1
|
Zhou M, Luo K, Su C, Sun Y, Huang Z, Ma S, Gao X, Wang J, Zhang C, Han P, Wu G. Structural basis of FpGalNase and its combination with FpGalNAcDeAc for efficient A-to-O blood group conversion. Exp Hematol Oncol 2025; 14:7. [PMID: 39856738 PMCID: PMC11762096 DOI: 10.1186/s40164-025-00599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Transfusion safety and blood typing continue to present significant challenges in clinical practice, including risks of incorrect blood transfusions and blood shortages. One promising solution is the enzymatic conversion of all red blood cell (RBC) types into universal O-type RBCs. However, the major obstacle to this strategy is the relatively low catalytic efficiency of the enzymes involved. In this study, we investigated two enzymes from Flavonifractor plautii, N-acetylgalactosamine deacetylase (FpGalNAcDeAc) and galactosaminidase (FpGalNase), which demonstrate synergistic activity in efficiently converting A-type RBCs to O-type. We optimized treatment conditions, achieving over 99% conversion in just five minutes using phosphate buffer saline and a 16 nM enzyme concentration. Additionally, we engineered two fusion proteins, FpGalNAcDeAc-FpGalNase and FpGalNase-FpGalNAcDeAc, which showed a 28-fold increase in catalytic efficiency compared to the enzyme mixture. Using cryo-electron microscopy, we resolved the full-length structure of FpGalNase, identifying critical active site residues involved in its catalytic mechanism. This study provides essential structural and biochemical insights for clinical applications in blood group conversion, offering a promising approach for producing universal O-type RBCs.
Collapse
Affiliation(s)
- Meiling Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Kaishan Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Chao Su
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yan Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Zuyan Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Shuo Ma
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xun Gao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jiwei Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Chen Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Pengcheng Han
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Guoqiu Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Advanced Institute for Life and Health, Center of Clinical Laboratory Medicine, Department of Pharmacy, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients 2024; 17:118. [PMID: 39796552 PMCID: PMC11723173 DOI: 10.3390/nu17010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota. By encouraging the growth of advantageous intestinal bacteria, these sugars function as prebiotics and produce short-chain fatty acids (SCFAs), which are essential for gut health. HMOs can also specifically reduce harmful microbes and viruses binding to the gut epithelium, preventing illness. HMO addition to infant formula is safe and promotes healthy development, infection prevention, and microbiota. Current infant formulas frequently contain oligosaccharides (OSs) that differ structurally from those found in human milk, making it unlikely that they would reproduce the unique effects of HMOs. However, there is a growing trend in producing OSs resembling HMOs, but limited data make it unclear whether HMOs offer additional therapeutic benefits compared to non-human OSs. Better knowledge of how the human mammary gland synthesizes HMOs could direct the development of technologies that yield a broad variety of complex HMOs with OS compositions that closely mimic human milk. This review explores HMOs' complex nature and vital role in infant health, examining maternal variation in HMO composition and its contributing factors. It highlights recent technological advances enabling large-scale studies on HMO composition and its effects on infant health. Furthermore, HMOs' multifunctional roles in biological processes such as infection prevention, brain development, and gut microbiota and immune response regulation are investigated. The structural distinctions between HMOs and other mammalian OSs in infant formulas are discussed, with a focus on the trend toward producing more precise replicas of HMOs found in human milk.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye;
| |
Collapse
|
3
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
4
|
Li N, Lee Y, Suh JH, Oh JH, Jin SP, Lee DH, Chung JH. Fucosylation deficiency enhances imiquimod-induced psoriasis-like skin inflammation by promoting CXCL1 expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166988. [PMID: 38070583 DOI: 10.1016/j.bbadis.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Psoriasis is a multifaceted chronic inflammatory skin disease; however, its underlying molecular mechanisms remain unclear. In this study, we explored the role of fucosylation in psoriasis using an imiquimod-induced psoriasis-like mouse model. ABH antigen and fucosyltransferase 1 (Fut1) expression was reduced in the granular layer of lesional skin of patients with psoriasis. In particular, the blood group H antigen type 2 (H2 antigen)-a precursor of blood group A and B antigens-and FUT1 were highly expressed throughout the spinous layer in both patients with psoriasis and the skin of imiquimod-treated mice. Upon the application of imiquimod, Fut1-deficient mice, which lacked the H2 antigen, exhibited higher clinical scores based on erythema, induration, and scaling than those of wild-type mice. Imiquimod-treated Fut1-deficient mice displayed increased skin thickness, trans-epidermal water loss, and Gr-1+ cell infiltration compared with wild-type mice. Notably, the levels of CXCL1 protein and mRNA were significantly higher in Fut1-deficient mice than those in wild-type mice; however, there were no significant differences in other psoriasis-related markers, such as IL-1β, IL-6, IL-17A, and IL-23. Fut1-deficient primary keratinocytes treated with IL-17A also showed a significant increase in both mRNA and protein levels of CXCL1 compared with IL-17A-treated wild-type primary keratinocytes. Further mechanistic studies revealed that this increased Cxcl1 mRNA in Fut1-deficient keratinocytes was caused by enhanced Cxcl1 mRNA stabilization. In summary, our findings indicated that fucosylation, which is essential for ABH antigen synthesis in humans, plays a protective role in psoriasis-like skin inflammation and is a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Na Li
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Youngae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joong Heon Suh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wu SC, Arthur CM, Jan HM, Garcia-Beltran WF, Patel KR, Rathgeber MF, Verkerke HP, Cheedarla N, Jajosky RP, Paul A, Neish AS, Roback JD, Josephson CD, Wesemann DR, Kalman D, Rakoff-Nahoum S, Cummings RD, Stowell SR. Blood group A enhances SARS-CoV-2 infection. Blood 2023; 142:742-747. [PMID: 37367252 PMCID: PMC10294591 DOI: 10.1182/blood.2022018903] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Among the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins. Because ABO(H) blood group antigens are carbohydrates, we compared the glycan-binding specificity of SARS-CoV-2 RBD with that of galectins. Similar to the binding profile of several galectins, the RBDs of SARS-CoV-2, including Delta and Omicron variants, exhibited specificity for blood group A. Not only did each RBD recognize blood group A in a glycan array format, but each SARS-CoV-2 virus also displayed a preferential ability to infect blood group A-expressing cells. Preincubation of blood group A cells with a blood group-binding galectin specifically inhibited the blood group A enhancement of SARS-CoV-2 infection, whereas similar incubation with a galectin that does not recognize blood group antigens failed to impact SARS-CoV-2 infection. These results demonstrated that SARS-CoV-2 can engage blood group A, providing a direct link between ABO(H) blood group expression and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Connie M Arthur
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hau-Ming Jan
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wilfredo F Garcia-Beltran
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA
| | - Kashyap R Patel
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Matthew F Rathgeber
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hans P Verkerke
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ryan Philip Jajosky
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anu Paul
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA
| | - Cassandra D Josephson
- Department of Hematology and Oncology, Johns Hopkins University All Children's Hospital, St. Petersburg, FL
| | - Duane R Wesemann
- Division of Allergy and Clinical Immunology and Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Seth Rakoff-Nahoum
- Division of Infectious Disease, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Richard D Cummings
- National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sean R Stowell
- Department of Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Wang C, Zhou J, Wang L, Xing T, Dai H, Zhou Y, Qi L, Zhao Y, Huang C, Li D, Li H, Li MJ, Liu B, Zheng H, Chen K, Li L. ABO
blood groups and expression of blood group antigens of epithelial ovarian cancer in Chinese women. Cancer Med 2022; 12:7498-7507. [PMID: 36415180 PMCID: PMC10067109 DOI: 10.1002/cam4.5476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND ABO blood groups has been associated with risk of several cancers; however, the results for an association with ovarian cancer are inconsistent and little is known about the expression of histo-blood group (ABH) antigens and ABO gene in ovarian tumor tissues. METHODS To assess the impact of genotype-derived ABO blood types on the risk of EOC, we conducted a case-control study in 1,870 EOC and 4,829 controls. Expression of A and B antigen in 70 pairs of ovarian tumor tissues and adjacent normal tissues were detected by immunohistochemistry. Gene expression and DNA methylation profiling was conducted in ovarian tumor tissues. RESULTS We identified that blood group A was associated with increased risk for EOC compared to blood group O (OR = 1.18, 95% CI = 1.03-1.36, p = 0.019). Increased frequency of aberrant expression of histo-blood group antigens was observed in patients with blood group A (76.5%) compared to patients with blood group O (21.1%) and B (5.0%) by immunohistochemistry (p < 0.001). ABO gene expression was down-regulated in ovarian tumor tissues compared with paired adjacent normal tissues (p = 0.027). In addition, ABO gene expression was positively correlated with NFYB (r = 0.38, p < 0.001) and inversely correlated with DNA methylation level of four CpG sites on ABO gene (cg11879188, r = - 0.3, p = 0.002; cg22535403, r = - 0.30, p = 0.002; cg13506600, r = - 0.22, p = 0.025; cg07241568, r = - 0.21, p = 0.049) in ovarian tumor tissues. CONCLUSION We identified blood group A was associated with increased EOC risk in Chinese women and provided the clues of the possible molecular mechanisms of blood group A related to ovarian cancer risk.
Collapse
Affiliation(s)
- Chao Wang
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Jingjing Zhou
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Lili Wang
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Tongyu Xing
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Yao Zhou
- Department of Pharmacology, the Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Lisha Qi
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Yanrui Zhao
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Ding Li
- Department of Clinical Laboratory Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer Tianjin P. R. China
| | - Haixin Li
- Cancer Biobank Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Mulin Jun Li
- Department of Pharmacology, the Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences Tianjin Medical University Tianjin China
| | - Ben Liu
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| | - Lian Li
- Department of Epidemiology and Biostatistics Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin Tianjin China
| |
Collapse
|
7
|
Pereira E, Felipe S, de Freitas R, Araújo V, Soares P, Ribeiro J, Henrique Dos Santos L, Alves JO, Canabrava N, van Tilburg M, Guedes MI, Ceccatto V. ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms. Microb Pathog 2022; 169:105658. [PMID: 35764188 PMCID: PMC9233352 DOI: 10.1016/j.micpath.2022.105658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
ABO blood group is long known to be an influencing factor for the susceptibility to infectious diseases, and many studies have been describing associations between ABO blood types and COVID-19 infection and severity, with conflicting findings. This narrative review aims to summarize the literature regarding associations between the ABO blood group and COVID-19. Blood type O is mostly associated with lower rates of SARS-CoV-2 infection, while blood type A is frequently described as a risk factor. Although results regarding the risk of severe outcomes are more variable, blood type A is the most associated with COVID-19 severity and mortality, while many studies describe O blood type as a protective factor for the disease progression. Furthermore, genetic associations with both the risk of infection and disease severity have been reported for the ABO locus. Some underlying mechanisms have been hypothesized to explain the reported associations, with incipient experimental data. Three major hypotheses emerge: SARS-CoV-2 could carry ABO(H)-like structures in its envelope glycoproteins and would be asymmetrically transmitted due to a protective effect of the ABO antibodies, ABH antigens could facilitate SARS-CoV-2 interaction with the host' cells, and the association of non-O blood types with higher risks of thromboembolic events could confer COVID-19 patients with blood type O a lower risk of severe outcomes. The hypothesized mechanisms would affect distinct aspects of the COVID-19 natural history, with distinct potential implications to the disease transmission and its management.
Collapse
Affiliation(s)
- Eric Pereira
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Stela Felipe
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Raquel de Freitas
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Valdevane Araújo
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Paula Soares
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Jannison Ribeiro
- Hematology and Hemotherapy Center of Ceará, José Bastos Av., Fortaleza, 60431-086, Ceará, Brazil
| | - Luiz Henrique Dos Santos
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Juliana Osório Alves
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Natália Canabrava
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Mauricio van Tilburg
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Maria Izabel Guedes
- Biotechnology and Molecular Biology Laboratory, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil
| | - Vânia Ceccatto
- Superior Institute of Biomedical Sciences, State University of Ceará, Dr. Silas Munguba Av., Fortaleza, 60714-903, Ceará, Brazil.
| |
Collapse
|
8
|
Li Z, Zhu Y, Ni D, Zhang W, Mu W. Occurrence, functional properties, and preparation of 3-fucosyllactose, one of the smallest human milk oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:9364-9378. [PMID: 35438024 DOI: 10.1080/10408398.2022.2064813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human milk oligosaccharides (HMOs) are receiving wide interest and high attention due to their health benefits, especially for newborns. The HMOs-fortified products are expected to mimic human milk not only in the kinds of added oligosaccharides components but also the appropriate proportion between these components, and further provide the nutrition and physiological effects of human milk to newborns as closely as possible. In comparison to intensively studied 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL) has less attention in almost all respects. Nerveless, 3-FL naturally occurs in breast milk and increases roughly over the course of lactation with a nonnegligible content, and plays an irreplaceable role in human milk and delivers functional properties to newborns. According to the safety evaluation, 3-FL shows no acute oral toxicity, genetic toxicity, and subchronic toxicity. It has been approved as generally recognized as safe (GRAS). Biological production of 3-FL can be realized by enzymatic and cell factory approaches. The α1,3- or α1,3/4-fucosyltransferase is the key enzyme for 3-FL biosynthesis. Various metabolic engineering strategies have been applied to enhance 3-FL yield using cell factory approach. In conclusion, this review gives an overview of the recent scientific literatures regarding occurrence, bioactive properties, safety evaluation, and biotechnological preparation of 3-FL.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
10
|
Tahata S, Raymond K, Quade M, Barnes S, Boyer S, League S, Kumanovics A, Abraham R, Jacob E, Menon P, Morava E. Defining the mild variant of leukocyte adhesion deficiency type II (SLC35C1-congenital disorder of glycosylation) and response to l-fucose therapy: Insights from two new families and review of the literature. Am J Med Genet A 2022; 188:2005-2018. [PMID: 35338746 DOI: 10.1002/ajmg.a.62737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/06/2022]
Abstract
Leukocyte adhesion deficiency type II (LAD II, also known as SLC35C1-congenital disorder of glycosylation) is an autosomal recessive disorder characterized by growth and cognitive impairment, peripheral neutrophilia, recurrent infections, and the Bombay blood phenotype. A subset of patients with a milder presentation has been described with short stature and developmental delay but minimal immune and hematologic features. Some patients with LAD II benefit from oral fucose therapy, though this has not been previously studied in patients with milder disease. In this study, we describe two new patients from separate families with the milder variant of LAD II and review the published literature on this rare disorder. We demonstrate improvement in speech and cognition, CD15 expression, and core fucosylation of serum glycoproteins after 27 months of oral fucose supplementation in one patient. These patients further support the stratification of this disorder into distinct subtypes, a classical severe and an attenuated variant, and provide preliminary evidence of benefit of fucose therapy in the latter group.
Collapse
Affiliation(s)
- Shawn Tahata
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie Quade
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara Barnes
- Division of Transfusion Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Suzanne Boyer
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Stacy League
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Roshini Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Eapen Jacob
- Division of Transfusion Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Prem Menon
- Asthma, Allergy, and Immunology Center, Baton Rouge, Louisiana, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Wang A, Ribeiro RVP, Ali A, Brambate E, Abdelnour-Berchtold E, Michaelsen V, Zhang Y, Rahfeld P, Moon H, Gokhale H, Gazzalle A, Pal P, Liu M, Waddell TK, Cserti-Gazdewich C, Tinckam K, Kizhakkedathu JN, West L, Keshavjee S, Withers SG, Cypel M. Ex vivo enzymatic treatment converts blood type A donor lungs into universal blood type lungs. Sci Transl Med 2022; 14:eabm7190. [PMID: 35171649 DOI: 10.1126/scitranslmed.abm7190] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor organ allocation is dependent on ABO matching, restricting the opportunity for some patients to receive a life-saving transplant. The enzymes FpGalNAc deacetylase and FpGalactosaminidase, used in combination, have been described to effectively convert group A (ABO-A) red blood cells (RBCs) to group O (ABO-O). Here, we study the safety and preclinical efficacy of using these enzymes to remove A antigen (A-Ag) from human donor lungs using ex vivo lung perfusion (EVLP). First, the ability of these enzymes to remove A-Ag in organ perfusate solutions was examined on five human ABO-A1 RBC samples and three human aortae after static incubation. The enzymes removed greater than 99 and 90% A-Ag from RBCs and aortae, respectively, at concentrations as low as 1 μg/ml. Eight ABO-A1 human lungs were then treated by EVLP. Baseline analyses of A-Ag in lungs revealed expression predominantly in the endothelial and epithelial cells. EVLP of lungs with enzyme-containing perfusate removed over 97% of endothelial A-Ag within 4 hours. No treatment-related acute lung toxicity was observed. An ABO-incompatible transplant was then simulated with an ex vivo model of antibody-mediated rejection using ABO-O plasma as the surrogate for the recipient circulation using three donor lungs. The treatment of donor lungs minimized antibody binding, complement deposition, and antibody-mediated injury as compared with control lungs. These results show that depletion of donor lung A-Ag can be achieved with EVLP treatment. This strategy has the potential to expand ABO-incompatible lung transplantation and lead to improvements in fairness of organ allocation.
Collapse
Affiliation(s)
- Aizhou Wang
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Rafaela V P Ribeiro
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Edson Brambate
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Etienne Abdelnour-Berchtold
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Vinicius Michaelsen
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Yu Zhang
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Haisle Moon
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Anajara Gazzalle
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada
| | - Prodipto Pal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada.,Departments of Surgery, Medicine and Physiology and Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON M5T 1P5, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | | | - Kathryn Tinckam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.,Department of Medicine, University Health Network and University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lori West
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada.,Canadian Donation and Transplantation Research Program, Edmonton AB T6G 1C9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, ON M5G 1L7, Canada.,Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
12
|
Tanaka-Okamoto M, Hanzawa K, Murakami H, Mukai M, Miyamoto Y. Identification of β1-3 galactosylglucose-core free-glycans in human urine. Anal Biochem 2021; 641:114427. [PMID: 34688604 DOI: 10.1016/j.ab.2021.114427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
We previously reported the precise structure of acidic free-glycans in human urine. In the present study, structural analysis of neutral free-glycans in urine was performed in fine detail. Urine samples were collected from 21 healthy volunteers and free-glycans extracted from the creatinine-adjusted urine and then fluorescently labeled with 2-aminopyridine. Neutral glycan profiling was achieved by a combination of high-performance liquid chromatography, mass spectrometry, enzymatic digestion, and periodate cleavage. A total of 79 glycans were identified. Because the ABO-blood group antigen containing urinary neutral glycans are major components, profiling patterns were similar between individuals of the same ABO-group. The neutral glycans were composed of lactose-core (Galβ1-4Glc) glycans, type-II N-acetyllactosamine-core (GlcNAcβ1-4Glc) glycans, hexose oligomers, N-glycans and to our surprise β1-3 galactosylglucose-core (Galβ1-3Glc) glycans. Although glycans with a β1-3 galactosylglucose-core were identified as major components in urine, comprising structurally simple isomers of a lactose-core, the core structure has not previously been reported. The major β1-3 galactosylglucose-core glycans were Fucα1-2Galβ1-3(Fucα1-4)Glc, GalNAcα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc and Galα1-3(Fucα1-2)Galβ1-3(Fucα1-4)Glc, corresponding to H-, A-, and B-blood group antigens, respectively. Three lactosamine extended β1-3 galactosylglucose-core glycans were also detected as minor components. Elucidating the biosynthesis of β1-3 galactosylglucose will be crucial for understanding the in vivo function of these glycans.
Collapse
Affiliation(s)
- Miki Tanaka-Okamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Ken Hanzawa
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Hiroko Murakami
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Mikio Mukai
- Department of Medical Checkup, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yasuhide Miyamoto
- Department of Molecular Biology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
13
|
The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients 2021; 13:nu13082737. [PMID: 34444897 PMCID: PMC8398195 DOI: 10.3390/nu13082737] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are non-digestible and structurally diverse complex carbohydrates that are highly abundant in human milk. To date, more than 200 different HMO structures have been identified. Their concentrations in human milk vary according to various factors such as lactation period, mother’s genetic secretor status, and length of gestation (term or preterm). The objective of this review is to assess and rank HMO concentrations from healthy mothers throughout lactation at a global level. To this aim, published data from pooled (secretor and non-secretor) human milk samples were used. When samples were reported as secretor or non-secretor, means were converted to a pooled level, using the reported mean of approximately 80/20% secretor/non-secretor frequency in the global population. This approach provides an estimate of HMO concentrations in the milk of an average, healthy mother independent of secretor status. Mean concentrations of HMOs were extracted and categorized by pre-defined lactation periods of colostrum (0–5 days), transitional milk (6–14 days), mature milk (15–90 days), and late milk (>90 days). Further categorizations were made by gestational length at birth, mother’s ethnicity, and analytical methodology. Data were excluded if they were from preterm milk, unknown sample size and mothers with any known disease status. A total of 57 peer-reviewed articles reporting individual HMO concentrations published between 1996 and 2020 were included in the review. Pooled HMO means reported from 31 countries were analyzed. In addition to individual HMO concentrations, 12 articles reporting total HMO concentrations were also analyzed as a basis for relative HMO abundance. Total HMOs were found as 17.7 g/L in colostrum, 13.3 g/L in transitional milk, and 11.3 g/L in mature milk. The results show that HMO concentrations differ largely for each individual HMO and vary with lactation stages. For instance, while 2′-FL significantly decreased from colostrum (3.18 g/L ± 0.9) to late milk (1.64 g/L ± 0.67), 3-FL showed a significant increase from colostrum (0.37 g/L ± 0.1) to late milk (0.92 g/L ± 0.5). Although pooled human milk contains a diverse HMO profile with more than 200 structures identified, the top 10 individual HMOs make up over 70% of total HMO concentration. In mature pooled human milk, the top 15 HMOs in decreasing order of magnitude are 2′-FL, LNDFH-I (DFLNT), LNFP-I, LNFP-II, LNT, 3-FL, 6′-SL, DSLNT, LNnT, DFL (LDFT), FDS-LNH, LNFP-III, 3′-SL, LST c, and TF-LNH.
Collapse
|
14
|
Presence and Levels of Galactosyllactoses and Other Oligosaccharides in Human Milk and Their Variation during Lactation and According to Maternal Phenotype. Nutrients 2021; 13:nu13072324. [PMID: 34371833 PMCID: PMC8308909 DOI: 10.3390/nu13072324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Among the human milk oligosaccharides (HMOS), the galactosyllactoses (GLs) are only limitedly studied. This study aims to describe the presence and relative levels of HMOS, including GLs, in human milk (HM) according to maternal Secretor and Lewis (SeLe) phenotype and lactation stage. Relative levels of 19 HMOS were measured in 715 HM samples collected in the first 4 months postpartum from 371 donors participating in the PreventCD study. From a subset of 24 Dutch women (171 HM samples), samples were collected monthly up to 12 months postpartum and were additionally analyzed for relative and absolute levels of β6′-GL, β3′-GL and α3′-GL. Maternal SeLe phenotype or HM group was assigned based on the presence of specific fucosylated HMOS. Most HMOS, including β6′- and β3′-GL, were present in the vast majority (≥75%) of HM samples, whereas others (e.g., LNDFH II, 2′-F-LNH and α3′-GL) only occurred in a low number (<25%) of samples. Clear differences were observed between the presence and relative levels of the HMOS according to the maternal phenotype and lactation stage. Absolute concentrations of β6′-GL and β3′-GL were higher in HM group IV samples compared to samples of the other three HM groups. β3′-GL was also higher in HM group II samples compared to HM group I samples. β3′-GL and β6′-GL were stable over lactation stages. In conclusion, presence and levels of HMOS vary according to HM group and lactation stage. Not all HMOS behave similarly: some HMOS depend strongly on maternal phenotype and/or lactation stage, whereas others do not. β3′-GL and β6′-GL were present in low concentrations in over 75% of the analyzed HM samples and showed differences between HM groups, but not between the lactation stages.
Collapse
|
15
|
Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Front Mol Biosci 2021; 8:656439. [PMID: 34026832 PMCID: PMC8138122 DOI: 10.3389/fmolb.2021.656439] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Helicobacter species infections may be associated with the development of gastric disorders, such as gastritis, peptic ulcers, intestinal metaplasia, dysplasia and gastric carcinoma. Binding of these bacteria to the gastric mucosa occurs through the recognition of specific glycan receptors expressed by the host epithelial cells. This review addresses the state of the art knowledge on these host glycan structures and the bacterial adhesins involved in Helicobacter spp. adhesion to gastric mucosa colonization. Glycans are expressed on every cell surface and they are crucial for several biological processes, including protein folding, cell signaling and recognition, and host-pathogen interactions. Helicobacter pylori is the most predominant gastric Helicobacter species in humans. The adhesion of this bacterium to glycan epitopes present on the gastric epithelial surface is a crucial step for a successful colonization. Major adhesins essential for colonization and infection are the blood-group antigen-binding adhesin (BabA) which mediates the interaction with fucosylated H-type 1 and Lewis B glycans, and the sialic acid-binding adhesin (SabA) which recognizes the sialyl-Lewis A and X glycan antigens. Since not every H. pylori strain expresses functional BabA or SabA adhesins, other bacterial proteins are most probably also involved in this adhesion process, including LabA (LacdiNAc-binding adhesin), which binds to the LacdiNAc motif on MUC5AC mucin. Besides H. pylori, several other gastric non-Helicobacter pylori Helicobacters (NHPH), mainly associated with pigs (H. suis) and pets (H. felis, H. bizzozeronii, H. salomonis, and H. heilmannii), may also colonize the human stomach and cause gastric disease, including gastritis, peptic ulcers and mucosa-associated lymphoid tissue (MALT) lymphoma. These NHPH lack homologous to the major known adhesins involved in colonization of the human stomach. In humans, NHPH infection rate is much lower than in the natural hosts. Differences in the glycosylation profile between gastric human and animal mucins acting as glycan receptors for NHPH-associated adhesins, may be involved. The identification and characterization of the key molecules involved in the adhesion of gastric Helicobacter species to the gastric mucosa is important to understand the colonization and infection strategies displayed by different members of this genus.
Collapse
Affiliation(s)
- Rita Matos
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Irina Amorim
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Fátima Gärtner
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação Em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS), Porto, Portugal
- Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| |
Collapse
|
16
|
Wu SC, Arthur CM, Wang J, Verkerke H, Josephson CD, Kalman D, Roback JD, Cummings RD, Stowell SR. The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Adv 2021; 5:1305-1309. [PMID: 33656534 PMCID: PMC7929867 DOI: 10.1182/bloodadvances.2020003259] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 01/13/2023] Open
Abstract
The RBD of SARS-CoV-2 shares sequence similarity with an ancient lectin family known to bind blood group antigens. SARS-CoV-2 RBD binds the blood group A expressed on respiratory epithelial cells, directly linking blood group A and SARS-CoV-2.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Connie M Arthur
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - Jianmei Wang
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - Hans Verkerke
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - Cassandra D Josephson
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - Daniel Kalman
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - John D Roback
- Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA; and
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Molecular and structural basis for Lewis glycan recognition by a cancer-targeting antibody. Biochem J 2021; 477:3219-3235. [PMID: 32789497 DOI: 10.1042/bcj20200454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023]
Abstract
Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.
Collapse
|
18
|
Wang A, Koleva P, du Toit E, Geddes DT, Munblit D, Prescott SL, Eggesbø M, Johnson CC, Wegienka G, Shimojo N, Campbell D, Kozyrskyj AL, Slupsky CM. The Milk Metabolome of Non-secretor and Lewis Negative Mothers. Front Nutr 2021; 7:576966. [PMID: 33634158 PMCID: PMC7901958 DOI: 10.3389/fnut.2020.576966] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The functional role of milk for the developing neonate is an area of great interest, and a significant amount of research has been done. However, a lot of work remains to fully understand the complexities of milk, and the variations imposed through genetics. It has previously been shown that both secretor (Se) and Lewis blood type (Le) status impacts the human milk oligosaccharide (HMO) content of human milk. While some studies have compared the non-HMO milk metabolome of Se+ and Se- women, none have reported on the non-HMO milk metabolome of Se- and Le- mothers. Method and Results: To determine the differences in the non-HMO milk metabolome between Se-Le- mothers and other HMO phenotypes (Se+Le+, Se+Le-, and Se-Le+), 10 milk samples from 10 lactating mothers were analyzed using nuclear magnetic resonance (NMR) spectroscopy. Se or Le HMO phenotypes were assigned based on the presence and absence of 6 HMOs generated by the Se and Le genes. After classification, 58 milk metabolites were compared among the HMO phenotypes. Principal component analysis (PCA) identified clear separation between Se-Le- milk and the other milks. Fold change analysis demonstrated that the Se-Le- milk had major differences in free fatty acids, free amino acids, and metabolites related to energy metabolism. Conclusion: The results of this brief research report suggest that the milk metabolome of mothers with the Se-Le- phenotype differs in its non-HMO metabolite composition from mothers with other HMO phenotypes.
Collapse
Affiliation(s)
- Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
| | - Petya Koleva
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Elloise du Toit
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Donna T. Geddes
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Daniel Munblit
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Paediatrics and Paediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Susan L. Prescott
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- The ORIGINS Project, Telethon Kids Institute, Perth Childrens Hospital, University of Western Australia, Crawley, WA, Australia
| | - Merete Eggesbø
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine C. Johnson
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Ganesa Wegienka
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, United States
| | - Naoki Shimojo
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Dianne Campbell
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Allergy and Immunology, Children's Hospital at Westmead, University of Sydney, Sydney, NSW, Australia
| | - Anita L. Kozyrskyj
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- InVivo Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
20
|
Aguiar DCF, Pereira WLA, de Matos GDCB, Marruaz da Silva KS, de Loiola RDSP, Corvelo TCO. Tissue expression of antigens of ABH blood groups in species of New World Monkeys (Aotus infulatus, Callithrix jacchus, Sapajus apella and Saimiri sciureus). PLoS One 2020; 15:e0241487. [PMID: 33206689 PMCID: PMC7673508 DOI: 10.1371/journal.pone.0241487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
ABH antigens are histo-antigens, but were first described on the surface of human erythrocytes. They are found in those cells only in great apes and humans, while in more primitive animals they are found in tissues and body fluids. ABH antigens are mainly distributed in tissues that are in contact with the external environment and may serve as ligands for pathogens in tissues or block their connection. Description of the distribution of these molecules in non-human primate tissues is restricted to a few tissues and species. This paper describes the expression of human A, B and H type antigens in different organs from four species of New World Primates, obtained from the Centro Nacional de Primatas, as well as comparing that expression with what has been described for humans. In this study, although the tissue description of the antigens is similar to the genetic model for humans, some differences in expression between some organs from those species and those of humans were found. The differences occurred mainly in endodermal organs that have secretory functions and are probably under the control of the human-type FUT-2 enzyme. In the mesodermal-origin organs there was a reduction or absence of A and B antigen marking, particularly in the H precursor substance, indicating that those organs are under the control of the human-type FUT-1 enzyme. These findings have demonstrated that there is similar ABH antigen reactivity in tissue distribution between the species, although there are some species-specific cases.
Collapse
Affiliation(s)
- Délia Cristina Figueira Aguiar
- Laboratory of Biomolecular Technology, Institute of Biological Sciences, Federal -University of Pará, Belém, Pará, Brazil
- * E-mail:
| | | | | | | | | | | |
Collapse
|
21
|
Mank M, Hauner H, Heck AJR, Stahl B. Targeted LC-ESI-MS 2 characterization of human milk oligosaccharide diversity at 6 to 16 weeks post-partum reveals clear staging effects and distinctive milk groups. Anal Bioanal Chem 2020; 412:6887-6907. [PMID: 32794008 PMCID: PMC7496073 DOI: 10.1007/s00216-020-02819-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Many molecular components in human milk (HM), such as human milk oligosaccharides (HMOs), assist in the healthy development of infants. It has been hypothesized that the functional benefits of HM may be highly dependent on the abundance and individual fine structures of contained HMOs and that distinctive HM groups can be defined by their HMO profiles. However, the structural diversity and abundances of individual HMOs may also vary between milk donors and at different stages of lactations. Improvements in efficiency and selectivity of quantitative HMO analysis are essential to further expand our understanding about the impact of HMO variations on healthy early life development. Hence, we applied here a targeted, highly selective, and semi-quantitative LC-ESI-MS2 approach by analyzing 2 × 30 mature human milk samples collected at 6 and 16 weeks post-partum. The analytical approach covered the most abundant HMOs up to hexasaccharides and, for the first time, also assigned blood group A and B tetrasaccharides. Principal component analysis (PCA) was employed and allowed for automatic grouping and assignment of human milk samples to four human milk groups which are related to the maternal Secretor (Se) and Lewis (Le) genotypes. We found that HMO diversity varied significantly between these four HM groups. Variations were driven by HMOs being either dependent or independent of maternal genetic Se and Le status. We found preliminary evidence for an additional HM subgroup within the Se- and Le-positive HM group I. Furthermore, the abundances of 6 distinct HMO structures (including 6'-SL and 3-FL) changed significantly with progression of lactation. Graphical abstract.
Collapse
Affiliation(s)
- Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands.
| | - Hans Hauner
- Else Kröner-Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany.,Nutritional Medicine Unit, Research Center for Nutrition and Food Sciences (ZIEL), Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
22
|
Negrini R, Villanacci V, Poiesi C, Savio A. Anti-Glycan Autoantibodies Induced by Helicobacter pylori as a Potential Risk Factor for Myocardial Infarction. Front Immunol 2020; 11:597. [PMID: 32322255 PMCID: PMC7158853 DOI: 10.3389/fimmu.2020.00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
A number of epidemiological studies have evaluated the potential association between H. pylori and cardiovascular disease, but with contrasting results. We have previously shown that Helicobacter pylori infection is able to induce in mice and humans autoantibodies cross-reacting with histo–blood group Lewis antigens, expressed in different organs and in plasma glycoproteins and glycolipids. The aim of this study was to assess whether immunization of animals with H. pylori might induce myocardial histopathological changes. We have retrospectively examined, in detail, the histology of archived organs from mice and rabbits immunized with H. pylori in our previous studies. Human sera and cross-reacting monoclonal antibodies were also tested against bacterial preparations and tissue sections. Areas of myocardial necrosis, associated with coronary thrombotic occlusion, were found in 5 of 20 mice and 2 of 5 rabbits previously immunized with suspensions of H. pylori. No similar lesions were found in control animals, suggesting a causal link with H. pylori immunization. The animals bearing myocardial lesions had not been infected but only immunized months earlier with parenteral injections of dead H. pylori cells. This strongly suggests that immunization, by itself, might play a causative role. We propose that the cross-reactive autoimmune response induced by H. pylori could promote thrombotic occlusion through direct endothelial damage or by perturbing the coagulation process.
Collapse
Affiliation(s)
- Riccardo Negrini
- Department of Laboratory Medicine, Presidio di Gardone VT-ASST Spedali Civili, Brescia, Italy
| | | | - Claudio Poiesi
- Institute of Microbiology and Virology, ASST Spedali Civili, Brescia, Italy
| | - Antonella Savio
- Histopathology and Cytology Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Commun Biol 2020; 3:2. [PMID: 31925306 PMCID: PMC6946681 DOI: 10.1038/s42003-019-0727-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Although the gastrointestinal pathogen Campylobacter jejuni was considered asaccharolytic, >50% of sequenced isolates possess an operon for L-fucose utilization. In C. jejuni NCTC11168, this pathway confers L-fucose chemotaxis and competitive colonization advantages in the piglet diarrhea model, but the catabolic steps remain unknown. Here we solved the putative dehydrogenase structure, resembling FabG of Burkholderia multivorans. The C. jejuni enzyme, FucX, reduces L-fucose and D-arabinose in vitro and both sugars are catabolized by fuc-operon encoded enzymes. This enzyme alone confers chemotaxis to both sugars in a non-carbohydrate-utilizing C. jejuni strain. Although C. jejuni lacks fucosidases, the organism exhibits enhanced growth in vitro when co-cultured with Bacteroides vulgatus, suggesting scavenging may occur. Yet, when excess amino acids are available, C. jejuni prefers them to carbohydrates, indicating a metabolic hierarchy exists. Overall this study increases understanding of nutrient metabolism by this pathogen, and identifies interactions with other gut microbes.
Collapse
|
24
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
25
|
Affiliation(s)
- Stephen M. Henry
- Center for Kode Technology Innovation, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Nicolai V. Bovin
- Center for Kode Technology Innovation, School of Engineering, Computer & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
26
|
Mank M, Welsch P, Heck AJR, Stahl B. Label-free targeted LC-ESI-MS 2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal Bioanal Chem 2018; 411:231-250. [PMID: 30443773 DOI: 10.1007/s00216-018-1434-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023]
Abstract
Human milk (HM) supports the healthy development of neonates and exerts many of its beneficial effects via contained free human milk oligosaccharides (HMOS). These HMOS exhibit a complexity and structural diversity that pose a significant analytical challenge. A detailed characterization of HMOS is essential as every individual structure may have a different function/activity. Certain HMOS isomers may even fundamentally differ in their biological function, and especially their characterization by LC or LC-MS is often impaired by co-elution phenomena. Thus, more efficient analytical methodologies with enhanced structural selectivity are required. Therefore, we developed a negative ion mode LC-ESI-MS2 approach featuring straightforward sample preparation, environmentally friendly EtOH gradient elution, and enhanced, semiquantitative characterization of distinct native HMOS by multiple reaction monitoring (MRM). Our MRM-LC-MS setup takes advantage of highly selective, glycan configuration-dependent collision-induced dissociation (CID) fragments to identify individual neutral and acidic HMOS. Notably, many human milk oligosaccharide isomers could be distinguished in a retention time-independent manner. This contrasts with other contemporary MRM approaches relying on rather unspecific MRM transitions. Our method was used to determine the most abundant human milk tri-, tetra-, penta-, and hexaoses semiquantitatively in a single LC-MS assay. Detected HMO structures included fucosyllactoses (e.g., 2'-FL), lacto-N-difucotetraose (LDFT), lacto-N-tetraoses (LNTs), lacto-N-fucopentaoses (e.g., LNFP I, LNFP II and III), lacto-N-difucohexaoses (LNDFHs) as well as sialyllactoses (SLs) and tentatively assigned blood group A and B tetrasaccharides from which correct human milk type assignment could be also demonstrated. Correctness of milk typing was validated for milk groups I-IV by high pressure anion exchange chromatography (HPAEC) coupled to pulsed amperometric detection (HPAEC-PAD). Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands.
| | - Philipp Welsch
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Division, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
27
|
Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Sci Rep 2018; 8:16790. [PMID: 30429485 PMCID: PMC6235895 DOI: 10.1038/s41598-018-34882-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding is the normal way of providing young infants with the nutrients they need for healthy growth and development (WHO). Human milk oligosaccharides (hMOS) constitute a highly important class of nutrients that are attracting strong attention in recent years. Several studies have indicated that hMOS have prebiotic properties, but also are effective in anti-adhesion of pathogens, modulating the immune system and providing nutrients for brain growth and development. Most of the latter functions seem to be linked to the presence of fucose-containing immunodeterminant epitopes, and Neu5Ac-bearing oligosaccharides. Analysis of hMOS isolated from 101 mothers’ milk showed regional variation in Lewis- and Secretor based immunodeterminants. Lewis-negative milk groups could be sub-divided into two sub-groups, based on the activity of a third and hitherto unidentified fucosyltransferase enzyme. Analysis of hMOS remaining in faeces showed three sub-groups based on hMOS surviving passage through the gut, full consumption, specific partial consumption and non-specific partial consumption, fitting previous findings.
Collapse
|
28
|
Wu Z, Feng H, Cao Y, Huang Y, Dai C, Wu S, Bao W. New Insight into the Molecular Mechanism of the FUT2 Regulating Escherichia coli F18 Resistance in Weaned Piglets. Int J Mol Sci 2018; 19:E3301. [PMID: 30352970 PMCID: PMC6275016 DOI: 10.3390/ijms19113301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli (E. coli) F18 is the main pathogen responsible for post-weaning diarrhea (PWD) in piglets. Resistance to E. coli F18 depends on the expression of the cognate receptors in the intestinal epithelial cells. However, the molecular mechanism of E. coli F18 resistance in weaned piglets remains unclear. Here, we performed a comparative transcriptome study of the duodenal tissue from Sutai E. coli F18 sensitive and resistant pigs by RNA-seq, and pig α(1,2) fucosyltransferase 2 (FUT2) was identified as a host differentially expressed gene controlling the E. coli F18 infection. Function analysis showed that the FUT2 expression was high in the duodenum and jejunum, with higher levels detected in sensitive individuals than in resistant individuals (p < 0.01). Expression levels of FUT2 were upregulated in IPEC-J2 cells after lipopolysaccharide (LPS)-induction or E. coli stimulation. FUT2 knockdown decreased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05). FUT2 overexpression markedly increased the adhesion of E. coli F18 to IPEC-J2 cells (p < 0.05 or p < 0.01). Furthermore, the FUT2 mRNA levels correlated with methylation levels of the mC-22 site in the specificity protein 1 (Sp1) transcription factor (p < 0.05). Electrophoretic mobility shift assays (EMSA) showed that Sp1 interacts with the wild-type FUT2 promoter DNA, but not with methylated DNA. Our data suggested that FUT2 methylation at the mC-22 site inhibits Sp1 binding to the FUT2 promoter, thereby reducing FUT2 expression and enhancing E. coli F18 resistance in weaned piglets. These observations highlight FUT2 as a promising new target for combating E. coli F18 susceptibility in weaned piglets.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haiyue Feng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Chaohui Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
29
|
Uwaezuoke SN, Eze JN, Ayuk AC, Ndu IK. ABO histo-blood group and risk of respiratory atopy in children: a review of published evidence. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2018; 9:73-79. [PMID: 30102298 PMCID: PMC6067593 DOI: 10.2147/phmt.s162570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Besides their fundamental role in transfusion medicine, ABO and other histo-blood group antigens are associated with the pathogenesis of some human diseases such as malignancy and thrombosis. Reports also show a possible relationship with the risk of asthma and other forms of respiratory atopy. This paper aims to critically review the current evidence linking ABO histo-blood group with the risk of respiratory atopy in children and adults. A literature search was conducted with PubMed to gather baseline data about this relationship. The search extended to studies published within the past 45 years. First, the molecular mechanism underpinning the role of ABO antigenic system in human diseases comprises a fascinating relationship with von Willebrand factor and several pro-inflammatory and adhesion molecules. Second, specific blood group types vary with asthma phenotypes; severe asthma is associated with B phenotype, while mild and moderate asthma is associated with O and A phenotypes. Third, O phenotype has been linked to allergic rhinitis but only in males. Furthermore, asthma risk is related to O/Lewis negative/secretor phenotypes, while a significant relationship has also been established with B phenotype but not with A and O phenotypes. However, one study failed to establish a significant relationship with any of the ABO blood group antigens. In conclusion, there is no unanimity on the specific histo-blood groups linked to respiratory atopy risk, although asthma phenotypes are associated with specific blood groups. Despite the prospect that this relationship holds for the use of blood-group typing in evaluating respiratory atopy risk in children, more evidence-based studies are still required for its validation.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Paediatrics, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria,
| | - Joy N Eze
- Department of Paediatrics, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria,
| | - Adaeze C Ayuk
- Department of Paediatrics, University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria,
| | - Ikenna K Ndu
- Department of Paediatrics, Enugu State University Teaching Hospital, Enugu, Nigeria
| |
Collapse
|
30
|
Ayechu-Muruzabal V, van Stigt AH, Mank M, Willemsen LEM, Stahl B, Garssen J, Van't Land B. Diversity of Human Milk Oligosaccharides and Effects on Early Life Immune Development. Front Pediatr 2018; 6:239. [PMID: 30250836 PMCID: PMC6140589 DOI: 10.3389/fped.2018.00239] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
One of the well-known features of human milk, is the capacity to protect against the risk and impact of neonatal infections, as well as to influence the onset of allergic and metabolic disease manifestations. The major objective of this review is to provide a detailed overview regarding the role of human milk, more specifically the diversity in human milk oligosaccharides (HMOS), on early life immune development. Novel insights in immune modulatory effects of HMOS obtained by in vitro as well as in vivo studies, adds to the understanding on how early life nutrition may impact immune development. Extensive description and analysis of single HMOS contributing to the diversity within the composition provided during breastfeeding will be discussed with specific emphasis on immune development and the susceptibility to neonatal and childhood infections.
Collapse
Affiliation(s)
- Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Arthur H van Stigt
- Pediatric Immunology, Laboratory of Translational Immunology, The Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
| | - Marko Mank
- Department of Immunology and Department of Human Milk Research & Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Bernd Stahl
- Department of Immunology and Department of Human Milk Research & Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Immunology and Department of Human Milk Research & Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| | - Belinda Van't Land
- Pediatric Immunology, Laboratory of Translational Immunology, The Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands.,Department of Immunology and Department of Human Milk Research & Analytical Science, Danone Nutricia Research, Utrecht, Netherlands
| |
Collapse
|
31
|
Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm PG, Höök F, Larson G. Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes. ACS Chem Biol 2017; 12:1288-1296. [PMID: 28294600 DOI: 10.1021/acschembio.7b00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane-associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked α-l-Fucp and (1,4)-linked α-l-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3)-linked α-l-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein-carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.
Collapse
Affiliation(s)
- Waqas Nasir
- Department
of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Frank
- Biognos AB, Generatorsgatan 1, P.O. Box 8963, 40274 Gothenburg, Sweden
| | - Angelika Kunze
- Department
of Applied Physics, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
| | - Marta Bally
- Department
of Applied Physics, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
| | - Francisco Parra
- Instituto
Universitario de Biotecnología de Asturias, Departamento de
Bioquimíca y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Per-Georg Nyholm
- Biognos AB, Generatorsgatan 1, P.O. Box 8963, 40274 Gothenburg, Sweden
- Department
of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Höök
- Department
of Applied Physics, Chalmers University of Technology, S-412 96 Gothenburg, Sweden
| | - Göran Larson
- Department
of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Wang X, He Z, Liu H, Yousefi S, Simon HU. Neutrophil Necroptosis Is Triggered by Ligation of Adhesion Molecules following GM-CSF Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:4090-4100. [DOI: 10.4049/jimmunol.1600051] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
|
33
|
Everest-Dass AV, Kolarich D, Pascovici D, Packer NH. Blood group antigen expression is involved in C. albicans interaction with buccal epithelial cells. Glycoconj J 2016; 34:31-50. [PMID: 27639389 DOI: 10.1007/s10719-016-9726-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022]
Abstract
Human blood group polymorphisms are known to be determined by the expression of A, B or H antigens and the Lewis antigens. Protection against microbial infections has been associated with inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions and epithelial tissue surfaces, subsequently resulting in the presentation of different glycosylated terminal antigens on the cell surface. We investigated the role of blood group antigens in diversifying the glycosylation of buccal epithelial cells (BEC) that line the oral cavity. Specifically, we characterized and statistically evaluated the expression of histo-blood group (A, B, O) antigens on N-and O-linked glycans from BEC membrane proteins of various individuals that represented different blood group type and secretor status using a porous graphitic carbon liquid chromatography electrospray ionization mass spectrometry (PGC-LC-ESI-MS) based glycomics approach. From these BEC membrane proteins a total of 77 N-glycan and 96 O-glycan structures were structurally characterized from 19 individuals and relatively quantitated. The N-glycans from the secretor individuals did not express any A/B blood group determinants, but contained several terminal H-antigens. Apart from the non-secretors, the N-glycan profiles of BEC from all blood groups displayed similar glycan types, while varying in their relative intensities between individuals. However, multivariate analysis of the O-glycans from individuals displayed segregation patterns clearly associated with their blood group type and secretor status. In adhesion assays the oral pathogen Candida albicans showed a significantly higher interaction to blood group O type BECs relative to other blood groups.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, Macquarie University, Sydney, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14428, Potsdam, Germany
| | - Dana Pascovici
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia. .,ARC Centre of Excellence in Nanoscale Biophotonics, Macquarie University, Sydney, Australia.
| |
Collapse
|
34
|
Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev Bras Hematol Hemoter 2016; 38:331-340. [PMID: 27863762 PMCID: PMC5119663 DOI: 10.1016/j.bjhh.2016.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
ABO, H, secretor and Lewis histo-blood system genes control the expression of part of the carbohydrate repertoire present in areas of the body occupied by microorganisms. These carbohydrates, besides having great structural diversity, act as potential receptors for pathogenic and non-pathogenic microorganisms influencing susceptibility and resistance to infection and illness. Despite the knowledge of some structural variability of these carbohydrate antigens and their polymorphic levels of expression in tissue and exocrine secretions, little is known about their biological importance and potential applications in medicine. This review highlights the structural diversity, the biological importance and potential applications of ABO, H, Lewis and secretor histo-blood carbohydrates.
Collapse
|
35
|
Dotz V, Wuhrer M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta Gen Subj 2016; 1860:1596-607. [PMID: 26748235 PMCID: PMC7117023 DOI: 10.1016/j.bbagen.2015.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Viktoria Dotz
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
36
|
Wirth HP, Yang M. Different Pathophysiology of Gastritis in East and West? A Western Perspective. Inflamm Intest Dis 2016; 1:113-122. [PMID: 29922666 DOI: 10.1159/000446300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Gastritis results from multifactorial gastric mucosal injury. Helicobacter pylori (Hp) is the main cause, and associated diseases have typical underlying patterns of gastritis. Gastric ulcer and gastric cancer (GC) develop from chronic atrophic corpus gastritis (CAG) which therefore represents the most important pattern. GC incidences in East Asia are substantially higher than elsewhere, and this should be also reflected by higher prevalences of CAG and characteristic differences in pathophysiology compared to the West. Summary The few available comparative studies of gastritis in Eastern and Western patients are summarized. The main pathogenic factors of gastritis are discussed together with their limitations to explain local differences in disease outcome. Emphasis was put to also include less well-established pathogenic host and environmental factors of possible impact. Conclusions CAG is more prevalent in East Asian areas with high GC incidences than the West. Geographic heterogeneity of associated diseases is due to differences in Hp prevalence and virulence as well as modulating host and environmental factors. The following may contribute to the higher burden of CAG in the East: ABD type of CagA with vacA s1 and babA2 alleles of Hp, host Lewis(b) expression in sej/sej nonsecretors, H. heilmannii, low parietal cell mass, high sodium and nitrate intake, preferences in vegetable and fruit consumption, cigarette smoking, air pollution, alcohol. Conversely, green tea, nonfermented soy products and rice may confer protective effects. Hp is on the decline, but also in a world cleared from this bacterium, differences in host genetics will continue to modify gastric disease outcome together with maintained customs as part of cultural diversity.
Collapse
Affiliation(s)
| | - Manqiao Yang
- GastroZentrumKreuzlingen, Kreuzlingen, Switzerland
| |
Collapse
|
37
|
Jeyakanthan M, Meloncelli PJ, Zou L, Lowary TL, Larsen I, Maier S, Tao K, Rusch J, Chinnock R, Shaw N, Burch M, Beddows K, Addonizio L, Zuckerman W, Pahl E, Rutledge J, Kanter KR, Cairo CW, Buriak JM, Ross D, Rebeyka I, West LJ. ABH-Glycan Microarray Characterizes ABO Subtype Antibodies: Fine Specificity of Immune Tolerance After ABO-Incompatible Transplantation. Am J Transplant 2016; 16:1548-58. [PMID: 26602221 DOI: 10.1111/ajt.13625] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/18/2015] [Accepted: 11/07/2015] [Indexed: 01/25/2023]
Abstract
Organ transplantation from ABO blood group-incompatible (ABOi) donors requires accurate detection, effective removal and subsequent surveillance of antidonor antibodies. Because ABH antigen subtypes are expressed differently in various cells and organs, measurement of antibodies specific for the antigen subtypes in the graft is essential. Erythrocyte agglutination, the century-old assay used clinically, does not discriminate subtype-specific ABO antibodies and provides limited information on antibody isotypes. We designed and created an ABO-glycan microarray and demonstrated the precise assessment of both the presence and, importantly, the absence of donor-specific antibodies in an international study of pediatric heart transplant patients. Specific IgM, IgG, and IgA isotype antibodies to nonself ABH subtypes were detected in control participants and recipients of ABO-compatible transplants. Conversely, in children who received ABOi transplants, antibodies specific for A subtype II and/or B subtype II antigens-the only ABH antigen subtypes expressed in heart tissue-were absent, demonstrating the fine specificity of B cell tolerance to donor/graft blood group antigens. In contrast to the hemagglutination assay, the ABO-glycan microarray allows detailed characterization of donor-specific antibodies necessary for effective transplant management, representing a major step forward in precise ABO antibody detection.
Collapse
Affiliation(s)
- M Jeyakanthan
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - P J Meloncelli
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - T L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - I Larsen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - S Maier
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - K Tao
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - J Rusch
- Pediatrtic Cardiology, Loma Linda University Medical Center, Loma Linda, CA
| | - R Chinnock
- Pediatrtic Cardiology, Loma Linda University Medical Center, Loma Linda, CA
| | - N Shaw
- Pediatric Cardiology, Great Ormond Street Hospital for Sick Children, London, UK
| | - M Burch
- Pediatric Cardiology, Great Ormond Street Hospital for Sick Children, London, UK
| | - K Beddows
- Division of Pediatric Cardiology, Columbia University, New York, NY
| | - L Addonizio
- Division of Pediatric Cardiology, Columbia University, New York, NY
| | - W Zuckerman
- Division of Pediatric Cardiology, Columbia University, New York, NY
| | - E Pahl
- Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - J Rutledge
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - K R Kanter
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - C W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J M Buriak
- National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta, Canada
| | - D Ross
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - I Rebeyka
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - L J West
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Jeyakanthan M, Tao K, Zou L, Meloncelli PJ, Lowary TL, Suzuki K, Boland D, Larsen I, Burch M, Shaw N, Beddows K, Addonizio L, Zuckerman W, Afzali B, Kim DH, Mengel M, Shapiro AMJ, West LJ. Chemical Basis for Qualitative and Quantitative Differences Between ABO Blood Groups and Subgroups: Implications for Organ Transplantation. Am J Transplant 2015; 15:2602-15. [PMID: 26014598 DOI: 10.1111/ajt.13328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/01/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
Abstract
Blood group ABH(O) carbohydrate antigens are carried by precursor structures denoted type I-IV chains, creating unique antigen epitopes that may differ in expression between circulating erythrocytes and vascular endothelial cells. Characterization of such differences is invaluable in many clinical settings including transplantation. Monoclonal antibodies were generated and epitope specificities were characterized against chemically synthesized type I-IV ABH and related glycans. Antigen expression was detected on endomyocardial biopsies (n = 50) and spleen (n = 11) by immunohistochemical staining and on erythrocytes by flow cytometry. On vascular endothelial cells of heart and spleen, only type II-based ABH antigens were expressed; type III/IV structures were not detected. Type II-based ABH were expressed on erythrocytes of all blood groups. Group A1 and A2 erythrocytes additionally expressed type III/IV precursors, whereas group B and O erythrocytes did not. Intensity of A/B antigen expression differed among group A1 , A2 , A1 B, A2 B and B erythrocytes. On group A2 erythrocytes, type III H structures were largely un-glycosylated with the terminal "A" sugar α-GalNAc. Together, these studies define qualitative and quantitative differences in ABH antigen expression between erythrocytes and vascular tissues. These expression profiles have important implications that must be considered in clinical settings of ABO-incompatible transplantation when interpreting anti-ABO antibodies measured by hemagglutination assays with reagent erythrocytes.
Collapse
Affiliation(s)
- M Jeyakanthan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - K Tao
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - L Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - P J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - T L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - K Suzuki
- Alberta Diabetes Institute Molecular Biology Core, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D Boland
- Southern Alberta Cancer Research Institute Antibody Services, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - I Larsen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - M Burch
- Pediatric Cardiology, Great Ormond Street Hospital, London, United Kingdom
| | - N Shaw
- Pediatric Cardiology, Great Ormond Street Hospital, London, United Kingdom
| | - K Beddows
- Division of Pediatric Cardiology, Columbia University, New York
| | - L Addonizio
- Division of Pediatric Cardiology, Columbia University, New York
| | - W Zuckerman
- Division of Pediatric Cardiology, Columbia University, New York
| | - B Afzali
- Department of Laboratory Medicine and Pathology, Edmonton, Alberta, Canada
| | - D H Kim
- Alberta Transplant Institute, Edmonton, Alberta, Canada.,Division of Medicine, Department of Cardiology, University of Alberta, University of Alberta, Edmonton, Alberta, Canada
| | - M Mengel
- Canadian National Transplant Research Program, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, Edmonton, Alberta, Canada
| | - A M J Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada
| | - L J West
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.,Alberta Transplant Institute, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus. PLoS Pathog 2015; 11:e1004759. [PMID: 25875017 PMCID: PMC4398370 DOI: 10.1371/journal.ppat.1004759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
RHDV (rabbit hemorrhagic disease virus), a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus). It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs), as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect on rFut1, contributing to fucosylated glycan diversity, and allowing herd protection from pathogens such as RHDV. There are three members of the α1,2fucosyltransferases gene family in mammalian genomes, Fut1, Fut2 and Sec1. The encoded fucosyltransferases are key enzymes for the synthesis of glycans that can be used as ligands by pathogens. However, the polymorphism of expression of these fucosylated glycans on epithelial cell types contributes to protection at the species level. In most mammalian species Sec1 is a pseudogene and in humans, genetic variation of α1,2fucosylated glycans is provided by FUT2 polymorphisms. Rabbit haemorrhagic disease virus (RHDV) uses α1,2fucosylated glycans as attachment factors. It induces an acute disease with very high mortalities in rabbit populations. We now confirm an association between genetic markers in the rabbit Sec1-Fut2 genomic region and survival to RHDV. We show that the Fut1 gene is the main contributor to the synthesis of RHDV binding sites although individual variation is not achieved by Fut1 polymorphisms but by variation in levels of Sec1 transcription. The Sec1 protein acting as a dominant-negative of Fut1, high Sec1 expression leads to a decreased number of RHDV binding sites. Thus, unlike in other mammals, in rabbits Sec1 underwent neofunctionalization. It contributes to generate diversity of fucosylated glycans, a key mechanism for escaping pathogens such as RHDV.
Collapse
|
41
|
Salama A, Evanno G, Harb J, Soulillou JP. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation 2014; 22:85-94. [PMID: 25308416 DOI: 10.1111/xen.12142] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed.
Collapse
Affiliation(s)
- Apolline Salama
- INSERM UMR1064, Centre for Research in Transplantation and Immunology-ITUN, Université de Nantes, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Société d'Accélération du Transfert de Technologies Ouest Valorisation, Rennes Cedex, France
| | | | | | | |
Collapse
|
42
|
Chapanian R, Kwan DH, Constantinescu I, Shaikh FA, Rossi NAA, Withers SG, Kizhakkedathu JN. Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nat Commun 2014; 5:4683. [PMID: 25140641 PMCID: PMC4978540 DOI: 10.1038/ncomms5683] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022] Open
Abstract
The reaction of macromolecules such as enzymes and antibodies with cell surfaces is often an inefficient process, requiring large amounts of expensive reagent. Here we report a general method based on macromolecular crowding with a range of neutral polymers to enhance such reactions, using red blood cells (RBCs) as a model system. Rates of conversion of type A and B red blood cells to universal O type by removal of antigenic carbohydrates with selective glycosidases are increased up to 400-fold in the presence of crowders. Similar enhancements are seen for antibody binding. We further explore the factors underlying these enhancements using confocal microscopy and fluorescent recovery after bleaching (FRAP) techniques with various fluorescent protein fusion partners. Increased cell-surface concentration due to volume exclusion, along with two-dimensionally confined diffusion of enzymes close to the cell surface, appear to be the major contributing factors.
Collapse
Affiliation(s)
- Rafi Chapanian
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - David H Kwan
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Iren Constantinescu
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Fathima A Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Nicholas A A Rossi
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | - Stephen G Withers
- 1] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1 [2] Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jayachandran N Kizhakkedathu
- 1] Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [2] Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3 [3] Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
43
|
van Leeuwen SS, Schoemaker RJW, Gerwig GJ, van Leusen-van Kan EJM, Dijkhuizen L, Kamerling JP. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology 2014; 24:728-39. [DOI: 10.1093/glycob/cwu036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Hong Q, Ruhaak LR, Totten SM, Smilowitz JT, German JB, Lebrilla CB. Label-free absolute quantitation of oligosaccharides using multiple reaction monitoring. Anal Chem 2014; 86:2640-7. [PMID: 24502421 PMCID: PMC3983013 DOI: 10.1021/ac404006z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
An absolute quantitation method for
measuring free human milk oligosaccharides
(HMOs) in milk samples was developed using multiple reaction monitoring
(MRM). To obtain the best sensitivity, the instrument conditions were
optimized to reduce the source and postsource fragmentation prior
to the quadrupole transmission. Fragmentation spectra of HMOs using
collision-induced dissociation were studied to obtain the best characteristic
fragments. At least two MRM transitions were used to quantify and
identify each structure in the same run. The fragment ions corresponded
to the production of singly charged mono-, di-, and trisaccharide
fragments. The sensitivity and accuracy of the quantitation using
MRM were determined, with the detection limit in the femtomole level
and the calibration range spanning over 5 orders of magnitude. Seven
commercial HMO standards were used to create calibration curves and
were used to determine a universal response for all HMOs. The universal
response factor was used to estimate absolute amounts of other structures
and the total oligosaccharide content in milk. The quantitation method
was applied to 20 human milk samples to determine the variations in
HMO concentrations from women classified as secretors and nonsecretors,
a phenotype that can be identified by the concentration of 2′-fucosylation
in their milk.
Collapse
Affiliation(s)
- Qiuting Hong
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | |
Collapse
|
45
|
Holgersson J, Rydberg L, Breimer ME. Molecular deciphering of the ABO system as a basis for novel diagnostics and therapeutics in ABO incompatible transplantation. Int Rev Immunol 2013; 33:174-94. [PMID: 24350817 DOI: 10.3109/08830185.2013.857408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years ABO incompatible kidney transplantation (KTx) has become a more or less clinical routine procedure with graft and patient survival similar to those of ABO compatible transplants. Antigen-specific immunoadsorption (IA) for anti-A and anti-B antibody removal constitutes in many centers an important part of the treatment protocol. ABO antibody titration by hemagglutination is guiding the treatment; both if the recipient can be transplanted as well as in cases of suspected rejections if antibody removal should be performed. Despite the overall success of ABO incompatible KTx, there is still room for improvements and an extension of the technology to include other solid organs. Based on an increased understanding of the structural complexity and tissue distribution of ABH antigens and the fine epitope specificity of the ABO antibody repertoire, improved IA matrices and ABO antibody diagnostics should be developed. Furthermore, understanding the molecular mechanisms behind accommodation of ABO incompatible renal allografts could make it possible to induce long-term allograft acceptance also in human leukocyte antigen (HLA) sensitized recipients and, perhaps, also make clinical xenotransplantation possible.
Collapse
Affiliation(s)
- Jan Holgersson
- 1Department of Clinical Chemistry and Transfusion Medicine and
| | | | | |
Collapse
|
46
|
Castanys-Muñoz E, Martin MJ, Prieto PA. 2'-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev 2013; 71:773-89. [PMID: 24246032 DOI: 10.1111/nure.12079] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lactose is the preeminent soluble glycan in milk and a significant source of energy for most newborn mammals. Elongation of lactose with additional monosaccharides gives rise to a varied repertoire of free soluble glycans such as 2'-fucosyllactose (2'-FL), which is the most abundant oligosaccharide in human milk. In infants, 2'-FL is resistant to digestion and reaches the colon where it is partially fermented, behaving as soluble prebiotic fiber. Evidence also suggests that portions of small soluble milk glycans, including 2'-FL, are absorbed, thus raising the possibility of systemic biological effects. 2'-FL bears an epitope of the Secretor histo-blood group system; approximately 70-80% of all milk samples contain 2'-FL, since its synthesis depends on a fucosyltransferase that is not uniformly expressed. The fact that some infants are not exposed to 2'-FL has helped researchers to retrospectively probe for biological activities of this glycan. This review summarizes the attributes of 2'-FL in terms of its occurrence in mammalian phylogeny, its postulated biological activities, and its variability in human milk.
Collapse
|
47
|
Smilowitz JT, O’Sullivan A, Barile D, German JB, Lönnerdal B, Slupsky CM. The human milk metabolome reveals diverse oligosaccharide profiles. J Nutr 2013; 143:1709-18. [PMID: 24027187 PMCID: PMC4083237 DOI: 10.3945/jn.113.178772] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/15/2013] [Accepted: 08/26/2013] [Indexed: 12/22/2022] Open
Abstract
Breast milk delivers nutrition and protection to the developing infant. There has been considerable research on the high-molecular-weight milk components; however, low-molecular-weight metabolites have received less attention. To determine the effect of maternal phenotype and diet on the human milk metabolome, milk collected at day 90 postpartum from 52 healthy women was analyzed by using proton nuclear magnetic resonance spectroscopy. Sixty-five milk metabolites were quantified (mono-, di-, and oligosaccharides; amino acids and derivatives; energy metabolites; fatty acids and associated metabolites; vitamins, nucleotides, and derivatives; and others). The biological variation, represented as the percentage CV of each metabolite, varied widely (4-120%), with several metabolites having low variation (<20%), including lactose, urea, glutamate, myo-inositol, and creatinine. Principal components analysis identified 2 clear groups of participants who were differentiable on the basis of milk oligosaccharide concentration and who were classified as secretors or nonsecretors of fucosyltransferase 2 (FUT2) gene products according to the concentration of 2'-fucosyllactose, lactodifucotetraose, and lacto-N-fucopentaose I. Exploration of the interrelations between the milk sugars by using Spearman rank correlations revealed significant positive and negative associations, including positive correlations between fucose and products of the FUT2 gene and negative correlations between fucose and products of the fucosyltransferase 3 (FUT3) gene. The total concentration of milk oligosaccharides was conserved among participants (%CV = 18%), suggesting tight regulation of total oligosaccharide production; however, concentrations of specific oligosaccharides varied widely between participants (%CV = 30.4-84.3%). The variability in certain milk metabolites suggests possible roles in infant or infant gut microbial development. This trial was registered at clinicaltrials.gov as NCT01817127.
Collapse
Affiliation(s)
- Jennifer T. Smilowitz
- Departments of Food Science and Technology
- Foods for Health Institute, University of California, Davis, Davis, CA
| | - Aifric O’Sullivan
- Departments of Food Science and Technology
- Nutrition, and
- Foods for Health Institute, University of California, Davis, Davis, CA
| | - Daniela Barile
- Departments of Food Science and Technology
- Foods for Health Institute, University of California, Davis, Davis, CA
| | - J. Bruce German
- Departments of Food Science and Technology
- Foods for Health Institute, University of California, Davis, Davis, CA
| | - Bo Lönnerdal
- Nutrition, and
- Foods for Health Institute, University of California, Davis, Davis, CA
| | - Carolyn M. Slupsky
- Departments of Food Science and Technology
- Nutrition, and
- Foods for Health Institute, University of California, Davis, Davis, CA
| |
Collapse
|
48
|
Hotta H, Hamamura K, Yamashita K, Shibuya H, Tokuda N, Hashimoto N, Furukawa K, Yamamoto N, Hattori H, Toyokuni S, Ueda M, Furukawa K. Lewis y antigen is expressed in oral squamous cell carcinoma cell lines and tissues, but disappears in the invasive regions leading to the enhanced malignant properties irrespective of sialyl-Lewis x. Glycoconj J 2013; 30:585-97. [PMID: 23242548 DOI: 10.1007/s10719-012-9458-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Expression and implication of carbohydrate antigens in squamous cell carcinomas (SCCs) in oral cavity was examined. In the cell lines, type 2H and Lewis y antigens were markedly expressed. In the tissues from SCC patients and benign disorders, type 2H was highly expressed in hyperplasia (96.4 %), displasia (92.9 %) and SCC (100 %). Lewis y was, in turn, expressed mainly in cancer tissues (91.3 %), suggesting that Lewis y is a cancer-associated antigen. Normal oral mucosa showed no expression of these blood group antigens. Surprisingly, Lewis y antigen disappeared in the invasion sites where Ki-67 was definitely stained. Over-expression of Lewis y with manipulation of a fucosyltransferase cDNA resulted in suppression of cell growth and invasion, and knockdown of Lewis y also brought about increased cell growth and invasion. In either situations, no changes in the expression of sialyl-Lewis x could be found. Lowered tumor growth and invasion into surrounding tissues were also shown in Lewis y-positive SCC grafts in nu/nu mice. All these results together with alternative staining between Lewis y and Ki-67 in cancer tissues and FUT1 transfectants suggested that loss of Lewis y is a crucial event for the late stage of SCCs.
Collapse
Affiliation(s)
- Hiroshi Hotta
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Corvelo TCDO, de Loiola RDSP, Aguiar DCF, de Matos GDCB, de Brito DC. The Lewis histo-blood group system: molecular analysis of the 59T>G, 508G>A, and 1067T>A polymorphisms in an Amazonian population. PLoS One 2013; 8:e69908. [PMID: 23922852 PMCID: PMC3726698 DOI: 10.1371/journal.pone.0069908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/13/2013] [Indexed: 11/30/2022] Open
Abstract
Background The Lewis (FUT3) gene is responsible for the expression of the Lea and Leb blood group antigens. The individuals, who not synthesize these antigens have the phenotype Lewis negative, due to the presence of some single nucleotide polymorphisms (SNPs), such as 59T>G, 508G>A and 1067T>A, whose distribution is different in various ethnic groups. Our aim was to verify the frequencies of these SNPs in an admixed population of Belém-Pará-Brazil. Materials and Methods Polymerase chain reaction/restriction enzyme method were used to detect these SNPs in the FUT3 gene, whereas Lewis phenotypes were defined by the direct hemagglutination and in saliva by Dot-Elisa assay in a random sample of 150 individuals from admixed population of Belém in the northeast Brazilian Amazon region. Results The frequency of these SNPs was detected as 47.6% (59T>G), 17.3% (508G>A) and 5.3% (1067T>A).The discrepancies between blood and salivary Lewis phenotypes are related to the relatively high frequencies of 59T>G and the null allele 508G>A. Whereas 38.6% of the individuals were Lewis negative based on blood, only 17.24% also tested negative when their saliva were analyzed. Conclusion We have found a marked consistency between the phenotypes and genotypes of the Lewis blood group system. Furthermore, our obtained FST values reveal distinct frequencies of the FUT3 SNPs between the present sample and its representative ancestral populations. These observations will help to evaluate the Lewis antigens impact as susceptibility markers, in genetic association studies to certain diseases.
Collapse
|
50
|
Ségurel L, Gao Z, Przeworski M. Ancestry runs deeper than blood: the evolutionary history of ABO points to cryptic variation of functional importance. Bioessays 2013; 35:862-7. [PMID: 23836453 PMCID: PMC4034584 DOI: 10.1002/bies.201300030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ABO histo-blood group, first discovered over a century ago, is found not only in humans but also in many other primate species, with the same genetic variants maintained for at least 20 million years. Polymorphisms in ABO have been associated with susceptibility to a large number of human diseases, from gastric cancers to immune or artery diseases, but the adaptive phenotypes to which the polymorphism contributes remain unclear. We suggest that variation in ABO has been maintained by frequency-dependent or fluctuating selection pressures, potentially arising from co-evolution with gut pathogens. We further hypothesize that the histo-blood group labels A, B, AB, and O do not offer a full description of variants maintained by natural selection, implying that there are unrecognized, functionally important, antigens beyond the ABO group in humans and other primates.
Collapse
Affiliation(s)
- Laure Ségurel
- Department of Human Genetics, University of Chicago, Chicago, IL, USA; Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|