1
|
Ibragić S, Dahija S, Karalija E. The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. EPIGENOMES 2025; 9:10. [PMID: 40265377 PMCID: PMC12015926 DOI: 10.3390/epigenomes9020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Plants face a wide range of environmental stresses that disrupt growth and productivity. To survive and adapt, they undergo complex metabolic reprogramming by redirecting carbon and nitrogen fluxes toward the biosynthesis of protective secondary metabolites such as phenylpropanoids, flavonoids, and lignin. Recent research has revealed that these stress-induced metabolic processes are tightly regulated by epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. METHODS This review synthesizes current findings from studies on both model and crop plants, examining the roles of key epigenetic regulators in controlling secondary metabolism under stress. Special focus is placed on dynamic changes in DNA methylation, histone acetylation, and the action of small RNAs such as siRNAs and miRNAs in transcriptional and post-transcriptional regulation. RESULTS Evidence indicates that stress triggers rapid and reversible epigenetic modifications that modulate gene expression linked to secondary metabolic pathways. These modifications not only facilitate immediate metabolic responses but can also contribute to stress memory. In some cases, this memory is retained and transmitted to the next generation, influencing progeny stress responses. However, critical knowledge gaps remain, particularly concerning the temporal dynamics, tissue specificity, and long-term stability of these epigenetic marks in crops. CONCLUSIONS Understanding how epigenetic regulation governs secondary metabolite production offers promising avenues to enhance crop resilience and productivity in the context of climate change. Future research should prioritize dissecting the stability and heritability of these modifications to support the development of epigenetically informed breeding strategies.
Collapse
Affiliation(s)
- Saida Ibragić
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Sabina Dahija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Erna Karalija
- Laboratory for Plant Physiology, Department of Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
2
|
Williamson M, Gerhard D, Hulme PE, Millar A, Chapman H. High-performing plastic clones best explain the spread of yellow monkeyflower from lowland to higher elevation areas in New Zealand. J Evol Biol 2023; 36:1455-1470. [PMID: 37731241 DOI: 10.1111/jeb.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.
Collapse
Affiliation(s)
- Michelle Williamson
- Institute of Environmental Science and Research ESR Christchurch, Christchurch, New Zealand
| | - Daniel Gerhard
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Philip E Hulme
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - Aaron Millar
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hazel Chapman
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
3
|
Earley TS, Feiner N, Alvarez MF, Coolon JD, Sultan SE. The relative impact of parental and current environment on plant transcriptomes depends on type of stress and genotype. Proc Biol Sci 2023; 290:20230824. [PMID: 37752834 PMCID: PMC10523085 DOI: 10.1098/rspb.2023.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Through developmental plasticity, an individual organism integrates influences from its immediate environment with those due to the environment of its parents. While both effects on phenotypes are well documented, their relative impact has been little studied in natural systems, especially at the level of gene expression. We examined this issue in four genotypes of the annual plant Persicaria maculosa by varying two key resources-light and soil moisture-in both generations. Transcriptomic analyses showed that the relative effects of parent and offspring environment on gene expression (i.e. the number of differentially expressed transcripts, DETs) varied both for the two types of resource stress and among genotypes. For light, immediate environment induced more DETs than parental environment for all genotypes, although the precise proportion of parental versus immediate DETs varied among genotypes. By contrast, the relative effect of soil moisture varied dramatically among genotypes, from 8-fold more DETs due to parental than immediate conditions to 10-fold fewer. These findings provide evidence at the transcriptomic level that the relative impacts of parental and immediate environment on the developing organism may depend on the environmental factor and vary strongly among genotypes, providing potential for the interplay of these developmental influences to evolve.
Collapse
Affiliation(s)
- Timothy S. Earley
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | - Mariano F. Alvarez
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D. Coolon
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Furci L, Pascual‐Pardo D, Tirot L, Zhang P, Hannan Parker A, Ton J. Heritable induced resistance in Arabidopsis thaliana: Tips and tools to improve effect size and reproducibility. PLANT DIRECT 2023; 7:e523. [PMID: 37638230 PMCID: PMC10457550 DOI: 10.1002/pld3.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Over a decade ago, three independent studies reported that pathogen- and herbivore-exposed Arabidopsis thaliana produces primed progeny with increased resistance. Since then, heritable induced resistance (h-IR) has been reported across numerous plant-biotic interactions, revealing a regulatory function of DNA (de)methylation dynamics. However, the identity of the epi-alleles controlling h-IR and the mechanisms by which they prime defense genes remain unknown, while the evolutionary significance of the response requires confirmation. Progress has been hampered by the relatively high variability, low effect size, and sometimes poor reproducibility of h-IR, as is exemplified by a recent study that failed to reproduce h-IR in A. thaliana by Pseudomonas syringae pv. tomato (Pst). This study aimed to improve h-IR effect size and reproducibility in the A. thaliana-Pst interaction. We show that recurrent Pst inoculations of seedlings result in stronger h-IR than repeated inoculations of older plants and that disease-related growth repression in the parents is a reliable marker for h-IR effect size in F1 progeny. Furthermore, RT-qPCR-based expression profiling of genes controlling DNA methylation maintenance revealed that the elicitation of strong h-IR upon seedling inoculations is marked by reduced expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) gene, which is maintained in the apical meristem and transmitted to F1 progeny. Two additional genes, MET1 and CHROMOMETHYLASE3 (CMT3), displayed similar transcriptional repression in progeny from seedling-inoculated plants. Thus, reduced expression of DDM1, MET1, and CMT3 can serve as a marker of robust h-IR in F1 progeny. Our report offers valuable information and markers to improve the effect size and reproducibility of h-IR in the A. thaliana-Pst model interaction.
Collapse
Affiliation(s)
- L. Furci
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
- Plant Epigenetics UnitOkinawa Institute of Science and TechnologyOnnaOkinawaJapan
| | - D. Pascual‐Pardo
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - L. Tirot
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - P. Zhang
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - A. Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| | - J. Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable FoodThe University of SheffieldSheffieldUK
| |
Collapse
|
5
|
Bubica Bustos LM, Ueno AC, Biganzoli F, Card SD, Mace WJ, Martínez-Ghersa MA, Gundel PE. Can Aphid Herbivory Induce Intergenerational Effects of Endophyte-conferred Resistance in Grasses? J Chem Ecol 2022; 48:867-881. [PMID: 36372818 DOI: 10.1007/s10886-022-01390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Abstract
Plants have evolved mechanisms to survive herbivory. One such mechanism is the induction of defences upon attack that can operate intergenerationally. Cool-season grasses (sub-family Pooideae) obtain defences via symbiosis with vertically transmitted fungal endophytes (genus Epichloë) and can also show inducible responses. However, it is unknown whether these herbivore-induced responses can have intergenerational effects. We hypothesized that herbivory by aphids on maternal plants induces the intergenerational accumulation of endophyte-derived defensive alkaloids and resistance intensification in the progeny. We subjected mother plants symbiotic or not with Epichloë occultans, a species known for its production of anti-insect alkaloids known as lolines, to the aphid Rhopalosiphum padi. Then, we evaluated the progeny of these plants in terms of loline alkaloid concentration, resistance level (through herbivore performance), and shoot biomass. Herbivory on mother plants did not increase the concentration of lolines in seeds but it tended to affect loline concentration in progeny plants. There was an overall herbivore-induced intergenerational effect increasing the endophyte-conferred defence and resistance. Symbiotic plants were more resistant to aphids and had higher shoot biomass than their non-symbiotic counterparts. Since maternal herbivory did not affect the loline concentrations in seeds, the greater resistance of the progeny could have resulted from an inherited mechanism of epigenetic regulation. It would be interesting to elucidate the origin of this regulation since it could come from the host or the fungal symbiont. Thus, endophyte-driven differential fitness between symbiotic and non-symbiotic plants might be higher as generations pass on in presence of herbivores.
Collapse
Affiliation(s)
| | - Andrea C Ueno
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stuart D Card
- Resilient Agriculture, Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Wade J Mace
- Resilient Agriculture, Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | | | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile.
| |
Collapse
|
6
|
Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity. Life (Basel) 2022; 12:life12111804. [DOI: 10.3390/life12111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping highly dynamic and heterogeneous stressful environments. This study aims to evaluate the tomato morpho-physiological and metabolic responses to combined abiotic and herbivory at different within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and volatile organic compounds (VOCs) profiles were measured in tomato plants exposed to N deficiency and drought, Tuta absoluta larvae and their combination. Additive, synergistic or antagonistic effects of the single stress when combined were also evaluated. Morpho-physiological traits and VOCs profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOCs tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggested that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defense resources in the heterogeneous and multiple stressful environmental conditions.
Collapse
|
7
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
8
|
Nihranz CT, Helms AM, Tooker JF, Mescher MC, De Moraes CM, Stephenson AG. Adverse effects of inbreeding on the transgenerational expression of herbivore-induced defense traits in Solanum carolinense. PLoS One 2022; 17:e0274920. [PMID: 36282832 PMCID: PMC9595541 DOI: 10.1371/journal.pone.0274920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
9
|
Yin J, Lin X, Yao J, Li QQ, Zhang Y. Genotypic variation of transgenerational plasticity can be explained by environmental predictability at origins. OIKOS 2022. [DOI: 10.1111/oik.09006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
- Graduate College of Biomedical Sciences, Western Univ. of Health Sciences Pomona CA USA
| | - Yuan‐Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| |
Collapse
|
10
|
Adachi-Fukunaga S, Nakabayashi Y, Tokuda M. Transgenerational changes in pod maturation phenology and seed traits of Glycine soja infested by the bean bug Riptortus pedestris. PLoS One 2022; 17:e0263904. [PMID: 35235584 PMCID: PMC8890626 DOI: 10.1371/journal.pone.0263904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
Land plants have diverse defenses against herbivores. In some cases, plant response to insect herbivory may be chronological and even transgenerational. Feeding by various stink bugs, such as the bean bug Riptortus pedestris (Hemiptera: Alydidae), induce physiological changes in soybean, called as green stem syndrome, which are characterized by delayed senescence in stems, leaves, and pods. To investigate the plant response to the bean bug feeding in the infested generation and its offspring, we studied the effects of R. pedestris infestation on Glycine soja, the ancestral wild species of soybean. Field surveys revealed that the occurrence of the autumn R. pedestris generation coincided with G. soja pod maturation in both lowland and mountainous sites. Following infestation by R. pedestris, pod maturation was significantly delayed in G. soja. When G. soja seeds obtained from infested and non-infested plants were cultivated, the progeny of infested plants exhibited much earlier pod maturation and larger-sized seed production than that of control plants, indicating that R. pedestris feeding induced transgenerational changes. Because earlier seed maturity results in asynchrony with occurrence of R. pedestris, the transgenerational changes in plant phenology are considered to be an adaptive transgenerational and chronological defense for the plant against feeding by the stink bug.
Collapse
Affiliation(s)
- Shuhei Adachi-Fukunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yui Nakabayashi
- Department of Biological Resource Science, Saga University, Saga, Japan
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Biological Resource Science, Saga University, Saga, Japan
| |
Collapse
|
11
|
Kronholm I. Evolution of anticipatory effects mediated by epigenetic changes. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac007. [PMID: 35475265 PMCID: PMC9031056 DOI: 10.1093/eep/dvac007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 05/20/2023]
Abstract
Anticipatory effects mediated by epigenetic changes occur when parents modify the phenotype of their offspring by making epigenetic changes in their gametes, guided by information from an environmental cue. To investigate when do anticipatory effects mediated by epigenetic changes evolve in a fluctuating environment, I use an individual-based simulation model with explicit genetic architecture. The model allows for the population to respond to environmental changes by evolving plasticity, bet hedging, or by tracking the environment with genetic adaptation, in addition to the evolution of anticipatory effects. The results show that anticipatory effects evolve when the environmental cue provides reliable information about the environment and the environment changes at intermediate rates, provided that fitness costs of anticipatory effects are rather low. Moreover, evolution of anticipatory effects is quite robust to different genetic architectures when reliability of the environmental cue is high. Anticipatory effects always give smaller fitness benefits than within-generation plasticity, suggesting a possible reason for generally small observed anticipatory effects in empirical studies.
Collapse
Affiliation(s)
- Ilkka Kronholm
- *Correspondence address. Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland. Tel: +358 14 617 239; Fax: +358 14 617 239; E-mail:
| |
Collapse
|
12
|
Van Allen B, Jones N, Gilbert B, Carscadden K, Germain R. Maternal effects and the outcome of interspecific competition. Ecol Evol 2021; 11:7544-7556. [PMID: 34188833 PMCID: PMC8216948 DOI: 10.1002/ece3.7586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Maternal environmental effects create lagged population responses to past environments. Although they are ubiquitous and vary in expression across taxa, it remains unclear if and how their presence alters competitive interactions in ecological communities.Here, we use a discrete-time competition model to simulate how maternal effects alter competitive dynamics in fluctuating and constant environments. Further, we explore how omitting maternal effects alter estimates of known model parameters from observational time series data.Our simulations demonstrate that (i) maternal effects change competitive outcomes, regardless of whether competitors otherwise interact neutrally or exhibit non-neutral competitive differences, (ii) the consequences of maternal effects for competitive outcomes are mediated by the temporal structure of environmental variation, (iii) even in constant conditions, competitive outcomes are influenced by species' maternal effects strategies, and (iv) in observational time series data, omitting maternal effects reduces variation explained by models and biases parameter estimates, including competition coefficients.Our findings demonstrate that the ecological consequences of maternal effects hinge on the competitive environment. Evolutionary biologists have long recognized that maternal effects can be an important but often overlooked strategy buffering populations from environmental change. We suggest that maternal effects are similarly critical to ecology and call for research into maternal effects as drivers of dynamics in populations and communities.
Collapse
Affiliation(s)
- Benjamin Van Allen
- Ecology, Behavior, and EvolutionUniversity of California San DiegoSan DiegoCAUSA
| | - Natalie Jones
- School of Biological SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Kelly Carscadden
- Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderCOUSA
| | - Rachel Germain
- Zoology & Biodiversity Research CentreThe University of British ColumbiaVancouverBCCanada
| |
Collapse
|
13
|
Carley LN, Letcher SG. Relaxation of putative plant defenses in a tropical agroecosystem. Ecol Evol 2021; 11:5815-5827. [PMID: 34141186 PMCID: PMC8207448 DOI: 10.1002/ece3.7497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Evidence of the effects of agriculture on natural systems is widespread, but potential evolutionary responses in nontarget species are largely uncharacterized. To explore whether exposure to agrochemicals may influence selective pressures and phenotypic expression in nonagricultural plant populations, we characterized the expression of putative antiherbivore defense phenotypes in three nonagricultural species found upstream and downstream of irrigated rice fields in Guanacaste Province, Costa Rica. We found that plants downstream of chemically intensive agriculture showed shifts toward reduced expression of putative antiherbivore defenses relative to upstream counterparts. In two of three tested species, leaf extracts from downstream plants were more palatable to a generalist consumer, suggesting a possible reduction of chemical defenses. In one species with multiple modes of putative defenses, we observed parallel reductions of three metrics of putative biotic and physical defenses. These reductions were concurrent with reduced herbivore damage on downstream plants. Together, these results suggest that agriculture has the potential to alter intraspecific phenotypic expression, ecological interactions, and natural selection in nontarget plant populations.
Collapse
Affiliation(s)
- Lauren N. Carley
- Organization for Tropical StudiesSan Pedro de Montes de OcaSan PedroCosta Rica
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | - Susan G. Letcher
- Organization for Tropical StudiesSan Pedro de Montes de OcaSan PedroCosta Rica
- Plant BiologyCollege of the AtlanticBar HarborMaineUSA
| |
Collapse
|
14
|
Holeski LM, Keefover-Ring K, Sobel JM, Kooyers NJ. Evolutionary history and ecology shape the diversity and abundance of phytochemical arsenals across monkeyflowers. J Evol Biol 2021; 34:571-583. [PMID: 33484000 DOI: 10.1111/jeb.13760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
We examine the extent to which phylogenetic effects and ecology are associated with macroevolutionary patterns of phytochemical defence production across the Mimulus phylogeny. We grew plants from 21 species representing the five major sections of the Mimulus phylogeny in a common garden to assess how the arsenals (NMDS groupings) and abundances (concentrations) of a phytochemical defence, phenylpropanoid glycosides (PPGs), vary across the phylogeny. Very few PPGs are widespread across the genus, but many are common to multiple sections of the genus. Phytochemical arsenals cluster among sections in an NMDS and are not associated with total concentration of PPGs. There is a strong phylogenetic signal for phytochemical arsenal composition across the Mimulus genus, whereas ecological variables such as growing season length, latitude, and elevation do not significantly influence arsenal. In contrast, there is little phylogenetic signal for total PPG concentration, and this trait is significantly influenced by several ecological factors. Phytochemical arsenals and abundances are influenced by plant life history form. Both phylogenetic effects and ecology are related to phytochemical patterns across species, albeit in different ways. The independence of phytochemical defence concentrations from arsenal compositions indicates that these aspects of defence may continue to evolve independently of one another.
Collapse
Affiliation(s)
- Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, WI, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY, USA
| | | |
Collapse
|
15
|
Mimulus sRNAs Are Wound Responsive and Associated with Transgenerationally Plastic Genes but Rarely Both. Int J Mol Sci 2020; 21:ijms21207552. [PMID: 33066159 PMCID: PMC7589798 DOI: 10.3390/ijms21207552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Organisms alter development in response to environmental cues. Recent studies demonstrate that they can transmit this plasticity to progeny. While the phenotypic and transcriptomic evidence for this “transgenerational plasticity” has accumulated, genetic and developmental mechanisms remain unclear. Plant defenses, gene expression and DNA methylation are modified as an outcome of parental wounding in Mimulus guttatus. Here, we sequenced M. guttatus small RNAs (sRNA) to test their possible role in mediating transgenerational plasticity. We sequenced sRNA populations of leaf-wounded and control plants at 1 h and 72 h after damage and from progeny of wounded and control parents. This allowed us to test three components of an a priori model of sRNA mediated transgenerational plasticity—(1) A subset of sRNAs will be differentially expressed in response to wounding, (2) these will be associated with previously identified differentially expressed genes and differentially methylated regions and (3) changes in sRNA abundance in wounded plants will be predictive of sRNA abundance, DNA methylation, and/or gene expression shifts in the following generation. Supporting (1) and (2), we found significantly different sRNA abundances in wounded leaves; the majority were associated with tRNA fragments (tRFs) rather than small-interfering RNAs (siRNA). However, siRNAs responding to leaf wounding point to Jasmonic Acid mediated responses in this system. We found that different sRNA classes were associated with regions of the genome previously found to be differentially expressed or methylated in progeny of wounded plants. Evidence for (3) was mixed. We found that non-dicer sRNAs with increased abundance in response to wounding tended to be nearby genes with decreased expression in the next generation. Counter to expectations, we did not find that siRNA responses to wounding were associated with gene expression or methylation changes in the next generation and within plant and transgenerational sRNA plasticity were negatively correlated.
Collapse
|
16
|
Kooyers NJ, Donofrio A, Blackman BK, Holeski LM. The Genetic Architecture of Plant Defense Trade-offs in a Common Monkeyflower. J Hered 2020; 111:333-345. [DOI: 10.1093/jhered/esaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Abstract
Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, LA
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Abigail Donofrio
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA
| | - Liza M Holeski
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
17
|
Baker BH, Sultan SE, Lopez-Ichikawa M, Waterman R. Transgenerational effects of parental light environment on progeny competitive performance and lifetime fitness. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180182. [PMID: 30966959 DOI: 10.1098/rstb.2018.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plant and animal parents may respond to environmental conditions such as resource stress by altering traits of their offspring via heritable non-genetic effects. While such transgenerational plasticity can result in progeny phenotypes that are functionally pre-adapted to the inducing environment, it is unclear whether such parental effects measurably enhance the adult competitive success and lifetime reproductive output of progeny, and whether they may also adversely affect fitness if offspring encounter contrasting conditions. In glasshouse experiments with inbred genotypes of the annual plant Polygonum persicaria, we tested the effects of parental shade versus sun on (a) competitive performance of progeny in shade, and (b) lifetime reproductive fitness of progeny in three contrasting treatments. Shaded parents produced offspring with increased fitness in shade despite competition, as well as greater competitive impact on plant neighbours. Inherited effects of parental light conditions also significantly altered lifetime fitness: parental shade increased reproductive output for progeny in neighbour and understorey shade, but decreased fitness for progeny in sunny, dry conditions. Along with these substantial adaptive and maladaptive transgenerational effects, results show complex interactions between genotypes, parent environment and progeny conditions that underscore the role of environmental variability and change in shaping future adaptive potential. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Brennan H Baker
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| | | | - Robin Waterman
- Biology Department, Wesleyan University , Middletown, CT 06459 , USA
| |
Collapse
|
18
|
Nihranz CT, Walker WS, Brown SJ, Mescher MC, De Moraes CM, Stephenson AG. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. AMERICAN JOURNAL OF BOTANY 2020; 107:286-297. [PMID: 31944272 PMCID: PMC7064912 DOI: 10.1002/ajb2.1402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - William S. Walker
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven J. Brown
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mark C. Mescher
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Andrew G. Stephenson
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
19
|
Colicchio JM, Herman J. Empirical patterns of environmental variation favor adaptive transgenerational plasticity. Ecol Evol 2020; 10:1648-1665. [PMID: 32076541 PMCID: PMC7029079 DOI: 10.1002/ece3.6022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Effects of parental environment on offspring traits have been well known for decades. Interest in this transgenerational form of phenotypic plasticity has recently surged due to advances in our understanding of its mechanistic basis. Theoretical research has simultaneously advanced by predicting the environmental conditions that should favor the adaptive evolution of transgenerational plasticity. Yet whether such conditions actually exist in nature remains largely unexplored. Here, using long-term climate data, we modeled optimal levels of transgenerational plasticity for an organism with a one-year life cycle at a spatial resolution of 4 km2 across the continental United States. Both annual temperature and precipitation levels were often autocorrelated, but the strength and direction of these autocorrelations varied considerably even among nearby sites. When present, such environmental autocorrelations render offspring environments statistically predictable based on the parental environment, a key condition for the adaptive evolution of transgenerational plasticity. Results of our optimality models were consistent with this prediction: High levels of transgenerational plasticity were favored at sites with strong environmental autocorrelations, and little-to-no transgenerational plasticity was favored at sites with weak or nonexistent autocorrelations. These results are among the first to show that natural patterns of environmental variation favor the evolution of adaptive transgenerational plasticity. Furthermore, these findings suggest that transgenerational plasticity is likely variable in nature, depending on site-specific patterns of environmental variation.
Collapse
Affiliation(s)
- Jack M. Colicchio
- Department of Plant and Microbial BiologyUniversity of California BerkeleyBerkeleyCAUSA
| | - Jacob Herman
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| |
Collapse
|
20
|
|
21
|
|
22
|
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TEA, Krokene P, Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:505-529. [PMID: 31470772 DOI: 10.1146/annurev-phyto-082718-095959] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.
Collapse
Affiliation(s)
- Samuel W Wilkinson
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Melissa H Magerøy
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Ana López Sánchez
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lisa M Smith
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Leonardo Furci
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - T E Anne Cotton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Paal Krokene
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
23
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Transgenerational effects of ungulates and pre-dispersal seed predators on offspring success and resistance to herbivory. PLoS One 2018; 13:e0207553. [PMID: 30540778 PMCID: PMC6291102 DOI: 10.1371/journal.pone.0207553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022] Open
Abstract
Herbivorous mammals and insect pre-dispersal seed predators are two types of herbivores that, despite their functional and morphological differences, tend to severely impact many plant species, highly decreasing their seed production and even imperiling the performance of their offspring through transgenerational effects. However, how they influence offspring resistance to herbivory remains largely unknown. In this study we experimentally examined the effects of ungulates and pre-dispersal seed predators on seed quality as well as on the emergence, survival and resistance to herbivory of the seedlings of a semiarid herb. We found that ungulates reduced seedling recruitment but increased seedling resistance to leaf miners. These effects were probably a consequence of insufficient carbon provisioning in seeds that reduced seed viability and provoked carbon limitation in seedlings. Pre-dispersal seed predators did not influence seedling recruitment, but seedlings from mothers damaged by ungulates and by pre-dispersal seed predators suffered less herbivory by grasshoppers. Remarkably, intra-individual differences in damage by pre-dispersal seed predators affected the rate of damage underwent by seedlings. That is, seedlings derived from fruits attacked by seed predators were more resistant to herbivores than siblings derived from un-attacked fruits in plant populations exposed to ungulates. To our knowledge, this is the first study reporting variation in transgenerational-induced resistance of seedlings from the same maternal plant. This study is a valuable contribution to the understanding of transgenerational effects of multiple herbivores and their implications for a deeper comprehension of the natural systems in which they co-occur.
Collapse
|
25
|
Colicchio JM, Kelly JK, Hileman LC. Parental experience modifies the Mimulus methylome. BMC Genomics 2018; 19:746. [PMID: 30314445 PMCID: PMC6186029 DOI: 10.1186/s12864-018-5087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transgenerational plasticity occurs when the environmental experience of an organism modifies the growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this response have yet to be described. RESULTS We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and control plants and developed a pipeline to compare differences in the mean and variance of methylation between treatment groups. We find that parental damage increases the variability of CG and CHG methylation among progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously found to be differentially expressed. CONCLUSIONS Genome-wide increases in methylome variation suggest that parental conditions can increase epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially expressed genes supports the hypothesis that differential methylation is a mechanistic component of transgenerational plasticity in M. guttatus.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94710 USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| |
Collapse
|
26
|
A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management. SUSTAINABILITY 2018. [DOI: 10.3390/su10062023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Haber AI, Rivera Sustache J, Carr DE. A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in
Mimulus guttatus. Ecosphere 2018. [DOI: 10.1002/ecs2.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ariela I. Haber
- Department of Environmental Sciences University of Virginia Charlottesville Virginia 22904 USA
| | | | - David E. Carr
- Blandy Experimental Farm University of Virginia Boyce Virginia 22620 USA
| |
Collapse
|
28
|
Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Sci Rep 2018; 8:3536. [PMID: 29476119 PMCID: PMC5824794 DOI: 10.1038/s41598-018-21880-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/12/2018] [Indexed: 11/08/2022] Open
Abstract
Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes.
Collapse
|
29
|
Towards Systemic View for Plant Learning: Ecophysiological Perspective. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Verhoeven KJF, Verbon EH, van Gurp TP, Oplaat C, Ferreira de Carvalho J, Morse AM, Stahl M, Macel M, McIntyre LM. Intergenerational environmental effects: functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. THE NEW PHYTOLOGIST 2018; 217:871-882. [PMID: 29034954 PMCID: PMC5741498 DOI: 10.1111/nph.14835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/31/2017] [Indexed: 05/23/2023]
Abstract
Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and control treatments, we performed leaf RNA-seq gene expression analysis, LC-MS metabolomics and total phenolics assays in offspring plants. Expression analysis, leveraged by a de novo assembled transcriptome, revealed an induced response to JA exposure that is consistent with known JA effects. The intergenerational effect of treatment was considerable: 307 of 858 detected JA-responsive transcripts were affected by parental JA treatment. In terms of the numbers of metabolites affected, the magnitude of the chemical response to parental JA exposure was c. 10% of the direct JA treatment response. Transcriptome and metabolome analyses both identified the phosphatidylinositol signaling pathway as a target of intergenerational JA effects. Our results highlight that parental environments can have substantial effects in offspring generations. Transcriptome and metabolome assays provide a basis for zooming in on the potential mechanisms of inherited JA effects.
Collapse
Affiliation(s)
- Koen J. F. Verhoeven
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Eline H. Verbon
- Plant–Microbe InteractionsUtrecht UniversityPadualaan 6Utrechtthe Netherlands
| | - Thomas P. van Gurp
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Carla Oplaat
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Julie Ferreira de Carvalho
- Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningenthe Netherlands
| | - Alison M. Morse
- Molecular Genetics and Microbiology, and the Genetics InstituteUniversity of Florida2033 Mowry RoadGainesvilleFL32610USA
| | - Mark Stahl
- Center for Plant Molecular BiologyTübingen UniversityAuf der Morgenstelle 32TübingenD‐72076Germany
| | - Mirka Macel
- Molecular Interaction EcologyDepartment of Plant ScienceRadboud University NijmegenPO Box 9010Nijmegen6500 NLthe Netherlands
| | - Lauren M. McIntyre
- Molecular Genetics and Microbiology, and the Genetics InstituteUniversity of Florida2033 Mowry RoadGainesvilleFL32610USA
| |
Collapse
|
31
|
Groot MP, Kubisch A, Ouborg NJ, Pagel J, Schmid KJ, Vergeer P, Lampei C. Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. THE NEW PHYTOLOGIST 2017; 215:1221-1234. [PMID: 28590553 DOI: 10.1111/nph.14642] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean.
Collapse
Affiliation(s)
- Maartje P Groot
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Alexander Kubisch
- Landscape and Plant Ecology, University of Hohenheim, August-Hartmann-Str. 3, 70599, Stuttgart, Germany
- Theoretical Ecology Group, Department of Animal Ecology and Tropical Biology, University of Würzburg, Emil-Fischerstr. 32, 97074, Würzburg, Germany
| | - N Joop Ouborg
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
| | - Jörn Pagel
- Landscape and Plant Ecology, University of Hohenheim, August-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Philippine Vergeer
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, the Netherlands
- Plant Ecology and Nature Conservation Group, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
32
|
Spatial and temporal components of induced plant responses in the context of herbivore life history and impact on host. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Singh P, Dave A, Vaistij FE, Worrall D, Holroyd GH, Wells JG, Kaminski F, Graham IA, Roberts MR. Jasmonic acid-dependent regulation of seed dormancy following maternal herbivory in Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:1702-1711. [PMID: 28332706 DOI: 10.1111/nph.14525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 05/11/2023]
Abstract
Maternal experience of abiotic environmental factors such as temperature and light are well known to control seed dormancy in many plant species. Maternal biotic stress alters offspring defence phenotypes, but whether it also affects seed dormancy remains unexplored. We exposed Arabidopsis thaliana plants to herbivory and investigated plasticity in germination and defence phenotypes in their offspring, along with the roles of phytohormone signalling in regulating maternal effects. Maternal herbivory resulted in the accumulation of jasmonic acid-isoleucine and loss of dormancy in seeds of stressed plants. Dormancy was also reduced by engineering seed-specific accumulation of jasmonic acid in transgenic plants. Loss of dormancy was dependent on an intact jasmonate signalling pathway and was associated with increased gibberellin content and reduced abscisic acid sensitivity during germination. Altered dormancy was only observed in the first generation following herbivory, whereas defence priming was maintained for at least two generations. Herbivory generates a jasmonic acid-dependent reduction in seed dormancy, mediated by alteration of gibberellin and abscisic acid signalling. This is a direct maternal effect, operating independently from transgenerational herbivore resistance priming.
Collapse
Affiliation(s)
- Prashant Singh
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Anuja Dave
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Fabian E Vaistij
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Geoff H Holroyd
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jonathan G Wells
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Filip Kaminski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Michael R Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
34
|
Kooyers NJ, Blackman BK, Holeski LM. Optimal defense theory explains deviations from latitudinal herbivory defense hypothesis. Ecology 2017; 98:1036-1048. [DOI: 10.1002/ecy.1731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas J. Kooyers
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
- Department of Plant and Microbial Biology University of California Berkeley California 94720 USA
| | - Benjamin K. Blackman
- Department of Biology University of Virginia Charlottesville Virginia 22904 USA
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona 86011 USA
| |
Collapse
|
35
|
Colicchio J. Transgenerational effects alter plant defence and resistance in nature. J Evol Biol 2017; 30:664-680. [PMID: 28102915 PMCID: PMC5382043 DOI: 10.1111/jeb.13042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions.
Collapse
Affiliation(s)
- J Colicchio
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
36
|
Markovic D, Nikolic N, Glinwood R, Seisenbaeva G, Ninkovic V. Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection? PLoS One 2016; 11:e0165742. [PMID: 27828995 PMCID: PMC5102373 DOI: 10.1371/journal.pone.0165742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
In natural habitats plants can be exposed to brief and light contact with neighbouring plants. This mechanical stimulus may represent a cue that induces responses to nearby plants. However, little is known about the effect of touching on plant growth and interaction with insect herbivores. To simulate contact between plants, a soft brush was used to apply light and brief mechanical stimuli to terminal leaves of potato Solanum tuberosum L. The number of non-glandular trichomes on the leaf surface was counted on images made by light microscope while glandular trichomes and pavement cells were counted on images made under scanning electronic microscope. Volatile compounds were identified and quantified using coupled gas chromatography-mass spectrometry (GC-MS). Treated plants changed their pattern of biomass distribution; they had lower stem mass fraction and higher branch and leaf mass fraction than untouched plants. Size, weight and number of tubers were not significantly affected. Touching did not cause trichome damage nor change their total number on touched terminal leaves. However, on primary leaves the number of glandular trichomes and pavement cells was significantly increased. Touching altered the volatile emission of treated plants; they released higher quantities of the sesquiterpenes (E)-β-caryophyllene, germacrene D-4-ol and (E)-nerolidol, and lower quantities of the terpenes (E)-ocimene and linalool, indicating a systemic effect of the treatment. The odour of touched plants was significantly less preferred by the aphids Macrosiphum euphorbiae and Myzus persicae compared to odour of untouched plants. The results suggest that light contact may have a potential role in the detection of neighbouring plants and may affect plant-insect interactions.
Collapse
Affiliation(s)
- Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- University of Banja Luka, Faculty of Agriculture, Banja Luka, Bosnia and Herzegovina
| | - Neda Nikolic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Glinwood
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gulaim Seisenbaeva
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Velemir Ninkovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
37
|
Herman JJ, Sultan SE. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc Biol Sci 2016; 283:20160988. [PMID: 27629032 PMCID: PMC5031651 DOI: 10.1098/rspb.2016.0988] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Environmental stresses experienced by individual parents can influence offspring phenotypes in ways that enhance survival under similar conditions. Although such adaptive transgenerational plasticity is well documented, its transmission mechanisms are generally unknown. One possible mechanism is environmentally induced DNA methylation changes. We tested this hypothesis in the annual plant Polygonum persicaria, a species known to express adaptive transgenerational plasticity in response to parental drought stress. Replicate plants of 12 genetic lines (sampled from natural populations) were grown in dry versus moist soil. Their offspring were exposed to the demethylating agent zebularine or to control conditions during germination and then grown in dry soil. Under control germination conditions, the offspring of drought-stressed parents grew longer root systems and attained greater biomass compared with offspring of well-watered parents of the same genetic lines. Demethylation removed these adaptive developmental effects of parental drought, but did not significantly alter phenotypic expression in offspring of well-watered parents. The effect of demethylation on the expression of the parental drought effect varied among genetic lines. Differential seed provisioning did not contribute to the effect of parental drought on offspring phenotypes. These results demonstrate that DNA methylation can mediate adaptive, genotype-specific effects of parental stress on offspring phenotypes.
Collapse
Affiliation(s)
- Jacob J Herman
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| | - Sonia E Sultan
- Biology Department, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
38
|
Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P, Fishman L. The genetics of extreme microgeographic adaptation: an integrated approach identifies a major gene underlying leaf trichome divergence in Yellowstone Mimulus guttatus. Mol Ecol 2016; 25:5647-5662. [PMID: 27393073 DOI: 10.1111/mec.13753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Microgeographic adaptation provides a particularly interesting context for understanding the genetic basis of phenotypic divergence and may also present unique empirical challenges. In particular, plant adaptation to extreme soil mosaics may generate barriers to gene flow or shifts in mating system that confound simple genomic scans for adaptive loci. Here, we combine three approaches - quantitative trait locus (QTL) mapping of candidate intervals in controlled crosses, population resequencing (PoolSeq) and analyses of wild recombinant individuals - to investigate one trait associated with Mimulus guttatus (yellow monkeyflower) adaptation to geothermal soils in Yellowstone National Park. We mapped a major QTL causing dense leaf trichomes in thermally adapted plants to a <50-kb region of linkage Group 14 (Tr14) previously implicated in trichome divergence between independent M. guttatus populations. A PoolSeq scan of Tr14 region revealed a cluster of six genes, coincident with the inferred QTL peak, with high allele frequency differences sufficient to explain observed phenotypic differentiation. One of these, the R2R3 MYB transcription factor Migut.N02661, is a plausible functional candidate and was also strongly associated (r2 = 0.27) with trichome phenotype in analyses of wild-collected admixed individuals. Although functional analyses will be necessary to definitively link molecular variants in Tr14 with trichome divergence, our analyses are a major step in that direction. They point to a simple, and parallel, genetic basis for one axis of Mimulus guttatus adaptation to an extreme habitat, suggest a broadly conserved genetic basis for trichome variation across flowering plants and pave the way for further investigations of this challenging case of microgeographic incipient speciation.
Collapse
Affiliation(s)
- Margaret F Hendrick
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA.,Department of Earth and Environment, Boston University, 685 Commonwealth Ave., Boston, MA, 02215, USA
| | - Findley R Finseth
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Minna E Mathiasson
- School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, ME, 04469, USA
| | - Kristen A Palmer
- Department of Biology, Wheaton College, 26 E. Main St., Norton, MA, 02766, USA
| | - Emma M Broder
- Biology Department, Wesleyan University, 45 Wyllys Ave., Middletown, CT, 06259, USA
| | - Peter Breigenzer
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT, 59812, USA
| |
Collapse
|
39
|
von Wettberg EJB, Marques E, Murren CJ. Local adaptation or foreign advantage? Effective use of a single-test site common garden to evaluate adaptation across ecological scales. THE NEW PHYTOLOGIST 2016; 211:8-10. [PMID: 27240708 DOI: 10.1111/nph.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Eric J B von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Edward Marques
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, 33199, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| |
Collapse
|
40
|
Jennings DE, Krupa JJ, Rohr JR. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads. J Anim Ecol 2016; 85:973-81. [PMID: 27061175 DOI: 10.1111/1365-2656.12526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/18/2016] [Indexed: 11/30/2022]
Abstract
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions.
Collapse
Affiliation(s)
- David E Jennings
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| | - James J Krupa
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA
| |
Collapse
|
41
|
Huang J, Yang M, Zhang X. The function of small RNAs in plant biotic stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:312-27. [PMID: 26748943 DOI: 10.1111/jipb.12463] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Small RNAs (sRNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and sRNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of sRNAs, RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of sRNAs in plant defense, bringing in the opportunity to utilize sRNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of sRNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction, and the application of sRNAs in disease and insect herbivore control.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Akkerman KC, Sattarin A, Kelly JK, Scoville AG. Transgenerational plasticity is sex-dependent and persistent in yellow monkeyflower ( Mimulus guttatus). ENVIRONMENTAL EPIGENETICS 2016; 2:dvw003. [PMID: 29492285 PMCID: PMC5804517 DOI: 10.1093/eep/dvw003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/27/2016] [Indexed: 05/19/2023]
Abstract
Transgenerational phenotypic plasticity, whereby environmental cues experienced by parents alter the phenotype of their progeny, has now been documented in diverse organisms. Transmission of environmentally determined responses is known to occur through both maternal and paternal gametes, but the underlying mechanisms have rarely been compared. In addition, the persistence of induction over multiple generations appears to vary widely, but has been characterized for relatively few systems. Yellow monkeyflower (Mimulus guttatus) is known to exhibit transgenerational induction of increased glandular trichome production in response to simulated insect damage. Here, we test for differences between maternal and paternal transmission of this response and examine its persistence over five generations following damage. Maternal and paternal damage resulted in similar and apparently additive increases in progeny trichome production. Treatment of germinating seeds with the genome-wide demethylating agent 5-azacytidine erased the effect of maternal but not paternal damage. The number of glandular trichomes remained elevated for three generations following damage. These results indicate that transgenerational transmission occurs through both maternal and paternal germ lines, but that they differ in the proximate mechanism of epigenetic inheritance. Our results also indicate that a wounding response can persist for multiple generations in the absence of subsequent damage.
Collapse
Affiliation(s)
- Kayla C. Akkerman
- Department of Biology, Central Washington University, Ellensburg, WA 98926, USA
| | - Arash Sattarin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Alison G. Scoville
- Department of Biology, Central Washington University, Ellensburg, WA 98926, USA
- *Correspondence address. Department of Biology, Central Washington University, Ellensburg, 400 E University Way, Ellensburg, WA, 98926. Tel: 509-963-2802. Fax: 509-963-2730 E-mail:
| |
Collapse
|
43
|
González-Megías A. Within- and trans-generational effects of herbivores and detritivores on plant performance and reproduction. J Anim Ecol 2015; 85:283-90. [PMID: 26433200 DOI: 10.1111/1365-2656.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Abstract
Mutualistic and antagonistic above-ground and below-ground species have the potential to be involved in strong interactions that can either weaken or strengthen their individual impacts on plants. Their impacts can also have delayed effects on a plant's progeny by altering offspring traits and survival. Few studies have explored the effect of herbivore and detritivore interactions with parent plants on offspring vital life-cycle processes, such as seedling emergence rate, seedling establishment and offspring survival. In the field, I experimentally studied the combined effects of floral herbivores (FH), root herbivores (RH) and detritivores on plant growth and reproduction of Moricandia moricandioides (Brassicaceae). In particular, I analysed the trans-generational effects of herbivores and detritivores on seed and juvenile production as well as on vital life-cycle processes (i.e. seedling emergence rates, survival). Floral herbivores strongly reduced the number of flowers, fruits, seeds and juveniles. Detritivores had an impact on plant success by increasing seed quality (% N and N : C ratio), although the effect was altered by the presence of floral and RH. I found maternal effects (trans-generational effects) of FH, RH and detritivores. Floral herbivores reduced seedling emergence and establishment. Floral and RH in combination reduced seedling emergence timing, but the effect was counteracted by detritivores. Detritivores also reduced the negative effect of FH on offspring mortality rate. This study shows that the impact of above-ground and below-ground organisms on M. moricandioides plants go beyond seed production and were evident in the probability of establishment and survival of the following generation. Trans-generational effects were induced by all three groups of interacting organisms and the net consequences for plant offspring depended on the organisms interacting with the plant.
Collapse
Affiliation(s)
- Adela González-Megías
- Depto. de Zoología, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, Granada, Spain
| |
Collapse
|
44
|
Valverde PL, Arroyo J, Núñez-Farfán J, Castillo G, Calahorra A, Pérez-Barrales R, Tapia-López R. Natural selection on plant resistance to herbivores in the native and introduced range. AOB PLANTS 2015; 7:plv090. [PMID: 26205526 PMCID: PMC4570598 DOI: 10.1093/aobpla/plv090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/07/2015] [Indexed: 06/07/2023]
Abstract
When plants are introduced into new regions, the absence of their co-evolved natural enemies can result in lower levels of attack. As a consequence of this reduction in enemy pressure, plant performance may increase and selection for resistance to enemies may decrease. In the present study, we compared leaf damage, plant size and leaf trichome density, as well as the direction and magnitude of selection on resistance and plant size between non-native (Spain) and native (Mexico) populations of Datura stramonium. This species was introduced to Spain about five centuries ago and constitutes an ideal system to test four predictions of the enemy release hypothesis. Compared with native populations, we expected Spanish populations of D. stramonium to have (i) lower levels of foliar damage; (ii) larger plant size; (iii) lower leaf trichome density that is unrelated to foliar damage by herbivores; and (iv) weak or no selection on resistance to herbivores but strong selection on plant size. Our results showed that, on average, plants from non-native populations were significantly less damaged by herbivores, were less pubescent and were larger than those from native populations. We also detected different selection regimes on resistance and plant size between the non-native and native ranges. Positive selection on plant size was detected in both ranges (though it was higher in the non-native area), but consistent positive selection on relative resistance was detected only in the native range. Overall, we suggest that changes in selection pressure on resistance and plant size in D. stramonium in Spain are a consequence of 'release from natural enemies'.
Collapse
Affiliation(s)
- Pedro L Valverde
- Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-535, Mexico 09340, Distrito Federal, Mexico Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, Sevilla 41080, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, Sevilla 41080, Spain
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología UNAM, México 04510, Distrito Federal, México
| | - Guillermo Castillo
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología UNAM, México 04510, Distrito Federal, México
| | - Adriana Calahorra
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología UNAM, México 04510, Distrito Federal, México
| | - Rocío Pérez-Barrales
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Apartado 1095, Sevilla 41080, Spain
| | - Rosalinda Tapia-López
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología UNAM, México 04510, Distrito Federal, México
| |
Collapse
|
45
|
Colicchio JM, Miura F, Kelly JK, Ito T, Hileman LC. DNA methylation and gene expression in Mimulus guttatus. BMC Genomics 2015; 16:507. [PMID: 26148779 PMCID: PMC4492170 DOI: 10.1186/s12864-015-1668-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/29/2015] [Indexed: 11/13/2022] Open
Abstract
Background The presence of methyl groups on cytosine nucleotides across an organism’s genome (methylation) is a major regulator of genome stability, crossing over, and gene regulation. The capacity for DNA methylation to be altered by environmental conditions, and potentially passed between generations, makes it a prime candidate for transgenerational epigenetic inheritance. Here we conduct the first analysis of the Mimulus guttatus methylome, with a focus on the relationship between DNA methylation and gene expression. Results We present a whole genome methylome for the inbred line Iron Mountain 62 (IM62). DNA methylation varies across chromosomes, genomic regions, and genes. We develop a model that predicts gene expression based on DNA methylation (R2 = 0.2). Post hoc analysis of this model confirms prior relationships, and identifies novel relationships between methylation and gene expression. Additionally, we find that DNA methylation is significantly depleted near gene transcriptional start sites, which may explain the recently discovered elevated rate of recombination in these same regions. Conclusions The establishment here of a reference methylome will be a useful resource for the continued advancement of M. guttatus as a model system. Using a model-based approach, we demonstrate that methylation patterns are an important predictor of variation in gene expression. This model provides a novel approach for differential methylation analysis that generates distinct and testable hypotheses regarding gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1668-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Fumihito Miura
- Department of Medical Biochemistry, Department of Biochemistry, Fukuoka 812-8581, Fukuoka 812-8582, Japan
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Takashi Ito
- Department of Medical Biochemistry, Department of Biochemistry, Fukuoka 812-8581, Fukuoka 812-8582, Japan
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
46
|
Barton KE. Tougher and thornier: general patterns in the induction of physical defence traits. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12495] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kasey E. Barton
- Department of Botany University of Hawai'i at Mānoa 3190 Maile Way, Room 101Honolulu Hawai'i 96822 USA
| |
Collapse
|
47
|
Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC. Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus. THE NEW PHYTOLOGIST 2015; 205:894-906. [PMID: 25297849 DOI: 10.1111/nph.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Leaf trichome density in Mimulus guttatus can be altered by the parental environment. In this study, we compared global gene expression patterns in progeny of damaged and control plants. Significant differences in gene expression probably explain the observed trichome response, and identify additional responsive pathways. Using whole transcriptome RNA sequencing, we estimated differential gene expression between isogenic seedlings whose parents had, or had not, been subject to leaf damage. We identified over 900 genes that were differentially expressed in response to parental wounding. These genes clustered into groups involved in cell wall and cell membrane development, stress response pathways, and secondary metabolism. Gene expression is modified as a consequence of the parental environment in a targeted way that probably alters multiple developmental pathways, and may increase progeny fitness if they experience environments similar to that of their parents.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
48
|
Hoan RP, Ormond RA, Barton KE. Prickly poppies can get pricklier: ontogenetic patterns in the induction of physical defense traits. PLoS One 2014; 9:e96796. [PMID: 24802133 PMCID: PMC4011880 DOI: 10.1371/journal.pone.0096796] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Plant ontogeny is a common source of variation in defense and herbivory. Yet, few studies have investigated how the induction of physical defense traits changes across plant ontogeny. Physical defense traits are costly to produce, and thus, it was predicted that induction as a cost-saving strategy would be particularly favorable for seedlings, leading to ontogenetic declines in the inducibility of these traits. We tested for induction of three different physical defense traits (prickles, latex and leaf toughness) in response to mechanical defoliation and jasmonic acid application using prickly poppies (Argemone glauca and A. mexicana, Papaveraceae) as a model system. Genetic variation in the induction of physical defenses was tested using maternal sib-ships sampled from multiple populations. Both species induced higher densities of laminar prickles, although the magnitude of induction was much higher in the endemic Hawaiian prickly poppy, A. glauca, than in the cosmopolitan A. mexicana. The magnitude of prickle induction was also higher in young compared to older juvenile plant stages in A. glauca, demonstrating a strong role of ontogeny. Neither latex exudation nor leaf toughness was induced in either species. Although significant genetic variation was detected within and among populations for constitutive expression of physical defense traits in Argemone, there was no evidence for genetic variation in the induction of these traits. This study provides the first evidence for the induction of physical defenses in prickly poppies, emphasizing how an ontogenetically explicit framework can reveal new insights into plant defense. Moreover, this study illustrates how sister species comparisons between island vs. continental plants can provide new insights into plant functional and evolutionary ecology, highlighting a fruitful area for future research on more species pairs.
Collapse
Affiliation(s)
- Ryan P. Hoan
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
| | - Rhys A. Ormond
- Biology Department, Willamette University, Salem, Oregon, United States of America
| | - Kasey E. Barton
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
- * E-mail:
| |
Collapse
|
49
|
A high-resolution genetic map of yellow monkeyflower identifies chemical defense QTLs and recombination rate variation. G3-GENES GENOMES GENETICS 2014; 4:813-21. [PMID: 24626287 PMCID: PMC4025480 DOI: 10.1534/g3.113.010124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes.
Collapse
|
50
|
Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 2014; 68:656-72. [PMID: 24410266 DOI: 10.1111/evo.12348] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/22/2013] [Indexed: 12/16/2022]
Abstract
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.
Collapse
Affiliation(s)
- Carl D Schlichting
- Department of Ecology & Evolutionary Biology, U-3043, University of Connecticut, Storrs, Connecticut 06269.
| | | |
Collapse
|