developing new drugs is the lack of knowledge about the therapeutic mechanism of currently available drugs. Several hypotheses have been proposed for the mechanism of action of mood stabilizers. However, it is still not known how they act to alleviate both mania and depression. The pathology of BD is characterized by mitochondrial dysfunction, oxidative stress, and abnormalities in calcium signaling. A deficiency in the unfolded protein response (UPR) pathway may be a shared mechanism that leads to these cellular dysfunctions. This is supported by reported abnormalities in the UPR pathway in lymphoblasts from BD patients. Additionally, studies have demonstrated that mood stabilizers alter the expression of several UPR target genes in mouse and human neuronal cells. In this review, we outline a new perspective wherein mood stabilizers exert their therapeutic mechanism by activating the UPR. Furthermore, we discuss UPR abnormalities in BD patients and suggest future research directions to resolve discrepancies in the literature.
Collapse
Affiliation(s)
- Mahmoud Suliman
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
7
|
Altered neurochemistry in the anterior white matter of bipolar children and adolescents: a multivoxel 1H MRS study. Mol Psychiatry 2021; 26:4117-4126. [PMID: 33173193 PMCID: PMC8664279 DOI: 10.1038/s41380-020-00927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Abnormalities within frontal lobe gray and white matter of bipolar disorder (BD) patients have been consistently reported in adult and pediatric studies, yet little is known about the neurochemistry of the anterior white matter (AWM) in pediatric BD and how medication status may affect it. The present cross-sectional 3T 1H MRS study is the first to use a multivoxel approach to study the AWM of BD youth. Absolute metabolite levels from four bilateral AWM voxels were collected from 49 subjects between the ages of 8 and 18 (25 healthy controls (HC); 24 BD) and quantified. Our study found BD subjects to have lower levels of N-acetylaspartate (NAA) and glycerophosphocholine plus phosphocholine (GPC + PC), metabolites that are markers of neuronal viability and phospholipid metabolism and have also been implicated in adult BD. Further analysis indicated that the observed patterns were mostly driven by BD subjects who were medicated at the time of scanning and had an ADHD diagnosis. Although limited by possible confounding effects of mood state, medication, and other mood comorbidities, these findings serve as evidence of altered neurochemistry in BD youth that is sensitive to medication status and ADHD comorbidity.
Collapse
|
8
|
Soeiro-de-Souza MG, Scotti-Muzzi E, Fernandes F, De Sousa RT, Leite CC, Otaduy MC, Machado-Vieira R. Anterior cingulate cortex neuro-metabolic changes underlying lithium-induced euthymia in bipolar depression: A longitudinal 1H-MRS study. Eur Neuropsychopharmacol 2021; 49:93-100. [PMID: 33882433 DOI: 10.1016/j.euroneuro.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
The diagnosis and treatment of bipolar depression (BDep) poses complex clinical challenges for psychiatry. Proton magnetic resonance spectroscopy (1H-MRS) is a useful imaging tool for investigating in vivo levels of brain neuro-metabolites, critical to understanding the process of mood dysregulation in Bipolar Disorder. Few studies have evaluated longitudinal clinical outcomes in BDep associated with 1H-MRS metabolic changes. This study aimed to longitudinally assess brain 1H-MRS metabolites in the anterior cingulate cortex (ACC) correlated with improvement in depression (from BDep to euthymia) after lithium treatment in BDep patients versus matched healthy controls (HC). Twenty-eight medication-free BDep patients and 28 HC, matched for age and gender, were included in this study. All subjects were submitted to a 3-Tesla brain 1H-MRS scan in the ACC using a single-voxel (8cm3) PRESS sequence at baseline. At follow-up (6 weeks), 14 BDep patients repeated the exam in euthymia. Patients with current BDep had higher baseline Myo-inositol/Cr (mI/Cr) and Choline/Cr (Cho/Cr) compared to HC. After six weeks, mI/Cr or Cho/Cr levels in subjects that achieved euthymia no longer differed to levels in HC, while high Cho/Cr levels persisted in non-responders . Elevated ACC mI/Cr and Cho/Cr in BDep might indicate increased abnormal membrane phospholipid metabolism and phosphatidylinositol (PI) cycle activity. Return of mI/Cr and Cho/Cr to normal levels after lithium-induced euthymia suggests a critical regulatory effect of lithium targeting the PI cycle involved in mood regulation.
Collapse
Affiliation(s)
- M G Soeiro-de-Souza
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil.
| | - E Scotti-Muzzi
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - F Fernandes
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - R T De Sousa
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - C C Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - M C Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | |
Collapse
|
9
|
McLaren MD, Mathavarajah S, Kim WD, Yap SQ, Huber RJ. Aberrant Autophagy Impacts Growth and Multicellular Development in a Dictyostelium Knockout Model of CLN5 Disease. Front Cell Dev Biol 2021; 9:657406. [PMID: 34291044 PMCID: PMC8287835 DOI: 10.3389/fcell.2021.657406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in CLN5 cause a subtype of neuronal ceroid lipofuscinosis (NCL) called CLN5 disease. While the precise role of CLN5 in NCL pathogenesis is not known, recent work revealed that the protein has glycoside hydrolase activity. Previous work on the Dictyostelium discoideum homolog of human CLN5, Cln5, revealed its secretion during the early stages of development and its role in regulating cell adhesion and cAMP-mediated chemotaxis. Here, we used Dictyostelium to examine the effect of cln5-deficiency on various growth and developmental processes during the life cycle. During growth, cln5– cells displayed reduced cell proliferation, cytokinesis, viability, and folic acid-mediated chemotaxis. In addition, the growth of cln5– cells was severely impaired in nutrient-limiting media. Based on these findings, we assessed autophagic flux in growth-phase cells and observed that loss of cln5 increased the number of autophagosomes suggesting that the basal level of autophagy was increased in cln5– cells. Similarly, loss of cln5 increased the amounts of ubiquitin-positive proteins. During the early stages of multicellular development, the aggregation of cln5– cells was delayed and loss of the autophagy genes, atg1 and atg9, reduced the extracellular amount of Cln5. We also observed an increased amount of intracellular Cln5 in cells lacking the Dictyostelium homolog of the human glycoside hydrolase, hexosaminidase A (HEXA), further supporting the glycoside hydrolase activity of Cln5. This observation was also supported by our finding that CLN5 and HEXA expression are highly correlated in human tissues. Following mound formation, cln5– development was precocious and loss of cln5 affected spore morphology, germination, and viability. When cln5– cells were developed in the presence of the autophagy inhibitor ammonium chloride, the formation of multicellular structures was impaired, and the size of cln5– slugs was reduced relative to WT slugs. These results, coupled with the aberrant autophagic flux observed in cln5– cells during growth, support a role for Cln5 in autophagy during the Dictyostelium life cycle. In total, this study highlights the multifaceted role of Cln5 in Dictyostelium and provides insight into the pathological mechanisms that may underlie CLN5 disease.
Collapse
Affiliation(s)
- Meagan D McLaren
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Shyong Q Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
10
|
Anterior cingulate cortex neurometabolites in bipolar disorder are influenced by mood state and medication: A meta-analysis of 1H-MRS studies. Eur Neuropsychopharmacol 2021; 47:62-73. [PMID: 33581932 DOI: 10.1016/j.euroneuro.2021.01.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The anterior cingulate cortex (ACC), a brain region that mediates affect and cognition by connecting the frontal cortex to limbic structures, has been consistently implicated in the neurobiology of Bipolar Disorder (BD). Proton magnetic resonance spectroscopy (1H-MRS) studies have extensively compared in vivo neurometabolite levels of BD patients and healthy controls (HC) in the ACC. However, these studies have not been analyzed in a systematic review or meta-analysis and nor has the influence of mood state and medication on neurometabolites been examined in this cortical region. A systematic review and a meta-analysis of 1H-MRS studies comparing ACC neurometabolite profiles of adult BD patients and HC subjects was conducted, retrieving 27 articles published between 2000 and 2018. Overall increased ACC levels of Glx [glutamine (Gln) + glutamate)/Creatine], Gln, choline (Cho) and Cho/Creatine were found in BD compared to HC. Bipolar depression was associated with higher Cho levels, while euthymia correlated with higher glutamine (Gln) and Cho. Mood stabilizers appeared to affect ACC Glu and Gln metabolites. Increased ACC Cho observed in euthymia, depression and in medication-free groups could be considered a trait marker in BD and attributed to increased cell membrane phospholipid turnover. Overall increased ACC Glx was associated with elevated Gln levels, particularly influenced by euthymia, but no abnormality in Glu was detected. Further 1H-MRS studies, on other voxels, should assess more homogeneous (mood state-specific), larger BD samples and account for medication status using more sensitive 1H-MRS techniques.
Collapse
|
11
|
Lei D, Li W, Tallman MJ, Patino LR, McNamara RK, Strawn JR, Klein CC, Nery FG, Fleck DE, Qin K, Ai Y, Yang J, Zhang W, Lui S, Gong Q, Adler CM, Sweeney JA, DelBello MP. Changes in the brain structural connectome after a prospective randomized clinical trial of lithium and quetiapine treatment in youth with bipolar disorder. Neuropsychopharmacology 2021; 46:1315-1323. [PMID: 33753882 PMCID: PMC8134458 DOI: 10.1038/s41386-021-00989-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
The goals of the current study were to determine whether topological organization of brain structural networks is altered in youth with bipolar disorder, whether such alterations predict treatment outcomes, and whether they are normalized by treatment. Youth with bipolar disorder were randomized to double-blind treatment with quetiapine or lithium and assessed weekly. High-resolution MRI images were collected from children and adolescents with bipolar disorder who were experiencing a mixed or manic episode (n = 100) and healthy youth (n = 63). Brain networks were constructed based on the similarity of morphological features across regions and analyzed using graph theory approaches. We tested for pretreatment anatomical differences between bipolar and healthy youth and for changes in neuroanatomic network metrics following treatment in the youth with bipolar disorder. Youth with bipolar disorder showed significantly increased clustering coefficient (Cp) (p = 0.009) and characteristic path length (Lp) (p = 0.04) at baseline, and altered nodal centralities in insula, inferior frontal gyrus, and supplementary motor area. Cp, Lp, and nodal centrality of the insula exhibited normalization in patients following treatment. Changes in these neuroanatomic parameters were correlated with improvement in manic symptoms but did not differ between the two drug therapies. Baseline structural network matrices significantly differentiated medication responders and non-responders with 80% accuracy. These findings demonstrate that both global and nodal structural network features are altered in early course bipolar disorder, and that pretreatment alterations in neuroanatomic features predicted treatment outcome and were reduced by treatment. Similar connectome normalization with lithium and quetiapine suggests that the connectome changes are a downstream effect of both therapies that is related to their clinical efficacy.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christina C Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Yuan Ai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Jing Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China.
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, P. R. China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Chen J, Zou S, Qu Y, Zhang C, Zhang Y, Tang X, Ren Y. Neurometabolic alterations in bipolar disorder with anxiety symptoms: A proton magnetic resonance spectroscopy study of the prefrontal whiter matter. Psychiatry Res 2021; 299:113859. [PMID: 33799126 DOI: 10.1016/j.psychres.2021.113859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
To identify the pathophysiological mechanism of bipolar disorder (BD) patients with anxiety symptoms, we analyzed the differences of brain biochemical metabolism in BD patients with and without anxiety symptoms. We collected 39 BD patients who had been untreated with drugs in one month and were divided into the anxiety symptoms group (20 cases) and non-anxiety symptoms group (19 cases) according to whether they had anxiety symptoms. We used proton magnetic resonance spectroscopy (1H-MRS) to detect the biochemical metabolite ratios of the prefrontal whiter matter (PWM) in all patients. The right PWM mI/Cr ratios in BD patients with anxiety symptoms were higher than those in BD patients without anxiety symptoms and the Cho/Cr ratios in the left PWM were negatively correlated with age and age of onset in BD patients with anxiety symptoms. These findings indicated that BD patients with anxiety symptoms have increased levels of inositol metabolism in the right PWM. Furthermore, the level of membrane phospholipid catabolism in the left PWM of BD patients with anxiety symptoms decreased with increasing age and onset age. Our results provide some references for the pathophysiological mechanism in BD patients with anxiety symptoms.
Collapse
Affiliation(s)
- Jiayue Chen
- Department of Clinical Psychology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China; Medical College of Shihezi University, Shihezi, Xinjiang 832003, China; Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin 300140, China
| | - Shaohong Zou
- Department of Clinical Psychology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China.
| | - Yuan Qu
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | - Cheng Zhang
- Department of Clinical Psychology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | - Yi Zhang
- Department of Clinical Psychology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | - Xiaoxiao Tang
- Department of Clinical Psychology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| | - Yongfang Ren
- Department of Radiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, China
| |
Collapse
|
13
|
Zhang W, Nery FG, Tallman MJ, Patino LR, Adler CM, Strawn JR, Fleck DE, Barzman DH, Sweeney JA, Strakowski SM, Lui S, DelBello MP. Individual prediction of symptomatic converters in youth offspring of bipolar parents using proton magnetic resonance spectroscopy. Eur Child Adolesc Psychiatry 2021; 30:55-64. [PMID: 32008167 DOI: 10.1007/s00787-020-01483-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
Abstract
Children of individuals with bipolar disorder (bipolar offspring) are at increased risk for developing mood disorders, but strategies to predict mood episodes are unavailable. In this study, we used support vector machine (SVM) to characterize the potential of proton magnetic resonance spectroscopy (1H-MRS) in predicting the first mood episode in youth bipolar offspring. From a longitudinal neuroimaging study, 19 at-risk youth who developed their first mood episode (converters), and 19 without mood episodes during follow-up (non-converters) were selected and matched for age, sex and follow-up time. Baseline 1H-MRS data were obtained from anterior cingulate cortex (ACC) and bilateral ventrolateral prefrontal cortex (VLPFC). Glutamate (Glu), myo-inositol (mI), choline (Cho), N-acetyl aspartate (NAA), and phosphocreatine plus creatine (PCr + Cr) levels were calculated. SVM with a linear kernel was adopted to classify converters and non-converters based on their baseline metabolites. SVM allowed the significant classification of converters and non-converters across all regions for Cho (accuracy = 76.0%), but not for other metabolites. Considering all metabolites within each region, SVM allowed the significant classification of converters and non-converters for left VLPFC (accuracy = 76.5%), but not for right VLPFC or ACC. The combined mI, PCr + Cr, and Cho from left VLPFC achieved the highest accuracy differentiating converters from non-converters (79.0%). Our findings from this exploratory study suggested that 1H-MRS levels of mI, Cho, and PCr + Cr from left VLPFC might be useful to predict the development of first mood episode in youth bipolar offspring using machine learning. Future studies that prospectively examine and validate these metabolites as predictors of mood episodes in high-risk individuals are necessary.
Collapse
Affiliation(s)
- Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Drew H Barzman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Stephen M Strakowski
- Department of Psychiatry, Dell Medical School, University of Texas At Austin, Austin, TX, 78712, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| |
Collapse
|
14
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
15
|
López-Gambero AJ, Sanjuan C, Serrano-Castro PJ, Suárez J, Rodríguez de Fonseca F. The Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8090295. [PMID: 32825356 PMCID: PMC7554709 DOI: 10.3390/biomedicines8090295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Inositols are sugar-like compounds that are widely distributed in nature and are a part of membrane molecules, participating as second messengers in several cell-signaling processes. Isolation and characterization of inositol phosphoglycans containing myo- or d-chiro-inositol have been milestones for understanding the physiological regulation of insulin signaling. Other functions of inositols have been derived from the existence of multiple stereoisomers, which may confer antioxidant properties. In the brain, fluctuation of inositols in extracellular and intracellular compartments regulates neuronal and glial activity. Myo-inositol imbalance is observed in psychiatric diseases and its use shows efficacy for treatment of depression, anxiety, and compulsive disorders. Epi- and scyllo-inositol isomers are capable of stabilizing non-toxic forms of β-amyloid proteins, which are characteristic of Alzheimer’s disease and cognitive dementia in Down’s syndrome, both associated with brain insulin resistance. However, uncertainties of the intrinsic mechanisms of inositols regarding their biology are still unsolved. This work presents a critical review of inositol actions on insulin signaling, oxidative stress, and endothelial dysfunction, and its potential for either preventing or delaying cognitive impairment in aging and neurodegenerative diseases. The biomedical uses of inositols may represent a paradigm in the industrial approach perspective, which has generated growing interest for two decades, accompanied by clinical trials for Alzheimer’s disease.
Collapse
Affiliation(s)
- Antonio J. López-Gambero
- Departamento de Biología Celular, Genética y Fisiología, Campus de Teatinos s/n, Universidad de Málaga, Andalucia Tech, 29071 Málaga, Spain;
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
| | | | - Pedro Jesús Serrano-Castro
- UGC Neurología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain;
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, 29010 Málaga, Spain
- Correspondence: (J.S.); (F.R.d.F.); Tel.: +34-952614012 (J.S.)
| |
Collapse
|
16
|
Ramos-Figueroa JS, Aamudalapalli HB, Jagdhane RC, Smith J, Palmer DRJ. Preparation and Application of 13C-Labeled myo-Inositol to Identify New Catabolic Products in Inositol Metabolism in Lactobacillus casei. Biochemistry 2020; 59:2974-2985. [PMID: 32786400 DOI: 10.1021/acs.biochem.0c00539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
myo-Inositol (mI) is widely distributed in all domains of life and is important for several cellular functions, including bacterial survival. The enzymes responsible for the bacterial catabolism of mI, encoded in the iol operon, can vary from one organism to another, and these pathways have yet to be fully characterized. We previously identified a new scyllo-inositol dehydrogenase (sIDH) in the iol operon of Lactobacillus casei that can oxidize mI in addition to the natural substrate, scyllo-inositol, but the product of mI oxidation was not determined. Here we report the identification of these metabolites by monitoring the reaction with 13C nuclear magnetic resonance. We prepared all six singly 13C-labeled mI isotopomers through a biocatalytic approach and used these labeled inositols as substrates for sIDH. The use of all six singly labeled mI isotopomers allowed for metabolite characterization without isolation steps. sIDH oxidation of mI produces 1l-5-myo-inosose preferentially, but also two minor products, 1d-chiro-inosose and 1l-chiro-inosose. Together with previous crystal structure data for sIDH, we were able to rationalize the observed oxidation preference. Our relatively simple procedure for the preparation of isotopically labeled mI standards can have broad applications for the study of mI biotransformations.
Collapse
Affiliation(s)
| | - Hari Babu Aamudalapalli
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Rajendra C Jagdhane
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Joseph Smith
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
17
|
Biological Targets Underlying the Antisuicidal Effects of Lithium. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Vawter MP, Hamzeh AR, Muradyan E, Civelli O, Abbott GW, Alachkar A. Association of Myoinositol Transporters with Schizophrenia and Bipolar Disorder: Evidence from Human and Animal Studies. MOLECULAR NEUROPSYCHIATRY 2019; 5:200-211. [PMID: 31768373 PMCID: PMC6873027 DOI: 10.1159/000501125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Evidence from animal and human studies has linked myo-inositol (MI) with the pathophysiology and/or treatment of psychiatric disorders such as schizophrenia and bipolar disorder. However, there is still controversy surrounding the definitive role of MI in these disorders. Given that brain MI is differentially regulated by three transporters - SMIT1, SMIT2 and/or HMIT (encoded by the genes: SLC5A3, SLC5A11, and SLC2A13, respectively) - we used available datasets to describe the distribution in mouse and human brain of the different MI transporters and to examine changes in mRNA expression of these transporters in patients with schizophrenia and bipolar disorder. We found a differential distribution of the mRNA of each of the three MI transporters in both human and mouse brain regions. Interestingly, while individual neurons express SMIT1 and HMIT, non-neuronal cells express SMIT2, thus partially accounting for different uptake levels of MI and concordance to downstream second messenger signaling pathways. We also found that the expression of MI transporters is significantly changed in schizophrenia and bipolar disorder in a diagnostic-, brain region- and subtype-specific manner. We then examined the effects of germline deletion in mice of Slc5a3 on behavioral phenotypes related to schizophrenia and bipolar disorder. This gene deletion produces behavioral deficits that mirror some specific symptoms of schizophrenia and bipolar disorder. Finally, chronic administration of MI was able to reverse particular, but not all, behavioral deficits in Slc5a3 knockout mice; MI itself induced some behavioral deficits. Our data support a strong correlation between the expression of MI transporters and schizophrenia and bipolar disorder, and suggest that brain region-specific aberration of one or more of these transporters determines the partial behavioral phenotypes and/or symptomatic pattern of these disorders.
Collapse
Affiliation(s)
- Marquis P. Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Abdul Rezzak Hamzeh
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Edgar Muradyan
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Olivier Civelli
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Developmental and Cell Biology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Amal Alachkar
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
19
|
Owczarczyk-Saczonek A, Lahuta LB, Ligor M, Placek W, Górecki RJ, Buszewski B. The Healing-Promoting Properties of Selected Cyclitols-A Review. Nutrients 2018; 10:nu10121891. [PMID: 30513929 PMCID: PMC6316775 DOI: 10.3390/nu10121891] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Myo-inositol and its derivatives cyclitols play an important role in the processes of cell regulation, signal transduction, osmoregulation, and ion channel physiology, and are a component of the cell membrane. Free cyclitols present in food or released during the degradation of galactosyl cyclitols by bacteria (in digestive tract) show some physiological benefits. AIM The aim of this paper is to present and analyze the documented data about curative and healing properties of cyclitols. RESULTS AND DISCUSSION Cyclitols are well known compounds in the treatment of an accompanied diabetes insulin resistance, and also obesity and polycystic ovarian syndrome. d-chiro-Inositol deficiency exacerbates insulin resistance in the liver, muscles, and fat, while depletion of myo-inositol results in the development of diabetic complications. Cyclitols are successfully applied in treatment of polycystic ovarian syndrome, simultaneous are observed effective reducing of BMI, improving the hormonal profile, and increasing fertility. Moreover, cyclitols have anti-atherogenic, anti-oxidative, anti-inflammatory, and anti-cancer properties. CONCLUSION The properties of cyclitols may be a good therapeutic option in the reduction of metabolically induced inflammation. Due to well drugs tolerance and low toxicity of these compounds, cyclitols are recommend for pregnant women and also for children. Another advantage is their widespread presence and easy availability, which encourages their use in medicine.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Ryszard Józef Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-229 Olsztyn, Poland.
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
| |
Collapse
|
20
|
Zhong S, Wang Y, Lai S, Liu T, Liao X, Chen G, Jia Y. Associations between executive function impairment and biochemical abnormalities in bipolar disorder with suicidal ideation. J Affect Disord 2018; 241:282-290. [PMID: 30142586 DOI: 10.1016/j.jad.2018.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Executive dysfunction and biochemical abnormalities using proton magnetic resonance spectroscopy (1H-MRS) have been reported in bipolar disorder (BD). Much less is known about the information from BD with suicidal ideation (SI). This study aimed to assess alterations of execution function and biochemical metabolism in BD with SI, in BD without SI, and in healthy controls. The associations between execution function and biochemical metabolism in the two BD patient groups were also been studied. METHODS 92 patients with bipolar disorder during a depressive episode (50 with current SI, and 42 without SI), as well as, 43 healthy controls were recruited in our study. Executive function was assessed by Wisconsin Card Sorting Test (WCST). Bilateral metabolite levels of prefrontal cortex (PFC), anterior cingulated cortex (ACC), lenticular nucleus (LN) of basal ganglia and thalamus were obtained by 1H-MRS at 3.0 T, then determined the ratios of N-acetyl aspartate (NAA), choline-containing compounds (Cho), myo-inositol (mI) to creatine (Cr). RESULTS Number of categories completed (CC) in BD with SI was significantly less than healthy controls. NAA/Cr ratios of left PFC in the two BD patient groups (with or without SI) were significantly lower than healthy controls, and NAA/Cr ratios of left thalamus were significantly higher than healthy controls. Moreover, NAA/Cr ratio of right LN in BD without SI was higher than BD with SI and healthy controls. For BD with SI, NAA/Cr ratio of left thalamus was negatively correlated with number of CC. CONCLUSIONS These results suggested that BD with or without SI may have abnormal NAA metabolism, and NAA/Cr ratio of right LN may distinguish SI from the BD patients. Further, BD with SI may have executive function impairment, which may be associated with the abnormal NAA metabolism in the left thalamus.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Tao Liu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, No. 613 West Huangpu Avenue Tianhe District, Guangzhou 510630, China.
| |
Collapse
|
21
|
Saiardi A, Mudge AW. Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: a new view of their mechanisms of action in bipolar disorder. Transl Psychiatry 2018; 8:175. [PMID: 30171184 PMCID: PMC6119186 DOI: 10.1038/s41398-018-0235-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Lithium is widely used to treat bipolar disorder, but its primary mechanism of action is uncertain. One proposal has been that lithium's ability to inhibit the enzyme inositol monophosphatase (IMPase) reduces the supply of recycled inositol used for membrane phosphoinositide (PIns) synthesis. This 28-year-old hypothesis is still widely debated, however, largely because total levels of PIns in brain or in cultured neurons do not decrease after lithium treatment. Here we use mature cultured cortical neurons to show that, although lithium has little effect on steady-state levels of either inositol or PIns, it markedly inhibits the rate of PIns synthesis. Moreover, we show that rapid synthesis of membrane PIns preferentially uses inositol newly imported from the extracellular space. Unexpectedly, we also find that the antidepressant drug fluoxetine (FLUO: Prozac) stimulates the rate of PIns synthesis. The convergence of both lithium and FLUO in regulating the rate of synthesis of PIns in opposite ways highlights PIns turnover in neurons as a potential new drug target, as well as for understanding mood control in BD. Our results also indicate new avenues for investigation of how neurons regulate their supply of inositol.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Anne W. Mudge
- 0000000121901201grid.83440.3bMedical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
22
|
Lithium, Stress, and Resilience in Bipolar Disorder: Deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord 2018; 233:92-99. [PMID: 29310970 DOI: 10.1016/j.jad.2017.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lithium is the lightest metal and the only mood stabilizer that has been used for over half a century for the treatment of bipolar disorder (BD). As a small ion, lithium is omnipresent, and consequently, its molecular mechanisms and targets are widespread. Currently, lithium is a crucial pharmacotherapy for the treatment of acute mood episodes, prophylactic therapy, and suicide prevention in BD. Besides, lithium blood level is the most widely used biomarker in clinical psychiatry. The concept of stress in BD characterizes short- and long-term deleterious effects at multiple levels (from genes to behaviors) and the ability to establish homeostatic regulatory mechanisms to either prevent or reverse these effects. Within this concept, lithium has consistently shown anti-stress effects, by normalizing components across several levels associated with BD-induced impairments in cellular resilience and plasticity. METHODS A literature search for biomarkers associated with lithium effects at multiple targets, with a particular focus on those related to clinical outcomes was performed. An extensive search of the published literature using PubMed, Medline and Google Scholar was performed. Example search terms included lithium, plasticity, stress, efficacy, and neuroimaging. Articles determined by the author to focus on lithium's impact on neural plasticity markers (central and periphery) and clinical outcomes were examined in greater depth. Relevant papers were evaluated, selected and included in this review. RESULTS Lithium induces neurotrophic and neuroprotective effects in a wide range of preclinical and translational models. Lithium's neurotrophic effects are related to the enhancement of cellular proliferation, differentiation, growth, and regeneration, whereas its neuroprotective effects limit the progression of neuronal atrophy or cell death following the onset of BD. Lithium's neurotrophic and neuroprotective effects seem most pronounced in the presence of pathology, which again supports its pivotal role as an active homeostatic regulator. LIMITATIONS Few studies associated with clinical outcomes. Due to space limitations, the author was unable to detail all findings, in special those originated from preclinical studies. CONCLUSIONS These results support a potential role for biomarkers involved in neuroprotection and activation of plasticity pathways in lithium's clinical response. Evidence supporting this model comes from results evaluating macroscopic and microscopic brain structure as well neurochemical findings in vivo from cellular to sub-synaptic (molecules and intracellular signaling) compartments using central and peripheral biomarkers. Challenges to precisely decipher lithium's biological mechanisms involved in its therapeutic profile include the complex nature of the illness and clinical subtypes, family history and comorbid conditions. In the context of personalized medicine, it is necessary to validate predictive biomarkers of response to lithium by designing longitudinal clinical studies during mood episodes and associated clinical dimensions in BD.
Collapse
|
23
|
Niddam DM, Lai KL, Tsai SY, Lin YR, Chen WT, Fuh JL, Wang SJ. Neurochemical changes in the medial wall of the brain in chronic migraine. Brain 2017; 141:377-390. [DOI: 10.1093/brain/awx331] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, Taipei Municipal Gandau Hospital. Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Yi-Ru Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Ta Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
A comparison of neurometabolites between remitted bipolar disorder and depressed bipolar disorder: A proton magnetic resonance spectroscopy study. J Affect Disord 2017; 211:153-161. [PMID: 28126615 DOI: 10.1016/j.jad.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Recent many studies found the abnormal neurometabolites in the acute bipolar disorder (BD). However, limited studies were to detect neurometabolites in remitted BD, comparison between acute and remitted BD is conductive to understand the outcome of neurometabolites. This study sought to investigate the differences in neurometabolites between remitted and depressed BD patients using proton magnetic resonance spectroscopy (1H-MRS). METHODS Three subject groups were enrolled: 22 remitted BD patients, 22 depressed BD patients and 24 healthy controls. All subjects underwent 1H-MRS to measure N-acetylaspartate (NAA), Choline (Cho), myo-Inositol (mI) and Creatine (Cr) of several bilateral areas potentially involved in BD: prefrontal whiter matter (PWM), thalamus and putamen. The neurometabolite ratios were compared among three groups. The correlations between abnormal neurometabolite ratios and clinical data were computed. RESULTS The lower bilateral PWM NAA/Cr ratios were found in depressed BD patients than remitted BD patients and healthy controls, no differences were found between the remitted BD patients and controls. For depressed BD patients, left PWM NAA/Cr ratios showed negative correlation with age of onset, right PWM NAA/Cr ratios showed positive correlation with duration of illness. CONCLUSIONS Our findings suggest the abnormal neurometabolites in the prefrontal lobe whiter may occur in the depressed BD. The remitted BD may resemble healthy subjects in terms of neurometabolites. In addition, abnormal neurometabolites in prefrontal lobe whiter may correlate with the age of onset and illness length.
Collapse
|
25
|
Knowles EEM, Meikle PJ, Huynh K, Göring HHH, Olvera RL, Mathias SR, Duggirala R, Almasy L, Blangero J, Curran JE, Glahn DC. Serum phosphatidylinositol as a biomarker for bipolar disorder liability. Bipolar Disord 2017; 19:107-115. [PMID: 28230325 PMCID: PMC5798864 DOI: 10.1111/bdi.12468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Individuals with bipolar disorder (BPD) exhibit alterations in their phospholipid levels. It is unclear whether these alterations are a secondary consequence of illness state, or if phospholipids and illness risk overlap genetically. If the latter were true, then phospholipids might provide key insights into the pathophysiology of the illness. Therefore, we rank-ordered phospholipid classes by their genetic overlap with BPD risk in order to establish which class might be most informative in terms of increasing our understanding of illness pathophysiology. METHODS Analyses were conducted in a sample of 558 individuals, unselected for BPD, from 38 extended pedigrees (average family size=14.79, range=2-82). We calculated a coefficient of relatedness for all family members of nine individuals with BPD in the sample (N=185); this coefficient was set to be zero in unrelated individuals (N=373). Then, under an endophenotype ranking value (ERV) approach, this scalar index was tested against 13 serum-based phospholipid concentrations in order to rank-order lipid classes by their respective overlap with BPD risk. RESULTS The phosphatidylinositol class was significantly heritable (h2 =0.26, P=6.71 × 10-05 ). It was the top-ranked class, and was significantly associated with BPD risk after correction for multiple testing (β=-1.18, P=2.10 × 10-03 , ERV=0.49). CONCLUSIONS We identified a peripheral biomarker, serum-based phosphatidylinositol, which exhibits a significant association with BPD risk. Therefore, given that phosphatidylinositol and BPD risk share partially common etiology, it seems that this lipid class warrants further investigation, not only in terms of treatment, but also as a promising diagnostic and risk marker.
Collapse
Affiliation(s)
- Emma EM Knowles
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA,Correspondence: Emma E. M. Knowles, Department of Psychiatry, Yale University, New Haven, CT, USA.,
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Harald HH Göring
- South Texas Diabetes and Obesity, Institute, University of Texas Rio Grande Valley, School of Medicine, Brownsville, TX, USA
| | - Rene L Olvera
- Department of Psychiatry, University of Texas, Health Science Center at San Antonio, San Antonio, TX, USA
| | - Samuel R Mathias
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity, Institute, University of Texas Rio Grande Valley, School of Medicine, Brownsville, TX, USA
| | - Laura Almasy
- Department of Genetics, University of Pennsylvania and Department of Biomedical and Health Informatics at Children’s Hospital of Philadelphia, PA, USA
| | - John Blangero
- South Texas Diabetes and Obesity, Institute, University of Texas Rio Grande Valley, School of Medicine, Brownsville, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity, Institute, University of Texas Rio Grande Valley, School of Medicine, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
26
|
Tipping the scales: Lessons from simple model systems on inositol imbalance in neurological disorders. Eur J Cell Biol 2017; 96:154-163. [PMID: 28153412 DOI: 10.1016/j.ejcb.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 11/20/2022] Open
Abstract
Inositol and inositol-containing compounds have signalling and regulatory roles in many cellular processes, suggesting that inositol imbalance may lead to wide-ranging changes in cellular functions. Indeed, changes in inositol-dependent signalling have been implicated in various diseases and cellular functions such as autophagy, and these changes have often been proposed as therapeutic targets. However, few studies have highlighted the links between inositol depletion and the downstream effects on inositol phosphates and phosphoinositides in disease states. For this research, many advances have employed simple model systems that include the social amoeba D. discoideum and the yeast S. cerevisiae, since these models enable a range of experimental approaches that are not possible in mammalian models. In this review, we discuss recent findings initiated in simple model systems and translated to higher model organisms where the effect of altered inositol, inositol phosphate and phosphoinositide levels impact on bipolar disorder, Alzheimer disease, epilepsy and autophagy.
Collapse
|
27
|
Distinctive gene expression profile in women with history of postpartum depression. Genomics 2016; 109:1-8. [PMID: 27816578 DOI: 10.1016/j.ygeno.2016.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 11/20/2022]
Abstract
Postpartum depression (PPD) is a disease which incorporates a variety of depressive states differing in nature and severity. To assist in the understanding of the pathogenesis of the disease, we aimed to ascertain a molecular mechanism underlying PPD development. We applied microarray technology to characterize gene expression of euthymic women with a history of PPD and compared the results with healthy controls. Our study demonstrated that women who considered euthymic on a clinical level, in fact, had an altered molecular profile when compared to participants with no PPD history. We identified nine genes significantly distinguished expression in post- depressive women; they may serve as a diagnostic tool for the detection of a predisposition to PPD. Our findings contribute significantly to the understanding of PPD etiology and its pathogenesis, offer a plausible explanation for the risk of the PPD recurrence, and may also contribute to clinical treatment.
Collapse
|
28
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
29
|
Singh N, Sharpley AL, Emir UE, Masaki C, Herzallah MM, Gluck MA, Sharp T, Harmer CJ, Vasudevan SR, Cowen PJ, Churchill GC. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans. Neuropsychopharmacology 2016; 41:1768-78. [PMID: 26593266 PMCID: PMC4770517 DOI: 10.1038/npp.2015.343] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
Abstract
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Pharmacology, University of Oxford, Oxford, UK,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Ann L Sharpley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Uzay E Emir
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Charles Masaki
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA,Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Oxford, UK,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK, Tel: +44 (0)1865 271 635, Fax: +44 (0)1865 271 853, E-mail:
| |
Collapse
|
30
|
Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, Churchill G, Insall RH, Claus SP, Hawkins P, Stephens L, Williams RSB. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Mol Cell Biol 2016; 36:1464-79. [PMID: 26951199 PMCID: PMC4859692 DOI: 10.1128/mcb.00039-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Collapse
Affiliation(s)
- Anna D Frej
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Jonathan Clark
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Peter A Thomason
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Grant Churchill
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Phillip Hawkins
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Len Stephens
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
31
|
Machado-Vieira R, Gattaz WF, Zanetti MV, De Sousa RT, Carvalho AF, Soeiro-de-Souza MG, Leite CC, Otaduy MC. A Longitudinal (6-week) 3T (1)H-MRS Study on the Effects of Lithium Treatment on Anterior Cingulate Cortex Metabolites in Bipolar Depression. Eur Neuropsychopharmacol 2015; 25:2311-7. [PMID: 26428274 DOI: 10.1016/j.euroneuro.2015.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 10/24/2022]
Abstract
The anterior cingulate cortex (ACC) is a key area in mood regulation. To date, no longitudinal study has specifically evaluated lithium׳s effects on ACC metabolites using (1)H-MRS, as well as its association with clinical improvement in bipolar depression. This (1)H-MRS (TE=35ms) study evaluated 24 drug-free BD patients during depressive episodes and after lithium treatment at therapeutic levels. Brain metabolite levels (N-acetyl aspartate (NAA), creatine (tCr), choline, myo-inositol, and glutamate levels) were measured in the ACC at baseline (week 0) and after lithium monotherapy (week 6). The present investigation showed that ACC glutamate (Glu/tCr) and glutamate+glutamine (Glx/tCr) significantly increased after six weeks of lithium therapy. Regarding the association with clinical improvement, remitters showed an increase in myoinositol levels (mI/tCr) after lithium treatment compared to non-remitters. The present findings reinforce a role for ACC glutamate-glutamine cycling and myoinositol pathway as key targets for lithium׳s therapeutic effects in BD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States.
| | - Wagner F Gattaz
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Marcus V Zanetti
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Rafael T De Sousa
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Andre F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group Faculty of Medicine Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia C Leite
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| | - Maria C Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| |
Collapse
|
32
|
Dietary supplementation with n-3 fatty acids from weaning limits brain biochemistry and behavioural changes elicited by prenatal exposure to maternal inflammation in the mouse model. Transl Psychiatry 2015; 5:e641. [PMID: 26393487 PMCID: PMC5068805 DOI: 10.1038/tp.2015.126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/02/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022] Open
Abstract
Prenatal exposure to maternal immune activation (MIA) increases the risk of schizophrenia and autism in the offspring. The MIA rodent model provides a valuable tool to directly test the postnatal consequences of exposure to an early inflammatory insult; and examine novel preventative strategies. Here we tested the hypotheses that behavioural differences in the MIA mouse model are accompanied by in vivo and ex vivo alterations in brain biochemistry; and that these can be prevented by a post-weaning diet enriched with n-3 polyunsaturated fatty acid (PUFA). The viral analogue PolyI:C (POL) or saline (SAL) was administered to pregnant mice on gestation day 9. Half the resulting male offspring (POL=21; SAL=17) were weaned onto a conventional lab diet (n-6 PUFA); half were weaned onto n-3 PUFA-enriched diet. In vivo magnetic resonance spectroscopy measures were acquired prior to behavioural tests; glutamic acid decarboxylase 67 (GAD67) and tyrosine hydroxylase protein levels were measured ex vivo. The main findings were: (i) Adult MIA-exposed mice fed a standard diet had greater N-acetylaspartate/creatine (Cr) and lower myo-inositol/Cr levels in the cingulate cortex in vivo. (ii) The extent of these metabolite differences was correlated with impairment in prepulse inhibition. (iii) MIA-exposed mice on the control diet also had higher levels of anxiety and altered levels of GAD67 ex vivo. (iv) An n-3 PUFA diet prevented all the in vivo and ex vivo effects of MIA observed. Thus, n-3 PUFA dietary enrichment from early life may offer a relatively safe and non-toxic approach to limit the otherwise persistent behavioural and biochemical consequences of prenatal exposure to inflammation. This result may have translational importance.
Collapse
|
33
|
Simões RV, Cruz-Lemini M, Bargalló N, Gratacós E, Sanz-Cortés M. Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome. Am J Obstet Gynecol 2015; 213:210.e1-210.e11. [PMID: 25891998 DOI: 10.1016/j.ajog.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/06/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We assessed brain metabolite levels by magnetic resonance spectroscopy (MRS) in 1-year-old infants born small at term, as compared with infants born appropriate for gestational age (AGA), and their association with neurodevelopment at 2 years of age. STUDY DESIGN A total of 40 infants born small (birthweight <10th centile for gestational age) and 30 AGA infants underwent brain MRS at age 1 year on a 3-T scanner. Small-born infants were subclassified as late intrauterine growth restriction or as small for gestational age, based on the presence or absence of prenatal Doppler and birthweight predictors of an adverse perinatal outcome, respectively. Single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired from the frontal lobe at short echo time. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, Third Edition, assessing cognitive, language, motor, social-emotional, and adaptive behavior scales. RESULTS As compared with AGA controls, infants born small showed significantly higher levels of glutamate and total N-acetylaspartate (NAAt) to creatine (Cr) ratio at age 1 year, and lower Bayley Scales of Infant and Toddler Development, Third Edition scores at 2 years. The subgroup with late intrauterine growth restriction further showed lower estimated glutathione levels at age 1 year. Significant correlations were observed for estimated glutathione levels with adaptive scores, and for myo-inositol with language scores. Significant associations were also noticed for NAA/Cr with cognitive scores, and for glutamate/Cr with motor scores. CONCLUSION Infants born small show brain metabolite differences at 1 year of age, which are correlated with later neurodevelopment. These results support further research on MRS to develop imaging biomarkers of abnormal neurodevelopment.
Collapse
|
34
|
Evaluation of Myo-Inositol as a Potential Biomarker for Depression in Schizophrenia. Neuropsychopharmacology 2015; 40:2157-64. [PMID: 25722115 PMCID: PMC4613604 DOI: 10.1038/npp.2015.57] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Abstract
Depression is highly prevalent in patients with schizophrenia and is associated with significant clinical consequences, but there is no known biomarker for depression in schizophrenia. One of the putative neurochemical biomarkers for depression in major depressive disorder (MDD) is reduced cerebral concentration of myo-Inositol. We examined whether myo-Inositol levels provide a potential marker for depressive symptoms in schizophrenia similar to that in MDD and are informative regarding causal biological pathways underlying both depression and schizophrenia. We used proton magnetic resonance spectroscopy to examine myo-Inositol levels in the anterior cingulate cortex (ACC) in 59 schizophrenia spectrum disorder (SSD) patients and 69 matched community comparison participants. Participants completed the Maryland Trait and State Depression (MTSD) scale to measure symptoms of depression experienced around time of assessment ('State' subscale) and longitudinally ('Trait' subscale). Myo-Inositol in the ACC was negatively correlated with MTSD-Trait scores in both patients (ρ=-0.336, p=0.009) and community comparison samples (ρ=-0.328, p=0.006). Furthermore, patients with a diagnosis of schizoaffective disorder or a history of at least one major depressive episode had lower levels of myo-Inositol compared with schizophrenia patients without a current or past affective diagnosis (p=0.012). Since reduced brain myo-Inositol is associated with MDD, myo-Inositol may be a biochemical marker of depressive mood symptoms across diagnostic boundaries. If confirmed, this finding may aid investigation of the pathophysiology and therapeutics of depression common between depression, schizophrenia and other psychiatric diagnoses.
Collapse
|
35
|
Costa A, Antonaci F, Ramusino MC, Nappi G. The Neuropharmacology of Cluster Headache and other Trigeminal Autonomic Cephalalgias. Curr Neuropharmacol 2015; 13:304-23. [PMID: 26411963 PMCID: PMC4812802 DOI: 10.2174/1570159x13666150309233556] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 12/19/2014] [Accepted: 03/06/2015] [Indexed: 11/22/2022] Open
Abstract
Trigeminal autonomic cephalalgias (TACs) are a group of primary headaches including cluster headache (CH), paroxysmal hemicrania (PH) and short-lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT). Another form, hemicrania continua (HC), is also included this group due to its clinical and pathophysiological similarities. CH is the most common of these syndromes, the others being infrequent in the general population. The pathophysiology of the TACs has been partly elucidated by a number of recent neuroimaging studies, which implicate brain regions associated with nociception (pain matrix). In addition, the hypothalamic activation observed in the course of TAC attacks and the observed efficacy of hypothalamic neurostimulation in CH patients suggest that the hypothalamus is another key structure. Hypothalamic activation may indeed be involved in attack initiation, but it may also lead to a condition of central facilitation underlying the recurrence of pain episodes. The TACs share many pathophysiological features, but are characterised by differences in attack duration and frequency, and to some extent treatment response. Although alternative strategies for the TACs, especially CH, are now emerging (such as neurostimulation techniques), this review focuses on the available pharmacological treatments complying with the most recent guidelines. We discuss the clinical efficacy and tolerability of the currently used drugs. Due to the low frequency of most TACs, few randomised controlled trials have been conducted. The therapies of choice in CH continue to be the triptans and oxygen for acute treatment, and verapamil and lithium for prevention, but promising results have recently been obtained with novel modes of administration of the triptans and other agents, and several other treatments are currently under study. Indomethacin is extremely effective in PH and HC, while antiepileptic drugs (especially lamotrigine) appear to be increasingly useful in SUNCT. We highlight the need for appropriate studies investigating treatments for these rare, but lifelong and disabling conditions.
Collapse
Affiliation(s)
- Alfredo Costa
- National Institute of Neurology IRCCS C. Mondino Foundation, University of Pavia, via Mondino 2, 27100 Pavia, Italy.
| | | | | | | |
Collapse
|
36
|
Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Jankauskas SS, Zorov SD, Babenko VA, Skulachev MV, Zorov DB. Lithium salts — Simple but magic. BIOCHEMISTRY (MOSCOW) 2014; 79:740-9. [DOI: 10.1134/s0006297914080021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Musteata M, Nicolescu A, Solcan G, Deleanu C. The 1H NMR profile of healthy dog cerebrospinal fluid. PLoS One 2013; 8:e81192. [PMID: 24376499 PMCID: PMC3871169 DOI: 10.1371/journal.pone.0081192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022] Open
Abstract
The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies.
Collapse
Affiliation(s)
- Mihai Musteata
- Clinics Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Iasi, Romania
| | - Alina Nicolescu
- Group of Biospectroscopy, Institute of Macromolecular Chemistry, Roumanian Academy, Iasi, Romania
- Group of Biospectroscopy, Centre of Organic Chemistry, Roumanian Academy, Bucharest, Romania
| | - Gheorghe Solcan
- Clinics Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Iasi, Romania
| | - Calin Deleanu
- Group of Biospectroscopy, Institute of Macromolecular Chemistry, Roumanian Academy, Iasi, Romania
- Group of Biospectroscopy, Centre of Organic Chemistry, Roumanian Academy, Bucharest, Romania
- * E-mail:
| |
Collapse
|
38
|
Abstract
Fibromyalgia is a primary brain disorder or a result of peripheral dysfunctions inducing brain alterations, with underlying mechanisms that partially overlap with other painful conditions. Although there are methodologic variations, neuroimaging studies propose neural correlations to clinical findings of abnormal pain modulation in fibromyalgia. Growing evidences of specific differences of brain activations in resting states and pain-evoked conditions confirm clinical hyperalgesia and impaired inhibitory descending systems, and also demonstrate cognitive-affective influences on painful experiences, leading to augmented pain-processing. Functional data of neural activation abnormalities parallel structural findings of gray matter atrophy, alterations of intrinsic connectivity networks, and variations in metabolites levels along multiple pathways. Data from positron-emission tomography, single-photon-emission-computed tomography, blood-oxygen-level-dependent, voxel-based morphometry, diffusion tensor imaging, default mode network analysis, and spectroscopy enable the understanding of fibromyalgia pathophysiology, and favor the future establishment of more tailored treatments.
Collapse
Affiliation(s)
- Liliana Lourenço Jorge
- Hospital Israelita Albert Einstein and Instituto de Reabilitação Lucy Montoro, Avenida Albert Einstein, 627 3rd Floor Block D, 05651901, Morumbi, Sao Paulo, Brazil.
| | | |
Collapse
|
39
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
40
|
Das P, Tanious M, Fritz K, Dodd S, Dean OM, Berk M, Malhi GS. Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo. Aust N Z J Psychiatry 2013; 47:347-54. [PMID: 23341476 DOI: 10.1177/0004867412474074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increased oxidative stress is thought to contribute to the pathophysiology of major depressive disorder (MDD), which is in part due to diminished levels of glutathione, the primary anti-oxidant of the brain. Oral administration of N-acetyl-cysteine (NAC) replenishes glutathione and has therefore been shown to reduce depressive symptoms. Proton magnetic spectroscopy ((1)H-MRS) that allows quantification of brain metabolites pertinent to both MDD and oxidative biology may provide some novel insights into the neurobiological effects of NAC, and in particular metabolite concentrations within the anterior cingulate cortex (ACC) are likely to be important given the key role of this region in the regulation of affect. OBJECTIVE The aim of this study was to determine whether the metabolite profile of the ACC in MDD patients predicts treatment with adjunctive NAC versus placebo. METHODS This study was nested within a multicentre, randomized, double-blind, placebo-controlled study of MDD participants treated with adjunctive NAC. Participants (n = 76) from one site completed the spectroscopy component at the end of treatment (12 weeks). Spectra from a single-voxel in the ACC were acquired and absolute concentrations of glutamate (Glu), glutamate-glutamine (Glx), N-acetyl-aspartate (NAA) and myo-inositol (mI) were obtained. Binary logistic regression analysis was performed to determine whether metabolite profiles could predict NAC versus placebo group membership. RESULTS When predicting group outcome (NAC or placebo), Glx, NAA and mI were a significant model, and had 75% accuracy, while controlling for depression severity and sex. However, the Glu, NAA and mI profile was only predictive at a trend level, with 68.3% accuracy. For both models, the log of the odds of a participant being in the NAC group was positively related to NAA, Glx and Glu levels and negatively related to mI levels. CONCLUSION The finding of higher Glx and NAA levels being predictive of the NAC group provides preliminary support for the putative anti-oxidative role of NAC in MDD.
Collapse
Affiliation(s)
- Pritha Das
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Howells FM, Ives-Deliperi VL, Horn NR, Stein DJ. Increased thalamic phospholipid concentration evident in bipolar I disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 41:1-5. [PMID: 23142769 DOI: 10.1016/j.pnpbp.2012.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bipolar disorder is characterised by changes in brain metabolites, as measured by (1)H-MRS. However, there is no consistent metabolic profile for bipolar disorder, which includes changes in N-acetyl-aspartate (NAA), choline metabolites and myo-inositol. The aim of the present paper is to add to this literature of (1)H-MRS, the metabolite profiles in bipolar disorder. METHODOLOGY Nineteen individuals with euthymic bipolar I disorder and eight control participants were recruited for the present study. (1)H-MRS chemical shift imaging (CSI) was used to measure NAA, choline metabolites and myo-inositol of several bilateral brain areas potentially involved in bipolar disorder: hippocampal complexes, brain stem including the locus coeruleus, and thalami. RESULTS Compared with healthy controls, individuals with bipolar I disorder showed increased choline metabolites in bilateral thalami and increased NAA in left hippocampus. The (1)H-MRS data were not influenced by age, symptom severity, or medication status. CONCLUSIONS Our present findings suggest that individuals with bipolar I disorder have increased phospholipid concentration in the thalami and increased NAA concentration in the left hippocampus. While MRS data on bipolar data remain somewhat inconsistent, the findings here are consistent with other evidence supporting the hypothesis that dysfunctional thalamocortical gating plays a role in bipolar disorder.
Collapse
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | | | | | | |
Collapse
|
42
|
Malhi GS, Tanious M, Das P, Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013; 27:135-53. [PMID: 23371914 DOI: 10.1007/s40263-013-0039-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lithium has been used for over half a century for the treatment of bipolar disorder as the archetypal mood stabilizer, and has a wealth of empirical evidence supporting its efficacy in this role. Despite this, the specific mechanisms by which lithium exerts its mood-stabilizing effects are not well understood. Given the inherently complex nature of the pathophysiology of bipolar disorder, this paper aims to capture what is known about the actions of lithium ranging from macroscopic changes in mood, cognition and brain structure, to its effects at the microscopic level on neurotransmission and intracellular and molecular pathways. A comprehensive literature search of databases including MEDLINE, EMBASE and PsycINFO was conducted using relevant keywords and the findings from the literature were then reviewed and synthesized. Numerous studies report that lithium is effective in the treatment of acute mania and for the long-term maintenance of mood and prophylaxis; in comparison, evidence for its efficacy in depression is modest. However, lithium possesses unique anti-suicidal properties that set it apart from other agents. With respect to cognition, studies suggest that lithium may reduce cognitive decline in patients; however, these findings require further investigation using both neuropsychological and functional neuroimaging probes. Interestingly, lithium appears to preserve or increase the volume of brain structures involved in emotional regulation such as the prefrontal cortex, hippocampus and amygdala, possibly reflecting its neuroprotective effects. At a neuronal level, lithium reduces excitatory (dopamine and glutamate) but increases inhibitory (GABA) neurotransmission; however, these broad effects are underpinned by complex neurotransmitter systems that strive to achieve homeostasis by way of compensatory changes. For example, at an intracellular and molecular level, lithium targets second-messenger systems that further modulate neurotransmission. For instance, the effects of lithium on the adenyl cyclase and phospho-inositide pathways, as well as protein kinase C, may serve to dampen excessive excitatory neurotransmission. In addition to these many putative mechanisms, it has also been proposed that the neuroprotective effects of lithium are key to its therapeutic actions. In this regard, lithium has been shown to reduce the oxidative stress that occurs with multiple episodes of mania and depression. Further, it increases protective proteins such as brain-derived neurotrophic factor and B-cell lymphoma 2, and reduces apoptotic processes through inhibition of glycogen synthase kinase 3 and autophagy. Overall, it is clear that the processes which underpin the therapeutic actions of lithium are sophisticated and most likely inter-related.
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Sydney Medical School, University of Sydney, and Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
43
|
Teixeira AL, Barbosa IG, Machado-Vieira R, Rizzo LB, Wieck A, Bauer ME. Novel biomarkers for bipolar disorder. ACTA ACUST UNITED AC 2012; 7:147-59. [DOI: 10.1517/17530059.2013.734807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Chang K, DelBello M, Chu WJ, Garrett A, Kelley R, Mills N, Howe M, Bryan H, Adler C, Eliassen J, Spielman D, Strakowski SM. Neurometabolite effects of response to quetiapine and placebo in adolescents with bipolar depression. J Child Adolesc Psychopharmacol 2012; 22:261-8. [PMID: 22849427 PMCID: PMC3472676 DOI: 10.1089/cap.2011.0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Mood stabilizers have been reported to affect brain concentrations of myo-inositol (mI) and N-acetylaspartate (NAA). We examined the effects of quetiapine (QUET), an atypical antipsychotic, on these neurochemicals, and potential predictors of response to QUET in adolescents with bipolar depression. METHODS Twenty-six adolescents with bipolar depression participated in an 8-week placebo-controlled trial of QUET monotherapy. Subjects were scanned at baseline and after 8 weeks with proton magnetic resonance spectroscopy (1H-MRS) at 3T and 4T at two sites, with 8 cm(3) voxels placed in the right and left dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). LCModel was used to calculate absolute concentrations of NAA and mI. RESULTS Twenty-six subjects had pre- and posttreatment scans (mean age=15.6 years, 9 boys). Of these subjects, 5 out of 16 subjects receiving QUET and 5 out of 10 receiving placebo (PBO) were responders (50% decrease in Children's Depression Rating Scale [CDRS] score). Although baseline ACC mI did not predict responder status, responders had significantly lower posttreatment ACC mI values than did nonresponders (3.27±.71 vs. 4.23±.70; p=0.004). There were no significant differences in the changes in ACC and DLPFC NAA levels in the QUET group compared with the PBO group (ACC: -0.55±1.3 vs.+0.25±1.5, p=0.23; right-DLPFC: -0.55±1.3 vs. 0.33±0.89, p=0.13; left-DLPFC: -0.04±0.91 vs.+0.29±0.61, p=0.41). CONCLUSION We found that posttreatment, not baseline, ACC mI levels were associated with response to QUET in adolescents with bipolar depression. There were no differences in NAA concentration changes between the QUET and PBO groups. Larger studies including different brain regions would help to clarify the effects of QUET on neurochemistry in patients with bipolar disorder.
Collapse
Affiliation(s)
- Kiki Chang
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5540, USA.
| | - Melissa DelBello
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen-Jang Chu
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amy Garrett
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ryan Kelley
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Neil Mills
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Meghan Howe
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Holly Bryan
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Cal Adler
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jim Eliassen
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Daniel Spielman
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Stephen M. Strakowski
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
45
|
He ZL, Deng W, Li ML, Chen ZF, Collier DA, Ma X, Li T. Detection of metabolites in the white matter of frontal lobes and hippocampus with proton in first-episode treatment-naïve schizophrenia patients. Early Interv Psychiatry 2012; 6:166-75. [PMID: 21951785 DOI: 10.1111/j.1751-7893.2011.00291.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study aimed to investigate the changes of the metabolites in the white matter of frontal lobes and hippocampus in schizophrenia by using proton magnetic resonance spectroscopy ((1) H-MRS). METHODS Sixty-three first-episode treatment-naïve schizophrenia (FES) patients and 63 age-, gender- and education level-matched healthy controls were recruited. The relative levels of metabolites including N-acetylaspartate (NAA), choline-containing compounds (Cho), (Cr) and myo-inositol (MI) were detected with (1) H-MRS, and the laterality index (Li) was calculated. The severity of symptoms was assessed using the Positive and Negative Syndrome Scale. RESULTS Compared with controls, FES patients did not show significant differences in all metabolites. The severity of positive symptoms was negatively correlated with the NAA/Cho in the white matter of the left frontal lobe and positively correlated with the Cho/Cr in the right white matter of frontal lobes. A negative correlation was observed between the severity of negative symptoms and the NAA/Cr in the white matter of bilateral frontal lobes. No difference was shown in the Li of metabolites between FES patients and controls. CONCLUSIONS The metabolites such as NAA, Cho and MI in white matter of frontal lobes and hippocampus were not significantly altered in FES patients. The lower axonal integrity/number (NAA concentration) may be associated with more severe negative symptoms, and dysmetabolism in process of myelination in the white matter of frontal lobes associated with more severe positive symptoms.
Collapse
Affiliation(s)
- Zong-Ling He
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Isolation and identification of myo-inositol crystals from dragon fruit (Hylocereus polyrhizus). Molecules 2012; 17:4583-94. [PMID: 22510607 PMCID: PMC6268417 DOI: 10.3390/molecules17044583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/22/2022] Open
Abstract
Crystals isolated from Hylocereus polyrhizus were analyzed using four different approaches—X-ray Crystallography, High Performance Liquid Chromatography (HPLC), Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Nuclear Magnetic Resonance (NMR) and identified as myo-inositol. The X-ray crystallography analysis showed that the unit-cell parameters were: a = 6.6226 (3) Å, b = 12.0462 (5) Å, c = 18.8942 (8) Å, α = 90.00, β = 93.98, δ = 90.00. The purity of the crystals were checked using HPLC, whereupon a clean single peak was obtained at 4.8 min with a peak area of 41232 μV*s. The LC-MS/MS technique, which is highly sensitive and selective, was used to provide a comparison of the isolated crystals with a myo-inositol standard where the results gave an identical match for both precursor and product ions. NMR was employed to confirm the molecular structure and conformation of the crystals, and the results were in agreement with the earlier results in this study. The discovery of myo-inositol crystals in substantial amount in H. polyrhizus has thus far not been reported and this is an important finding which will increase the marketability and importance of H. polyrhizus as a crop with a wide array of health properties.
Collapse
|
47
|
Abstract
INTRODUCTION Despite more that 60 years of clinical experience, the effective use of lithium for the treatment of mood disorder, in particular bipolarity, is in danger of becoming obsolete. In part, this is because of exaggerated fears surrounding lithium toxicity, acute and long-term tolerability and the encumbrance of life-long plasma monitoring. Recent research has once again positioned lithium centre stage and amplified the importance of understanding its science and how this translates to clinical practice. OBJECTIVE The aim of this paper is to provide a sound knowledge base as regards the science and practice of lithium therapy. METHOD A comprehensive literature search using electronic databases was conducted along with a detailed review of articles known to the authors pertaining to the use of lithium. Studies were limited to English publications and those dealing with the management of psychiatric disorders in humans. The literature was synthesized and organized according to relevance to clinical practice and understanding. RESULTS Lithium has simple pharmacokinetics that require regular dosing and monitoring. Its mechanisms of action are complex and its effects are multi-faceted, extending beyond mood stability to neuroprotective and anti-suicidal properties. Its use in bipolar disorder is under-appreciated, particularly as it has the best evidence for prophylaxis, qualifying it perhaps as the only true mood stabilizer currently available. In practice, its risks and tolerability are exaggerated and can be readily minimized with knowledge of its clinical profile and judicious application. CONCLUSION Lithium is a safe and effective agent that should, whenever indicated, be used first-line for the treatment of bipolar disorder. A better understanding of its science alongside strategic management of its plasma levels will ensure both wider utility and improved outcomes.
Collapse
Affiliation(s)
- Gin S Malhi
- CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
48
|
Shahana N, Delbello M, Chu WJ, Jarvis K, Fleck D, Welge J, Strakowski S, Adler C. Neurochemical alteration in the caudate: implications for the pathophysiology of bipolar disorder. Psychiatry Res 2011; 193:107-12. [PMID: 21683555 DOI: 10.1016/j.pscychresns.2011.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/28/2022]
Abstract
Several lines of evidence suggest that the neuropathophysiology of bipolar disorder is marked by structural and functional abnormalities in the caudate. We used magnetic resonance spectroscopy imaging (MRSI) to examine potential neurochemical changes in the caudate of adult bipolar patients (BP). 2D-MRSI scans including the caudate were obtained from 25 BP and 9 healthy subjects (HS). BP patients were further divided into medicated (n=14) and unmedicated (n=11) groups; the majority of medicated patients received atypical antipsychotics (AAP). Ratios of Cr/Cho, Cho/NAA and Cr/NAA in the caudate were compared between groups, controlling for age, gender and gray/white ratio. BP and HS did not significantly differ on any ratios. The Cr/Cho ratio, however, was significantly greater in medicated BP compared to HS. Conversely, the Cho/NAA ratio was non-significantly lower in medicated BP vs. HS. Medicated BP also showed significantly greater Cr/Cho and significantly smaller Cho/NAA ratios than unmedicated BP. Although we did not observe significant overall differences between BP and HS, our findings suggest the presence of reduced choline levels in the caudate of medicated BP receiving AAP. While speculative, these results suggest that AAP do not cause oxidative injury to neuronal membranes.
Collapse
Affiliation(s)
- Nasrin Shahana
- Division of Bipolar Disorders Research, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuriyama K, Honma M, Koyama S, Kim Y. D-cycloserine facilitates procedural learning but not declarative learning in healthy humans: a randomized controlled trial of the effect of D-cycloserine and valproic acid on overnight properties in the performance of non-emotional memory tasks. Neurobiol Learn Mem 2011; 95:505-9. [PMID: 21402164 DOI: 10.1016/j.nlm.2011.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/14/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Although D-cycloserine (DCS), a partial agonist of the N-methyl-d-aspartate (NMDA) receptor, and valproic acid (VPA), a histone deacetylase inhibitor, have been investigated for their roles in the facilitation of emotional learning, the effects on non-emotional declarative and procedural learning have not been clarified. We performed a randomized, blind, placebo-controlled, 4-arm clinical trial to determine the effects of DCS and VPA on the overnight properties of declarative and procedural learning in 60 healthy adults. Subjects were orally administrated a placebo, 100 mg DCS, 400 mg VPA, or a combination of 100 mg DCS and 400 mg VPA before they performed declarative and procedural learning tasks. Subjects then had their performance retested the following day. We observed that DCS facilitated procedural but not declarative learning and that VPA did not contribute to learning. Surprisingly, however, VPA attenuated the enhancement effect of DCS when coadministered with it. These results suggest that DCS acts as an enhancer of hippocampus-independent learning and that VPA may have an extinguishing pharmacological effect on excitatory post-synaptic action potentials that NMDA receptors regulate within procedural learning.
Collapse
Affiliation(s)
- Kenichi Kuriyama
- Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | |
Collapse
|
50
|
Kim SY, Choi CB, Lee HS, Lee SH, Woo DC, Kim HY, Hong KS, Lee CH, Choe BY. Reversal of myo-inositol metabolic level in the left dorsolateral prefrontal cortex of rats exposed to forced swimming test following desipramine treatment: an in vivo localized 1H-MRS study at 4.7 T. Magn Reson Imaging 2010; 28:1461-7. [DOI: 10.1016/j.mri.2010.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 05/11/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|