1
|
Tao Y, Zhang Y, Jin X, Hua N, Liu H, Qi R, Huang Z, Sun Y, Jiang D, Snutch TP, Jiang X, Tao J. Epigenetic regulation of beta-endorphin synthesis in hypothalamic arcuate nucleus neurons modulates neuropathic pain in a rodent pain model. Nat Commun 2023; 14:7234. [PMID: 37945654 PMCID: PMC10636187 DOI: 10.1038/s41467-023-43022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Although beta-endorphinergic neurons in the hypothalamic arcuate nucleus (ARC) synthesize beta-endorphin (β-EP) to alleviate nociceptive behaviors, the underlying regulatory mechanisms remain unknown. Here, we elucidated an epigenetic pathway driven by microRNA regulation of β-EP synthesis in ARC neurons to control neuropathic pain. In pain-injured rats miR-203a-3p was the most highly upregulated miRNA in the ARC. A similar increase was identified in the cerebrospinal fluid of trigeminal neuralgia patients. Mechanistically, we found histone deacetylase 9 was downregulated following nerve injury, which decreased deacetylation of histone H3 lysine-18, facilitating the binding of NR4A2 transcription factor to the miR-203a-3p gene promoter, thereby upregulating miR-203a-3p expression. Further, increased miR-203a-3p was found to maintain neuropathic pain by targeting proprotein convertase 1, an endopeptidase necessary for the cleavage of proopiomelanocortin, the precursor of β-EP. The identified mechanism may provide an avenue for the development of new therapeutic targets for neuropathic pain treatment.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Yuan Zhang
- Department of Geriatrics & Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Xiaohong Jin
- Department of Pain Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Nan Hua
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Hong Liu
- Department of Pain Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, PR China
| | - Renfei Qi
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Zitong Huang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, 81377, Germany
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xinghong Jiang
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, PR China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Elevated Neuropeptides in Dry Eye Disease and Their Clinical Correlations. Cornea 2022; 42:557-564. [PMID: 37000701 DOI: 10.1097/ico.0000000000003069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The goal of this study was to assess neuropeptide levels in patients with dry eye disease (DED) and investigate their correlations with clinical characteristics. METHODS This study included 38 eyes of 38 patients diagnosed with DED (DED group) and 38 eyes of 38 healthy volunteers without DED (control group). Ocular surface evaluation was performed. The severity of dry eye symptoms and signs in the DED group was graded. Neuropeptides [substance P (SP), alpha-melanocyte-stimulating hormone (α-MSH), β-endorphin, neurotensin, and oxytocin] and inflammatory cytokines levels were measured in basal tears. The link between neuropeptides and clinical parameters was investigated using Spearman rank correlation. RESULTS Overall, 76.3% of patients in the DED group showed dry eye symptoms and signs that were inconsistent in severity. Compared with the control group, the DED group showed higher levels of SP, α-MSH, and oxytocin in tears (P = 0.012, P = 0.030, and P = 0.006, respectively), but similar levels of β-endorphin and neurotensin (P = 0.269 and P = 0.052). The levels of SP, α-MSH, and oxytocin were elevated in DED patients with higher grading of symptoms than clinical signs (all P < 0.05). SP, α-MSH, and oxytocin levels in tears were positively correlated with Ocular Surface Disease Index scores, frequency of sensitivity to light, and frequency of blurred vision (all P < 0.05). CONCLUSIONS The increased tear levels of SP, α-MSH, and oxytocin may be linked to ocular discomfort in DED. Neuropeptides may play a key role in the development of DED, especially in DED patients with more severe symptoms than clinical signs.
Collapse
|
3
|
Sun XD, Wang A, Ma P, Gong S, Tao J, Yu XM, Jiang X. Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus. J Neurosci Res 2019; 98:384-403. [PMID: 31407399 PMCID: PMC6916362 DOI: 10.1002/jnr.24516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
The cAMP‐dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up‐regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application‐induced up‐regulation of AP firing activity could be blocked by pre‐application of the SFK inhibitor PP2. SFK activation also up‐regulated the AP firing activity and this effect could be prevented by pre‐application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/βII at T638/641, but also in SFKs at Y416. The forskolin or PMA application‐induced increase in the phosphorylation of PKAs or PKCs was not affected by pre‐treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCβII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up‐regulate the AP firing activity in hypothalamic ARC neurons.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Anqi Wang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Mao XF, Wu HY, Tang XQ, Ali U, Liu H, Wang YX. Activation of GPR40 produces mechanical antiallodynia via the spinal glial interleukin-10/β-endorphin pathway. J Neuroinflammation 2019; 16:84. [PMID: 30981281 PMCID: PMC6461825 DOI: 10.1186/s12974-019-1457-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background The G protein-coupled receptor 40 (GPR40), broadly expressed in various tissues such as the spinal cord, exerts multiple physiological functions including pain regulation. This study aimed to elucidate the mechanisms underlying GPR40 activation-induced antinociception in neuropathic pain, particularly related to the spinal glial expression of IL-10 and subsequent β-endorphin. Methods Spinal nerve ligation-induced neuropathic pain model was used in this study. β-Endorphin and IL-10 levels were measured in the spinal cord and cultured primary microglia, astrocytes, and neurons. Double immunofluorescence staining of β-endorphin with glial and neuronal cellular biomarkers was also detected in the spinal cord and cultured primary microglia, astrocytes, and neurons. Results GPR40 was expressed on microglia, astrocytes, and neurons in the spinal cords and upregulated by spinal nerve ligation. Intrathecal injection of the GPR40 agonist GW9508 dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in neuropathic rats, with Emax values of 80% and 100% MPE and ED50 values of 6.7 and 5.4 μg, respectively. Its mechanical antiallodynia was blocked by the selective GPR40 antagonist GW1100 but not GPR120 antagonist AH7614. Intrathecal GW9508 significantly enhanced IL-10 and β-endorphin immunostaining in spinal microglia and astrocytes but not in neurons. GW9508 also markedly stimulated gene and protein expression of IL-10 and β-endorphin in cultured primary spinal microglia and astrocytes but not in neurons, originated from 1-day-old neonatal rats. The IL-10 antibody inhibited GW9508-stimulated gene expression of the β-endorphin precursor proopiomelanocortin (POMC) but not IL-10, whereas the β-endorphin antibody did not affect GW9508-stimulated IL-10 or POMC gene expression. GW9508 increased phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and its stimulatory effects on IL-10 and POMC expression were blocked by each MAPK isoform inhibitor. Spinal GW9508-induced mechanical antiallodynia was completely blocked by intrathecal minocycline, IL-10 neutralizing antibody, β-endorphin antiserum, and μ-opioid receptor-preferred antagonist naloxone. Conclusions Our results illustrate that GPR40 activation produces antinociception via the spinal glial IL-10/β-endorphin antinociceptive pathway. Electronic supplementary material The online version of this article (10.1186/s12974-019-1457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
5
|
Src activation in the hypothalamic arcuate nucleus may play an important role in pain hypersensitivity. Sci Rep 2019; 9:3827. [PMID: 30846840 PMCID: PMC6405746 DOI: 10.1038/s41598-019-40572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/15/2019] [Indexed: 12/30/2022] Open
Abstract
Src family of kinases (SFKs) has been found to play an important role in the regulation of nociception. However, how each member of this family acts in the central nervous system (CNS) structures involved in the relay and/or modulation of nociceptive signals, and thereby contributes to the formation and maintenance of pain hypersensitivity, is still a challenge. In this work, a combined study using biochemical, genetic and behavioral approaches was conducted. We found that the expression of activated SFKs in the hypothalamic arcuate nucleus (ARC) area was significantly increased following the development of inflammation induced by injection of complete freund's adjuvant (CFA) into the hind paw of rats. Furthermore, we identified that Src, but not Fyn or Lyn in the Src family, was activated, and that Src knockdown in the ARC area blocked the inflammation-induced increases in the expression of activated SFKs, the N-Methyl-D-aspartate receptor (NMDAR) GluN2B subunit and phosphorylated GluN2B at Y1472 in this region. Moreover, the CFA injection-induced allodynia and hyperalgesia, and the analgesic effect produced by systemic application of the SFK inhibitor, SU6656, were significantly diminished. However, the Src knockdown did not induce any change in the expression of activated SFKs and the NMDAR GluN2B subunit in normal rats which were not injected with CFA. Neither the Src knockdown nor the systemic application of SU6656 affected the mechanical and thermal sensitivity of the normal rats. Thus, Src activation in the ARC may be a key event for formation and maintenance of pain hypersensitivity associated with peripheral inflammation.
Collapse
|
6
|
Zhang D, Lv G. Therapeutic potential of spinal GLP-1 receptor signaling. Peptides 2018; 101:89-94. [PMID: 29329976 DOI: 10.1016/j.peptides.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
GLP-1 signaling pathway has been well studied for its role in regulating glucose homeostasis, as well as its beneficial effects in energy and nutrient metabolism. A number of drugs based on GLP-1 have been used to treat type 2 diabetes mellitus. GLP-1R is expressed in multiple organs and numerous experimental studies have demonstrated that GLP-1 signaling pathway exhibits pro-survival functions in various disorders. In the central nervous system, stimulation of GLP-1R produces neuroprotective effects in specific neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The preproglucagon neurons located in the brainstem can also produce GLP-1. GLP-1 analogs have a long-acting effect and are able to pass the blood-brain barrier, which probably extends the therapeutic efficacy of GLP-1R activation. Neurodegenerative or traumatic conditions can damage the spinal cord and result in motor and sensory dysfunction. Evidence supports that GLP-1R activation in the spinal cord possesses beneficial effects and significant therapeutic potential. Herein, we review studies that have focused on GLP-1 and the spinal cord, and summarize the expression of GLP-1R and the innervation of PPG neurons in the spinal cord, as well as the potential therapeutic benefits of GLP-1R activation.
Collapse
Affiliation(s)
- Dongao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang Lv
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Peng HF, Yin T, Yang L, Wang C, Chang YC, Jeng MJ, Liaw JJ. Non-nutritive sucking, oral breast milk, and facilitated tucking relieve preterm infant pain during heel-stick procedures: A prospective, randomized controlled trial. Int J Nurs Stud 2018; 77:162-170. [DOI: 10.1016/j.ijnurstu.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
8
|
Abstract
Clients report more pain at some times of day than at others due, in part, to the temporal variation of the body's inhibitory pain response. The analgesic effectiveness of morphine varies with the time of day, perhaps due to the inhibiting or enhancing effects of the drug on plasma beta-endorphin (BE). This experiment was designed to examine the timed effects of morphine on the pain-induced BE response. Six groups of treatment mice (injected with morphine sulfate) and 6 groups of control mice (injected with saline) were exposed to an acute pain stimulus at 4-h intervals, and blood was collected. Plasma BE was analyzed using radioimmunoassay. Control mice showed a robust cir-cadian BE-response rhythm with a peak at 0000 and a nadir at 1200, whereas the BE response of mice that received morphine was arrhythmic. Animals that received morphine tolerated the noxious stimulus longer, but the analgesia varied with time of day. These results indicate that morphine abolishes the rhythmic BE response to pain and does not inhibit pain equally at all times of day. Morphine doses should be titrated to maximize the endogenous pain control system while achieving analgesia with decreased dosages.
Collapse
Affiliation(s)
- Natalie Ann Rasmussen
- College of Nursing, University of Nebraska Medical Center, 985330 Nebraska Medical Center, Omaha, NE 68198-5330, USA.
| | | |
Collapse
|
9
|
A single thalamic target for deep brain stimulation to treat hemi-body pain syndrome. Acta Neurochir (Wien) 2015; 157:1519-23. [PMID: 26159322 DOI: 10.1007/s00701-015-2504-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/29/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Patients experiencing hemi-body pain represent a difficult problem when using the thalamus as a DBS target given its anatomical topology. METHODS A 50-year-old HIV positive male underwent a right unilateral thalamic DBS to treat his severe left hemi-body central post-stroke pain following years of unsuccessful medication therapy. RESULTS The final active contact of the electrode corresponded to stimulation of the nucleus ventrocaudalis parvocellularis internis, which has provided prolonged pain relief. CONCLUSION To our knowledge this was the first time this pattern of pain was treated by a single thalamic DBS electrode, suggesting stimulation in this region may be a feasible target for achieving relief from chronic severe hemi-body pain.
Collapse
|
10
|
Yin T, Yang L, Lee TY, Li CC, Hua YM, Liaw JJ. Development of atraumatic heel-stick procedures by combined treatment with non-nutritive sucking, oral sucrose, and facilitated tucking: A randomised, controlled trial. Int J Nurs Stud 2015; 52:1288-99. [DOI: 10.1016/j.ijnurstu.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
11
|
Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci 2014; 34:5322-34. [PMID: 24719110 DOI: 10.1523/jneurosci.4703-13.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked β-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, β-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states.
Collapse
|
12
|
Effects of combined use of non-nutritive sucking, oral sucrose, and facilitated tucking on infant behavioural states across heel-stick procedures: a prospective, randomised controlled trial. Int J Nurs Stud 2012; 50:883-94. [PMID: 23068310 DOI: 10.1016/j.ijnurstu.2012.08.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pain and stress agitate preterm infants, interrupting their sleep. Frequent high arousal states may affect infants' brain development and illness recovery. Preserving infants' sleep and relieving their pain during painful procedures are both important for their health. OBJECTIVES To compare the effectiveness of different combinations of non-nutritive sucking (sucking), oral sucrose, and facilitated tucking (tucking) with routine care on infants' sleep-wake states before, during, and after heel-stick procedures. DESIGN Prospective, randomised controlled trial. SETTING Level III Neonatal Intensive Care Unit in Taipei. METHOD A convenience sample of 110 infants (gestational age 26.4-37 weeks) needing heel sticks were randomly assigned to five combinations of non-pharmacological treatments: sucking-oral sucrose-tucking; sucking-oral sucrose; oral sucrose-tucking; sucking-tucking; and routine care. Infant states, measured by a state-coding scheme, included quiet sleep, active sleep, transition, quiet awake, active awake, and fussing or crying. All states were recorded at 1-min intervals during four phases: baseline, intervention, heel-stick procedures, and recovery. RESULTS Infants receiving sucking-oral sucrose-tucking or sucking-oral sucrose experienced 52.8% (p=0.023) and 42.6% (p=0.063) more quiet-sleep occurrences than those receiving routine care after adjusting for phase, baseline states, non-treatment sucking during baseline and recovery, positioning, and infants' characteristics. Infants receiving oral sucrose-tucking, sucking-oral sucrose, sucking-oral sucrose-tucking, and sucking-tucking experienced 77.3% (p<0.001), 72.1% (p=0.008), 51.5% (p=0.017), and 33.0% (p=0.105) fewer occurrences of fussing or crying, respectively, than those receiving routine care after adjusting for related factors. CONCLUSIONS The four treatment combinations differentially reduced infants' high arousal across heel-stick procedures. The combined use of oral sucrose-tucking, sucking-oral sucrose, and sucking-oral sucrose-tucking more effectively reduced occurrences of infant fussing or crying than routine care. Treatment combinations of sucking-oral sucrose-tucking and sucking-oral sucrose also better facilitated infants' sleep than routine care. To preserve infants' sleep, clinicians should use combinations of non-nutritive sucking, oral sucrose, and facilitated tucking to reduce agitation during painful procedures.
Collapse
|
13
|
Abstract
The hypothesis in drug clinical trials is that the drug is better than a placebo in patients suffering from a disease. The unstated assumption is that the drug cures the disease or is a powerful treatment for the disease. This is an incorrect assumption. Drugs do not cure or treat diseases. The body heals itself; drugs promote this ability of the body to heal itself. Placebos are assumed to be inactive; however, placebos can also promote the ability of the body to heal itself. Placebos are actually treatments that can stimulate endogenous healing mechanisms. The possible place of placebos in health management is controversial. Clinical trial design should be altered. The hypothesis of clinical trials should be that the drug speeds up or improves the healing of the patient, putting patient healing as the first objective. Placebos should not be used as controls but could be tested as drugs in their own right. The control in clinical trials should be no treatment. Alternatively, new drugs could be compared to existing drugs in clinical trials.
Collapse
|
14
|
Cignacco EL, Sellam G, Stoffel L, Gerull R, Nelle M, Anand KJS, Engberg S. Oral sucrose and "facilitated tucking" for repeated pain relief in preterms: a randomized controlled trial. Pediatrics 2012; 129:299-308. [PMID: 22232305 DOI: 10.1542/peds.2011-1879] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To test the comparative effectiveness of 2 nonpharmacologic pain-relieving interventions administered alone or in combination across time for repeated heel sticks in preterm infants. METHODS A multicenter randomized controlled trial in 3 NICUs in Switzerland compared the effectiveness of oral sucrose, facilitated tucking (FT), and a combination of both interventions in preterm infants between 24 and 32 weeks of gestation. Data were collected during the first 14 days of their NICU stay. Three phases (baseline, heel stick, recovery) of 5 heel stick procedures were videotaped for each infant. Four independent experienced nurses blinded to the heel stick phase rated 1055 video sequences presented in random order by using the Bernese Pain Scale for Neonates, a validated pain tool. RESULTS Seventy-one infants were included in the study. Interrater reliability was high for the total Bernese Pain Scale for Neonates score (Cronbach's α: 0.90-0.95). FT alone was significantly less effective in relieving repeated procedural pain (P < .002) than sucrose (0.2 mL/kg). FT in combination with sucrose seemed to have added value in the recovery phase with lower pain scores (P = .003) compared with both the single-treatment groups. There were no significant differences in pain responses across gestational ages. CONCLUSIONS Sucrose with and without FT had pain-relieving effects even in preterm infants of <32 weeks of gestation having repeated pain exposures. These interventions remained effective during repeated heel sticks across time. FT was not as effective and cannot be recommended as a nonpharmacologic pain relief intervention for repeated pain exposure.
Collapse
Affiliation(s)
- Eva L Cignacco
- Institute of Nursing Science, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zubrzycka M, Janecka A. Effect of tooth pulp and periaqueductal central gray electrical stimulation on β-endorphin release into the fluid perfusing the cerebral ventricles in rats. Brain Res 2011; 1405:15-22. [DOI: 10.1016/j.brainres.2011.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/01/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
|
16
|
Ohgami Y, Chung E, Quock RM. Nitrous oxide-induced NO-dependent neuronal release of β-endorphin from the rat arcuate nucleus and periaqueductal gray. Brain Res 2010; 1366:38-43. [PMID: 20937263 DOI: 10.1016/j.brainres.2010.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/27/2010] [Accepted: 10/02/2010] [Indexed: 11/15/2022]
Abstract
Nitrous oxide (N(2)O)-induced antinociception is thought to result from nitric oxide (NO)-dependent neuronal release of endogenous opioid peptides in the central nervous system. The present study employed microdialysis to determine whether exposure to N(2)O stimulates proopiomelanocortin (POMC) neurons to release β-endorphin in the arcuate nucleus (ARC) of the hypothalamus and the periaqueductal gray (PAG) of the midbrain. Male Sprague-Dawley rats were stereotaxically implanted with microdialysis probes in the ARC or PAG. Exposure to 70% N(2)O significantly increased dialysate levels of oxidation products of NO as well as β-endorphin, compared to levels in fractions collected under room air. These increases in the ARC and PAG were abolished by systemic pretreatment with L-N(G)-nitro arginine methyl ester (L-NAME). These findings suggest an association between increased NO activity and the stimulated release of β-endorphin during exposure of rats to N(2)O.
Collapse
Affiliation(s)
- Yusuke Ohgami
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6534, USA
| | | | | |
Collapse
|
17
|
Bender T, Nagy G, Barna I, Tefner I, Kádas E, Géher P. The effect of physical therapy on beta-endorphin levels. Eur J Appl Physiol 2007; 100:371-82. [PMID: 17483960 DOI: 10.1007/s00421-007-0469-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Beta-endorphin (betaE) is an important reliever of pain. Various stressors and certain modalities of physiotherapy are potent inducers of the release of endogenous betaE to the blood stream. Most forms of exercise also increase blood betaE level, especially when exercise intensity involves reaching the anaerobic threshold and is associated with the elevation of serum lactate level. Age, gender, and mental activity during exercise also may influence betaE levels. Publications on the potential stimulating effect of manual therapy and massage on betaE release are controversial. Sauna, mud bath, and thermal water increase betaE levels through conveying heat to the tissues. The majority of the techniques for electrical stimulation have a similar effect, which is exerted both centrally and--to a lesser extent--peripherally. However, the parameters of electrotherapy have not yet been standardised. The efficacy of analgesia and the improvement of general well-being do not necessarily correlate with betaE level. Although in addition to blood, increased brain and cerebrospinal fluid betaE levels are also associated with pain, the majority of studies have concerned blood betaE levels. In general, various modalities of physical therapy might influence endorphin levels in the serum or in the cerebrospinal fluid--this is usually manifested by elevation with potential mitigation of pain. However, a causal relationship between the elevation of blood, cerebrospinal fluid or brain betaE levels and the onset of the analgesic action cannot be demonstrated with certainty.
Collapse
Affiliation(s)
- Tamás Bender
- Polyclinic of Hospitaller Brothers of St. John of God, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
18
|
Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. ACTA ACUST UNITED AC 2006; 52:69-92. [PMID: 16488019 DOI: 10.1016/j.brainresrev.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.
| | | |
Collapse
|
19
|
Leite-Almeida H, Valle-Fernandes A, Almeida A. Brain projections from the medullary dorsal reticular nucleus: an anterograde and retrograde tracing study in the rat. Neuroscience 2006; 140:577-95. [PMID: 16563637 DOI: 10.1016/j.neuroscience.2006.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/06/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
In the last 15 years a role has been ascribed for the medullary dorsal reticular nucleus as a supraspinal pain modulating area. The medullary dorsal reticular nucleus is reciprocally connected with the spinal dorsal horn, is populated mainly by nociceptive neurons and regulates spinal nociceptive processing. Here we analyze the distribution of brain projections from the medullary dorsal reticular nucleus using the iontophoretic administration of the anterograde tracer biotinylated-dextran amine and the retrograde tracer cholera toxin subunit B. Fibers and terminal boutons labeled from the medullary dorsal reticular nucleus were located predominately in the brainstem, although extending also to the forebrain. In the medulla oblongata, anterograde labeling was observed in the orofacial motor nuclei, inferior olive, caudal ventrolateral medulla, rostral ventromedial medulla, nucleus tractus solitarius and most of the reticular formation. Labeling at the pons-cerebellum level was present in the locus coeruleus, A5 and A7 noradrenergic cell groups, parabrachial and deep cerebellar nuclei, whereas in the mesencephalon it was located in the periaqueductal gray matter, deep mesencephalic, oculomotor and anterior pretectal nuclei, and substantia nigra. In the diencephalon, fibers and terminal boutons were found mainly in the parafascicular, ventromedial, and posterior thalamic nuclei and in the arcuate, lateral, posterior, peri- and paraventricular hypothalamic areas. Telencephalic labeling was consistent but less intense and concentrated in the septal nuclei, globus pallidus and amygdala. The well-known role of the medullary dorsal reticular nucleus in nociception and its pattern of brain projections in rats suggests that the nucleus is possibly implicated in the modulation of: (i) the ascending nociceptive transmission involved in the motivational-affective dimension of pain; (ii) the endogenous supraspinal pain control system centered in the periaqueductal gray matter-rostral ventromedial medulla-spinal cord circuitry; (iii) the motor reactions associated with pain.
Collapse
Affiliation(s)
- H Leite-Almeida
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, CP-II, Piso 3, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
20
|
Li JJ, Zhou X, Yu LC. Involvement of neuropeptide Y and Y1 receptor in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation. Pain 2005; 118:232-42. [PMID: 16216414 DOI: 10.1016/j.pain.2005.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 08/04/2005] [Accepted: 08/18/2005] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY) plays an important role in pain modulation at different levels in the central nervous system. In the brain, NPY and NPY receptors distribute abundantly in the arcuate nucleus of hypothalamus (ARC), a structure involved in pain processing. The present study was undertaken to investigate the role of NPY in nociceptive modulation in the ARC of intact rats and rats with carrageenan-induced inflammation. Intra-ARC administration of NPY induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation in intact rats, which was attenuated by the Y1 receptor antagonist NPY28-36. Intra-ARC administration of NPY also induced dose-dependent increases in HWLs to noxious stimulation in rats with inflammation. Furthermore, intra-ARC injection of either the antiserum against NPY or NPY28-36 induced decreases in HWLs in rats with inflammation, while both of them produced no effects in intact ones. Additionally, there were marked increases of Y1 receptor in the bilateral ARC of rats with inflammation tested by immunohistochemistry, while no significant changes of NPY were observed, implicating that the increased Y1 receptor has an important effect in the NPY-induced antinociception. We also found that intra-ARC injection of Y2 receptor agonist NPY3-36 produced no significant antinociception in either intact rats or rats with inflammation. Together, we demonstrate that NPY exerts an antinociceptive effect in the ARC of intact rats and rats with inflammation. Both Y1 receptor and endogenous released NPY in the ARC are involved in the nociceptive modulation during inflammation.
Collapse
Affiliation(s)
- Jin-Ju Li
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
21
|
Paulson PE, Gorman AL, Yezierski RP, Casey KL, Morrow TJ. Differences in forebrain activation in two strains of rat at rest and after spinal cord injury. Exp Neurol 2005; 196:413-21. [PMID: 16182286 PMCID: PMC1838964 DOI: 10.1016/j.expneurol.2005.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/25/2005] [Indexed: 01/17/2023]
Abstract
Forebrain activation patterns in normal and spinal-injured Sprague-Dawley (SD) rats were determined by measuring regional cerebral blood flow as an indicator of neuronal activity. Data are compared to our previously published findings from normal and spinal-injured Long-Evans (LE) rats and reveal a striking degree of overlap, as well as differences, between strains in the basal (unstimulated) forebrain activation in normal animals. Specifically, 81% of the structures sampled showed similar activation in both strains, suggesting a consistent and identifiable pattern of basal cerebral activation in the rat. LE controls showed significantly greater basal activation in the remaining structures compared to SD control group, including the anterior dorsal thalamus, basolateral amygdala, SII cortex, and the hypothalamic paraventricular nucleus. In contrast, spinal cord injury (SCI) resulted in strain-specific changes in forebrain activation categorized by structures that showed significant increases in: (1) only LE SCI rats (posterior, ventrolateral, and ventroposterolateral thalamic nuclei); (2) only SD SCI rats (anterior-dorsal and medial thalamus, basolateral amygdala, cingulate and retrosplenial cortex, habenula, interpeduncular nucleus, hypothalamic paraventricular nucleus, periaqueductal gray); or (3) both strains (arcuate nucleus, ventroposteromedial thalamus, SI and SII somatosensory cortex). These results provide information related to the remote, i.e. supraspinal, effects of spinal cord injury and suggest that genetic differences play an important part in the forebrain response to such injury. Brain activation studies therefore provide a useful tool in understanding the full extent of secondary consequences following spinal injury and for identifying potential central mechanism responsible for the development of pain.
Collapse
Affiliation(s)
- Pamela E Paulson
- Neurology Research Laboratory, VA Medical Center, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
22
|
Sun YG, Yu LC. Interactions of galanin and opioids in nociceptive modulation in the arcuate nucleus of hypothalamus in rats. ACTA ACUST UNITED AC 2005; 124:37-43. [PMID: 15544839 DOI: 10.1016/j.regpep.2004.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Accepted: 06/22/2004] [Indexed: 11/21/2022]
Abstract
The fact that galanin, beta-endorphin and their receptors are present in the arcuate nucleus of hypothalamus (ARC), coupled with our previous observation that both beta-endorphin and galanin play antinociceptive roles in pain modulation in the ARC, made it of interest to study their interactions. The hindpaw withdrawal latency (HWL) in response to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. We showed that the antinociceptive effect induced by intra-ARC injection of galanin was dose-dependently attenuated by the following intra-ARC injection of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) attenuated the increased HWL induced by intra-ARC injection of galanin in a dose-dependent manner, while the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) did not. Moreover, intra-ARC injection of a galanin receptor antagonist galantide attenuated intraperitoneal morphine-induced increases in HWLs. These results demonstrate that the antinociceptive effect of galanin was related to the opioid system, especially mu-opioid receptor was involved in, and that systemic morphine induced antinociception involves galanin in the ARC.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology, Center for Brain and Cognitive Science, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
23
|
Sun YG, Gu XL, Lundeberg T, Yu LC. An antinociceptive role of galanin in the arcuate nucleus of hypothalamus in intact rats and rats with inflammation. Pain 2003; 106:143-50. [PMID: 14581121 DOI: 10.1016/s0304-3959(03)00316-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the arcuate nucleus of hypothalamus (ARC), galaninergic fibers form synaptic contacts with proopiomelanocortin neurons, which are involved in pain modulation. The present study assessed the role of exogenous and endogenous galanin in the modulation of nociception in the ARC of rats. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of galanin dose-dependently increased the HWLs in intact rats, indicating an antinociceptive role of exogenous galanin in the ARC. The antinociceptive effect of galanin was blocked by following intra-ARC injection of galantide, a putative galanin receptor antagonist, suggesting that the antinociceptive effect of galanin is mediated by galanin receptors. Moreover, intra-ARC injection of galanin increased the HWL in rats with inflammation. Intra-ARC administration of galantide alone reduced the HWLs in rats with inflammation, while there were no influences of galantide on the HWL in intact rats. Taken together, the results show that galanin has an antinociceptive role in the ARC of intact rats and rats with inflammation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Neurobiology Laboratory, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology and Center for Brain and Cognitive Science, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
24
|
Forman LJ. The effect of cannabinoid receptor antagonism with SR141716A on antinociception induced by cocaine and the NMDA receptor antagonist, MK-801. Brain Res Bull 2003; 61:153-8. [PMID: 12832001 DOI: 10.1016/s0361-9230(03)00103-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the rat, antinociception of supraspinal origin is observed in response to administration of cocaine or an antagonist of the NMDA receptor for glutamate. The current study was conducted to determine if endocannabinoids are involved in the antinociceptive effect of cocaine, or antagonism of NMDA receptor binding. Intraperitoneal (i.p.) administration to male rats of cocaine, or the NMDA receptor antagonist, MK-801, resulted in a significant antinociceptive response of supraspinal origin, as indicated by a significant increase in reaction time in the hot plate test of analgesia (increase in the amount of time before the animal reacted to the hot plate by licking its paws or jumping). Treatment with SR141716A, a specific antagonist of the cannabinoid (CB1) receptor, resulted in a complete reversal of cocaine-induced antinociception when administered at a dose of 5.0mg/kg. Although the 2.5 and 5.0mg/kg doses of SR141716A produced a significant reduction in the antinociceptive effect of MK-801, the effect was incomplete since the reaction time in the hot plate test remained greater than that observed in vehicle-treated controls. These findings suggest that activation of the CB1 receptor participates significantly in antinociception resulting from treatment with cocaine and with the NMDA receptor antagonist, MK-801. The partial reversal of the antinociceptive effect of MK-801 by CB1 receptor antagonism indicates other mediators of nociception, in addition to the endocannabinoids, appear to be active in the antinociceptive response to NMDA receptor antagonism.
Collapse
Affiliation(s)
- Lloyd J Forman
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| |
Collapse
|
25
|
Sun YG, Lundeberg T, Yu LC. Involvement of endogenous beta-endorphin in antinociception in the arcuate nucleus of hypothalamus in rats with inflammation. Pain 2003; 104:55-63. [PMID: 12855314 DOI: 10.1016/s0304-3959(02)00464-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although exogenous administration of beta-endorphin to the arcuate nucleus of hypothalamus (ARC) had been shown to produce antinociception, the role of endogenous beta-endorphin of the ARC in nociceptive processing has not been studied directly. The aim of the present study was to investigate the effect of endogenous beta-endorphin in the ARC on nociception in rats with carrageenan-induced inflammation. The hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of naloxone had no significant influence on the HWL to thermal and mechanical stimulation in intact rats. The HWL decreased significantly after intra-ARC injection of 1 or 10 microg of naloxone in rats with inflammation, but not with 0.1 microg of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) decreased the nociceptive response latencies to both stimulation in a dose-dependent manner in rats with inflammation, while intra-ARC administration of the selective delta-opioid receptor antagonist naltrindole or the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) showed no influences on the nociceptive response latency. The antiserum against beta-endorphin, administered to the ARC, also dose-dependently reduced the HWL in rats with inflammation. The results indicate that endogenous beta-endorphin in the ARC plays an important role in the endogenous antinociceptive system in rats with inflammation, and that its effect is predominantly mediated by the mu-opioid receptor.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
26
|
|
27
|
Sei C, Toneff T, Aaron W, Hook VYH. Regulation of cellular alpha-MSH and beta-endorphin during stimulated secretion from intermediate pituitary cells: involvement of aspartyl and cysteine proteases in the control of cellular levels of alpha-MSH and beta-endorphin. Peptides 2002; 23:1409-18. [PMID: 12182941 DOI: 10.1016/s0196-9781(02)00079-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulation of cellular levels of alpha-melanocyte stimulating factor (alpha-MSH) and beta-endorphin in response to stimulated secretion from intermediate pituitary cells in primary culture was investigated in this study. Regulation of the cell content of alpha-MSH and beta-endorphin occurred in two phases consisting of (a) initial depletion of cellular levels of these peptide hormones during short-term secretion (3 h) induced by isoproterenol, forskolin, or phorbol myristate acetate (PMA) which was followed by (b) long-term (24 h) increases in cellular levels of alpha-MSH and beta-endorphin in response to stimulated secretion induced by isoproterenol and PMA. In short-term experiments (3 h), cellular levels of alpha-MSH and beta-endorphin were reduced by 30-50% during stimulated secretion of these peptide hormones by isoproterenol (agonist for the beta-adrenergic receptor), forskolin that activates protein kinase A (PKA), and PMA that activates protein kinase C (PKC). Moreover, dopamine inhibited isoproterenol-induced depletion of cellular alpha-MSH and beta-endorphin. During long-term incubation of cells (24 h) with isoproterenol, cellular alpha-MSH and beta-endorphin were increased to twice that of controls (unstimulated cells). Treatment with PMA for 24 h also increased cellular levels of alpha-MSH and beta-endorphin. Moreover, cellular levels of alpha-MSH and beta-endorphin were decreased during long-term treatment of cells with an aspartyl protease inhibitor, pepstatin A, and with the cysteine protease inhibitor E64c. These results implicate aspartyl and cysteine proteases in the cellular production of alpha-MSH and beta-endorphin that requires proteolytic processing of their common precursor proopiomelanocortin (POMC). These findings demonstrate the parallel regulation of cellular levels of alpha-MSH and beta-endorphin during their cosecretion, which may involve aspartyl and cysteine proteases in the metabolism of these peptide hormones.
Collapse
Affiliation(s)
- Catherine Sei
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
28
|
Negus SS, Pope HG, Kanayama G, Wines JD, Fischer BD. Lack of evidence for opioid tolerance or dependence in rhesus monkeys following high-dose anabolic-androgenic steroid administration. Psychoneuroendocrinology 2001; 26:789-96. [PMID: 11585679 DOI: 10.1016/s0306-4530(01)00028-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged use of high-dose anabolic-androgenic steroids (AAS) may induce a dependence syndrome, and emerging evidence suggests that AAS effects on endogenous opioid systems may contribute to AAS abuse. The present study tested the hypothesis that high dose AAS treatment enhances endogenous opioid activity in rhesus monkeys as revealed by 1) tolerance to the antinociceptive effects of the mu opioid agonist morphine and 2) physical dependence as indicated by evidence of opioid withdrawal following administration of the opioid antagonist naloxone. Three rhesus monkeys were treated for 14 days with 3.2 mg/kg/day testosterone propionate, and the effects of morphine (0.32-10 mg/kg) and naloxone (0.01-0.32 mg/kg) were examined both before and during treatment. Morphine antinociception was evaluated using a warm-water tail-withdrawal procedure, and naloxone-precipitated withdrawal was evaluated using checked behavioral signs and measures of ventilatory rate. Chronic testosterone administration for 14 days produced a 100-fold increase in mean plasma testosterone levels. However, testosterone treatment did not significantly alter the antinociceptive effects of morphine, and naloxone did not precipitate signs of opioid withdrawal either before or during testosterone treatment. These data do not support the hypothesis that high-dose AAS treatment enhances endogenous opioid activity in rhesus monkeys in a way that produces opioid tolerance or dependence.
Collapse
Affiliation(s)
- S S Negus
- Alcohol and Drug Abuse Research Center: Behavioral Science Laboratory, McLean Hospital-Harvard Medical School, 115 Mill St., Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
29
|
Niemeyer CM, Wacker R, Adler M. Hapten-Functionalized DNA-Streptavidin Nanocircles as Supramolecular Reagents in a Competitive Immuno-PCR Assay. Angew Chem Int Ed Engl 2001; 40:3169-3172. [DOI: 10.1002/1521-3773(20010903)40:17<3169::aid-anie3169>3.0.co;2-i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2001] [Revised: 05/30/2001] [Indexed: 11/10/2022]
|
30
|
Niemeyer CM, Wacker R, Adler M. Hapten-funktionalisierte DNA-Streptavidin-Nanoringe als supramolekulare Reagentien für einen kompetitiven Immuno-PCR-Nachweis. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010903)113:17<3262::aid-ange3262>3.0.co;2-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Morrow TJ, Paulson PE, Brewer KL, Yezierski RP, Casey KL. Chronic, selective forebrain responses to excitotoxic dorsal horn injury. Exp Neurol 2000; 161:220-6. [PMID: 10683288 DOI: 10.1006/exnr.1999.7246] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intraspinal injection of the AMPA/metabotropic receptor agonist quisqualic acid (QUIS) results in excitotoxic injury which develops pathological characteristics similar to those associated with ischemic and traumatic spinal cord injury (SCI) (R. P. Yezierski et al., 1998, Pain 75: 141-155; R. P. Yezierski et al., 1993, J. Neurotrauma 10: 445-456). Since spinal injury can lead to partial or complete deafferentation of ascending supraspinal structures, it is likely that secondary to the disruption of spinal pathways these regions could undergo significant reorganization. Recently, T. J. Morrow et al. (Pain 75: 355-365) showed that autoradiographic estimates of regional cerebral blood flow (rCBF) can be used to simultaneously identify alterations in the activation of multiple forebrain structures responsive to noxious formalin stimulation. Accordingly, we examined whether excitotoxic SCI produced alterations in the activation of supraspinal structures using rCBF as a marker of neuronal activity. Twenty-four to 41 days after unilateral injection of QUIS into the T12 to L3 spinal segments, we found significant increases in the activation of 7 of 22 supraspinal structures examined. As compared to controls, unstimulated SCI rats exhibited a significant bilateral increase in rCBF within the arcuate nucleus (ARC), the hindlimb region of S1 cortex (HL), parietal cortex (PAR), and the thalamic posterior (PO), ventral lateral (VL), ventral posterior lateral (VPL), and ventral posterior medial (VPM) nuclei. All structures showing significantly altered rCBF are associated with the processing of somatosensory information. These changes constitute remote responses to injury and suggest that widespread functional changes occur within cortical and subcortical regions following injury to the spinal cord.
Collapse
Affiliation(s)
- T J Morrow
- Neurology Research Laboratory, VA Medical Center, Ann Arbor, Michigan, 48105, USA
| | | | | | | | | |
Collapse
|
32
|
Forman LJ. NMDA receptor antagonism produces antinociception which is partially mediated by brain opioids and dopamine. Life Sci 1999; 64:1877-87. [PMID: 10353586 DOI: 10.1016/s0024-3205(99)00134-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of nitric oxide synthase (NOS) activity results in opioid-mediated supraspinal analgesia in the rat, as indicated by increased reaction time in the hot plate test. It is documented that a relationship exists between NMDA receptor activation and the activity of NOS. The present investigation sought to determine if inactivation of the NMDA receptor produced antinociception of supraspinal origin, as was observed in response to inhibition of NOS, and if this response was mediated by brain opioids, by activation of receptors for the neurotransmitter, dopamine, or both. Administration of MK-801, a non-competitive antagonist of the NMDA receptor, produced significant antinociception as measured by reaction time in the hot plate test of analgesia. Antinociception resulting from treatment with MK-801 appeared to be mediated by brain opioids, as indicated by the ability of the opioid antagonist, naloxone, to partially reverse the effect of MK-801 administration. This analgesic response was also partially diminished by administration of the dopamine D1 receptor antagonist, SCH 23390 and the dopamine D2 receptor antagonist, sulpiride. The analgesia resulting from NMDA receptor antagonism was found to be only partially attributable to dopamine and brain opioids, since co-administration of naloxone and SCH 23390 or naloxone and sulpiride, were unable to completely reverse the antinociceptive response to MK-801. The present findings suggest that inhibition of NMDA receptor activity produces supraspinal analgesia. Furthermore, it appears that antinociception induced by blockade of the NMDA receptor results, at least in part, from activation of endogenous brain opioids and stimulation of D1 and D2 subtypes of the dopamine receptor.
Collapse
Affiliation(s)
- L J Forman
- University of Medicine and Dentistry of New Jersey - School of Osteopathic Medicine, Department of Cell Biology, Stratford 08084, USA
| |
Collapse
|
33
|
Porro CA, Cavazzuti M, Baraldi P, Giuliani D, Panerai AE, Corazza R. CNS pattern of metabolic activity during tonic pain: evidence for modulation by beta-endorphin. Eur J Neurosci 1999; 11:874-88. [PMID: 10103081 DOI: 10.1046/j.1460-9568.1999.00494.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CNS correlates of acute prolonged pain, and the effects of partial blockade of the central beta-endorphin system, were investigated by the quantitative 2-deoxyglucose technique in unanaesthetized, freely moving rats. Experiments were performed during the second, tonic phase of the behavioural response to a prolonged chemical noxious stimulus (s.c. injection of dilute formalin into a forepaw), or after minor tissue injury (s.c. saline injection). During formalin-induced pain, local glucose utilization rates in the CNS were bilaterally increased in the grey matter of the cervical spinal cord, in spinal white matter tracts and in several supraspinal structures, including portions of the medullary reticular formation, locus coeruleus, lateral parabrachial region, anterior pretectal nucleus, the medial, lateral and posterior thalamic regions, basal ganglia, and the parietal, cingulate, frontal, insular and orbital cortical areas. Pretreatment with anti-beta-endorphin antibodies, injected i.c.v., led to increased metabolism in the tegmental nuclei, locus coeruleus, hypothalamic and thalamic structures, putamen, nucleus accumbens, diagonal band nuclei and dentate gyrus, and in portions of the parietal, cingulate, insular, frontal and orbital cortex. In formalin-injected rats, pretreated with anti-beta-endorphin, behavioural changes indicative of hyperalgesia (increased licking response) were found, which were paralleled by a significant enhancement of functional activity in the anterior pretectal nucleus and in thalamo-cortical systems. A positive correlation was found between the duration of the licking response and metabolic activity of several forebrain regions. These results provide a map of the CNS pattern of metabolic activity during tonic somatic pain, and demonstrate a modulatory role for beta-endorphin in central networks that process somatosensory inputs.
Collapse
Affiliation(s)
- C A Porro
- Scienze e Technologie Biomediche, University of Udine, P. le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The possible physiological and pathophysiological role of monoamines-adrenergic transmitter (norepinephrine), serotonin; cholinergic transmitter (acetylcholine); inhibitory (gamma-aminobutyric acid) and excitatory (glutamate) amino acids; opioid and nonopioid peptides, enkephalins, beta-endorphin and substance P, neurokinin-A, neurokinin-B, neurotensin, cytokines, calcitonine gene-related peptide, galanin, neuropeptide Y, nerve growth factor, cholecystokinin; purines; nitric oxide; vanilloid receptor agonists (capasaicin); and nociceptin-in spinal transmission of pain is reviewed. The role of substance P, neurokinin-A and neurokinin-B in the dorsal horn has been identified. These were suggested to be primary afferent transmitters mediating or facilitating the expression of nociceptive inputs. Pronociceptive modulators will be discussed later. Recent findings showing that N-methyl-D-aspartate (NMDA) receptor activation generates nitric oxide and prostanoids that enhance pain transmission whereas adenosine release acts to control these NMDA-mediated events are also mentioned. The clinical importance of centrally acting alpha2-adrenoceptor agonists (clonidine and dexmedetomidine) is also discussed. Antinociceptive and morphine-potentiating drugs are ideal adjuvants for anesthesia; their application in spinal anesthesia is highlighted. The recent development in understanding the importance of noradrenergic transmission and subtypes of alpha2-adrenoceptors (alpha2A and alpha2B) for the first time is reviewed.
Collapse
Affiliation(s)
- S Fürst
- Department of Pharmacology, Semmelweis University of Medicine, Budapest, Hungary.
| |
Collapse
|
35
|
|