1
|
Bharadwaj A, Sharma J, Singh J, Kumari M, Dargar T, Kalita B, Mathew SJ. Musculoskeletal defects associated with myosin heavy chain-embryonic loss of function are mediated by the YAP signaling pathway. EMBO Mol Med 2023; 15:e17187. [PMID: 37492882 PMCID: PMC10493586 DOI: 10.15252/emmm.202217187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Mutations in MYH3, the gene encoding the developmental myosin heavy chain-embryonic (MyHC-embryonic) skeletal muscle-specific contractile protein, cause several congenital contracture syndromes. Among these, recessive loss-of-function MYH3 mutations lead to spondylocarpotarsal synostosis (SCTS), characterized by vertebral fusions and scoliosis. We find that Myh3 germline knockout adult mice display SCTS phenotypes such as scoliosis and vertebral fusion, in addition to reduced body weight, muscle weight, myofiber size, and grip strength. Myh3 knockout mice also exhibit changes in muscle fiber type, altered satellite cell numbers and increased muscle fibrosis. A mass spectrometric analysis of embryonic skeletal muscle from Myh3 knockouts identified integrin signaling and cytoskeletal regulation as the most affected pathways. These pathways are closely connected to the mechanosensing Yes-associated protein (YAP) transcriptional regulator, which we found to be significantly activated in the skeletal muscle of Myh3 knockout mice. To test whether increased YAP signaling might underlie the musculoskeletal defects in Myh3 knockout mice, we treated these mice with CA3, a small molecule inhibitor of YAP signaling. This led to increased muscle fiber size, rescue of most muscle fiber type alterations, normalization of the satellite cell marker Pax7 levels, increased grip strength, reduced fibrosis, and decline in scoliosis in Myh3 knockout mice. Thus, increased YAP activation underlies the musculoskeletal defects seen in Myh3 knockout mice, indicating its significance as a key pathway to target in SCTS and other MYH3-related congenital syndromes.
Collapse
Affiliation(s)
- Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jaydeep Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jagriti Singh
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Kumari
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Tanushri Dargar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Faculte de MedicineInstitut NeuroMyoGeneLyonFrance
| | - Bhargab Kalita
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of Pathology and Perlmutter Cancer CenterNew York University School of MedicineNew YorkNYUSA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
2
|
Elashry MI, Gaertner K, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. Characterisation of stemness and multipotency of ovine muscle-derived stem cells from various muscle sources. J Anat 2021; 239:336-350. [PMID: 33641201 PMCID: PMC8273587 DOI: 10.1111/joa.13420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
Muscle stem cells (MSCs) are a promising tool for cell‐based therapy and tissue regeneration in veterinary medicine. Evaluation of MSCs from muscles of different origins improves our understanding of their regenerative potential. The present study compared the stemness, cell proliferation, migration potential, myogenic differentiation (MD), and multipotency of MSCs for four developmentally different muscles of ovine origin. MSCs were isolated from the hind limb (HL), diaphragm (DI), extraocular (EO), and masseter (MS) muscles. Cell proliferation, migration, and stemness were examined using sulforhodamine B, and colony formation assays. Evaluation of multipotency was examined using histological and morphometric analyses, alkaline phosphatase (ALP) activity, and the expression of myogenic, adipogenic, and osteogenic markers using RT‐qPCR. Data were statistically analysed using analysis of variance. The results revealed that all experimental groups expressed stem cell markers paired box transcription factor Pax7, α7‐integrin, CD90, and platelet‐derived growth factor receptor alpha. DI and HL muscle cells displayed higher proliferation, migration, and colony formation capacities compared to the EO and MS muscle cells. HL and DI muscle cells showed increased MD, as indicated by myotube formation and relative expression of MyoD at day 7 and Myogenin at day 14. Although MS and EO muscle cells displayed impaired MD, these cells were more prone to adipogenic differentiation, as indicated by Oil Red O staining and upregulated fatty acid‐binding protein 4 and peroxisome proliferator‐activated receptor gamma expression. DI muscle cells demonstrated a higher osteogenic differentiation capability, as shown by the upregulation of osteopontin expression and an elevated ALP activity. Our data indicate that ovine HL and DI MSCs have a higher regenerative and multipotent potential than the EO and MS muscle cells. These results could be valuable for regional muscle biopsies and cell‐based therapies.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Kateryna Gaertner
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Asmaa Eldaey
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany.,Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle 2015; 5:22. [PMID: 26180627 PMCID: PMC4502549 DOI: 10.1186/s13395-015-0046-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022] Open
Abstract
Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padova, Italy
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy ; CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
4
|
Nariyama M, Kota Y, Kaneko S, Asada Y, Yamane A. Association between the lack of teeth and the expression of myosins in masticatory muscles of microphthalmic mouse. Cell Biochem Funct 2011; 30:82-8. [PMID: 22034127 DOI: 10.1002/cbf.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 11/11/2022]
Abstract
The purposes of the present study were to elucidate the influences of the deficiency of teeth on masticatory muscles, such as the masseter, temporalis and digastric muscles and compare the influence among masticatory muscles. We analysed the expressions of myosin heavy chain (MyHC) isoform messenger RNA (mRNA) and protein in these muscles in the microphthalmic (mi/mi) mouse, whose teeth cannot erupt because of a mutation in the mitf gene locus. The expression levels of MyHC mRNA and protein in the masseter, temporalis, digastric, tibialis anterior and gastrocnemius muscles of +/+ and mi/mi mice were analysed with real-time polymerase chain reaction and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The mi/mi masseter muscle at 8 weeks of age expressed 4.1-fold (p < 0.05) and 3.3-fold (p < 0.01) more MyHC neonatal mRNA and protein than that in the +/+, respectively; the expression level of MyHC neonatal protein was 19% of the total MyHC protein in the masseter muscle of mi/mi mice. In the digastric muscle, the expression levels of MyHC I mRNA and protein in the mi/mi mice were 4.7-fold (p < 0.05) and 5-fold (p < 0.01) higher than those in the +/+ mice. In the temporalis, tibialis anterior and gastrocnemius muscles, there was no significant difference in the expression levels of any MyHC isoform mRNA and protein between +/+ and mi/mi mice. These results indicate associations between the lack of teeth and the expression of MyHC in the masseter and digastric muscles but not such associations in the temporalis muscle, suggesting that the influence of tooth deficiency varies among the masticatory muscles.
Collapse
Affiliation(s)
- Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
5
|
Bicer S, Patel RJ, Williams JB, Reiser PJ. Patterns of tropomyosin and troponin-T isoform expression in jaw-closing muscles of mammals and reptiles that express masticatory myosin. ACTA ACUST UNITED AC 2011; 214:1077-85. [PMID: 21389191 DOI: 10.1242/jeb.049213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently reported that masticatory ('superfast') myosin is expressed in jaw-closing muscles of some rodent species. Most mammalian limb muscle fibers express tropomyosin-β (Tm-β), along with fast-type or slow-type tropomyosin-β (Tm-β), but jaw-closing muscle fibers in members of Carnivora express a unique isoform of Tm [Tm-masticatory (Tm-M)] and little or no Tm-β. The goal of this study was to determine patterns of Tm and troponin-T (TnT) isoform expression in the jaw-closing muscles of rodents and other vertebrate species that express masticatory myosin, and compare the results to those from members of Carnivora. Comparisons of electrophoretic mobility, immunoblotting and mass spectrometry were used to probe the Tm and fast-type TnT isoform composition of jaw-closing and limb muscles of six species of Carnivora, eight species of Rodentia, five species of Marsupialia, big brown bat, long-tailed macaque and six species of Reptilia. Extensive heterogeneity exists in Tm and TnT isoform expression in jaw-closing muscles between phylogenetic groups, but there are fairly consistent patterns within each group. We propose that the differences in Tm and TnT isoform expression patterns between phylogenetic groups, which share the expression of masticatory myosin, may impart fundamental differences in thin-filament-mediated muscle activation to accommodate markedly different feeding styles that may require high force generation in some species (e.g. many members of Carnivora) and high speed in others (e.g. Rodentia).
Collapse
Affiliation(s)
- Sabahattin Bicer
- Department of Oral Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
6
|
Immunohistochemical quantification of fast-myosin in frozen histological sections of goat limb muscles. ACTA ACUST UNITED AC 2010. [DOI: 10.1017/s1357729800014648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFast-myosin in frozen histological sections of eight, 10, 11 and nine muscles of the upper forelimb, lower forelimb, upper hindlimb and lower hindlimb, respectively, of goats was quantified by an immunohistochemical micromethod based on the enzyme-linked immunosorbent assay. The structure of the muscles is well preserved during the immunohistochemical measurement. High fast-myosin levels (more than 201 mg/g total protein) were observed in the triceps brachii (lateral head), rectus femoris, vastus lateralis, semitendinosus, semimembranosus, gastrocnemius (lateral head) and long digital extensor muscles. In contrast, low fast-myosin levels (less than 50 mg/g) were found in the triceps brachii (medial head), superficial digital flexor, vastus intermedialis, and soleus muscles. Fast-myosin-positive fibres (type II or fast-twitch type) were distributed more in the superficial regions than in the deeper regions in the triceps brachii (lateral and long heads), biceps brachii, brachialis, biceps femoris, vastus lateralis, vastus medialis, semimembranosus and gastrocnemius (lateral and medial heads) muscles. In contrast, type IIfibres were distributed more in the deeper regions than in the superficial regions in the extensor carpi radialis, deep digital flexor, cranial tibial, deep digital flexor and superficial digital flexor muscles. When the results obtained by the immunohistochemical micromethod were compared with those obtained by biochemical techniques and by histomorphometrical analyses, high correlations were noted. This technique could be used in research projects to study the muscle characteristics that determine meat quality.
Collapse
|
7
|
Jahan E, Matsumoto A, Udagawa J, Rafiq AM, Hashimoto R, Rahman OIF, Habib H, Sekine J, Otani H. Effects of restriction of fetal jaw movement on prenatal development of the temporalis muscle. Arch Oral Biol 2010; 55:919-27. [PMID: 20728868 DOI: 10.1016/j.archoralbio.2010.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/14/2010] [Accepted: 07/27/2010] [Indexed: 12/29/2022]
Abstract
Jaw movement affects masticatory muscles during the postnatal period. Prenatal jaw movement has also been implicated in the development of the temporomandibular joint; however, its effect on prenatal development of the masticatory muscles has not been extensively analysed. In the present study, we examined the effects of the restriction of fetal jaw movement on the temporalis muscle, a major masticatory muscle, in mice by suturing the maxilla and mandible (sutured group) using an exo utero development system. We compared the morphology of the temporalis muscle between sutured, sham-operated and normal in utero groups. At embryonic day (E) 18.5, the volume of muscle fibres, but not that of connective tissue, in the temporalis muscle was decreased in the sutured group. The E18.5 temporalis muscle in the sutured group appeared morphologically similar to that of the E17.5 in utero group, except for frequent muscle fibre irregularities. By transmission electron microscopy, in the sutured group, the myofibrils were immature and scattered, the nuclei appeared comparatively immature, the mitochondria were expanded in volume with fewer cristae, and cytoplasmic inclusion bodies were frequently observed. Expression of Myf-6, a late myogenic transcription factor, by real-time RT-PCR was not significantly different between the sutured and sham-operated groups. These findings demonstrated approximately 1-day delay in the morphological development of the temporalis muscle in the sutured group, and some abnormalities were observed, although Myf-6 level was not affected in the sutured group. The present study revealed that the prenatal jaw movement influences the development of the temporalis muscle.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Developmental Biology, Shimane University, Enya-cho, Izumoshi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Functional diversity among a family of human skeletal muscle myosin motors. Proc Natl Acad Sci U S A 2009; 107:1053-8. [PMID: 20080549 DOI: 10.1073/pnas.0913527107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human skeletal muscle fibers express five highly conserved type-II myosin heavy chain (MyHC) genes in distinct spatial and temporal patterns. In addition, the human genome contains an intact sixth gene, MyHC-IIb, which is thought under most circumstances not to be expressed. The physiological and biochemical properties of individual muscle fibers correlate with the predominantly expressed MyHC isoform, but a functional analysis of homogenous skeletal muscle myosin isoforms has not been possible. This is due to the difficulties of separating the multiple isoforms usually coexpressed in muscle fibers, as well as the lack of an expression system that produces active recombinant type II skeletal muscle myosin. In this study we describe a mammalian muscle cell expression system and the functional analysis of all six recombinant human type II skeletal muscle myosin isoforms. The diverse biochemical activities and actin-filament velocities of these myosins indicate that they likely have distinct functions in muscle. Our data also show that ATPase activity and motility are generally correlated for human skeletal muscle myosins. The exception, MyHC-IIb, encodes a protein that is high in ATPase activity but slow in motility; this is the first functional analysis of the protein from this gene. In addition, the developmental isoforms, hypothesized to have low ATPase activity, were indistinguishable from adult-fast MyHC-IIa and the specialized MyHC-Extraocular isoform, that was predicted to be the fastest of all six isoforms but was functionally similar to the slower isoforms.
Collapse
|
9
|
Reiser PJ, Bicer S, Chen Q, Zhu L, Quan N. Masticatory (;superfast') myosin heavy chain and embryonic/atrial myosin light chain 1 in rodent jaw-closing muscles. ACTA ACUST UNITED AC 2009; 212:2511-9. [PMID: 19648394 DOI: 10.1242/jeb.031369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Masticatory myosin is widely expressed among several vertebrate classes. Generally, the expression of masticatory myosin has been associated with high bite force for a carnivorous feeding style (including capturing/restraining live prey), breaking down tough plant material and defensive biting in different species. Masticatory myosin expression in the largest mammalian order, Rodentia, has not been reported. Several members of Rodentia consume large numbers of tree nuts that are encased in very hard shells, presumably requiring large forces to access the nutmeat. We, therefore, tested whether some rodent species express masticatory myosin in jaw-closing muscles. Myosin isoform expression in six Sciuridae species was examined, using protein gel electrophoresis, immunoblotting, mass spectrometry and RNA analysis. The results indicate that masticatory myosin is expressed in some Sciuridae species but not in other closely related species with similar diets but having different nut-opening strategies. We also discovered that the myosin light chain 1 isoform associated with masticatory myosin heavy chain, in the same four Sciuridae species, is the embryonic/atrial isoform. We conclude that rodent speciation did not completely eliminate masticatory myosin and that its persistent expression in some rodent species might be related to not only diet but also to feeding style.
Collapse
Affiliation(s)
- Peter J Reiser
- Department of Oral Biology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
10
|
STRÖM D, HOLM S. Fibre type grouping in porcine masseter and soleus muscles assessed by the enclosed fibre type concept. A statistical and computational analysis. J Oral Rehabil 2008. [DOI: 10.1111/j.1365-2842.1997.tb00345.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kreissl S, Uber A, Harzsch S. Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain. Dev Genes Evol 2008; 218:253-65. [PMID: 18443823 PMCID: PMC2362136 DOI: 10.1007/s00427-008-0216-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects.
Collapse
Affiliation(s)
- S. Kreissl
- Universität Konstanz, Fakultät für Biologie, Neurobiologie, 78434 Konstanz, Germany
| | - A. Uber
- Universität Konstanz, Fakultät für Biologie, Neurobiologie, 78434 Konstanz, Germany
| | - S. Harzsch
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
12
|
Mu L, Wang J, Su H, Sanders I. Adult human upper esophageal sphincter contains specialized muscle fibers expressing unusual myosin heavy chain isoforms. J Histochem Cytochem 2006; 55:199-207. [PMID: 17074861 DOI: 10.1369/jhc.6a7084.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional upper esophageal sphincter (UES) is composed of the cricopharyngeus muscle (CP), the most inferior part of the inferior pharyngeal constrictor (iIPC), and the upper esophagus (UE). This sphincter is collapsed and exhibits sustained muscle activity in the resting state; it only relaxes and opens during swallowing, vomiting, and belching. The tonic contractile properties of the UES suggest that the skeletal muscle fibers in this sphincter differ from those in the limb and trunk muscles. In this study, myosin heavy chain (MHC) composition in the adult human UES muscles obtained from autopsies was investigated using immunocytochemical and immunoblotting techniques. Results showed that the adult human UES muscle fibers expressed unusual MHC isoforms such as slow-tonic (MHC-ton), alpha-cardiac (MHC-alpha), neonatal (MHC-neo), and embryonic (MHC-emb), which coexisted with the major MHCs (i.e., MHCI, IIa, and IIx). MHC-ton and MHC-alpha were coexpressed predominantly with slow-type I MHC isoform, whereas MHC-neo and MHC-emb coexisted mainly with fast-type IIa MHC. A slow inner layer (SIL) and a fast outer layer (FOL) in the iIPC and CP were identified immunocytochemically. MHC-ton- and MHC-alpha-containing fibers were concentrated mainly in the SIL, whereas MHC-neo- and MHC-emb-containing fibers were distributed primarily to the FOL. Identification of the specialized muscle fibers and their distribution patterns in the adult human UES is valuable for a better understanding of the physiological and pathophysiological behaviors of the sphincter.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Research Laboratory, Department of Otolaryngology, The Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | |
Collapse
|
13
|
Ren M, Mu L. Intrinsic properties of the adult human mylohyoid muscle: neural organization, fiber-type distribution, and myosin heavy chain expression. Dysphagia 2006; 20:182-94. [PMID: 16362507 DOI: 10.1007/s00455-005-0015-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mylohyoid (MH) muscle plays a critical role in chewing, swallowing, respiration, and phonation. The present study was designed to test the hypothesis that the functional properties of the MH are reflected by its intrinsic specializations, including the neural organization, fiber-type distribution, and myosin heavy chain (MHC) expression. Adult human MH muscles were investigated to determine the nerve supply pattern using Sihler's stain, banding pattern and types of motor endplates using acetylcholinesterase (AChE) staining and silver impregnation, and muscle fiber type and MHC composition using immunocytochemical and immunoblotting techniques. The adult human MH was found to have the following neuromuscular specializations. First, the muscle was innervated by several branches of the MH nerve derived from the mandibular division of the trigeminal nerve. Each of the nerve branches supplied a distinct region of the muscle, forming a segmental innervation pattern. Second, the MH had a single motor endplate band which was located in the middle of the muscle length. Both en plaque and en grappe types of motor endplates were identified on the MH muscle fibers. Finally, the adult human MH fibers expressed unusual MHC isoforms (i.e., slow-tonic, alpha-cardiac, embryonic, and neonatal) which coexisted with the major MHC isoforms (i.e., slow type I, fast type IIa, and fast type IIx), thus forming various major/unusual (or m/u) MHC hybrid fiber types. The m/u hybrid fibers (84% of the total fiber population) were the predominant fiber types in the adult MH muscle. Determination of the neuromuscular specializations of the MH is helpful for better understanding of the muscle functions and for development of strategies to treat MH-related upper airway disorders.
Collapse
Affiliation(s)
- Min Ren
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | |
Collapse
|
14
|
Conti A, Reggiani C, Sorrentino V. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochem Biophys Res Commun 2005; 337:195-200. [PMID: 16176801 DOI: 10.1016/j.bbrc.2005.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/05/2005] [Indexed: 11/30/2022]
Abstract
The expression pattern of the RyR3 isoform of Ca2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform.
Collapse
Affiliation(s)
- Antonio Conti
- DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
15
|
Yamane A, Akutsu S, Diekwisch TGH, Matsuda R. Satellite cells and utrophin are not directly correlated with the degree of skeletal muscle damage inmdxmice. Am J Physiol Cell Physiol 2005; 289:C42-8. [PMID: 15703201 DOI: 10.1152/ajpcell.00577.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether muscle satellite cells and utrophin are correlated with the degree of damage in mdx skeletal muscles, we measured the area of the degenerative region as an indicator of myofiber degeneration in the masseter, gastrocnemius, soleus, and diaphragm muscles of mdx mice. Furthermore, we analyzed the expression levels of the paired box homeotic gene 7 ( pax7), m-cadherin (the makers of muscle satellite cells), and utrophin mRNA. We also investigated the immunolocalization of m-cadherin and utrophin proteins in the muscles of normal C57BL/10J (B10) and mdx mice. The expression level of pax7 mRNA and the percentage of m-cadherin-positive cells among the total number of cell nuclei in the muscle tissues in all four muscles studied were greater in the mdx mice than in the B10 mice. However, there was no significant correlation between muscle damage and expression level for pax7 mRNA ( R = −0.140), nor was there a correlation between muscle damage and the percentage of satellite cells among the total number of cell nuclei ( R = −0.411) in the mdx mice. The expression level of utrophin mRNA and the intensity of immunostaining for utrophin in all four muscles studied were greater in the mdx mice than in the B10 mice. However, there also was not a significant correlation between muscle damage and expression level of utrophin mRNA ( R = 0.231) in the mdx mice, although upregulated utrophin was incorporated into the sarcolemma. These results suggest that satellite cells and utrophin are not directly correlated with the degree of skeletal muscle damage in mdx mice.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- Homeodomain Proteins/genetics
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- PAX7 Transcription Factor
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Satellite Cells, Perineuronal/pathology
- Utrophin/genetics
- Utrophin/metabolism
Collapse
Affiliation(s)
- Akira Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | | | | | | |
Collapse
|
16
|
Mu L, Su H, Wang J, Han Y, Sanders I. Adult human mylohyoid muscle fibers express slow-tonic, alpha-cardiac, and developmental myosin heavy-chain isoforms. ACTA ACUST UNITED AC 2004; 279:749-60. [PMID: 15278946 DOI: 10.1002/ar.a.20065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Some adult cranial muscles have been reported to contain unusual myosin heavy-chain (MHC) isoforms (i.e., slow-tonic, alpha-cardiac, embryonic, and neonatal), which exhibit distinct contractile properties. In this study, adult human mylohyoid (MH) muscles obtained from autopsies were investigated to detect the unusual MHC isoforms. For comparison, the biceps brachii and masseter muscles of the same subjects were also examined. Serial cross-sections from the muscles studied were incubated with a panel of isoform-specific anti-MHC monoclonal antibodies that distinguish major and unusual MHC isoforms. On average, the slow type I and fast type II MHC-containing fibers in the MH muscle accounted for 54% and 46% of the fibers, respectively. In contrast to limb and trunk muscles, the adult human MH muscle was characterized by a large proportion of hybrid fibers (85%) and a small percentage of pure fibers (15%; P < 0.01). Of the fast fiber types, the proportion of the type IIa MHC-containing fibers (92%) was much greater than that of the type IIx MHC-containing fibers (8%; P < 0.01). Our data demonstrated that the adult human MH fibers expressed the unusual MHC isoforms that were also identified in the masseter, but not in the biceps brachii. These isoforms were demonstrated by immunocytochemistry and confirmed by electrophoretic immunoblotting. Fiber-to-fiber comparisons showed that the unusual MHC isoforms were coexpressed with the major MHC isoforms (i.e., MHCI, IIa, and IIx), thus forming various major/unusual (or m/u) MHC hybrid fiber types. Interestingly, the unusual MHC isoforms were expressed in a fiber type-specific manner. The slow-tonic and alpha-cardiac MHC isoforms were coexpressed predominantly with slow type I MHC isoform, whereas the developmental MHC isoforms (i.e., embryonic and neonatal) coexisted primarily with fast type IIa MHC isoform. There were no MH fibers that expressed exclusively unusual MHC isoforms. Approximately 81% of the slow type I MHC-containing fibers expressed slow-tonic and alpha-cardiac MHC isoforms, whereas 80% of the fast type IIa MHC-containing fibers expressed neonatal MHC isoform. The m/u hybrid fibers (82% of the total fiber population) were found to constitute the predominant fiber types in the adult human MH muscle. At least seven m/u MHC hybrid fiber types were identified in the adult human MH muscle. The most common m/u hybrid fiber types were found to be the MHCI/slow-tonic/alpha-cardiac and MHCIIa/neonatal, which accounted for 39% and 33% of the total fiber population, respectively. The multiplicity of MHC isoforms in the adult MH fibers is believed to be related to embryonic origin, innervation pattern, and unique functional requirements.
Collapse
Affiliation(s)
- Liancai Mu
- Department of Otolaryngology, Mount Sinai Medical Center, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
17
|
Wada M, Inashima S, Yamada T, Matsunaga S. Endurance training-induced changes in alkali light chain patterns in type IIB fibers of the rat. J Appl Physiol (1985) 2003; 94:923-9. [PMID: 12571127 DOI: 10.1152/japplphysiol.00549.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of endurance training on the expression of myosin were electrophoretically analyzed in the deep portion of vastus lateralis muscle from the rat. A 10-wk running program led to increases (P < 0.01) in myosin heavy chain (MHC) 2a and 2d with a decrease (P < 0.01) in MHC(2b). Training also evoked a rearrangement of the isomyosin pattern with decreases in fast isomyosin (FM) 1 (P < 0.01) and FM2 (P < 0.05) and a rise in intermediate isomyosin (P < 0.01). These changes were accompanied by a 61% decrease (P < 0.01) in myosin light chain (MLC) 3F (11.8 +/- 2.7 vs. 4.6 +/- 4.2%). Two-dimensional electrophoresis made it possible to separate the triplet of isomyosins (FMb) consisting of MHC(2b). Training elicited a 26% decrease (P < 0.05) in the FM1b fraction within FMb, i.e., FM1b/(FM1b + FM2b + FM3b) (24.2 +/- 5.5 vs. 18.0 +/- 4.3%). These changes resulted in a 10% decrease (P < 0.05) in the MLC(3F) fraction, i.e., MLC(3F)/(MLC(1F) + MLC(3F)), in FMb (44.9 +/- 4.5 vs. 40.3 +/- 3.2%). These results suggest that endurance training may exert the depressive effect on the contractile velocity of type IIB fibers and that a training-induced decrease in the contractile velocity of whole muscle may be caused by alterations in fast alkali MLC complements within a given fiber type as well as by transitions in MHC-based fiber populations.
Collapse
Affiliation(s)
- Masanobu Wada
- Faculty of Integrated Arts and Sciences, Faculty of Medicine, Hiroshima University, Higashihiroshima, Japan.
| | | | | | | |
Collapse
|
18
|
Yamane A, Saito T, Nakagawa Y, Ohnuki Y, Saeki Y. Changes in mRNA expression of nicotinic acetylcholine receptor subunits during embryonic development of mouse masseter muscle. Zoolog Sci 2002; 19:207-13. [PMID: 12012784 DOI: 10.2108/zsj.19.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) switch from the embryonic-type (alpha 2 beta gamma delta subunits) to the adult-type (alpha 2 beta epsilon delta subunits), and disappear besides the neuromuscular junctions with the development of trunk and limb skeletal muscles. However, little is known about this process during the embryonic development of masseter muscle. To identify the time course of the nAChR transition from embryonic day (E) 11 to the newborn stage in mouse masseter muscle, we analyzed the expression level of delta, epsilon, and gamma subunit mRNAs by competitive polymerase chain reaction in combination with reverse transcription as well as distribution of delta subunit protein by immunohistochemistry. The nAChR delta subunit mRNA was initially detected at E11, showed an approximately 25-fold increase (p < 0.0001) between E11 and E17, and plateaued thereafter until the newborn stage. Immunostaining for delta subunit was observed in the whole portions of masseter myofibers at E17 and birth, suggesting that the nAChR elimination does not begin even at the newborn stage. The epsilon subunit mRNA initially appeared at E17, and increased in quantity by 144% (p < 0.0001) up to the newborn stage. The quantity of gamma subunit mRNA increased by approximately 240% (p < 0.0001) between E11 and E17, and then decreased by 22% (p < 0.05) from E17 value at the newborn stage. The beginning of the expression of the epsilon subunit mRNA was coincident with the beginning of the decrease in the quantity of the gamma subunit mRNA, suggesting that the nAChR subunit switch begins at E17.
Collapse
Affiliation(s)
- Akira Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Japan 230-8501.
| | | | | | | | | |
Collapse
|
19
|
Saito T, Ohnuki Y, Yamane A, Saeki Y. Effects of diet consistency on the myosin heavy chain mRNAs of rat masseter muscle during postnatal development. Arch Oral Biol 2002; 47:109-15. [PMID: 11825575 DOI: 10.1016/s0003-9969(01)00094-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To study the effects of diet consistency on the fiber phenotypes of rat masseter (1-70 days of age), the mRNAs of myosin heavy chain isoforms (MHC embryonic, neonatal, I, IIa, IId/x and IIb) were measured in total RNA preparations from masseters of hard-diet group (HDG) and soft-diet group (SDG) by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). With respect to the time course of the transition of each MHC mRNA expressed as a percentage relative to the maximum mean, the soft diet facilitated early (9 days after weaning) expression of IId/x and IIb isoforms, and also a decline in the expression of neonatal and IIa isoforms. The expression of neonatal, IIa and IId/x isoforms at 70 days of age was significantly (P<0.05, P<0.01, P<0.01, respectively) lower in SDG than in HDG, indicating a higher relative composition of the IIb isoform in the SDG. Embryonic MHC mRNA had disappeared by 14 days of age (i.e. before weaning at 19 days). No MHC I mRNA was observed in any masseter studied. These results suggest that in the rat a soft diet facilitates an even more MHC IIb-rich phenotype in the masseter muscle than a hard diet.
Collapse
Affiliation(s)
- T Saito
- Second Department of Oral and Maxillofacial Surgery, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, 230-8501, Yokohama, Japan
| | | | | | | |
Collapse
|
20
|
Widmer CG, Morris-Wiman JA, Nekula C. Spatial distribution of myosin heavy-chain isoforms in mouse masseter. J Dent Res 2002; 81:33-8. [PMID: 11820364 DOI: 10.1177/002203450208100108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is a paucity of information regarding the anatomy and muscle fiber phenotype of the masseter. The objective of this study was to characterize the distribution of each myosin heavy-chain (MyHC) isoform within different anatomical regions of male and female mouse masseters. Masseters from male and female CD-1 mice (2-4 months old) were examined for description of the anatomical partitioning of muscle fibers and endplate distribution. The spatial distribution of MyHC isoforms--embryonic, neonatal, slow, alpha-cardiac, IIa, and IIb--was determined within the defined masseter partitions by means of Western blot analysis and immunofluorescent localization. Types IIa, IIx, and IIb were the predominant MyHC isoforms observed. Distinct differences in the spatial distribution of these MyHC isoforms were found between muscle regions and varied between sexes. The regionalization of muscle fiber types in the mouse masseter is consistent with the functional compartmentalization of the masseter observed in other species.
Collapse
Affiliation(s)
- C G Widmer
- Dept. of Orthodontics, University of Florida, Gainesville 32610-0444, USA.
| | | | | |
Collapse
|
21
|
|
22
|
|
23
|
|
24
|
Muller J, Vayssiere N, Muller A, Marti-Mestres G, Mornet D. Bilateral effect of a unilateral occlusal splint on the expression of myosin heavy-chain isoforms in rat deep masseter muscle. Arch Oral Biol 2000; 45:1017-24. [PMID: 11084140 DOI: 10.1016/s0003-9969(00)00092-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many studies have shown that various myosin isoforms are involved in muscle contraction. A search for specific antibodies directed against the myosin heavy chain (MHC) resulted in the identification of at least two main classes, referred to as MHC type I and type II. In this study, immunohistology and gel electrophoresis were used to determine the proportion of MHC isoforms in rat deep masseter muscle at different times after the insertion of an unilateral occlusal splint. An increasing proportion of MHC type I isoforms was found in both deep masseters soon after splinting, and this trend continued until 7 days after splint insertion. The type I fibres were clearly distributed on either side of the central axis of the muscle. At 15 days, a significant decrease in the percentage of the type IIb MHC isoform was observed on the occlusal splint side compared to the contralateral side. After 30 days of unilateral splinting, the proportion of type IIb fibres on the splint side returned to baseline whereas on the contralateral side there was an increase in the proportion of this type. The results suggest an initial adaptation after the unilateral occlusal disturbance in which muscles of both sides react in the same way; later, the muscles of each side adapt their expression of MHC isoforms according to altered functional demand.
Collapse
Affiliation(s)
- J Muller
- UMR CNRS 5074, Laboratoire de Physiologie Cellulaire, Faculté de Pharmacie, 15 avenue Charles Flahault, 34060 Cedex 02, Montpellier, France
| | | | | | | | | |
Collapse
|
25
|
Yamane A, Ohnuki Y, Saeki Y. Delayed embryonic development of mouse masseter muscle correlates with delayed MyoD family expression. J Dent Res 2000; 79:1933-6. [PMID: 11201041 DOI: 10.1177/00220345000790120201] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
While the masseter muscle is known to have several unique developmental characteristics as compared with other skeletal muscles, little is known about its myogenesis. Thus, we examined the expression of myogenic marker and of myoD family gene mRNA from embryonic day (E) 11 to birth. The obtained results were compared with our earlier results of the mouse tongue muscle, which is also involved in oral functions. The mRNA quantities were determined by means of the reverse-transcription and competitive-polymerase chain-reaction techniques. The expression of myogenic marker mRNA indicated that differentiation and maturation in the masseter began at E13 as in the tongue, and were not yet completed at birth, although they were completed in the tongue. The expression of myoD, myogenin, and myf5 mRNA peaked later in the masseter (E17) than in the tongue (E13). The expression of MRF4 mRNA began later in the masseter (E15) than in the tongue (E13). These results suggest that the delayed expression of the myoD family genes in the masseter correlates with delayed differentiation and maturation, probably due to the later functional requirements of the masseter than of the tongue.
Collapse
Affiliation(s)
- A Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
26
|
Abstract
This article reviews the complexity, expression, genetics, regulation, function, and evolution of the avian myosin heavy chain (MyHC). The majority of pertinent studies thus far published have focussed on domestic chicken and, to a much lesser extent, Japanese quail. Where possible, information available about wild species has also been incorporated into this review. While studies of additional species might modify current interpretations, existing data suggest that some fundamental properties of myosin proteins and genes in birds are unique among higher vertebrates. We compare the characteristics of myosins in birds to those of mammals, and discuss potential molecular mechanisms and evolutionary forces that may explain how avian MyHCs acquired these properties.
Collapse
Affiliation(s)
- E Bandman
- Department of Food Science and Technology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
27
|
Dingboom EG, Dijkstra G, Enzerink E, van Oudheusden HC, Weijs WA. Postnatal muscle fibre composition of the gluteus medius muscle of Dutch Warmblood foals; maturation and the influence of exercise. Equine Vet J 1999:95-100. [PMID: 10999667 DOI: 10.1111/j.2042-3306.1999.tb05320.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fibre type composition of the deep gluteus muscle was studied in biopsies of Dutch Warmblood foals from birth until age 48 weeks. Half the foals were given box-rest, the other half received exercise consisting of an increasing number of gallop sprints. The muscle fibre types were determined using monoclonal antibodies discriminating against the following myosin heavy chain (MHC) isoforms: types I, IIa, IId, Cardiac-alpha and Developmental. During the first 48 weeks there was a consistent increase of fibres expressing types IIa MHC, replacing fibres expressing IId MHC. This change was reflected in the presence of a quite large population of fibres co-expressing MHC IIa and IId. The difference between the exercised (training) and nonexercised (box-rest) groups was small but suggested that the increase of type IIa fibres was larger in the training group. It appeared that after birth a significant number of fibres coexpress either Developmental and type IIa-MHC or Cardiac-alpha and type I-MHC. The Developmental isoform disappears during the first 10 weeks after birth and almost all the alpha isoform expression during the first 22 weeks. It is concluded that a fast turnover of fibre types takes place in the deep gluteus medius in the first months postpartum. Potentially, exercise could have an effect on the rate of change of these fibre types.
Collapse
Affiliation(s)
- E G Dingboom
- Department of Veterinary Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Weiss A, Schiaffino S, Leinwand LA. Comparative sequence analysis of the complete human sarcomeric myosin heavy chain family: implications for functional diversity. J Mol Biol 1999; 290:61-75. [PMID: 10388558 DOI: 10.1006/jmbi.1999.2865] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conventional myosin motor proteins that drive mammalian skeletal and cardiac muscle contraction include eight sarcomeric myosin heavy chain (MyHC) isoforms. Six skeletal MyHCs are encoded by genes found in tightly linked clusters on human and mouse chromosomes 17 and 11, respectively. The full coding regions of only two out of six mammalian skeletal MyHCs had been sequenced prior to this work. In an effort to assess the extent of sequence diversity within the human MyHC family we present new full-length coding sequences corresponding to four additional human genes: MyHC-IIb, MyHC-extraocular, MyHC-IIa and MyHC-IIx/d. This represents the first opportunity to compare the full coding sequences of all eight sarcomeric MyHC isoforms within a vertebrate organism. Sequence variability has been analyzed in the context of available structure/function data with an emphasis on potential functional diversity within the family. Results indicate that functional diversity among MyHCs is likely to be accomplished by having small pockets of sequence diversity in an otherwise highly conserved molecule.
Collapse
Affiliation(s)
- A Weiss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461, USA
| | | | | |
Collapse
|
29
|
Merly F, Lescaudron L, Rouaud T, Crossin F, Gardahaut MF. Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 1999; 22:724-32. [PMID: 10366226 DOI: 10.1002/(sici)1097-4598(199906)22:6<724::aid-mus9>3.0.co;2-o] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the effect of macrophages on in vitro satellite cell myogenesis in the turkey and mouse. Macrophages are considered to act as scavengers of tissue debris during the muscle degeneration-regeneration process. The number of dividing cells and of myoblasts expressing the myogenic regulatory factor MyoD indicated that macrophages enhanced satellite cell proliferation in both species. This was confirmed by observations with cultures treated for bromodeoxyuridine (BrdU) incorporation. In mouse and turkey macrophage-satellite cell cocultures, the number of differentiated myoblasts, the frequency of myogenin-positive cells, and the expression of developmental myosin isoforms were reduced as compared with control cultures, indicating that macrophages delayed satellite cell differentiation. The possibility that macrophages facilitate muscle fiber reconstitution by enhancing satellite cell proliferation should be taken into consideration in designing future strategies of satellite cell transplantation as a treatment for muscular dystrophies.
Collapse
Affiliation(s)
- F Merly
- Centre National de la Recherche Scientifique, EP 1593, Faculté des Sciences et des Techniques, Université de Nantes, France
| | | | | | | | | |
Collapse
|
30
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
31
|
Gondret F, Lefaucheur L, D'Albis A, Bonneau M. Myosin isoform transitions in four rabbit muscles during postnatal growth. J Muscle Res Cell Motil 1996; 17:657-67. [PMID: 8994085 DOI: 10.1007/bf00154060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four rabbit muscles (i.e. semimembranosus proprius, psoas major, biceps femoris and longissimus lumborum), differing in their fibre type composition in the adult, were investigated during postnatal development. Muscle samples were taken at 1, 7, 14, 21, 28, 35, 49 and 77 days of age. Complementary techniques were used to characterize myosin heavy chain (MHC) isoform transitions, i.e. SDS-PAGE, immunocytochemistry and conventional histochemistry. Good accordance was found between electrophoretic and immunocytochemical techniques. Our results show that rabbit muscles were phenotypically immature at birth. At 1 day of age, perinatal isoform represented 70-90% of the total isoform content of the muscles. Two generations of myofibres could be observed on the basis of their morphology and reaction to specific antibodies. In all muscles, primary fibres expressed slow MHC. In contrast, secondary generation of fibres never expressed slow MHC in future fast muscles, while half of them expressed slow MHC in the future slow-twitch muscle, the semimembranosus proprius. During the postnatal period, all muscles displayed a transition from embryonic to perinatal MHC isoforms, followed by a transition from perinatal to adult MHC isoforms. These transitions occured mainly during the first postnatal month. The embryonic isoform was no longer expressed after 14 days, except in longissimus where it disappeared after 28 days. On the contrary, large differences were found in the timing of disappearance of the perinatal isoform between the four muscles. The perinatal isoform disappeared between 28 and 35 days in semimembranosus proprius and 35 and 49 days in psoas and biceps femoris. Interestingly, the perinatal isoform was still present in 6% of the fibres in longissimus at 77 days, the commercial slaughter age, denoting a great delay in the maturation. Fate of each generation of fibres differed between muscles.
Collapse
Affiliation(s)
- F Gondret
- Station de Recherches Cunicoles, INRA, BP 27, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
32
|
Lefeuvre B, Crossin F, Fontaine-Pérus J, Bandman E, Gardahaut MF. Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech Dev 1996; 58:115-27. [PMID: 8887321 DOI: 10.1016/s0925-4773(96)00564-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The influence of innervation on primary and secondary myogenesis and its relation to fiber type diversity were investigated in two specific wing muscles of quail embryo, the posterior (PLD) and anterior latissimus dorsi (ALD). In the adult, these muscles are composed almost exclusively of pure populations of fast and slow fibers, respectively. When slow ALD and fast PLD muscles developed in ovo in an aneurogenic environment induced after neural tube ablation, the cardiac ventricular myosin heavy chain (MHC) isoform was not expressed. The adult slow MHC isoform, SM2, appeared by embryonic day 7 (ED 7) in normal innervated slow ALD but was not expressed in denervated muscle. Analysis of in vitro differentiation of myoblasts from fast PLD and slow ALD muscles isolated from ED 7 control and neuralectomized quail embryos showed no fundamental differences in the pattern of MHC isoform expression. Newly differentiated fibers accumulated cardiac ventricular, embryonic fast, slow SM1 and SM3 MHC isoforms. Nevertheless, the expression of slow SM2 isoform in myotubes formed from slow ALD myoblasts only occurred when myoblasts were cultured in the presence of embryonic spinal cord. Our studies demonstrate that the neural tube influences primary as well as secondary myotube differentiation in avian forelimb and facilitates the expression of different MHC, particularly slow SM2 MHC gene expression in slow myoblasts.
Collapse
Affiliation(s)
- B Lefeuvre
- Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France
| | | | | | | | | |
Collapse
|
33
|
Merati AL, Bodine SC, Bennett T, Jung HH, Furuta H, Ryan AF. Identification of a novel myosin heavy chain gene expressed in the rat larynx. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1306:153-9. [PMID: 8634332 DOI: 10.1016/0167-4781(95)00237-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Based on reactivity to antibodies against known myosin heavy chains, expression of a novel fast myosin heavy chain (MHC) gene was suspected in the thyroarytenoid (TA) muscle of the rat larynx. The 3' ends of MHC transcripts in the TA were amplified by RT-PCR using a primer to a highly conserved MHC sequence and to the poly(A) tail. The resultant products were cloned and fourteen PCR products were screened by dot-blotting with oligonucleotides specific for known skeletal muscle MHC genes. A clone that reacted weakly to the 2B oligo was sequenced and found to encode a novel fast MHC transcript, termed 2L, that appears to represent an eighth vertebrate skeletal muscle MHC gene. By homology analysis, the 2L sequence is most similar to the extraocular MHC, suggesting a possible evolutionary relationship between MHCs associated with the branchial arches.
Collapse
Affiliation(s)
- A L Merati
- Department of Surgery/Otolarygology, UCSD Medical School, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rouaud T, Fontaine-Perus J, Gardahaut F. Seasonal variation in the phenotype of adult ferret (Mustela putorius furo) cremaster muscle. EXPERIENTIA 1996; 52:184-7. [PMID: 8608822 DOI: 10.1007/bf01923367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using immunocytochemistry, electrophoresis and immunoblotting, we studied the expression of fast and slow myosin heavy chain isoforms in adult ferret muscles during quiescent and breeding periods. Adult cremaster muscle expressed slow and fast myosin heavy chain in relatively similar amounts during the quiescent period. During the breeding period, the expression of slow myosin heavy chain, I, significantly decreased, and fast myosin heavy chain II, was predominant. No alteration of the MHC pattern in EDL and soleus muscles was detected between the quiescent and breeding periods. The possible involvement of androgens and mechanical factors in the regulation of myosin heavy chain expression in adult cremaster muscle is discussed.
Collapse
Affiliation(s)
- T Rouaud
- CNRS URA 1340, Faculté des Sciences et des Techniques, Nantes, France
| | | | | |
Collapse
|
35
|
Leeuw T, Pette D. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle. DEVELOPMENTAL GENETICS 1996; 19:163-8. [PMID: 8900049 DOI: 10.1002/(sici)1520-6408(1996)19:2<163::aid-dvg8>3.0.co;2-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle fibers are versatile entities, capable of changing their phenotype in response to altered functional demands. In the present study, fast-to-slow fiber type transitions were induced in rabbit tibialis anterior (fA) muscles by chronic low-frequency stimulation (CLFS). The time course of changes in relative protein concentrations of fast and slow myosin light chain (MLC) isoforms and changes in their relative synthesis rates by in vivo labeling with [35S]methionine were followed during stimulation periods of up to 60 days. Generally, relative synthesis rates and protein concentrations changed in parallel; i.e., fast isoforms decreased and slow isoforms increased. MLC3f, however, which turns over at a higher rate than the other light chains, exhibited a conspicuous discrepancy between a markedly reduced relative synthesis but only a moderate decrease in protein amount during the initial 2 weeks of CLFS. Apparently, MLC3f is regulated independent of MLC1f, with protein degradation playing an important role in its regulation. The exchange of fast MLC isoforms with their slow counterparts seemed to correspond to the ultimate fast-to-slow (MHCIIa-->MHCI) transition at the MHC level. However, due to an earlier onset of the fast-to-slow transition of the regulatory light chain and the delayed fast-to-slow exchange of the alkali light chains, a spectrum of hybrid isomyosins composed of fast and slow light and heavy chains must have existed transiently in transforming fibers. Such hybrid isomyosins appeared to be restricted to MHCIIa- and MHCI-based combinations. In conclusion, fiber type specific programs that normally coordinate the expression of myofibrillar protein isoforms seem to be maintained during fiber type transitions. Possible differences in post-transcriptional regulation may result in the transient accumulation of atypical combinations of fast and slow MLC and MHC isoforms, giving rise to the appearance of hybrid fibers under the conditions of forced fiber type conversion.
Collapse
Affiliation(s)
- T Leeuw
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
36
|
Remignon H, Gardahaut MF, Marche G, Ricard FH. Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. J Muscle Res Cell Motil 1995; 16:95-102. [PMID: 7622630 DOI: 10.1007/bf00122527] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantitative (muscle fibre number and cross-sectional areas) and qualitative (myosin isoforms and metabolic enzyme activities) characteristics of two muscles, M. pectoralis major and M. anterior latissimus dorsi, were compared among male chickens of two lines during growth from hatching to adulthood. The lines were derived from a divergent selection based on growth rate. The two muscles were chosen on the basis of their histochemical profile. Pectoralis major muscle contains only fast contracting muscle fibres whereas anterior latissimus dorsi muscle is almost entirely made up with slow contracting fibres. At both ages, the two lines showed similar fibre type distributions. At hatching, fibre cross-sectional areas were equivalent in the two lines, but after the first week, animals from the fast growing line exhibited wider fibre areas, whatever the muscle, than animals from the slow growing line. The total number of fibres in a muscle was found greater in the fast growing line, irrespective of whether it was exactly determined (anterior latissimus dorsi muscle, + 20%) or only estimated (pectoralis major muscle). This number remains constant in the two lines throughout the growth. Myosin isoform profiles and metabolic enzyme activities were similar in the two lines, at both ages, and were in good agreement with the histochemical muscle fibre profiles.
Collapse
Affiliation(s)
- H Remignon
- Institut National de la Recherche Agronomique, Station de REcherches Avicoles, Nouzilly, France
| | | | | | | |
Collapse
|
37
|
Auda-Boucher G, Merly F, Gardahaut MF, Fontaine-Pérus J. Neural tube can induce fast myosin heavy chain isoform expression during embryonic development. Mech Dev 1995; 50:43-55. [PMID: 7605751 DOI: 10.1016/0925-4773(94)00324-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the role of the neural tube in muscle cell differentiation in developing somitic myotome of chick embryo, particularly through fast myosin heavy chain (MHC) isoform expression. An embryonic fast MHC labeled with EB165 mAb was expressed in somitic cells from stage 15 of Hamburger and Hamilton (H.H.) (24 somites). Moreover, a distinct early embryonic fast MHC was expressed only from stage 15 of H.H. to stage 36 (E10). Like neonatal MHC, this isoform was labeled with 2E9 mAb but differed in its immunopeptide mapping. Expression of EB165-labeled embryonic fast MHC occurred in somitic myotomes deprived of neural tube influence by in ovo ablation as well as in somite explants cultured alone in vitro. Conversely, ablation of the neural tube prevented somitic expression of MHC labeled with 2E9 mAb. The neural tube induced in vitro expression of this MHC in explants of somites which failed to express it when cultured alone. These results indicate that signals emanating from the neural tube are required for the expression of early embryonic fast MHC isoform in developing somitic myotome.
Collapse
Affiliation(s)
- G Auda-Boucher
- Faculté des Sciences et des Techniques, CNRS URA 1340, Nantes, France
| | | | | | | |
Collapse
|
38
|
|
39
|
Picard B, Robelin J, Pons F, Geay Y. Comparison of the foetal development of fibre types in four bovine muscles. J Muscle Res Cell Motil 1994; 15:473-86. [PMID: 7806640 DOI: 10.1007/bf00122120] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The pattern of expression of different types of myosin heavy chains and the development of different generations of muscle cells during foetal life were studied in four bovine muscles with widely varying characteristics, the Masseter, Longissimus thoracis, Cutaneus trunci and Diaphragma. Different complementary techniques were performed: immunocytochemistry, electrophoresis, immunoblotting and ELISA. Monoclonal antibodies against different myosin heavy chain isoforms were used. The results confirmed the existence of at least two generations of cells during foetal development in cattle. A first generation, which appeared at a very early stage, gave rise to adult type I fibres. A second generation, made up of different cell populations, gave rise to adult fast type IIA and IIB fibres, and to type IIC. In the slow muscles, it also seemed to give rise to type I fibres. The beginning of myogenesis was characterized in the different cell generations by the expression of transitory myosin forms that are not found in the adult. Type 1 myosin heavy chain was observed from 90 days whereas the fast types, 2a and 2b, were present from 210 to 230 days, at which stage the foetal form disappeared. Muscles that have greatly different contractile characteristics in the adult exhibit also different profiles of differentiation: the Diaphragma was the first to develop, followed by Cutaneus trunci, Longissimus thoracis and Masseter.
Collapse
Affiliation(s)
- B Picard
- Laboratoire Croissance et Métabolismes des Herbivores, U.R. Croissance Musculaire, I.N.R.A., Theix, France
| | | | | | | |
Collapse
|
40
|
Remignon H, Lefaucheur L, Blum JC, Ricard FH. Effects of divergent selection for body weight on three skeletal muscles characteristics in the chicken. Br Poult Sci 1994; 35:65-76. [PMID: 8199892 DOI: 10.1080/00071669408417671] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Histochemical (fibre type distribution and areas) and biochemical (myosin isoforms) characteristics of three muscles, M. anterior latissimus dorsi, M. pectoralis major and M. sartorius, were compared among male chickens of two lines at 11 and 55 weeks of age. 2. The lines were derived from a divergent selection based on growth rate. Cockerels from the Fast Growing Line (FGL) were 2.3 times heavier than those from the Slow Growing Line (SGL) when 11 weeks old and 1.7 times at 55 weeks of age. The latter age was chosen as representative of the adult stage and the 11-week age because, at this time, FGL cocks weighed as much as SGL cockerels at 55 weeks. 3. At both ages, the two lines showed similar fibre type distributions, but the total number in the ALD muscle, and the size (cross-sectional areas) of fibres in each muscle were higher in the FGL compared with the SGL (14.6% and 33% more at 11 and 55 weeks of age respectively in favour of the FGL birds). 4. The two lines displayed similar myosin isoform patterns when adult muscles were compared (55 weeks). They differed slightly at 11 weeks of age, muscle differentiation being completed only in the FGL. 5. Comparisons of the two lines at the same live weight (i.e. FGL cockerels at 11 weeks of age and SGL cockerels at 55 weeks) showed larger muscle fibres in the SGL and no difference in the isomyosin patterns.
Collapse
Affiliation(s)
- H Remignon
- Institut National de la Recherche Agronomique, Station de Recherches Avicoles, Nouzilly, France
| | | | | | | |
Collapse
|
41
|
Picard B, Leger J, Robelin J. Quantitative determination of type I myosin heavy chain in bovine muscle with anti myosin monoclonal antibodies. Meat Sci 1994; 36:333-43. [DOI: 10.1016/0309-1740(94)90130-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1992] [Revised: 12/09/1992] [Accepted: 12/12/1992] [Indexed: 10/27/2022]
|
42
|
|
43
|
Myofibrillar proteins in skeletal muscles of parr, smolt and adult atlantic salmon (Salmo salarl.). Comparison with another salmonid, the arctic charr Salvelinus alpinus (l.). ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0305-0491(93)90067-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Weijs WA, Jüch PJ, Kwa SH, Korfage JA. Motor unit territories and fiber types in rabbit masseter muscle. J Dent Res 1993; 72:1491-8. [PMID: 8227699 DOI: 10.1177/00220345930720110601] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The myosin heavy chain (MHC) content and spatial distribution of the fibers of 11 motor units (MUs) of the rabbit masseter muscle were determined. The fibers of single MUs were visualized in whole-muscle serial sections by a negative periodic acid/Schiff reaction for glycogen after they had been depleted of glycogen by extracellular stimulation of their motoneuron in the trigeminal motor nucleus. The MHC isoforms present in the fibers were characterized by monoclonal antibodies. Individual fibers appeared to contain from one to three MHC isoforms. In six cases, all fibers of a motor unit had an identical MHC content; in five cases, different fiber types were found in a single unit. The fiber number per MU varied between 40 and 424, the territory size between 1.1 and 11.0 mm2 (of a total muscle cross-section of 200 mm2), and fiber density between 6 and 17 MU fibers per 100 muscle fibers. In the multipennate masseter, the fibers were usually restricted to a single anatomical compartment. In comparison with leg muscles, the fibers of the masseter motor units, although similar in number, were restricted to relatively smaller subvolumes of the muscle and thus reached higher densities in their territories. The small territories are the anatomical substrate for the observed heterogeneity of motor behavior. Since the different anatomical compartments of the masseter differ with respect to their biomechanical capabilities, this makes this muscle multifunctional in the exertion of complex motor tasks.
Collapse
Affiliation(s)
- W A Weijs
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam ACTA, The Netherlands
| | | | | | | |
Collapse
|
45
|
Maréchal G, Beckers-Bleukx G. Force-velocity relation and isomyosins in soleus muscles from two strains of mice (C57 and NMRI). Pflugers Arch 1993; 424:478-87. [PMID: 8255731 DOI: 10.1007/bf00374911] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We compared soleus muscles from two strains of mice, NMRI and C57. Soleus muscles from NMRI mice produced slower twitches and lower maximum tetanic force (Fo) but higher maximum tetanic stress (So), (owing to their smaller weight). Their Hill's velocity constant (b) was lower, but their force constant (a/So), their maximum velocity of unloaded shortening (Vu) and their maximal mechanical power (Pmax) were similar. All soleus muscles contained two isomyosins (SM2 and IM) and the two myosin heavy chains (MHC1 and MHC2A) corresponding to type I fibres and type IIA fibres; however, soleus muscles from NMRI strain had higher proportions of isomyosin SM2 and of myosin heavy chain 2A. Regression equations were computed between the mechanical variables and the myosin heavy chain content. Using a simple hypothesis, the results were used to estimate the mechanical properties of type I and type IIA fibres. We conclude that type IIA fibres from soleus muscle are mechanically more similar to slow-twitch type I fibres than to fast-twitch type II fibres. The results also suggest a hypothesis to account for the diversity of isomyosins, by a matching diversity of mechanical properties based on a separate physiological control of the three factors that control Pmax.
Collapse
Affiliation(s)
- G Maréchal
- Départment de Physiologie de l'Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
46
|
d'Albis A, Couteaux R, Janmot C, Mira JC. Opposite regulations by androgenic and thyroid hormones of V1 myosin expression in the two types of rabbit striated muscle: skeletal and cardiac. FEBS Lett 1993; 318:53-6. [PMID: 8436226 DOI: 10.1016/0014-5793(93)81326-u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The finding that V1 cardiac myosin is expressed in masticatory skeletal muscles of the rabbit provided a unique opportunity for comparing the hormonal regulation of V1 in skeletal and cardiac muscles. Thyroid hormones had no significant effect on the postnatal expression of V1 in masticatory muscles, but increased this expression in cardiac ventricles. In contrast, androgenic hormones reduced V1 expression in masticatory muscles, but did not affect it significantly in cardiac ventricles. Modulation of V1 gene transcription in striated muscle is thus shown here to depend both on the target muscle and on the hormone.
Collapse
Affiliation(s)
- A d'Albis
- Laboratoire de Biologie Physico-chimique, URA CNRS 1131, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
47
|
Gardahaut MF, Fontaine-Perus J, Rouaud T, Bandman E, Ferrand R. Developmental modulation of myosin expression by thyroid hormone in avian skeletal muscle. Development 1992; 115:1121-31. [PMID: 1451661 DOI: 10.1242/dev.115.4.1121] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well established that a rise in circulating thyroid hormone during the second half of chick embryo development significantly influences muscle weight gain and bone growth. We studied thyroid influence on differentiation in slow anterior latissimus dorsi (ALD) and fast posterior latissimus dorsi (PLD) muscles of embryos rendered hypothyroid by hypophysectomy or administration of an anti-thyroid drug. The expression of native myosins and myosin light chains (MLCs) was studied by electrophoretic analysis, and the myosin heavy chain (MHC) was characterized by immunohistochemistry. The first effects of hypothyroid status were observed at day 21 of embryonic development (stage 46 according to Hamburger and Hamilton). Analysis of myosin isoform expression in PLD muscles of hypothyroid embryos showed persistence of slow migrating native myosins and slow MLCs as well as inhibition of neonatal fast MHC expression, indicating retarded differentiation of this muscle. In ALD muscle, hypothyroidism maintained fast embryonic MHC and induced noticeable amounts of fast MLCs, thus delaying slow muscle differentiation. Our results suggest that thyroid hormones play a role in modulating the appearance of neonatal fast MHC and the disappearance of isomyosins transiently present during embryogenesis. However, T3 supplemental treatment would seem to compensate in part for the effects of hypothyroidism induced by hypophysectomy, suggesting that thyroid hormone might interfere with other factors also accounting for the observed effects.
Collapse
Affiliation(s)
- M F Gardahaut
- CNRS URA 1340, Faculté des Sciences et des Techniques, Nantes, France
| | | | | | | | | |
Collapse
|
48
|
Bredman JJ, Weijs WA, Moorman AF. Presence of cardiac alpha-myosin correlates with histochemical myosin Ca2+ ATPase activity in rabbit masseter muscle. THE HISTOCHEMICAL JOURNAL 1992; 24:260-5. [PMID: 1535066 DOI: 10.1007/bf01046840] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A combined enzyme-histochemical (ATPase reactivity) and immunohistochemical study has been performed on sections of rabbit masseter muscle. The majority of the fibres previously designated as type IIC and/or type I according to their ATPase activity were found to contain 'cardiac' alpha-myosin heavy chain in addition to other myosin heavy chains. All alpha-myosin heavy chain-containing fibres reveal ATPase activity after pre-incubation at pH 4.2-4.6 similar to that of the classical type I fibres, while, in that pH range, limb type IIC fibres show intermediate ATPase activity. One group of these fibres reveal ATPase activity after pre-incubation at pH 10.1-10.3 as well, but not at pH 10.4-10.5. These fibres contain exclusively either alpha- or alpha- and I-myosin heavy chains but do not contain the IIA-myosin heavy chain. The second part of the fibres reveals ATPase activity after treatment within the whole alkaline pre-incubation range (pH 10.1-10.5) and these fibres contain alpha-myosin and IIA-myosin but no I-myosin heavy chain. It is concluded that the classical IIC fibre type is not present in the rabbit masseter muscle. Furthermore, ATPase reactivity does not allow us to distinguish fibres on their myosin heavy chain content in rabbit masseter muscle.
Collapse
Affiliation(s)
- J J Bredman
- Department of Functional Anatomy, Amsterdam (ACTA), The Netherlands
| | | | | |
Collapse
|
49
|
Mascarello F, Rowlerson AM. Myosin isoform transitions during development of extra-ocular and masticatory muscles in the fetal rat. ANATOMY AND EMBRYOLOGY 1992; 185:143-53. [PMID: 1531587 DOI: 10.1007/bf00185915] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The late fetal development of rat extra-ocular and masticatory muscles was examined by myosin immunohistochemistry. The pattern of slow and neonatal myosin isoform expression in primary and secondary myotubes in these muscles was generally similar to that seen by others in limb muscles. We observed a consistent difference between the Sprague-Dawley and Wistar rats in the degree of maturity reached by all muscles studied at a particular age. In both strains, extra-ocular muscles were also about one day in advance of the masticatory muscles. Thus, secondary myotubes were first seen at E17 in Wistar extraocular muscles, at E18 in Sprague-Dawley extra-ocular muscles and Wistar masticatory muscles, and at E19 in Sprague-Dawley masticatory muscles. There was a strikingly early and complete type differentiation of primary myotubes in extraocular muscles, and tonic myosin first appeared before birth in presumptive extrafusal tonic fibres in the orbital layer of the oculorotatory muscles. Throughout the late fetal period, retractor bulbi was composed of fast myotubes only, but these myotubes were not arranged in classical clusters. In the masticatory muscles at E17/E18 some slow primary myotubes started to express tonic myosin, and these presumptive spindle bag2 fibres were located only in regions of the muscles known to contain spindles in the adult. Presumptive bag1 fibres appeared about a day later (initially without tonic myosin), and in the region of the spindle cluster in anterior deep masseter extrafusal secondary myotube production appeared to be suppressed.
Collapse
Affiliation(s)
- F Mascarello
- Istituto di Anatomia degli Animali Domestici con Istologia ed Embriologia, Università di Milano, Italy
| | | |
Collapse
|
50
|
Sabry MA, Dhoot GK. Identification and pattern of transitions of some developmental and adult isoforms of fast troponin T in some human and rat skeletal muscles. J Muscle Res Cell Motil 1991; 12:447-54. [PMID: 1939608 DOI: 10.1007/bf01738329] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using a monoclonal antibody (F24) in an immunoblotting procedure, the composition of fast troponin T in several adult and developing skeletal muscles of rat and human was studied. With the exception of diaphragm, four isoforms of fast troponin T (HF1-HF4) were detected in all the adult human skeletal muscles investigated. Another isoform of fast troponin T undetectable in the adult human skeletal muscles, designated the fetal isoform (HFF1), was found to be present in all fetal skeletal muscles at 20 weeks of gestation except the diaphragm. Unlike isoform HF4 that was undetectable in all the fetal skeletal muscles, isoforms HF1-HF3 were present in all the human fetal skeletal muscles including the diaphragm. At least five isoforms of fast troponin T (AF1-AF5) could be detected in adult rat skeletal muscles. An additional isoform designated (D) appeared to be present in the rat diaphragm. In some muscles one of the isoforms, AF1, could be further resolved into two to three variants. The proportions and the level of expression of AF1-AF5 isoforms varied not only in different muscles but in some cases also in different parts of the same muscle. In addition to the adult isoforms, four other developmental isoforms termed fetal (FF1 and FF2) and neonatal (NF1 and NF2), were detected during the early development in the rat skeletal muscles. Their presence was first detected during the late fetal to early neonatal period and these isoforms were generally undetectable in a majority of the muscles after 1-2 months of age although their low level of expression persisted in a small number of muscles.
Collapse
Affiliation(s)
- M A Sabry
- Department of Immunology, Medical School, University of Birmingham, UK
| | | |
Collapse
|