1
|
Song S, Zhang J. In search of the genetic variants of human sex ratio at birth: was Fisher wrong about sex ratio evolution? Proc Biol Sci 2024; 291:20241876. [PMID: 39406345 PMCID: PMC11479764 DOI: 10.1098/rspb.2024.1876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
The human sex ratio (fraction of males) at birth is close to 0.5 at the population level, an observation commonly explained by Fisher's principle. However, past human studies yielded conflicting results regarding the existence of sex ratio-influencing mutations-a prerequisite to Fisher's principle, raising the question of whether the nearly even population sex ratio is instead dictated by the random X/Y chromosome segregation in male meiosis. Here we show that, because a person's offspring sex ratio (OSR) has an enormous measurement error, a gigantic sample is required to detect OSR-influencing genetic variants. Conducting a UK Biobank-based genome-wide association study that is more powerful than previous studies, we detect an OSR-associated genetic variant, which awaits verification in independent samples. Given the abysmal precision in measuring OSR, it is unsurprising that the estimated heritability of OSR is effectively zero. We further show that OSR's estimated heritability would remain virtually zero even if OSR is as genetically variable as the highly heritable human standing height. These analyses, along with simulations of human sex ratio evolution under selection, demonstrate the compatibility of the observed genetic architecture of human OSR with Fisher's principle and render it plausible that multiple OSR-influencing genetic variants segregate among humans.
Collapse
Affiliation(s)
- Siliang Song
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
2
|
Wittmeyer KT, Oppenheim SJ, Hopper KR. Assemblies of the genomes of parasitic wasps using meta-assembly and scaffolding with genetic linkage. G3 (BETHESDA, MD.) 2021; 12:6423991. [PMID: 34751385 PMCID: PMC8727961 DOI: 10.1093/g3journal/jkab386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023]
Abstract
Safe, effective biological-control introductions against invasive pests depend on narrowly host-specific natural enemies with the ability to adapt to a changing environment. As part of a project on the genetic architectures of these traits, we assembled and annotated the genomes of two aphid parasitoids, Aphelinus atriplicis and Aphelinus certus. We report here several assemblies of A. atriplicis made with Illumina and PacBio data, which we combined into a meta-assembly. We scaffolded the meta-assembly with markers from a genetic map of hybrids between A. atriplicis and A. certus. We used this genetic-linkage scaffolded (GLS) assembly of A. atriplicis to scaffold a de novo assembly of A. certus. The de novo assemblies of A. atriplicis differed in contiguity, and the meta-assembly of these assemblies was more contiguous than the best de novo assembly. Scaffolding with genetic-linkage data allowed chromosomal-level assembly of the A. atriplicis genome and scaffolding a de novo assembly of A. certus with this GLS assembly, greatly increased the contiguity of the A. certus assembly to the point where it was also at the chromosomal-level. However, completeness of the A. atriplicis assembly, as measured by percent complete, single-copy BUSCO hymenopteran genes, varied little among de novo assemblies and was not increased by meta-assembly or genetic scaffolding. Furthermore, the greater contiguity of the meta-assembly and GLS assembly had little or no effect on the numbers of genes identified, the proportions with homologs or functional annotations. Increased contiguity of the A. certus assembly provided modest improvement in assembly completeness, as measured by percent complete, single-copy BUSCO hymenopteran genes. The total genic sequence increased, and while the number of genes declined, gene length increased, which together suggest greater accuracy of gene models. More contiguous assemblies provide uses other than gene annotation, for example, identifying the genes associated with quantitative trait loci and understanding of chromosomal rearrangements associated with speciation.
Collapse
Affiliation(s)
- Kameron T Wittmeyer
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, USA
| | | | - Keith R Hopper
- USDA-ARS, Beneficial Insect Introductions Research Unit, Newark, DE 19713, USA,Corresponding author: USDA-ARS, Beneficial Insect Introductions Research Unit, 501 South Chapel Street, Newark, DE 19713, USA.
| |
Collapse
|
3
|
Ulrich GF, Zemp N, Vorburger C, Boulain H. Quantitative trait locus analysis of parasitoid counteradaptation to symbiont-conferred resistance. Heredity (Edinb) 2021; 127:219-232. [PMID: 34012059 PMCID: PMC8322320 DOI: 10.1038/s41437-021-00444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Insect hosts and parasitoids are engaged in an intense struggle of antagonistic coevolution. Infection with heritable bacterial endosymbionts can substantially increase the resistance of aphids to parasitoid wasps, which exerts selection on parasitoids to overcome this symbiont-conferred protection (counteradaptation). Experimental evolution in the laboratory has produced counteradapted populations of the parasitoid wasp Lysiphlebus fabarum. These populations can parasitize black bean aphids (Aphis fabae) protected by the bacterial endosymbiont Hamiltonella defensa, which confers high resistance against L. fabarum. We used two experimentally evolved parasitoid populations to study the genetic architecture of the counteradaptation to symbiont-conferred resistance by QTL analysis. With simple crossing experiments, we showed that the counteradaptation is a recessive trait depending on the maternal genotype. Based on these results, we designed a customized crossing scheme to genotype a mapping population phenotyped for the ability to parasitize Hamiltonella-protected aphids. Using 1835 SNP markers obtained by ddRAD sequencing, we constructed a high-density linkage map consisting of six linkage groups (LGs) with an overall length of 828.3 cM and an average marker spacing of 0.45 cM. We identified a single QTL associated with the counteradaptation to Hamiltonella in L. fabarum on linkage group 2. Out of 120 genes located in this QTL, several genes encoding putative venoms may represent candidates for counteradaptation, as parasitoid wasps inject venoms into their hosts during oviposition.
Collapse
Affiliation(s)
- Gabriel F. Ulrich
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Niklaus Zemp
- Genetic Diversity Centre, Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph Vorburger
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Hélène Boulain
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Ma WJ, Pannebakker BA, Li X, Geuverink E, Anvar SY, Veltsos P, Schwander T, van de Zande L, Beukeboom LW. A single QTL with large effect is associated with female functional virginity in an asexual parasitoid wasp. Mol Ecol 2021; 30:1979-1992. [PMID: 33638236 PMCID: PMC8252104 DOI: 10.1111/mec.15863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During the transition from sexual to asexual reproduction, a suite of reproduction-related sexual traits become superfluous, and may be selected against if costly. Female functional virginity refers to asexual females resisting to mate or not fertilizing eggs after mating. These traits appear to be among the first that evolve during transitions from sexual to asexual reproduction. The genetic basis of female functional virginity remains elusive. Previously, we reported that female functional virginity segregates as expected for a single recessive locus in the asexual parasitoid wasp Asobara japonica. Here, we investigate the genetic basis of this trait by quantitative trait loci (QTL) mapping and candidate gene analyses. Consistent with the segregation of phenotypes, we found a single QTL of large effect, spanning over 4.23 Mb and comprising at least 131 protein-coding genes, of which 15 featured sex-biased expression in the related sexual species Asobara tabida. Two of the 15 sex-biased genes were previously identified to differ between related sexual and asexual population/species: CD151 antigen and nuclear pore complex protein Nup50. A third gene, hormone receptor 4, is involved in steroid hormone mediated mating behaviour. Overall, our results are consistent with a single locus, or a cluster of closely linked loci, underlying rapid evolution of female functional virginity in the transition to asexuality. Once this variant, causing rejection to mate, has swept through a population, the flanking region does not get smaller owing to lack of recombination in asexuals.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Xuan Li
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Leung K, Ras E, Ferguson KB, Ariëns S, Babendreier D, Bijma P, Bourtzis K, Brodeur J, Bruins MA, Centurión A, Chattington SR, Chinchilla‐Ramírez M, Dicke M, Fatouros NE, González‐Cabrera J, Groot TVM, Haye T, Knapp M, Koskinioti P, Le Hesran S, Lyrakis M, Paspati A, Pérez‐Hedo M, Plouvier WN, Schlötterer C, Stahl JM, Thiel A, Urbaneja A, van de Zande L, Verhulst EC, Vet LEM, Visser S, Werren JH, Xia S, Zwaan BJ, Magalhães S, Beukeboom LW, Pannebakker BA. Next-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc 2020; 95:1838-1854. [PMID: 32794644 PMCID: PMC7689903 DOI: 10.1111/brv.12641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Erica Ras
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Kim B. Ferguson
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Simone Ariëns
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | | | - Piter Bijma
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Jacques Brodeur
- Institut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuebecCanadaH1X 2B2
| | - Margreet A. Bruins
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Alejandra Centurión
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Sophie R. Chattington
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Milena Chinchilla‐Ramírez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Joel González‐Cabrera
- Department of Genetics, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI‐BIOTECMED)Unidad Mixta Gestión Biotecnológica de Plagas UV‐IVIA, Universitat de ValènciaDr Moliner 5046100BurjassotValenciaSpain
| | - Thomas V. M. Groot
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Tim Haye
- CABIRue des Grillons 12800DelémontSwitzerland
| | - Markus Knapp
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
- Department of Biochemistry and BiotechnologyUniversity of ThessalyBiopolis41500LarissaGreece
| | - Sophie Le Hesran
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Manolis Lyrakis
- Institut für PopulationsgenetikVetmeduni ViennaVeterinärplatz 11210ViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaVeterinärplatz 11210ViennaAustria
| | - Angeliki Paspati
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Meritxell Pérez‐Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Wouter N. Plouvier
- INRA, CNRS, UMR 1355‐7254400 Route des ChappesBP 167 06903Sophia Antipolis CedexFrance
| | | | - Judith M. Stahl
- CABIRue des Grillons 12800DelémontSwitzerland
- Kearney Agricultural Research and Extension CenterUniversity of California Berkeley9240 South Riverbend AvenueParlierCA93648USA
| | - Andra Thiel
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Louise E. M. Vet
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 106708 PBWageningenThe Netherlands
| | - Sander Visser
- Institute of EntomologyBiology Centre CASBranišovská 31370 05České BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1760370 05České BudějoviceCzech Republic
| | - John H. Werren
- Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Shuwen Xia
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental ChangesFaculdade de Ciências da Universidade de LisboaEdifício C2, Campo Grande1749‐016LisbonPortugal
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| |
Collapse
|
6
|
Benoist R, Capdevielle-Dulac C, Chantre C, Jeannette R, Calatayud PA, Drezen JM, Dupas S, Le Rouzic A, Le Ru B, Moreau L, Van Dijk E, Kaiser L, Mougel F. Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Mol Ecol 2020; 29:3476-3493. [PMID: 32731311 DOI: 10.1111/mec.15567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Dissecting the genetic basis of intraspecific variations in life history traits is essential to understand their evolution, notably for potential biocontrol agents. Such variations are observed in the endoparasitoid Cotesia typhae (Hymenoptera: Braconidae), specialized on the pest Sesamia nonagrioides (Lepidoptera: Noctuidae). Previously, we identified two strains of C. typhae that differed significantly for life history traits on an allopatric host population. To investigate the genetic basis underlying these phenotypic differences, we used a quantitative trait locus (QTL) approach based on restriction site-associated DNA markers. The characteristic of C. typhae reproduction allowed us generating sisters sharing almost the same genetic content, named clonal sibship. Crosses between individuals from the two strains were performed to generate F2 and F8 recombinant CSS. The genotypes of 181 clonal sibships were determined as well as the phenotypes of the corresponding 4,000 females. Informative markers were then used to build a high-quality genetic map. These 465 markers spanned a total length of 1,300 cM and were organized in 10 linkage groups which corresponded to the number of C. typhae chromosomes. Three QTLs were detected for parasitism success and two for offspring number, while none were identified for sex ratio. The QTLs explained, respectively, 27.7% and 24.5% of the phenotypic variation observed. The gene content of the genomic intervals was investigated based on the genome of C. congregata and revealed 67 interesting candidates, as potentially involved in the studied traits, including components of the venom and of the symbiotic virus (bracovirus) shown to be necessary for parasitism success in related wasps.
Collapse
Affiliation(s)
- Romain Benoist
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Claire Capdevielle-Dulac
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Célina Chantre
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Rémi Jeannette
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Paul-André Calatayud
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France.,icipe, International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université Tours, Tours, France
| | - Stéphane Dupas
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Bruno Le Ru
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE - Le Moulon, Gif-sur-Yvette, France
| | - Erwin Van Dijk
- Université Paris-Saclay, CNRS, CEA, UMR Institut de Biologie Intégrative de la Cellule, Gif-sur-Yvette, France
| | - Laure Kaiser
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Florence Mougel
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Pannebakker BA, Cook N, van den Heuvel J, van de Zande L, Shuker DM. Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis. BMC Genomics 2020; 21:499. [PMID: 32689940 PMCID: PMC7372847 DOI: 10.1186/s12864-020-06904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Whilst adaptive facultative sex allocation has been widely studied at the phenotypic level across a broad range of organisms, we still know remarkably little about its genetic architecture. Here, we explore the genome-wide basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, perhaps the best studied organism in terms of sex allocation, and well known for its response to local mate competition. RESULTS We performed a genome-wide association study (GWAS) for single foundress sex ratios using iso-female lines derived from the recently developed outbred N. vitripennis laboratory strain HVRx. The iso-female lines capture a sample of the genetic variation in HVRx and we present them as the first iteration of the Nasonia vitripennis Genome Reference Panel (NVGRP 1.0). This panel provides an assessment of the standing genetic variation for sex ratio in the study population. Using the NVGRP, we discovered a cluster of 18 linked SNPs, encompassing 9 annotated loci associated with sex ratio variation. Furthermore, we found evidence that sex ratio has a shared genetic basis with clutch size on three different chromosomes. CONCLUSIONS Our approach provides a thorough description of the quantitative genetic basis of sex ratio variation in Nasonia at the genome level and reveals a number of inter-related candidate loci underlying sex allocation regulation.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands.
| | - Nicola Cook
- School of Biology, University of St Andrews, Fife, UK
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
8
|
Jones ARC, Mallon EB. Evidence of capacitation in the parasitoid wasp, Nasonia vitripennis, and its potential role in sex allocation. Ecol Evol 2020; 10:7212-7220. [PMID: 32760522 PMCID: PMC7391552 DOI: 10.1002/ece3.6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/02/2022] Open
Abstract
The allocation of resources to the production of one sex or another has been observed in a large variety of animals. Its theoretical basis allows accurate predictions of offspring sex ratios in many species, but the mechanisms by which sex allocation is controlled are poorly understood. Using previously published data, we investigated whether alternative splicing, combined with differential gene expression, was involved with sex allocation in the parasitoid wasp, Nasonia vitripennis. We found that sex allocation is not controlled by alternative splicing but changes in gene and transcript-specific expression, which were identified to be involved with oviposition, were shown to be similar to those involved in sperm motility and capacitation. Genes involved in cholesterol efflux, a key component of capacitation, along with calcium transport, neurotransmission, trypsin, and MAPKinase activity were regulated in ovipositing wasps. The results show evidence for regulation of sperm motility and of capacitation in an insect which, in the context of the physiology of the N. vitripennis spermatheca, could be important for sex allocation.
Collapse
Affiliation(s)
- Alun R. C. Jones
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | - Eamonn B. Mallon
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| |
Collapse
|
9
|
Ramm SA, Lengerer B, Arbore R, Pjeta R, Wunderer J, Giannakara A, Berezikov E, Ladurner P, Schärer L. Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Mol Ecol 2019; 28:2321-2341. [PMID: 30891857 DOI: 10.1111/mec.15077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Birgit Lengerer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Roberto Arbore
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| | - Robert Pjeta
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Julia Wunderer
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | | | - Eugene Berezikov
- ERIBA, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Ladurner
- Institute of Zoology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Lukas Schärer
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Cook N, Boulton RA, Green J, Trivedi U, Tauber E, Pannebakker BA, Ritchie MG, Shuker DM. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171718. [PMID: 29515880 PMCID: PMC5830769 DOI: 10.1098/rsos.171718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/15/2018] [Indexed: 03/14/2024]
Abstract
Whole-transcriptome technologies have been widely used in behavioural genetics to identify genes associated with the performance of a behaviour and provide clues to its mechanistic basis. Here, we consider the genetic basis of sex allocation behaviour in the parasitoid wasp Nasonia vitripennis. Female Nasonia facultatively vary their offspring sex ratio in line with Hamilton's theory of local mate competition (LMC). A single female or 'foundress' laying eggs on a patch will lay just enough sons to fertilize her daughters. As the number of 'foundresses' laying eggs on a patch increases (and LMC declines), females produce increasingly male-biased sex ratios. Phenotypic studies have revealed the cues females use to estimate the level of LMC their sons will experience, but our understanding of the genetics underlying sex allocation is limited. Here, we exposed females to three foundress number conditions, i.e. three LMC conditions, and allowed them to oviposit. mRNA was extracted from only the heads of these females to target the brain tissue. The subsequent RNA-seq experiment confirmed that differential gene expression is not associated with the response to sex allocation cues and that we must instead turn to the underlying neuroscience to reveal the underpinnings of this impressive behavioural plasticity.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Rebecca A. Boulton
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Jade Green
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - Urmi Trivedi
- Edinburgh Genomics, University of Edinburgh, Ashworth Laboratories, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Eran Tauber
- Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Bart A. Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Michael G. Ritchie
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| | - David M. Shuker
- School of Biology, University of St Andrews, Greenside Place, St Andrews KY16 9TH, UK
| |
Collapse
|
11
|
Paolucci S, Salis L, Vermeulen CJ, Beukeboom LW, van de Zande L. QTL analysis of the photoperiodic response and clinal distribution ofperiodalleles inNasonia vitripennis. Mol Ecol 2016; 25:4805-17. [DOI: 10.1111/mec.13802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Paolucci
- Department of Ecology and Evolution; University of Lausanne; UNIL-Sorge CH-1015 Lausanne Switzerland
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Lucia Salis
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); PO Box 50 6700 AB Wageningen The Netherlands
| | - Cornelis J. Vermeulen
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Pulmonary Diseases; University Medical Center Groningen; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
12
|
Abstract
The parasitoid wasp Nasonia represents a genus of four species that is emerging as a powerful genetic model system that has made and will continue to make important contributions to our understanding of evolutionary biology, development, ecology, and behavior. Particularly powerful are the haplodiploid genetics of the system, which allow some of the advantages of microbial genetics to be applied to a complex multicellular eukaryote. In addition, fertile, viable hybrids can be made among the four species in the genus. This makes Nasonia exceptionally well suited for evolutionary genetics approaches, especially when combined with its haploid genetics and tractability in the laboratory. These features are complemented by an expanding array of genomic, transcriptomic, and functional resources, the application of which has already made Nasonia an important model system in such emerging fields as evolutionary developmental biology and microbiomics. This article describes the genetic and genomic advantages of Nasonia wasps and the resources available for their genetic analysis.
Collapse
|
13
|
Oviposition but Not Sex Allocation Is Associated with Transcriptomic Changes in Females of the Parasitoid Wasp Nasonia vitripennis. G3-GENES GENOMES GENETICS 2015; 5:2885-92. [PMID: 26511500 PMCID: PMC4683659 DOI: 10.1534/g3.115.021220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Linking the evolution of the phenotype to the underlying genotype is a key aim of evolutionary genetics and is crucial to our understanding of how natural selection shapes a trait. Here, we consider the genetic basis of sex allocation behavior in the parasitoid wasp Nasonia vitripennis using a transcriptomics approach. Females allocate offspring sex in line with the local mate competition (LMC) theory. Female-biased sex ratios are produced when one or a few females lay eggs on a patch. As the number of females contributing offspring to a patch increases, less female-biased sex ratios are favored. We contrasted the transcriptomic responses of females as they oviposit under conditions known to influence sex allocation: foundress number (a social cue) and the state of the host (parasitized or not). We found that when females encounter other females on a patch or assess host quality with their ovipositors, the resulting changes in sex allocation is not associated with significant changes in whole-body gene expression. We also found that the gene expression changes produced by females as they facultatively allocate sex in response to a host cue and a social cue are very closely correlated. We expanded the list of candidate genes associated with oviposition behavior in Nasonia, some of which may be involved in fundamental processes underlying the ability to facultatively allocate sex, including sperm storage and utilization.
Collapse
|
14
|
Cook N, Pannebakker BA, Tauber E, Shuker DM. DNA Methylation and Sex Allocation in the Parasitoid Wasp Nasonia vitripennis. Am Nat 2015; 186:513-8. [PMID: 26655574 DOI: 10.1086/682950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of epigenetics in the control and evolution of behavior is being increasingly recognized. Here we test whether DNA methylation influences patterns of adaptive sex allocation in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate offspring sex broadly in line with local mate competition (LMC) theory. However, recent theory has highlighted how genomic conflict may influence sex allocation under LMC, conflict that requires parent-of-origin information to be retained by alleles through some form of epigenetic signal. We manipulated whole-genome DNA methylation in N. vitripennis females using the hypomethylating agent 5-aza-2'-deoxycytidine. Across two replicated experiments, we show that disruption of DNA methylation does not ablate the facultative sex allocation response of females, as sex ratios still vary with cofoundress number as in the classical theory. However, sex ratios are generally shifted upward when DNA methylation is disrupted. Our data are consistent with predictions from genomic conflict over sex allocation theory and suggest that sex ratios may be closer to the optimum for maternally inherited alleles.
Collapse
Affiliation(s)
- Nicola Cook
- School of Biology, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
15
|
van de Zande L, Ferber S, de Haan A, Beukeboom LW, van Heerwaarden J, Pannebakker BA. Development of a Nasonia vitripennis outbred laboratory population for genetic analysis. Mol Ecol Resour 2013; 14:578-87. [PMID: 24215457 PMCID: PMC4260118 DOI: 10.1111/1755-0998.12201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
The parasitoid wasp genus Nasonia has rapidly become a genetic model system for developmental and evolutionary biology. The release of its genome sequence led to the development of high-resolution genomic tools, for both interspecific and intraspecific research, which has resulted in great advances in understanding Nasonia biology. To further advance the utility of Nasonia vitripennis as a genetic model system and to be able to fully exploit the advantages of its fully sequenced and annotated genome, we developed a genetically variable and well-characterized experimental population. In this study, we describe the establishment of the genetically diverse HVRx laboratory population from strains collected from the field in the Netherlands. We established a maintenance method that retains genetic variation over generations of culturing in the laboratory. As a characterization of its genetic composition, we provide data on the standing genetic variation and estimate the effective population size (N(e)) by microsatellite analysis. A genome-wide description of polymorphism is provided through pooled resequencing, which yielded 417,331 high-quality SNPs spanning all five Nasonia chromosomes. The HVRx population and its characterization are freely available as a community resource for investigators seeking to elucidate the genetic basis of complex trait variation using the Nasonia model system.
Collapse
Affiliation(s)
- Louis van de Zande
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Pannebakker BA, Trivedi U, Blaxter ML, Watt R, Shuker DM. The transcriptomic basis of oviposition behaviour in the parasitoid wasp Nasonia vitripennis. PLoS One 2013; 8:e68608. [PMID: 23894324 PMCID: PMC3716692 DOI: 10.1371/journal.pone.0068608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/29/2013] [Indexed: 01/26/2023] Open
Abstract
Linking behavioural phenotypes to their underlying genotypes is crucial for uncovering the mechanisms that underpin behaviour and for understanding the origins and maintenance of genetic variation in behaviour. Recently, interest has begun to focus on the transcriptome as a route for identifying genes and gene pathways associated with behaviour. For many behavioural traits studied at the phenotypic level, we have little or no idea of where to start searching for "candidate" genes: the transcriptome provides such a starting point. Here we consider transcriptomic changes associated with oviposition in the parasitoid wasp Nasonia vitripennis. Oviposition is a key behaviour for parasitoids, as females are faced with a variety of decisions that will impact offspring fitness. These include choosing between hosts of differing quality, as well as making decisions regarding clutch size and offspring sex ratio. We compared the whole-body transcriptomes of resting or ovipositing female Nasonia using a "DeepSAGE" gene expression approach on the Illumina sequencing platform. We identified 332 tags that were significantly differentially expressed between the two treatments, with 77% of the changes associated with greater expression in resting females. Oviposition therefore appears to focus gene expression away from a number of physiological processes, with gene ontologies suggesting that aspects of metabolism may be down-regulated during egg-laying. Nine of the most abundant differentially expressed tags showed greater expression in ovipositing females though, including the genes purity-of-essence (associated with behavioural phenotypes in Drosophila) and glucose dehydrogenase (GLD). The GLD protein has been implicated in sperm storage and release in Drosophila and so provides a possible candidate for the control of sex allocation by female Nasonia during oviposition. Oviposition in Nasonia therefore clearly modifies the transcriptome, providing a starting point for the genetic dissection of oviposition.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Roulin AC, Routtu J, Hall MD, Janicke T, Colson I, Haag CR, Ebert D. Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL mapping and natural populations of Daphnia magna. Mol Ecol 2013; 22:3567-79. [PMID: 23786714 DOI: 10.1111/mec.12308] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/12/2013] [Accepted: 02/17/2013] [Indexed: 02/02/2023]
Abstract
Dormancy is a common adaptation in invertebrates to survive harsh conditions. Triggered by environmental cues, populations produce resting eggs that allow them to survive temporally unsuitable conditions. Daphnia magna is a crustacean that reproduces by cyclical parthenogenesis, alternating between the production of asexual offspring and the sexual reproduction of diapausing eggs (ephippia). Prior to ephippia production, males (necessary to ensure ephippia fertilization) are produced parthenogenetically. Both the production of ephippia and the parthenogenetic production of males are induced by environmental factors. Here, we test the hypothesis that the induction of D. magna resting egg production shows a signature of local adaptation. We postulated that Daphnia from permanent ponds would produce fewer ephippia and males than Daphnia from intermittent ponds and that the frequency and season of habitat deterioration would correlate with the timing and amount of male and ephippia production. To test this, we quantified the production of males and ephippia in clonal D. magna populations in several different controlled environments. We found that the production of both ephippia and males varies strongly among populations in a way that suggests local adaptation. By performing quantitative trait locus mapping with parent clones from contrasting pond environments, we identified nonoverlapping genomic regions associated with male and ephippia production. As the traits are influenced by two different genomic regions, and both are necessary for successful resting egg production, we suggest that the genes for their induction co-evolve.
Collapse
Affiliation(s)
- Anne C Roulin
- Department of Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ma WJ, Kuijper B, de Boer JG, van de Zande L, Beukeboom LW, Wertheim B, Pannebakker BA. Absence of complementary sex determination in the parasitoid wasp genus Asobara (Hymenoptera: Braconidae). PLoS One 2013; 8:e60459. [PMID: 23637750 PMCID: PMC3614920 DOI: 10.1371/journal.pone.0060459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022] Open
Abstract
An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ross L, Langenhof MBW, Pen I, Shuker DM. Temporal variation in sex allocation in the mealybug Planococcus citri: adaptation, constraint, or both? Evol Ecol 2012. [DOI: 10.1007/s10682-012-9561-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, Rayner NW, Perry JRB, Toniolo D, Albrecht E, Ang W, Bandinelli S, Barbalic M, Barroso I, Beckmann JS, Biffar R, Boomsma D, Campbell H, Corre T, Erdmann J, Esko T, Fischer K, Franceschini N, Frayling TM, Girotto G, Gonzalez JR, Harris TB, Heath AC, Heid IM, Hoffmann W, Hofman A, Horikoshi M, Zhao JH, Jackson AU, Hottenga JJ, Jula A, Kähönen M, Khaw KT, Kiemeney LA, Klopp N, Kutalik Z, Lagou V, Launer LJ, Lehtimäki T, Lemire M, Lokki ML, Loley C, Luan J, Mangino M, Mateo Leach I, Medland SE, Mihailov E, Montgomery GW, Navis G, Newnham J, Nieminen MS, Palotie A, Panoutsopoulou K, Peters A, Pirastu N, Polasek O, Rehnström K, Ripatti S, Ritchie GRS, Rivadeneira F, Robino A, Samani NJ, Shin SY, Sinisalo J, Smit JH, Soranzo N, Stolk L, Swinkels DW, Tanaka T, Teumer A, Tönjes A, Traglia M, Tuomilehto J, Valsesia A, van Gilst WH, van Meurs JBJ, Smith AV, Viikari J, Vink JM, Waeber G, Warrington NM, Widen E, Willemsen G, Wright AF, Zanke BW, Zgaga L, Boehnke M, d'Adamo AP, de Geus E, Demerath EW, den Heijer M, Eriksson JG, Ferrucci L, Gieger C, Gudnason V, Hayward C, Hengstenberg C, Hudson TJ, Järvelin MR, Kogevinas M, Loos RJF, Martin NG, Metspalu A, Pennell CE, Penninx BW, Perola M, Raitakari O, Salomaa V, Schreiber S, Schunkert H, Spector TD, Stumvoll M, Uitterlinden AG, Ulivi S, van der Harst P, Vollenweider P, Völzke H, Wareham NJ, Wichmann HE, Wilson JF, Rudan I, Xue Y, Zeggini E. Genome-wide meta-analysis of common variant differences between men and women. Hum Mol Genet 2012; 21:4805-15. [PMID: 22843499 PMCID: PMC3471397 DOI: 10.1093/hmg/dds304] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 06/21/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10(-8)) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits.
Collapse
Affiliation(s)
- Vesna Boraska
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|