1
|
Zorlu Ö, Karabağ S, Erdoğan KE, Aksın M, Üstün B. Immunoexpression Patterns of Adhesion Molecules (E-cadherin, β-catenin, CD56) and Cytokeratins (CK19, CK20, HMWCK, CAM5.2) During Hair Development in Human Fetuses Compared With Adults. Am J Dermatopathol 2024; 46:572-580. [PMID: 38842366 DOI: 10.1097/dad.0000000000002741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Abnormalities in the expression of cytokeratins or adhesion molecules have been associated with hair disorders. The expression patterns of these molecules in the hair follicles of developing human fetuses are not obvious. We aimed to investigate the expression patterns of some cytokeratins and adhesion molecules in the hair follicle of human fetuses and compared them with adults. Forty-eight fetuses of >16 gestational weeks and 22 adult cases with total excisions of benign nevi or cysts were enrolled. The skin samples were taken from both the scalp and back of the fetuses. The histopathologically normal skin areas were evaluated in adults. CK19, CK20, CAM5.2, high-molecular-weight cytokeratin, E-cadherin, β-catenin, and CD56 immunohistochemical stainings were performed. In the fetus group, the staining scores declined in the third trimester but elevated and reached the highest level in adults, except for CD56, which did not stain any adult samples. All stainings were mostly observed in the outer root sheath, except CD56 that stained the perifollicular dermal sheath only in fetuses. E-cadherin, β-catenin, and high-molecular-weight cytokeratin strongly and diffusely stained all adult samples. CAM5.2 and CK19 scores were correlated in fetuses (scalp scores: r s = 0.405, P = 0.004; back scores: r s = 0.422, P = 0.003) and adults (back scores: r s = 0.562, P = 0.046). CD56 negativity indicated the immune-privilege feature of adult hair follicles. As CK19, CAM5.2 may be used to find the regions of stem cells or transient amplifying cells.
Collapse
Affiliation(s)
- Özge Zorlu
- Department of Dermatology and Venereology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Sevil Karabağ
- Department of Pathology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Kıvılcım E Erdoğan
- Department of Pathology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Merve Aksın
- Department of Pathology, Çukurova University Faculty of Medicine, Adana, Turkey; and
| | - Batuhan Üstün
- Department of Obstetrics and Gynecology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| |
Collapse
|
2
|
Baltenneck F, Genty G, Samra EB, Richena M, Harland DP, Clerens S, Leccia E, Le Balch M, Doucet J, Michelet JF, Commo S. Age-associated thin hair displays molecular, structural and mechanical characteristic changes. J Struct Biol 2022; 214:107908. [PMID: 36265530 DOI: 10.1016/j.jsb.2022.107908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Hair thinning occurs during normal chronological aging in women and in men leading to an increased level of thinner hair shafts alongside original thicker shafts. However, the characteristics of age-associated thin hairs remain largely unknown. Here we analyzed these characteristics by comparing at multiscale thin and thick hairs originated from Caucasian women older than 50 years. We observed that the cortex of thick hair contains many K35(+)/K38(-) keratinocytes that decrease in number with decreasing hair diameter. Accordingly, X-ray diffraction revealed differences supporting that thin and thick hairs are different with regards to the nature of the intermediate filaments making up their cortices. In addition, we observed a direct correlation between hair ellipticity and diameter with thin hairs having an unexpected round shape compared to the elliptic shape of thick hairs. We also observed fewer cuticle layers and a reduced frequency of a medullae in thin hairs. Regarding mechanical properties, thin hairs exhibited a surprising increased rigidity, a decrease of the viscosity and a decrease of the water diffusion coefficient. Hence, aged-associated thin hairs exhibit numerous modifications likely due to changes of hair differentiation program as evidenced by the modulations in the expression of hair keratins and keratin-associated proteins and by the X-ray diffraction specters. Hence, hair thinning with age does not consist simply of the production of a smaller hair. It is rather a more profound process likely relying on the implementation of an "aged hair program" that takes place within the hair follicle.
Collapse
Affiliation(s)
| | - Gaianne Genty
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | | | | | | | | | | | | | | | - Stéphane Commo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| |
Collapse
|
3
|
Chew EGY, Lim TC, Leong MF, Liu X, Sia YY, Leong ST, Yan-Jiang BC, Stoecklin C, Borhan R, Heilmann-Heimbach S, Nöthen MM, Viasnoff V, Shyh-Chang N, Wan ACA, Philpott MP, Hillmer AM. Observations that suggest a contribution of altered dermal papilla mitochondrial function to androgenetic alopecia. Exp Dermatol 2022; 31:906-917. [PMID: 35119146 DOI: 10.1111/exd.14536] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
Androgenetic alopecia (AGA) is a prevalent hair loss condition in males that develops due to the influence of androgens and genetic predisposition. With the aim of elucidating genes involved in AGA pathogenesis, we modelled AGA with three-dimensional culture of keratinocyte-surrounded dermal papilla (DP) cells. We co-cultured immortalised balding and non-balding human DP cells (DPC) derived from male AGA patients with epidermal keratinocyte (NHEK) using multi-interfacial polyelectrolyte complexation technique. We observed up-regulated mitochondria-related gene expression in balding compared to non-balding DP aggregates which indicated altered mitochondria metabolism. Further observation of significantly reduced electron transport chain complex activity (complex I, IV and V), ATP levels and ability to uptake metabolites for ATP generation demonstrated compromised mitochondria function in balding DPC. Balding DP was also found to be under significantly higher oxidative stress than non-balding DP. Our experiments suggest that application of antioxidants lowers oxidative stress levels and improve metabolite uptake in balding DPC. We postulate that the observed up-regulation of mitochondria-related genes in balding DP aggregates resulted from an over-compensatory effort to rescue decreased mitochondrial function in balding DP through the attempted production of new functional mitochondria. In all, our three-dimensional co-culturing revealed mitochondrial dysfunction in balding DPC, suggesting a metabolic component in the etiology of AGA.
Collapse
Affiliation(s)
- Elaine G Y Chew
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tze Chiun Lim
- Cell and Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore
| | - Meng Fatt Leong
- Cell and Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore.,School of Applied Science, Temasek Polytechnic, Singapore
| | - Xingliang Liu
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Yee Yen Sia
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore
| | - See Ting Leong
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore
| | - Benjamin C Yan-Jiang
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Celine Stoecklin
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Rosa Borhan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and The London School of Medicine and Dentistry, Queen Mary College, London, UK
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine &, University Hospital of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine &, University Hospital of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Ng Shyh-Chang
- Institute of Zoology, Institute of Stem Cell & Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Andrew C A Wan
- Cell and Tissue Engineering, Institute of Bioengineering and Nanotechnology, Singapore.,Institute of Food and Biotechnology Innovation, Singapore
| | - M P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute Barts and The London School of Medicine and Dentistry, Queen Mary College, London, UK
| | - Axel M Hillmer
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore.,Institute of Pathology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Wu T, Zhang YM, Krishnan S, Jaisankar A, Wan Y, Gong SJ, Zhou HZ, Wang HT, Ramalingam M, Li SW. Bioactive Small Molecule Enhances Skin Burn Wound Healing and Hair Follicle Regeneration by Activating PI3K/AKT Signaling Pathway: A Preclinical Evaluation in Animal Model. J Biomed Nanotechnol 2022; 18:463-473. [PMID: 35484750 DOI: 10.1166/jbn.2022.3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rational: A bioactive small molecule of precision medicine involves targeted therapies. Shikonin, a herbal extract, is an active small molecule that is traditionally used in wound healing for its anti-tumor and anti-inflammatory properties. Therefore, the present study aims to evaluate the anti-inflammatory role of shikonin in skin burn wound healing and hair follicle regeneration and to identify molecular signaling pathways that promote the regeneration. Method: A secondary skin burn model of mice was established by conventional method. The burn wound was externally treated with shikonin ointment and excipient treated mice were used as controls. Skin samples were taken on the day 3 and 7 after drug treatment and the dosage was unified in the experiments. The wound healing process was observed by histopathological and immunofluorescence (IF) staining. The proliferation of hair follicle cells in wound skin was tracked by 5-Ethynyl-2'-deoxyuridne (EdU) staining. The inflammatory factors at the wound healing site were quantified by polymerase chain reaction (qPCR). The PI3K/Akt, P65, Ki67 signaling proteins and Bax/BCL2 apoptosis proteins were studied by western blot analysis. The functionality of PI3K/Akt signaling pathway was tested using LY294002, an inhibitor of PI3K. Result: Shikonin treated mice group exhibited better and faster skin burn wound healing in comparison with the controls. The proliferation of new skin cells and hair follicle regeneration in the wound site of the shikonin treated group was more active. The recruitment of macrophages in shikonin treated group was inhibited inturn decreased the expression of inflammatory factors. However, LY294002 inhibited the shikonin-mediated PI3K/Akt signaling pathway and affected the wound healing process. Conclusion: In conclusion, this study strengthens the hypothesis that bioactive small molecule, shikonin, inhibits inflammation, promotes wound healing and has a significant protective effect on the deep hair follicles against burn skin injury by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tinghui Wu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, Xinjiang, China
| | - Yan Man Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Yu Wan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, Xinjiang, China
| | - Shu Juan Gong
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, Xinjiang, China
| | - Hang Zhen Zhou
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, Xinjiang, China
| | - Hai Tao Wang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Murugan Ramalingam
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Shu-Wei Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, Tarim University, Alar 843300, Xinjiang, China
| |
Collapse
|
5
|
Peterson A, Nair L. Hair Follicle Stem Cells for Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:695-706. [PMID: 34238037 PMCID: PMC9419938 DOI: 10.1089/ten.teb.2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the positive outcomes of various cell therapies currently under pre-clinical and clinical studies, there is a significant interest in novel stem cell sources with unique therapeutic properties. Studies over the past two decades or so demonstrated the feasibility to isolate multipotent/pluripotent stem cells from hair follicles. The easy accessibility, high proliferation and differentiation ability as well as lack of ethical concerns associated with this stem cell source make hair follicle stem cells (HFSCs) attractive candidate for cell therapy and tissue engineering. This review discusses the various stem cell types identified in rodent and human hair follicles and ongoing studies on the potential use of HFSCs for skin, bone, cardio-vascular, and nerve tissue engineering.
Collapse
Affiliation(s)
- Alyssa Peterson
- University of Connecticut, 7712, Storrs, Connecticut, United States;
| | - Lakshmi Nair
- University of Connecticut Health Center, 21654, Orthopaedic Surgery, Farmington, Connecticut, United States;
| |
Collapse
|
6
|
Ibrahim MR, Medhat W, El-Fakahany H, Abdel-Raouf H, Snyder EY. Deriving Keratinocyte Progenitor Cells and Keratinocytes from Human-Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 54:e119. [PMID: 32744801 DOI: 10.1002/cpsc.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skin or hair loss (alopecia) may occur due to a wide variety of causes ranging from trauma to pathological processes including acquired or congenital causes. It would be ideal to replace them with immunologically compatible cells to avoid potentially exacerbating the condition. Deriving the replacement cells from human-induced pluripotent stem cells (hiPSCs) allows for sufficient scale up and using hiPSCs as the choice of human pluripotent stem cells (hPSC) will ensure immunocompatibility. Here we offer a protocol for differentiating hiPSCs into keratinocyte progenitor cells (KPC) and keratinocytes employing all-trans retinoic acid (ATRA) and L-ascorbic acid, (L-AA), bone morphogenic protein-4 (BMP4), and epidermal growth factor (EGF). We observed that the hiPSC-derived KPCs express the same panel of markers as primary hair follicle bulge stem cells (HFBSCs), including CD200, integrin α-6 (ITGA6), integrin β-1 (ITGB1), the transcription factor P63, keratin 15 (KRT15), and keratin 19 (KRT19). If permitted to differentiate further, the hiPSC-derived KPC lose CD200 expression and rather come to express keratin 14 (KRT14) indicating emergence of more mature terminally-differentiated keratinocytes. The HFBSCs are transplantable for hair follicle (HF) restoration, and the keratinocytes may be transplantable for therapy for large burns or ulcers. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Reprogramming of normal human skin fibroblasts into normal hiPSCs using episomal DNA cocktail Basic Protocol 2: Differentiation of hiPSCs into KPCs and keratinocytes Alternate Protocol 2: EBS formation protocol using AggreWell™ plates (Antonchuk, 2013) Support Protocol 1: Passage hiPSC-KPC Support Protocol 2: Immunocytochemistry (ICC) Support Protocol 3: Immunofluorescence staining of cells for flow cytometry (FC).
Collapse
Affiliation(s)
- Michel R Ibrahim
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California
| | - Walid Medhat
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hasan El-Fakahany
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hamza Abdel-Raouf
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.,Sanford Consortium for Regenerative Medicine, La Jolla, California.,Department of Pediatrics, University of California-San Diego, La Jolla, California
| |
Collapse
|
7
|
Ibrahim MR, Medhat W, El-Fakahany H, Abdel-Raouf H, Snyder EY. The Developmental & Molecular Requirements for Ensuring that Human Pluripotent Stem Cell-Derived Hair Follicle Bulge Stem Cells Have Acquired Competence for Hair Follicle Generation Following Transplantation. Cell Transplant 2021; 30:9636897211014820. [PMID: 34053245 PMCID: PMC8182633 DOI: 10.1177/09636897211014820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
When using human induced pluripotent stem cells (hiPSCs) to achieve hair follicle (HF) replacement, we found it best to emulate the earliest fundamental developmental processes of gastrulation, ectodermal lineage commitment, and dermogenesis. Viewing hiPSCs as a model of the epiblast, we exploited insights from mapping the dynamic up- and down-regulation of the developmental molecules that determine HF lineage in order to ascertain the precise differentiation stage and molecular requirements for grafting HF-generating progenitors. To yield an integrin-dependent lineage like the HF in vivo, we show that hiPSC derivatives should co-express, just prior to transplantation, the following combination of markers: integrins α6 and β1 and the glycoprotein CD200 on their surface; and, intracellularly, the epithelial marker keratin 18 and the hair follicle bulge stem cell (HFBSC)-defining molecules transcription factor P63 and the keratins 15 and 19. If the degree of trichogenic responsiveness indicated by the presence of these molecules is not achieved (they peak on Days 11-18 of the protocol), HF generation is not possible. Conversely, if differentiation of the cells is allowed to proceed beyond the transient intermediate progenitor state represented by the HFBSC, and instead cascades to their becoming keratin 14+ keratin 5+ CD200– keratinocytes (Day 25), HF generation is equally impossible. We make the developmental case for transplanting at Day 16-18 of differentiation—the point at which the hiPSCs have lost pluripotency, have attained optimal expression of HFBSC markers, have not yet experienced downregulation of key integrins and surface glycoproteins, have not yet started expressing keratinocyte-associated molecules, and have sufficient proliferative capacity to allow a well-populated graft. This panel of markers may be used for isolating (by cytometry) HF-generating derivatives away from cell types unsuited for this therapy as well as for identifying trichogenic drugs.
Collapse
Affiliation(s)
- Michel R Ibrahim
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt.,Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Walid Medhat
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hasan El-Fakahany
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Hamza Abdel-Raouf
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Evan Y Snyder
- Center for Stem Cells & Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.,Department of Pediatrics, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Comparative Graft Survival Study of Follicular Unit Excision Grafts With or Without Minor Injury. Dermatol Surg 2021; 47:e191-e194. [PMID: 33165067 DOI: 10.1097/dss.0000000000002878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Various types of follicular trauma occur during follicular unit excision (FUE). However, the effects of different types of follicular injury on graft survival have not been reported. OBJECTIVE This study was performed to evaluate the differences in hair follicle survival by the type of follicular injury, including paring, fracture, and bulb injury. METHODS Seven healthy patients who underwent hair transplant surgery by FUE were enrolled in the study. For each patient, 10 single-hair follicular unit grafts per injury group (paring, fracture, bulb injury, or intact) were differentiated. Using sharp implanters, 10 grafts of each of the 4 injury types were transplanted into mice, and the mice were sacrificed 5 months after transplantation. The skin was excised at each of the 4 locations, and newly formed follicular units were counted and photographed under a microscope. RESULTS Of 70 hair follicles in each group, the number of successfully engrafted follicles was 50 (71.43%) in the intact group, 36 (51.43%) in the paring injury group, 9 (12.86%) in the fracture injury group, and 31 (44.29%) in the bulb injury group. CONCLUSION Grafts with minor injury had a lower survival rate than intact grafts. Fractured follicles showed the lowest survival rate.
Collapse
|
9
|
Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. BIOLOGY 2021; 10:biology10040269. [PMID: 33810528 PMCID: PMC8066588 DOI: 10.3390/biology10040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) is important for maintaining cell phenotype and promoting cell proliferation and differentiation. In order to better solve the problem of skin appendage regeneration, a combination of mechanical/enzymatic digestion methods was used to self-extract dermal papilla cells (DPCs), which were seeded on silk fibroin/sodium alginate scaffolds as seed cells to evaluate the possibility of skin regeneration/regeneration of accessory organs. Scanning electron microscopy (SEM) graphs showed that the interconnected pores inside the scaffold had a pore diameter in the range of 153-311 μm and a porosity of 41-82%. Immunofluorescence (IF) staining and cell morphological staining proved that the extracted cells were DPCs. The results of a Cell Counting Kit-8 (CCK-8) and Calcein-AM/PI live-dead cell staining showed that the DPCs grew well in the composite scaffold extract. Normal cell morphology and characteristics of aggregation growth were maintained during the 3-day culture, which showed that the silk fibroin/sodium alginate (SF/SA) composite scaffold had good cell-compatibility. Hematoxylin-eosin (H&E) staining of tissue sections further proved that the cells adhered closely and aggregated to the pore wall of the scaffold, and retained the ability to induce differentiation of hair follicles. All these results indicate that, compared with a pure scaffold, the composite scaffold promotes the adhesion and growth of DPCs. We transplanted the SF/SA scaffolds into the back wounds of SD rats, and evaluated the damage model constructed in vivo. The results showed that the scaffold inoculated with DPCs could accelerate the repair of the skin and promote the regeneration of the hair follicle structure.
Collapse
|
10
|
Dunstan RW, Salte KM, Todorović V, Lowe M, Wetter JB, Harms PW, Burney RE, Scott VE, Smith KM, Rosenblum MD, Gudjonsson JE, Honore P. Histologic progression of acne inversa/hidradenitis suppurativa: Implications for future investigations and therapeutic intervention. Exp Dermatol 2021; 30:820-830. [PMID: 33377546 PMCID: PMC8247901 DOI: 10.1111/exd.14273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/03/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Since first recognized in 1839, the pathogenesis of acne inversa (AI) has undergone repeated revisions. Although there is agreement that AI involves occlusion of hair follicles with subsequent inflammation and the formation of tracts, the histologic progression of this disease still requires refinement. The objective of this study was to examine the histologic progression of AI based on the examination of a large cohort of punch biopsies and excisional samples that were examined first by hematoxylin and eosin staining. The most informative of these samples were step‐sectioned and stained by immunohistochemistry for epithelial and inflammatory markers. Based on this examination, the following observations were made: 1) AI arises from the epithelium of the infundibulum of terminal and vellus hairs; 2) These form cysts and epithelial tendrils that extend into soft tissue; 3) Immunohistochemical staining demonstrates the epithelium of AI is disordered with infundibular and isthmic differentiation and de novo expression of stem cell markers; 4) The inflammatory response in AI is heterogeneous and largely due to cyst rupture. The conclusions of this investigation were that AI is an epithelial‐driven disease caused by infiltrative, cyst forming tendrils and most of the inflammation is due to cyst rupture and release of cornified debris and bacteria. Cyst rupture often occurs below the depths of punch biopsy samples indicating their use for analysis may give an incomplete picture of the disease. Finally, our data suggest that unless therapies inhibit tendril development, it is unlikely they will cause prolonged treatment‐induced remission in AI.
Collapse
Affiliation(s)
| | | | | | - Margaret Lowe
- Department of Dermatology, University of California, San Francisco, CA, USA
| | | | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Richard E Burney
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
11
|
Buscone S, Mardaryev AN, Westgate GE, Uzunbajakava NE, Botchkareva NV. Cryptochrome 1 is modulated by blue light in human keratinocytes and exerts positive impact on human hair growth. Exp Dermatol 2020; 30:271-277. [PMID: 33141439 DOI: 10.1111/exd.14231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022]
Abstract
Photoactivation of cryptochrome-family proteins by blue light is a well-established reaction regulating physiology of plants, fungi, bacteria, insects and birds, while impact of blue light on cryptochrome synthesis and/or activity in human non-visual cells remains unknown. Here, we show that 453 nm blue light induces cryptochrome 1 (CRY1) accumulation in human keratinocytes and the hair follicle. CRY1 is prominently expressed in the human anagen hair follicle, including epithelial stem cells. Specific silencing of CRY1 promotes catagen, while stimulation of CRY1 by KL001 prolongs anagen ex vivo by altering the expression of genes involved in apoptosis and proliferation. Together, our study identifies a role for CRY1 in sustaining human hair growth. Previously, we demonstrated positive effects of 453 nm blue light on hair growth ex vivo. Taken all together, our study suggests that CRY1 might mediate blue light-dependent positive effects on hair growth.
Collapse
Affiliation(s)
- Serena Buscone
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Philips Research, Eindhoven, The Netherlands
| | - Andrei N Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Gillian E Westgate
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | | | - Natalia V Botchkareva
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
12
|
Pigmentation Effect of Rice Bran Extract in Hair Follicle-Like Tissue and Organ Culture Models. Tissue Eng Regen Med 2019; 17:15-23. [PMID: 32002839 DOI: 10.1007/s13770-019-00220-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Melanogenesis is a biological process resulting in the production of melanin pigment, which plays an important role in the prevention of sun-induced skin injury and determines the hair and skin color. Melanin has the ability to block ultraviolet radiation and scavenge free oxygen radicals, thus protecting the skin from their harmful effects. Agents that increase melanin synthesis in melanocytes may reduce the risk of photodamage and skin cancer. Hence, various approaches have been proposed to increase the synthesis of melanin. METHODS The current study aimed to develop a three-dimensional hair follicle-like tissue (HFLT) model with human dermal papilla, melanocytes, and outer root sheaths cells. This model showed enhanced melanogenesis-related protein expression after rice bran ash extract (RBE) treatment. Next, we investigated the melanogenic effect of RBE in the HFLT and compared the results to those of hair follicle (HF) organ culture model. RESULTS RBE was found to significantly increase the expression of microphthalmia-associated transcription factor, a key transcription factor involved in melanin production, in both HFLT and organ culture models. Results showed that melanogenesis-related protein expression levels were higher in the RBE group compared to those in the control group. Similar results were obtained by immunohistochemistry. CONCLUSION Our data suggested that RBE promotes melanin biosynthesis. Taken together, this simple in vitro HFLT model system has the potential to provide significant insights into the underlying molecular mechanisms of HF melanogenesis, and hence can be used for controlled evaluation of the efficacy of new materials for melanogenesis.
Collapse
|
13
|
Koch SL, Tridico SR, Bernard BA, Shriver MD, Jablonski NG. The biology of human hair: A multidisciplinary review. Am J Hum Biol 2019; 32:e23316. [DOI: 10.1002/ajhb.23316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 07/21/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sandra L. Koch
- Department of AnthropologyPennsylvania State University State College Pennsylvania
| | | | | | - Mark D. Shriver
- Department of AnthropologyPennsylvania State University State College Pennsylvania
| | - Nina G. Jablonski
- Department of AnthropologyPennsylvania State University State College Pennsylvania
| |
Collapse
|
14
|
Panteleyev AA. Functional anatomy of the hair follicle: The Secondary Hair Germ. Exp Dermatol 2019; 27:701-720. [PMID: 29672929 DOI: 10.1111/exd.13666] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/17/2022]
Abstract
The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling.
Collapse
Affiliation(s)
- Andrey A Panteleyev
- Kurchatov complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
15
|
Narisawa Y, Inoue T, Nagase K. Evidence of proliferative activity in human Merkel cells: implications in the histogenesis of Merkel cell carcinoma. Arch Dermatol Res 2018; 311:37-43. [PMID: 30460510 DOI: 10.1007/s00403-018-1877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/25/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
The cellular origin of Merkel cell carcinoma (MCC) is controversial. We previously hypothesized that MCC originates from hair follicle stem cells or Merkel cell (MC) progenitors residing within the hair follicle bulge. Examination of three cases of combined MCC led to the unexpected discovery that numerous keratin 20 (CK20)-positive MCs within the squamous cell carcinoma (SCC) component of combined MCC appeared morphologically normal with dendritic and oval shapes. Moreover, one extremely rare case of combined SCC and MCC showed both intra-epidermal and dermal MCCs. These three cases represent the first documentation of MC hyperplasia in MCC, besides various benign follicular neoplasms associated with MC hyperplasia. Therefore, to elucidate the proliferating potential of MCs and their histogenetic relationship with MCCs, we further investigated these cases based on pathological observations. We identified numerous cells co-expressing CK20 and the proliferation marker Ki-67, identical to the morphological and immunohistochemical features of normal MCs. This finding indicated that MCs can no longer be considered as pure post-mitotic cells. Instead, they have proliferative potential under specific conditions in the diseased or wounded skin, or adjacent to various skin tumors, including MCC. Intimate co-existence of two malignant cell components composed of intradermal and intra-epidermal MCCs, with the proliferation of normal-appearing MCs in the same lesion, lends support to the hypothesis that MCs and MCC cells are derived from MC progenitors residing within the hair follicle bulge. Specifically, MCCs are derived from transformed MC progenitors with potential for dual-directional differentiation towards neuroendocrine and epithelial lineages.
Collapse
Affiliation(s)
- Yutaka Narisawa
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Takuya Inoue
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Kotaro Nagase
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| |
Collapse
|
16
|
Divergent proliferation patterns of distinct human hair follicle epithelial progenitor niches in situ and their differential responsiveness to prostaglandin D2. Sci Rep 2017; 7:15197. [PMID: 29123134 PMCID: PMC5680340 DOI: 10.1038/s41598-017-15038-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
Human scalp hair follicles (hHF) harbour several epithelial stem (eHFSC) and progenitor cell sub-populations organised into spatially distinct niches. However, the constitutive cell cycle activity of these niches remains to be characterized in situ. Therefore, the current study has studied these characteristics of keratin 15+ (K15), CD200+ or CD34+ cells within anagen VI hHFs by immunohistomorphometry, using Ki-67 and 5-ethynyl-2'-deoxyuridine (EdU). We quantitatively demonstrate in situ the relative cell cycle inactivity of the CD200+/K15+ bulge compared to other non-bulge CD34+ and K15+ progenitor compartments and found that in each recognized eHFSC/progenitor niche, proliferation associates negatively with eHFSC-marker expression. Furthermore, we also show how prostaglandin D2 (PGD2), which is upregulated in balding scalp, differentially impacts on the proliferation of distinct eHFSC populations. Namely, 24 h organ-cultured hHFs treated with PGD2 displayed reduced Ki-67 expression and EdU incorporation in bulge resident K15+ cells, but not in supra/proximal bulb outer root sheath K15+ progenitors. This study emphasises clear differences between the cell cycle behaviour of spatially distinct stem/progenitor cell niches in the hHF, and demonstrates a possible link between PGD2 and perturbed proliferation dynamics in epithelial stem cells.
Collapse
|
17
|
|
18
|
Yang X, Cui Y, Yue J, He H, Yu C, Liu P, Liu J, Ren X, Meng Y. The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). PLoS One 2017; 12:e0176451. [PMID: 28463974 PMCID: PMC5413005 DOI: 10.1371/journal.pone.0176451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. METHODS A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. RESULTS The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. MEANING In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chuan Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiandong Ren
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Various Types of Minor Trauma to Hair Follicles During Follicular Unit Extraction for Hair Transplantation. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1260. [PMID: 28458974 PMCID: PMC5404445 DOI: 10.1097/gox.0000000000001260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND When performing follicular unit extraction (FUE), various types of minor hair follicle trauma unapparent during follicular unit strip surgery are likely to occur. However, no studies have examined such damage. METHODS In total, 100 grafts were randomly selected from each of 42 patients who underwent FUE with a 1-mm-diameter sharp punch. A ×5.5 magnifying loupe and a ×60 magnifying binocular microscope were used. The transection rate (TR), paring, fractures of and damage to the dermal papilla (DP) areas, and hair bulb partial injury were assessed. RESULTS Observation with the magnifying loupe revealed an average TR of 7.40%, and 4.31, 1.90, 1.52, and 0.43 hair follicles per 100 grafts exhibited paring, fracture, DP partial injury, and hair bulb partial injury, respectively. An average of 9.21 telogen hairs were observed. Microscopic examination revealed a TR of 6.34%, and 9.07, 1.95, 0.79, and 1.24 hair follicles per 100 grafts exhibited paring, fracture, DP injury, and hair bulb partial injury, respectively. An average of 16.62 telogen hairs were observed. CONCLUSIONS Various types of minor hair follicle damage occur during FUE as shown by loupe and microscopic examination of the grafts. Especially paring and hair bulb injury were more apparent under microscopic examination. These minor hair follicle injuries should be considered when choosing operative method or surgical techniques.
Collapse
|
20
|
Esteban-Vives R, Choi MS, Young MT, Over P, Ziembicki J, Corcos A, Gerlach JC. Second-degree burns with six etiologies treated with autologous noncultured cell-spray grafting. Burns 2016; 42:e99-e106. [DOI: 10.1016/j.burns.2016.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 10/21/2022]
|
21
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Isolation and characterization of hair follicle stem cells from Arbas Cashmere goat. Cytotechnology 2016; 68:2579-2588. [PMID: 27193423 DOI: 10.1007/s10616-016-9981-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/04/2016] [Indexed: 10/21/2022] Open
Abstract
In this study, highly purified hair follicle stem cells from Arbas Cashmere goat (gHFSCs) were isolated using enzyme digestion and adhesion to type IV collagen. The biological characteristics of the gHFSCs were identified by morphological observation, growth curve, markers assay and differentiation in vitro. The gHFSCs were in small cell size with typical cobblestone morphology, good adhesion and high refractive index. Immunocytochemistry staining showed the cells were expressing Krt15, Krt19, CD34, Itgβ1 and Krt14. Cell growth curve indicated that cultured gHFSCs had strong proliferation ability. Krt14 and CD34 were high expressed at the mRNA level, respectively, 39.68 and 24.37 times of the Cashmere goat keratinocytes, and krt15 expression was 5.62 times and itgβ1 expression was 1.81 times higher (p < 0.01). Western blot detected the expression of all the above markers. After osteogenic induction, the cells were positive for Von Kossa staining and expressed Osteocalcin. Sulfated proteoglycans in cartilaginous matrices were positively stained by Alcian blue after chondrogenic induction and COL2A1 was expressed. In myogenic induction, Hoechst 33342 staining evidenced cytoplasm fusion and positive expression of MyoG was detected by immunocytochemistry.
Collapse
|
23
|
Purba TS, Haslam IS, Shahmalak A, Bhogal RK, Paus R. Mapping the expression of epithelial hair follicle stem cell-related transcription factors LHX2 and SOX9 in the human hair follicle. Exp Dermatol 2016; 24:462-7. [PMID: 25808706 DOI: 10.1111/exd.12700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/02/2023]
Abstract
In the murine hair follicle (HF), the transcription factors LHX2 and SOX9 are implicated in epithelial hair follicle stem cell (eHFSC) self-renewal and the maintenance of eHFSC niche characteristics. However, the exact expression patterns of LHX2 and SOX9 in the human HF are unclear. Therefore, we have quantitatively mapped the localisation of known human eHFSC markers keratin 15 (K15) and keratin 19 (K19) in the outer root sheath (ORS) of male occipital scalp anagen HFs and related this to the localisation of LHX2 and SOX9 protein expression. As expected, K15(+) and K19(+) cells represented two distinct progenitor cell populations in the bulge and in the proximal bulb ORS (pbORS). Interestingly, cell fluorescence for K19 was significantly stronger within the pbORS versus the bulge, and vice versa for K15, describing a hitherto unrecognised differential expression pattern. LHX2 and SOX9 expressing cells were distributed throughout the ORS, including the bulge, but were not restricted to it. SOX9 expression was most prominent in the ORS immediately below the human bulge, whereas LHX2(+) cells were similarly distributed between the sub-bulge and pbORS, that is compartments not enriched with quiescent eHFSCs. During catagen development, the intensity of LHX2 and SOX9 protein expression increased in the proximal HF epithelium. Double immunostaining showed that the majority of SOX9(+) cells in the human anagen HF epithelium did not co-express K15, K19 or LHX2. This expression profile suggests that LHX2 and SOX9 highlight distinct epithelial progenitor cell populations, in addition to K15(+) or K19(+) cells, that could play an important role in the maintenance of the human HF epithelium.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Iain S Haslam
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | | | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Paus R, Burgoa I, Platt CI, Griffiths T, Poblet E, Izeta A. Biology of the eyelash hair follicle: an enigma in plain sight. Br J Dermatol 2016; 174:741-52. [PMID: 26452071 DOI: 10.1111/bjd.14217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 01/19/2023]
Abstract
Because of their crucial impact on our perception of beauty, eyelashes constitute a prime target for the cosmetic industry. However, when compared with other hair shafts and the mini-organs that produce them [eyelash hair follicles (ELHFs)], knowledge on the biology underlying growth and pigmentation of eyelashes is still rudimentary. This is due in part to the extremely restricted availability of human ELHFs for experimental study, underappreciation of their important sensory and protective functions and insufficient interest in understanding why they are distinct from scalp hair follicles (HFs) (e.g. ELHFs produce shorter hair shafts, do not possess an arrector pili muscle, have a shorter hair cycle and undergo greying significantly later than scalp HFs). Here we synthesize the limited current knowledge on the biology of ELHFs, in humans and other species, their role in health and disease, the known similarities with and differences from other HF populations, and their intrinsic interethnic variations. We define major open questions in the biology of these intriguing mini-organs and conclude by proposing future research directions. These include dissecting the molecular and cellular mechanisms that underlie trichomegaly and the development of in vitro models in order to interrogate the distinct molecular controls of ELHF growth, cycling and pigmentation and to probe novel strategies for the therapeutic and cosmetic manipulation of ELHFs beyond prostaglandin receptor stimulation.
Collapse
Affiliation(s)
- R Paus
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, University of Münster, Münster, Germany
| | - I Burgoa
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| | - C I Platt
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - T Griffiths
- The Dermatology Research Centre, Institute of Inflammation and Repair, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K
| | - E Poblet
- Department of Pathology, Hospital Universitario Reina Sofía, Murcia, Spain
| | - A Izeta
- Instituto Biodonostia, Hospital Universitario Donostia, Paseo Dr Begiristain s/n, 20014, San Sebastián, Spain
| |
Collapse
|
25
|
High risk of development of renal cell tumor in end-stage kidney disease: the role of microenvironment. Tumour Biol 2016; 37:9511-9. [DOI: 10.1007/s13277-016-4855-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 01/06/2023] Open
|
26
|
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int J Mol Sci 2015; 16:25476-501. [PMID: 26512657 PMCID: PMC4632811 DOI: 10.3390/ijms161025476] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Faculty of Medical Sciences, the University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown BB 11000, St. Michael, Barbados; E-Mail:
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-243-7295; Fax: +1-305-243-6191
| |
Collapse
|
27
|
Larouche D, Kim DH, Ratté G, Beaumont C, Germain L. Effect of intense pulsed light treatment on human skin in vitro: analysis of immediate effects on dermal papillae and hair follicle stem cells. Br J Dermatol 2014; 169:859-68. [PMID: 23796167 DOI: 10.1111/bjd.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hair follicles house a permanent pool of epithelial stem cells. Intense pulsed light (IPL) sources have been successfully used for hair removal, but long-term hair reduction may require several treatments. Many questions remain regarding the impact of IPL treatment on the structure of the hair follicle, more specifically on hair follicular stem cells and dermal papilla cells, a group of specialized cells that orchestrate hair growth. OBJECTIVES To characterize the destruction of human hair follicles and surrounding tissues following IPL treatment, with more attention paid to the bulge and the bulb regions. METHODS Human scalp specimens of Fitzpatrick skin phototype II were exposed ex vivo to IPL pulses and were then processed for histological analysis, immunodetection of stem cell-associated keratin 19, and revelation of the endogenous alkaline phosphatase activity expressed in dermal papilla cells. RESULTS Histological analysis confirmed that pigmented structures, such as the melanin-rich matrix cells of the bulb in anagen follicles and the hair shaft, are principally targeted by IPL treatment, while white hairs and epidermis remained unaffected. Damage caused by heat sometimes extended over the dermal papilla cells, while stem cells were mostly spared. CONCLUSIONS IPL epilation principally targets pigmented structures. Our results suggest that, under the tested conditions, collateral damage does not deplete stem cells. Damage at the dermal papilla was observed only with high-energy treatment modalities. Extrapolated to frequently treated hairs, these observations explain why some hairs grow back after a single IPL treatment.
Collapse
Affiliation(s)
- D Larouche
- Axe Médecine Régénératrice, Centre LOEX de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
28
|
Lecardonnel J, Deshayes N, Genty G, Parent N, Bernard BA, Rathman-Josserand M, Paris M. Ageing and colony-forming efficiency of human hair follicle keratinocytes. Exp Dermatol 2013; 22:604-6. [DOI: 10.1111/exd.12204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer Lecardonnel
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| | - Nathalie Deshayes
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| | - Gaïanne Genty
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| | - Nathalie Parent
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| | - Bruno A. Bernard
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| | | | - Maryline Paris
- Department of Biological and Clinical Research; L'Oreal Advanced Research; Clichy; France
| |
Collapse
|
29
|
|
30
|
Clinical, dermoscopic and immunohistochemical assessment of actinic keratoses and evaluation of the effectiveness of diclofenac therapy with immunohistochemical analysis. Arch Dermatol Res 2013; 305:389-95. [PMID: 23397597 DOI: 10.1007/s00403-013-1322-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/27/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Actinic keratoses (AKs) is a keratinocytic neoplasm that typically develops on the face of elderly patients. Little is known regarding the clinical, dermatoscopic and immunohistochemical assessments of AK using topical diclofenac therapy. We sought to determine these assessments and evaluate the efficacy of topical diclofenac gel in AK. In this prospective, open-label study, 44 patients with 66 AKs were treated for 12 weeks with topically applied diclofenac (3% gel in 2.5% hyaluronic acid). Immunohistopathologic analyses were performed before and after diclofenac treatment using epidermal stem cell markers such as Cytokeratin 15 (CK15), Cytokeratin 19 (CK19) and p63, in addition to proliferation markers (Bcl-2, Ki-67). Diclofenac gel was found to be effective in AK, including the hyperkeratotic type. Surprisingly, complete remission was observed at a significantly higher rate in Grade 3 lesions (p = 0.017). However, imunohistochemical and histopathologic examinations revealed that 12-week treatment periods may not be sufficient to fully cure AK. The immunohistochemical analyses revealed no change in the expression levels of CK15, CK19 and Bcl-2 following diclofenac therapy. However, the expression of Ki-67 (p = 0.042) and p63 (p = 0.030) exhibited a significant decrease after therapy. Dermatoscopy is an effective method for diagnosis of AK, and topical diclofenac sodium gel was found as an effective additional treatment modality. Since positive histopathological findings were detected in some patients even with significant remission, a 12-week treatment period should be extended even in patients presenting with positive clinical response. Importantly, anti-proliferative effects of diclofenac were demonstrated by decreased Ki-67 and p63 expression levels.
Collapse
|
31
|
Gkegkes ID, Aroni K, Agrogiannis G, Patsouris ES, Konstantinidou AE. Expression of caspase-14 and keratin-19 in the human epidermis and appendages during fetal skin development. Arch Dermatol Res 2013; 305:379-87. [PMID: 23377137 DOI: 10.1007/s00403-013-1319-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 02/03/2023]
Abstract
Caspase-14 is a seemingly non-apoptotic caspase involved in keratinocyte differentiation and cornification of the skin. Keratin-19 is an epithelial marker and a potential marker of epidermal stem cells that is expressed during human fetal skin development. We examined the immunohistochemical expression of caspase-14 in relation to CK-19 in the human fetal skin during development and perinatally, to assess their role in human skin maturation. Skin samples were received at autopsy. In the fetal epidermis, caspase-14 was predominantly expressed in the more differentiated layers, gradually disappearing from the basal layer toward term. By contrast, keratin-19 expression gradually decreased with epidermal maturation through gestation (rho = -0.949; p = 0.0001) and was a marker of the germinative layers. Keratin-19 was preserved in scarce basal cell nests at term and postnatally. Caspase-14 and keratin-19 were inversely expressed in the differentiating epidermal layers through gestation (p < 0.0001). Concerning the appendages, in hair follicles and sebaceous glands, caspase-14 located preferentially in the more differentiated layers of the inner root sheath, whereas keratin-19 was expressed in the outer sheath. Eccrine sweat glands showed a variable pattern of caspase-14 and keratin-19 expression. In conclusion, caspase-14 emerged as a marker of human skin differentiation during development, while keratin-19 marked the germinative epithelial layers in the fetal epidermis and appendages and possibly the nests of epidermal stem cells.
Collapse
Affiliation(s)
- Ioannis D Gkegkes
- 1st Department of Pathology, Medical School, University of Athens, 75 M.Asias Street, 11527 Athens, Greece
| | | | | | | | | |
Collapse
|
32
|
Bongiovanni L, Suter MM, Malatesta D, Ordinelli A, Ciccarelli A, Romanucci M, Brenner O, Della Salda L. Nuclear survivin expression as a potentially useful tool for the diagnosis of canine cutaneous sebaceous lesions. Vet Dermatol 2012; 23:394-e73. [PMID: 22681570 DOI: 10.1111/j.1365-3164.2012.01065.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sebaceous glands are specialized cutaneous adnexal glands, which work under constant hormonal control to produce sebum. They can give rise to several proliferative lesions, such as hamartoma, hyperplasia and neoplasms (adenoma, epithelioma and carcinoma). Their nomenclature is currently confusing, both in veterinary and in human medicine, owing to the difficulty of differentiating between some of these lesions. METHODS The present study used immunohistochemistry to determine the expression levels and patterns of survivin and Ki67 in five samples of normal canine skin and 44 cases of canine cutaneous lesions with sebaceous differentiation (10 hamartomas, nine hyperplasia, eight adenomas, eight epitheliomas and nine carcinomas). RESULTS In normal glands, survivin, as well as Ki67, was expressed in scattered reserve cells. In hamartomas, survivin was more highly expressed than in normal skin, indicating a possible role of this molecule in the pathogenesis of these congenital lesions. In tumours, a moderate or high level of survivin and Ki67 expression (more than two and four and more than two positive cells, respectively) were significantly correlated with a malignant histotype, infiltrative growth and a moderate or high number of mitoses (more than two). CONCLUSIONS AND CLINICAL IMPORTANCE The level of survivin expression increased with increasing malignancy, designating survivin as a new diagnostic marker in the assessment of malignancy of sebaceous tumours.
Collapse
Affiliation(s)
- Laura Bongiovanni
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Expression of KRT7 and WT1 differentiates precursor lesions of Wilms' tumours from those of papillary renal cell tumours and mucinous tubular and spindle cell carcinomas. Virchows Arch 2012; 460:423-7. [PMID: 22382985 DOI: 10.1007/s00428-012-1209-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/22/2011] [Accepted: 01/31/2012] [Indexed: 02/04/2023]
Abstract
Wilms' tumours (WT) and adult papillary renal cell tumours (pRCT) are associated with precursor lesions of embryonic origin. The aim of this study was to analyse the expression of WT1, KRT7, KRT8, KRT18 and KRT19 genes by immunohistochemistry in 74 precursor lesions associated with WTs, pRCTs and mucinous tubular and spindle cell carcinomas (MTSCC). All precursor lesions associated with Wilms' tumours were positive for WT1, whereas all precursor lesions in pRCT and MTSCC-bearing kidneys were negative. None of the WT-associated lesions were positive for KRT7, but 69-80% of lesions associated with pRCTs and MTSCCs were positive for KRT7. KRT8, KRT18 and KRT19 were found to be expressed in 80-100% of all types of precursor lesions. Our findings indicate that the precursor lesions analysed in this study are committed in an early stage of cellular differentiation to the development of either Wilms' tumours or papillary RCTs and MTSCCs.
Collapse
|
34
|
Gho CG, Martino Neumann HA. Donor hair follicle preservation by partial follicular unit extraction. A method to optimize hair transplantation. J DERMATOL TREAT 2011; 21:337-49. [PMID: 20388024 DOI: 10.3109/09546630903359814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There are different stem cell pools located in the hair follicle. OBJECTIVE To try to determine whether follicular units can survive a partial extraction and whether this partial extracted follicular unit can regenerate new hairs. METHODS From five individuals, between 100 and 150 grafts were harvested from the occipital area of the scalp. Suitable grafts were implanted into the recipient area. Hair growth and characteristics in the donor area and the recipient area were observed at different intervals. RESULTS After 3 months, between 92.1% and 104.1% (mean 97.7%) of the partial follicular units in the donor sites survived and produced hairs with the same characteristics. After 1 year, 91.1–101.7% (mean 95.9%) of the implanted partial follicular units regenerated hair growth with the same characteristics as the hairs in the donor area. CONCLUSIONS We revealed that extracted partial longitudinal follicular units transplanted to the recipient area can be used as complete follicular units to regenerate completely differentiated hair growth with the same characteristics as in the donor area. We also revealed that the partial follicular units in the donor area can survive and produce the same number of hairs with the same characteristics. This technique enables us to generate two hair follicles from one follicle with consistent results and preserve the donor area.
Collapse
Affiliation(s)
- Coen G Gho
- Hair Science Institute, Amsterdam, The Netherlands.
| | | |
Collapse
|
35
|
Fu G, Gao QG, Lian XH, Yu J, Xiang MM, Yang T. Committed differentiation of hair follicle bulge cells into sebocytes: an in vitro study. Int J Dermatol 2010; 49:135-40. [PMID: 20465636 DOI: 10.1111/j.1365-4632.2009.04144.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Several studies have shown that hair follicle bugle cells can differentiate into hair follicles and contribute to the formation of the epidermis and sebaceous gland. Although many lines of evidence have suggested that the renewal and maintenance of the sebaceous gland depends on hair follicle bulge cells, direct evidence supporting the in vitro differentiation of follicle bulge cells into sebaceous gland cells has not been found. METHODS Rat vibrissa follicle bulge cells were isolated, cultured, and transfected with green fluorescent protein (GFPC1) plasmids carrying the peroxisome proliferator-activated receptor gamma2 (PPARgamma2 ) gene. The transfected cells were cultured in modified medium, and the morphologic changes of the cells were observed. Moreover, the expression of epithelial membrane antigens (EMAs) by the cells was detected by immunocytochemistry, and adipogenesis of the cells was evaluated. RESULTS After induction culture, the cell body enlarged gradually and contained abundant cytoplasm; lipid droplets appeared in the cytoplasm of some cells, and the cells resembled sebocytes of the sebaceous gland. The cells were positive on oil red O and EMA staining. The expression of PPARgamma2 mRNA and protein was significantly upregulated in PPARgamma2-transfected cells. The rate of oil red O-stained and EMA-positive cells was higher in PPARgamma2-transfected cells after induction than in bulge-PPARgamma2 cells and non-transfected bulge cells. CONCLUSIONS Rat vibrissa hair follicle bulge cells may differentiate into sebocytes in vitro, and the PPARgamma2 gene plays a crucial role.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, College of Basic Medicine, Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
36
|
Rossi A, Gilio M, Pistola G, Carlesimo M, Borroni RG, Fortuna MC, Toscani M. Follicular bisection in hair restoration: in vivo experiment. Dermatol Surg 2010; 36:1484-7. [PMID: 20646021 DOI: 10.1111/j.1524-4725.2010.01665.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alfredo Rossi
- Department of Skin-Venereal Disease and Reconstructive and Plastic Surgery, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
A Revaluation of Folliculosebaceous Cystic Hamartoma: The Histopathological and Immunohistochemical Features. Am J Dermatopathol 2010; 32:154-61. [DOI: 10.1097/dad.0b013e3181a9de8c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
A revaluation of trichofolliculoma: the histopathological and immunohistochemical features. Am J Dermatopathol 2010; 32:35-43. [PMID: 19730084 DOI: 10.1097/dad.0b013e3181a77414] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Few investigations on the histopathology of trichofolliculoma (TF) have so far included an immunohistochemical study. To seek new insight into TF with a revaluation of the histopathological features and an investigation of the immunohistochemical profile, 14 TFs were revaluated for the histopathology and the immunohistochemical profile of various cytokeratins (CKs), hair follicle stem cell markers, and others. The CK15 expression was upregulated in the basal cells from the primary cystic structures beyond to secondary follicles without expression of CK19. CK16 and CK17 were positive in the suprabasal cells of the primary cystic structures and the immature secondary hair follicles. No exact isthmus/bulge region was seen in the anagen secondary hair follicles, and newly developed (tertiary) hair follicles arose randomly from the involuting secondary follicles. Ber EP4 expression was generally weakened in the secondary or tertiary hair germ-like structures. The size of secondary hair follicles varied from vellus hair follicles to terminal hair follicles, even though no lesions located on the regions where the terminal hairs develop were included in this study. S-100 protein-positive wavy spindle cells were accidentally found in the surrounding connective tissue of the secondary follicles in 2 TF lesions. TFs were characterized by the proliferation of abnormal CK15-positive hair follicle stem cells, which basically differentiated toward the outer root sheath and attempting to make hair but losing the proper differentiation. The control of the size of the anagen hair follicles and the regular hair cycle were also disordered.
Collapse
|
39
|
Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3050-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Fortunel NO, Cadio E, Vaigot P, Chadli L, Moratille S, Bouet S, Roméo PH, Martin MT. Exploration of the functional hierarchy of the basal layer of human epidermis at the single-cell level using parallel clonal microcultures of keratinocytes. Exp Dermatol 2010; 19:387-92. [PMID: 20201955 DOI: 10.1111/j.1600-0625.2009.01046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The basal layer of human epidermis contains both stem cells and keratinocyte progenitors. Because of this cellular heterogeneity, the development of methods suitable for investigations at a clonal level is dramatically needed. Here, we describe a new method that allows multi-parallel clonal cultures of basal keratinocytes. Immediately after extraction from tissue samples, cells are sorted by flow cytometry based on their high integrin-alpha 6 expression and plated individually in microculture wells. This automated cell deposition process enables large-scale characterization of primary clonogenic capacities. The resulting clonal growth profile provided a precise assessment of basal keratinocyte hierarchy, as the size distribution of 14-day-old clones ranged from abortive to highly proliferative clones containing 1.7 x 10(5) keratinocytes (17.4 cell doublings). Importantly, these 14-day-old primary clones could be used to generate three-dimensional reconstructed epidermis with the progeny of a single cell. In long-term cultures, a fraction of highly proliferative clones could sustain extensive expansion of >100 population doublings over 14 weeks and exhibited long-term epidermis reconstruction potency, thus fulfilling candidate stem cell functional criteria. In summary, parallel clonal microcultures provide a relevant model for single-cell studies on interfollicular keratinocytes, which could be also used in other epithelial models, including hair follicle and cornea. The data obtained using this system support the hierarchical model of basal keratinocyte organization in human interfollicular epidermis.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Evry, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yoo BY, Shin YH, Yoon HH, Seo YK, Park JK. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Tiede S, Koop N, Kloepper JE, Fässler R, Paus R. Nonviral in situ green fluorescent protein labeling and culture of primary, adult human hair follicle epithelial progenitor cells. Stem Cells 2010; 27:2793-803. [PMID: 19750535 DOI: 10.1002/stem.213] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article we show that cloning of the human K15 promoter before a green fluorescence protein (GFP)/geneticin-resistance cassette and transfection of microdissected, organ-cultured adult human scalp hair follicles generates specific K15 promoter-driven GFP expression in their stem cell-rich bulge region. K15-GFP+ cells can be visualized in situ by GFP fluorescence and 2-photon laser scanning microscopy. Vital K15-GFP+ progenitor cells can then be selected by using the criteria of their green fluorescence, adhesion to collagen type IV and fibronectin, and geneticin resistance. Propagated K15-GFP+ cells express epithelial progenitor markers, show the expected differential gene expression profile of human bulge epithelium, and form holoclones. This application of nonretroviral, K15 promoter-driven, GFP labeling to adult human hair follicles facilitates the characterization and manipulation of human epithelial stem cells, both in situ and in vitro, and should be transferable to other complex human tissues.
Collapse
Affiliation(s)
- Stephan Tiede
- Department of Dermatology, University of Lübeck, D-23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
43
|
Thibaut S, De Becker E, Caisey L, Baras D, Karatas S, Jammayrac O, Pisella PJ, Bernard BA. Human eyelash characterization. Br J Dermatol 2009; 162:304-10. [PMID: 19804590 DOI: 10.1111/j.1365-2133.2009.09487.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Few biological data on human eyelash follicles have been reported in the literature. OBJECTIVES To characterize eyelash follicle growth, cycle and morphology, and further investigate the biological mechanisms that determine eyelash length, curl and pigmentation, compared with scalp hair follicle. METHODS Twenty-nine caucasian female volunteers aged between 26 and 60 years were enrolled in the study to provide eyelashes. Four of these volunteers were followed weekly for 9 months to characterize their eyelash cycle. Eyelash length and time of renewal were measured using a high-resolution camera and image analysis. Immunohistological study of the bulbs were performed on eyelid biopsies from 17 patients requiring block excision for ectropion repair. RESULTS The calculated durations of anagen phase and complete cycle of the eyelashes were 34 + or - 9 and 90 + or - 5 days, respectively. Eyelash follicle growth rate was quite variable, with an average rate of 0.12 + or - 0.05 mm daily. Eyelash follicle morphology was very close to that of the scalp hair follicle, but some remarkable differences were noticed. For example, the K19-positive epithelial stem cell population was spread all along the follicle and not split into two reservoirs as seen in scalp hair follicles. Some asymmetry was detected in HSPG and CSPG, as well as K38 (formerly Ha8) and K82 (formerly Hb2) distribution, similar to that observed in curly hair. Finally, dopachrome tautomerase was found expressed in eyelash follicle melanocytes, while it was strikingly absent in scalp hair follicle melanocytes. CONCLUSIONS The eyelash is structurally very close to curly hair but some biological processes related to follicle cycle and pigmentation differ markedly.
Collapse
Affiliation(s)
- S Thibaut
- L'OREAL Recherche, 90 rue du Général Roguet, 92110 Clichy, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Expression and function of glycogen synthase kinase-3 in human hair follicles. Arch Dermatol Res 2009; 302:263-70. [PMID: 19705135 DOI: 10.1007/s00403-009-0987-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.
Collapse
|
45
|
Toscani M, Rotolo S, Ceccarelli S, Morrone S, Micali G, Scuderi N, Frati L, Angeloni A, Marchese C. Hair regeneration from transected follicles in duplicative surgery: rate of success and cell populations involved. Dermatol Surg 2009; 35:1119-25. [PMID: 19438685 DOI: 10.1111/j.1524-4725.2009.01197.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of bisected hair follicles in hair transplantation has been previously reported, but the capacity of each half to regenerate the entire hair has not been clarified. OBJECTIVE To evaluate duplicative surgery rate of success and to analyze the cell populations involved in hair regeneration. METHODS We screened 28 patients undergoing duplicative surgery. Approximately 100 hair follicles from each patient were horizontally bisected and implanted. Upper and lower portions were stained for the known epithelial stem cell markers CD200, p63, beta1-integrin, CD34, and K19. RESULTS Similar percentages of hair regrowth after 12 months were observed when implanting the upper (72.7 +/- 0.4%) and lower (69.2 +/- 1.1%) portions. Expression of CD200, p63, and beta1-integrin was detected in both portions, whereas K19 and CD34 stained different cell populations in the upper and lower fragment, respectively. CONCLUSION Duplicative surgery might represent a successful alternative for hair transplantation, because both portions are capable of regenerating a healthy hair. Moreover, our results suggest the possible presence of stem cells in both halves of the follicle.
Collapse
Affiliation(s)
- Marco Toscani
- Department of Skin-Venereal Disease and Reconstructive and Plastic Surgery, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hoang M, Keady M, Mahalingam M. Stem cell markers (cytokeratin 15, CD34 and nestin) in primary scarring and nonscarring alopecia. Br J Dermatol 2009; 160:609-15. [DOI: 10.1111/j.1365-2133.2008.09015.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Chen S, Takahara M, Kido M, Takeuchi S, Uchi H, Tu Y, Moroi Y, Furue M. Increased expression of an epidermal stem cell marker, cytokeratin 19, in cutaneous squamous cell carcinoma. Br J Dermatol 2008; 159:952-5. [PMID: 18647309 DOI: 10.1111/j.1365-2133.2008.08731.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cytokeratin 19 (CK19) has been considered to be a putative marker for epidermal stem cells in the hair follicle bulge. Cumulative reports have shown that epidermal stem cells play an important role in skin carcinogenesis. However, to date there has been no report on the clinical alteration of the stem cells in squamous cell carcinoma (SCC). OBJECTIVES To investigate alteration of the stem cells and proliferating cells and to assess their relationship and potential contribution to SCC. METHODS Thirty paraffin-embedded neoplastic skin lesions, consisting of 10 cases each of actinic keratosis (AK), Bowen disease (BD) and SCC, were examined immunohistologically for CK19 and Ki-67. RESULTS Positive reactivity for CK19 was seen in 30% of AK, 50% of BD and 80% of SCC lesions. There was significantly higher expression levels of CK19 in SCC than in AK and BD (P < 0.05). In addition, BD lesions harboured a significantly higher number of CK19-positive cells than did AK lesions (P < 0.05). There were significant differences in Ki-67 labelling indices between AK and BD and between AK and SCC (P < 0.001), but not between BD and SCC (P > 0.05). Furthermore, a serial section comparison study showed that there was a minor population of cells co-expressing CK19 and Ki-67 in a subset of the tumour cells of SCC samples. The percentage of CK19+ cells significantly correlated with that of Ki67+ cells in all examined neoplastic skin lesions. CONCLUSIONS These results suggest that CK19 expression may be associated with the retention of stem cell characteristics or a state that is uncommitted to terminal squamous differentiation.
Collapse
Affiliation(s)
- S Chen
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The homeostasis of continuously renewing human epidermis relies on the presence of adult stem cells, residing in the basal layer. Epidermal stem cells have been enriched and functionally characterized, but the exact location remained elusive. The human hair follicle and its pigmentation unit also cyclically regenerate from stem cells. Contrary to epidermal stem cells, human hair follicle stem cells have been localized, enriched, functionally and biochemically characterized. Their specific gene expression pattern has been established. The melanocyte stem population has also been localized and characterized. Finally, the hair follicle was found to harbor a number of other multipotent cells, which designates this unique organ as an alternative source of stem cells for tissue regeneration.
Collapse
Affiliation(s)
- Bruno A Bernard
- L'OREAL Recherche, Centre C. Zviak, 90 rue du Général Roguet, 92110 Clichy, France.
| |
Collapse
|
49
|
|
50
|
Kurzrock EA, Lieu DK, Degraffenried LA, Chan CW, Isseroff RR. Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol 2008; 294:F1415-21. [PMID: 18367656 DOI: 10.1152/ajprenal.00533.2007] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adult tissue stem cells replicate infrequently, retaining DNA nucleotide label (BrdU) for much longer periods than mature, dividing cells in which the label is diluted during a chase period. Those "label-retaining cells" (LRCs) have been identified as the tissue stem cells in skin, cornea, intestine, and prostate. However, in the urinary tract uroepithelial stem cells have not yet been identified. In this study, BrdU administration identified urothelial LRCs in the rat bladder with 9% of the epithelial basal cells retaining BrdU label 1 yr after its administration. Markers for stem cells in other tissues, Bcl, p63, cytokeratin 14, and beta1 integrin, were immunolocalized in the basal bladder epithelium in or near urothelial LRCs, but not uniquely limited to these cells. Flow cytometry demonstrated that urothelial LRCs were small, had low granularity, and were uniquely beta4 integrin bright. Urothelium from long-term labeled bladders was cultured and LRCs were found to be significantly more clonogenic and proliferative, characteristics of stem cells, than unlabeled urothelial cells. Thus, this work demonstrates that LRCs in the bladder localize to the basal layer, are small, low granularity, uniquely beta4 integrin rich, slowly cycling and demonstrate superior clonogenic and proliferative ability compared with unlabeled epithelial cells. We propose that LRCs represent putative urothelial stem cells.
Collapse
Affiliation(s)
- Eric A Kurzrock
- Dept. of Urology, UCDMC, 4860 Y St., Suite 3500, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|