1
|
Yuan AT, Korkola NC, Wong DL, Stillman MJ. Metallothionein Cd4S11cluster formation dominates in the protection of carbonic anhydrase. Metallomics 2020; 12:767-783. [DOI: 10.1039/d0mt00023j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Results from ESI-MS and stopped flow kinetics show that apo-MT protects from toxic metalation of apo-CA with Cd2+due to the protein–protein interactions in solution.
Collapse
Affiliation(s)
- Amelia T. Yuan
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | | - Daisy L. Wong
- Department of Chemistry
- University of Western Ontario
- London
- Canada
| | | |
Collapse
|
2
|
Cabral ACS, Jakovleska J, Deb A, Penner-Hahn JE, Pecoraro VL, Freisinger E. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata. J Biol Inorg Chem 2018; 23:91-107. [PMID: 29218632 PMCID: PMC5756683 DOI: 10.1007/s00775-017-1513-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d 10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding.
Collapse
Affiliation(s)
- Augusto C S Cabral
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jovana Jakovleska
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Vincent L Pecoraro
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Eva Freisinger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Falfushynska H, Gnatyshyna L, Fedoruk O, Mitina N, Zaichenko A, Stoliar O, Stoika R. Hepatic metallothioneins in molecular responses to cobalt, zinc, and their nanoscale polymeric composites in frog Rana ridibunda. Comp Biochem Physiol C Toxicol Pharmacol 2015; 172-173:45-56. [PMID: 25988936 DOI: 10.1016/j.cbpc.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
Despite numerous studies suggesting a dramatic decline of amphibians, the biochemical mechanisms of adaptation in these animals to polluted environment are poorly studied. The aim of this study was to elucidate the ability to release cobalt (Co) and zinc (Zn) from their nanoscale complexes (NCs) derived from the polymeric substance of N-vinylpyrrolidone (PS) in the liver of amphibian (Rana ridibunda). Frog males were subjected to 14days exposure to waterborne Co(2+) (50μg/L), Zn(2+) (100μg/L), as well as corresponding concentrations of Co-NC, Zn-NC or PS. Main attention was paid to MT's interrelations with indices of stress and toxicity. Only Co(2+) and Zn(2+) caused elevation of the correspondent metal in MTs. Co(2+) caused down-regulation of cathepsin D activity, while Zn(2+), Zn-NC and the PS up-regulated this activity. Zn(2+) provoked 1.6 times increase of metal-bounded form of the MT (MT-Me), while all other exposures caused the elevation of the ratio of MT total protein concentration (MT-SH) and concentrations of the MT-Me and/or immunoreactive (MTi) form (up to ~10 times) accompanied by a decrease in the levels of oxyradicals. The increased DNA fragmentation and down-regulation of caspase-3 activity in relation to the redox state of glutathione and/or lactate/pyruvate were shown at all exposures. These data indicate the vulnerability of the redox state of cellular thiols and inability to release Co and Zn from NCs in frog's liver.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Olga Fedoruk
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Natalia Mitina
- Lviv National Polytechnic University (LNPU), Lviv, Ukraine
| | | | - Oksana Stoliar
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | | |
Collapse
|
4
|
Falfushynska H, Gnatyshyna L, Turta O, Stoliar O, Mitina N, Zaichenko A, Stoika R. Responses of hepatic metallothioneins and apoptotic activity in Carassius auratus gibelio witness a release of cobalt and zinc from waterborne nanoscale composites. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:66-74. [PMID: 24316149 DOI: 10.1016/j.cbpc.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 11/17/2022]
Abstract
The main goal of this study was to evaluate the ability of fish Carassius auratus tissues to release cobalt (Co) and zinc (Zn) cations present in the applied Co- and Zn-containing nanoscale composites (NCs). Male fish was subjected to 14day long action of Co- and Zn-NCs, as well as of Co(2+) and Zn(2+) or polymeric substance (PS) used for the NC preparation and derived from the vinylpyrrolidone. 50μg∙L(-1) of Co and 100μg∙L(-1) of Zn were applied either as a salt or a nanocomposite. Both Co and Co-NC increased (3.1 and 2.3 times, respectively) concentration of total Co, metallothionein-related Co (3.7 and 6.6 times, respectively) and thiols (by 71 and 95%, respectively), and caspase-3 activity (2.2 and 3.7 times, respectively) in the fish liver. At the same time, Co and Co-NC decreased glutathione level (1.8 and 1.9 times, respectively) and activated vitellogenesis (5.1 and 9.9 times, respectively) in the fish liver. Both Zn and Zn-NC increased markedly concentrations of metallothionein-related Zn (2.4 and 2.9 times, respectively) and Cu (2.8 and 3.2 times, respectively), and decreased metallothionein-related thiol (2.5 and 4.2 times, respectively), oxyradical (by 30.4 and 44.2%, respectively), and caspase-3 (3.0 and 5.3 times, respectively) levels in the fish liver. These peculiarities are common for metal and metal-NC and witness a release of metal from NS in fish organism. The differences in the levels of DNA strand breaks, biotransformation enzymes and total Zn levels in the liver were dependent on the kind of exposure.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil State Medical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Olga Turta
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Oksana Stoliar
- Ternopil National Pedagogical University (TNPU), Ternopil, Ukraine
| | - Natalia Mitina
- Lviv National Polytechnic University (LNPU), Lviv, Ukraine
| | | | | |
Collapse
|
5
|
Functions of metallothioneins and a system of antioxidant defense under the effect of Co- and Zn-containing nanocomposites on crucian carp (Carassius auratus gibelio). UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
6
|
Falfushynska H, Gnatyshyna L, Stoliar O, Mitina N, Skorokhoda T, Filyak Y, Zaichenko A, Stoika R. Evaluation of biotargeting and ecotoxicity of Co²⁺-containing nanoscale polymeric complex by applying multi-marker approach in bivalve mollusk Anodonta cygnea. CHEMOSPHERE 2012; 88:925-936. [PMID: 22464855 DOI: 10.1016/j.chemosphere.2012.02.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
Cobalt (Co(2+)) is present in many nanoscaled materials created for various applications. The key goal of our study was to develop sensitive approaches for assessing the bio-risks associated with using novel Co(2+)-containing nanoscaled polymeric complex (Co-NC). Freshwater bivalve mollusk Anodonta cygnea (Unionidae) was subjected to 14 d action of the developed Co-NC, as well as of Co(2+) applied in the corresponding concentration (50 μg L(-1)) or polymeric substance (PS). All experimental groups under study have demonstrated signs of toxic targeting, notably changes in DNA characteristics, oxidative stress (with particularities in each exposed group) and activation of anaerobiosis (Co(2+) and Co-NC). However, the group exposed to Co-NC showed some advantages that can be related to the activation of metallothionein (MT) function (increase in the level of MT-related SH-groups (MT-SH)): low level of oxyradical formation, no increase in protein carbonylation and vitellogenin-like proteins concentration unlike in Co(2+) and PS exposed groups. On the other hand, Co(2+) increased metal (Co, Cu, Zn and Cd) binding to MT (MT-Me) without changes in MT-SH level jointly with activation of oxyradical formation and apoptosis and decreasing of lysosomal membrane stability. PS per se initiated unbalanced changes in activities of the biotransformation enzymes ethoxyresorufin-O-deethylase and glutathione-S-transferase. Thus, Co(2+) complexing with the developed PS prevented bio-toxic effects of free Co(2+) ions and PS per se, at least in the studied hydrobiont. The MT-SH was the main distinguishing index of Co-NC group selected by classification and regression tree analysis.
Collapse
|
7
|
Paul-Pont I, Gonzalez P, Montero N, de Montaudouin X, Baudrimont M. Cloning, characterization and gene expression of a metallothionein isoform in the edible cockle Cerastoderma edule after cadmium or mercury exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 75:119-126. [PMID: 21963253 DOI: 10.1016/j.ecoenv.2011.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
Metallothionein (MT) genes encode crucial metal-binding proteins ubiquitously expressed in living organisms and which play important roles in homeostasis of essential metals and detoxification processes. Here, the molecular organization of the first metallothionein gene of the edible cockle Cerastoderma edule and its expression after cadmium (Cd) or mercury (Hg) exposures were determined. The resulting sequence (Cemt1) exhibits unusual features. The full length cDNA encodes a protein of 73 amino acids with nine classical Cys-X((1-3))-Cys motifs, but also one Cys-Cys not generally found in molluscan MT. Moreover, characterization of the molecular organization of the Cemt1 gene revealed two different alleles (A1 and A2) with length differences due to large deletion events in their intronic sequences involving direct Short Interspersed repeated Elements (SINE), while their exonic sequences were identical. To our knowledge, such large excision mechanisms have never before been reported in a bivalve gene sequence. After 10 days of Cd exposure at environmentally relevant doses, quantitative real-time PCR revealed a strong induction of Cemt1 in gills of C. edule. Surprisingly, neither induction of the Cemt1 gene nor of MT protein was shown after Hg exposure, despite the fact that this organism is able to bioaccumulate a high amount of this trace metal which is theoretically one of the most powerful inducers of MT biosynthesis.
Collapse
Affiliation(s)
- Ika Paul-Pont
- Université Bordeaux 1, Station Marine d'Arcachon, Arcachon, France.
| | | | | | | | | |
Collapse
|
8
|
Serra-Batiste M, Cols N, Alcaraz LA, Donaire A, González-Duarte P, Vašák M. The metal-binding properties of the blue crab copper specific CuMT-2: a crustacean metallothionein with two cysteine triplets. J Biol Inorg Chem 2010; 15:759-76. [DOI: 10.1007/s00775-010-0644-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
9
|
Vergani L. Metallothioneins in Aquatic Organisms: Fish, Crustaceans, Molluscs, and Echinoderms. METALLOTHIONEINS AND RELATED CHELATORS 2009. [DOI: 10.1039/9781847559531-00199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metallothioneins (MTs) have been described in a wide range of organisms, from bacteria to mammals, thus representing an interesting example of evolutionary molecular adaptation. If the moderate variability of MTs across phylogenetically distant organisms reflects their highly conserved function, the specific environmental requirements may explain the multiplicity of isoforms also in the same organism. The MT polymorphism is particularly important in invertebrates with respect to vertebrates. This review is an attempt to summarize the knowledge about MTs from aquatic animals, both vertebrates and invertebrates, to gain new insights into the structure-function relationship of this class of proteins. The large and increasing literature on MTs indicates that MTs from aquatic vertebrates are rather similar to mammalian counterparts, whereas a variety of structures have been described in invertebrates. Although the prototypical αβ-domain organization of vertebrate MTs has been observed in most invertebrate isoforms, some invertebrate MTs display alternative structures in which the canonical organization has been modified, such as the ββ-domain, the αββ-domain, and the multiple α-domain structures of oyster MTs, and the inverted βα-domain organization of sea urchin MTs. In this review we emphasize three major taxa of aquatic invertebrates, the molluscs, the crustaceans and the echinoderms, although some data have been reported for other invertebrates.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biology, University of Genova I-16132 Genova Italy
| |
Collapse
|
10
|
Wan X, Freisinger E. The plant metallothionein 2 from Cicer arietinum forms a single metal–thiolate cluster. Metallomics 2009; 1:489-500. [DOI: 10.1039/b906428a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Digilio G, Bracco C, Vergani L, Botta M, Osella D, Viarengo A. The cadmium binding domains in the metallothionein isoform Cd7-MT10 from Mytilus galloprovincialis revealed by NMR spectroscopy. J Biol Inorg Chem 2008; 14:167-78. [DOI: 10.1007/s00775-008-0435-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
12
|
Orihuela R, Domènech J, Bofill R, You C, Mackay EA, Kägi JHR, Capdevila M, Atrian S. The metal-binding features of the recombinant mussel Mytilus edulis MT-10-IV metallothionein. J Biol Inorg Chem 2008; 13:801-12. [PMID: 18389296 DOI: 10.1007/s00775-008-0367-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/20/2008] [Indexed: 11/29/2022]
Abstract
In contrast with the paradigmatic mammalian metallothioneins (MTs), mollusc MT systems consist at least of a high-cadmium induced form, possibly involved in detoxification, and another isoform either constitutive or regulated by essential metals and probably associated with housekeeping metabolism. With the aim of providing a deeper characterization of the coordination features of a molluscan MT peptide of the latter kind, we have analyzed here the metal-binding abilities of the recombinant MeMT-10-IV isoform of Mytilus edulis (MeMT). Also, comparison with other MTs of this type has been undertaken. A synthetic complementary DNA was constructed, cloned and expressed into two Escherichia coli systems. Upon zinc coordination, MeMT folds in vivo into highly chiral and stable Zn(7) complexes, with an exceptional reluctance to fully substitute cadmium(II) and/or copper(I) for zinc(II). In vivo cadmium binding leads to homometallic Cd(7) complexes that structurally differ from any of the in vitro prepared Cd(7) complexes. Homometallic Cu-MeMT can only be obtained in vitro from Zn(7)-MeMT after a great molar excess of copper(I) has been added. In vivo, two different heterometallic Zn,Cu-MeMT complexes are recovered, which nicely correspond to two distinct stages of the in vitro zinc/copper replacement. These MeMT metal-binding features are consistent with a physiological role related to basal/housekeeping metal, mainly zinc, metabolism, and confirm the correspondence between the MeMT gene response pattern and the functional properties of the encoded protein.
Collapse
Affiliation(s)
- Rubén Orihuela
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Freisinger E. Plant MTs—long neglected members of the metallothionein superfamily. Dalton Trans 2008:6663-75. [DOI: 10.1039/b809789e] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Peroza EA, Freisinger E. Metal ion binding properties of Tricium aestivum Ec-1 metallothionein: evidence supporting two separate metal thiolate clusters. J Biol Inorg Chem 2007; 12:377-91. [PMID: 17211631 DOI: 10.1007/s00775-006-0195-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
Metallothioneins are ubiquitous low molecular mass, cysteine-rich proteins with an extraordinary high metal ion content. In contrast to the situation for the vertebrate forms, information regarding the properties of members of the plant metallothionein family is still scarce. We present the first spectroscopic investigation aiming to elucidate the metal ion binding properties and metal thiolate cluster formation of the Triticum [corrected] aestivum (common wheat) early cysteine-labeled plant metallothionein (Ec-1). For this, the protein was overexpressed recombinantly in Escherichia coli. Recombinant Ec-1 is able to bind a total of six divalent d10 metal ions in a metal thiolate cluster arrangement. The pH stability of the zinc and cadmium clusters investigated is comparable to stabilities found for mammalian metallothioneins. Using cobalt(II) as a paramagnetic probe, we were able to show the onset of cluster formation taking place with the addition of a fourth metal ion equivalent to the apo protein. Limited proteolytic digestion experiments complemented with mass spectrometry and amino acid analysis provide clear evidence for the presence of two separate metal thiolate clusters. One cluster consists of four metal ions and is made up by a part of the protein containing 11 cysteine residues, comparable to the situation found in the mammalian counterparts. The second cluster features two metal ions coordinated by six cysteine residues. The occurrence of the latter cluster is unprecedented in the metallothionein superfamily so far.
Collapse
Affiliation(s)
- Estevão A Peroza
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | | |
Collapse
|
15
|
Abstract
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.
Collapse
Affiliation(s)
- Laura Vergani
- Department of Biophysical Sciences and Technologies, M. & O. University of Genova, Italy.
| | | | | | | | | |
Collapse
|
16
|
Tanguy A, Mura C, Moraga D. Cloning of a metallothionein gene and characterization of two other cDNA sequences in the Pacific oyster Crassostrea gigas (CgMT1). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2001; 55:35-47. [PMID: 11551620 DOI: 10.1016/s0166-445x(01)00160-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metallothionein (MT) genes encode essential metal-binding proteins involved in metallic homeostasis and detoxification in living organisms. Here, we describe the structure of the first Pacific oyster Crassostrea gigas metallothionein (CgMT1) gene and the sequences of two other MT cDNA. The CgMT1 gene sequence contains three coding exons plus a 5' entirely non-coding exon, and the predicted protein contains 21 cysteine residues organized in Cys-X-Cys motifs as classically described for MTs. The three cDNA sequences present few substitutions in either coding sequence or UTRs. Induction of these MT-mRNA in heavy metal-treated oysters (i.e. cadmium) was confirmed by Northern blot analysis and RT-PCR and suggests a potential specific tissue expression rate. Southern blot analysis suggested the presence of multiple CgMT genes, and allowed the detection of restriction fragment length polymorphisms (RFLPs). Although the CgMT1 coding sequence showed 30-73% nucleotide identities with known sequences in other mollusks, it included the specific motif Cys-X-Cys-X(3)-Cys-Thr-Gly-X-X-X-Cys-X-Cys-X(5)-Cys-X-Cys-Lys found in Mollusk family 2. Marine bivalves are commonly used as pollution bioindicators, thus the development of genetic markers based on CgMT1 polymorphism will allow a monitoring of heavy metal exposure in anthropogenically disturbed ecosystems.
Collapse
Affiliation(s)
- A Tanguy
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR CNRS 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise, Place Nicolas Copernic, 29280 Plouzane, France
| | | | | |
Collapse
|
17
|
Valls M, Bofill R, Gonzalez-Duarte R, Gonzalez-Duarte P, Capdevila M, Atrian S. A new insight into metallothionein (MT) classification and evolution. The in vivo and in vitro metal binding features of Homarus americanus recombinant MT. J Biol Chem 2001; 276:32835-43. [PMID: 11413132 DOI: 10.1074/jbc.m102151200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the synthesis and characterization of a Homarus americanus MT-cDNA (MTH) through retrotranscription of MTH-mRNA from metal-injected lobsters. Heterologous Escherichia coli expression in zinc- and copper-supplemented medium was achieved for MTH, the two domains betabetaMTH and betaalphaMTH and three site-directed mutants, betabetaC9H, betaalphaC37H, and betaalphaE31C/T34C. The in vivo conformed metal complexes and the in vitro substituted cadmium aggregates were characterized. Major stoichiometries of M(II)6-MTH for the entire MTH and M(II)3-betabetaMTH and M(II)3-betaalphaMTH for the independent domains fully validated our expression system. A low affinity binding site for a seventh Zn(II) in the in vivo synthesized MTH was located in the betaalpha domain. Additionally, minor M(II)4 species were found for each domain. Both single Cys to His mutations exhibited a similar reduction of their in vivo zinc binding ability but differed in their cadmium binding behavior when compared with the wild-type forms. Conversely, the double mutant showed an enhanced zinc and cadmium binding capacity. In vivo synthesis of MTH and of its independent domains in the presence of copper only afforded heterometallic copper-zinc species. These findings allow consideration of MTH as a zinc thionein and question the view of all crustacea MT structures as copper thioneins. Furthermore, a new approach for the evolutionary and functional classification of MT is proposed, based on the stoichiometry of metal-MT species and molecular phylogenetic analysis.
Collapse
Affiliation(s)
- M Valls
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Dallinger R, Wang Y, Berger B, Mackay EA, Kägi JH. Spectroscopic characterization of metallothionein from the terrestrial snail, Helix pomatia. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4126-33. [PMID: 11488904 DOI: 10.1046/j.1432-1327.2001.02318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Cd-sequestering metallothionein (MT) isoform isolated from the midgut gland of Roman snails exposed to Cd supplements in the feed was characterized by compositional and spectroscopic analysis. The preparations contained nearly 5 mol of Cd, small amounts of Cu and about 1 mol of Zn per chain mass of 6620 Da, in numerical agreement with the apoprotein's measured capacity of firmly binding a maximum of 6 equivalents of Cd per molecule. As with other Cd-containing MTs the occurrence of a prominent Cd-mercaptide-specific shoulder at 250 nm in its absorption spectrum showed that Cd is complexed in tetrahedral symmetry by the cysteine residues of the protein, and the multiphasic ellipticity profile in the CD spectrum revealed that these complexes are joined to form one or more oligonuclear Cd-mercapto clusters. Both spectral features vanished with the removal of the metal but were reconstituted to maximum amplitudes by readdition of Cd to the metal-free apoprotein, provided precautions were taken to prevent air oxidation of the latter. Quantitative analysis of snail MT reconstituted with Cd established that the 18 cysteine side chains bind the metal in a 3-to-1 ratio; spectroscopic studies on fractionally restored forms demonstrated that the six Cd ions were bound to the apoprotein molecule in succession in two sets of three Cd ions each. Thus, one can infer from the observed stoichiometry and the coordinating preferences of Cd that this gastropod MT, like the Cd-bearing MTs of marine crustaceans, harboured the metal in two separate cyclically constructed Cd3Cys9 clusters. The snail clusters differed, however, from other MTs in their response to acidification. Their protolytic dissociation proceeded through two separate protonation steps with the manifestation of spectroscopically distinguishable intermediate forms. Thus, this snail isoform displays in its metal composition and its chemical and spectroscopic features both similarities and differences to other animal kingdom MTs. Its properties suggest that it serves an important role in the protection of the terrestrial gastropod from Cd.
Collapse
Affiliation(s)
- R Dallinger
- Institut für Zoologie und Limnologie (Abteilung Okophysiologie), der Universität Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
19
|
Brouwer M, Brouwer TH. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Arch Biochem Biophys 1998; 351:257-64. [PMID: 9514663 DOI: 10.1006/abbi.1997.0568] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blue crab (Callinectes sapidus) has a very dynamic copper metabolism associated with the biosynthesis and degradation of its respiratory pigment hemocyanin. In this study we report on the cellular defense mechanisms used by the crab to protect itself from copper toxicity. Short-term copper-exposure studies, conducted by incubating hepatopancreas tissue explants in copper-containing medium, show that copper taken up by the cells during the first 60 min combines with low-molecular-weight copper complex(es), which include Cu(I)-glutathione. Thereafter, copper binds to newly synthesized metallothionein (MT), with a concomitant decrease in Cu(I)-glutathione. Copper does not displace zinc from the endogenous ZnMT pool. Long-term exposure by means of copper-rich diets results in the synthesis of two MT isoforms in the hepatopancreas: CuMT-I and CuMT-II (D. Schlenk and M. Brouwer, 1991, Aquat. Toxicol. 20, 25-34). Transfer of copper from Cu(I)-glutathione to apoMT-I and apoMT-II can be accomplished in vitro. Cu(I) binding by the two isoforms is very different. Cu(I) binds to apoMT-I in a strictly cooperative manner. No partially filled Cu(I)-thiolate clusters appear to be present. In contrast, the Cu(I)-thiolate clusters in MT-II are formed only after more than four Cu(I) ions are bound. Long-term copper exposure leads to increased activity of two antioxidant enzymes: glutathione peroxidase and manganese superoxide dismutase (SOD). No CuZnSOD is found. Activities of catalase and glutathione reductase and the intracellular levels of glutathione are unaffected by copper. The defense mechanisms are not entirely sufficient for preventing copper-induced oxidative damage. Levels of oxidized lipids are significantly higher in copper-exposed crabs, but oxidized protein levels are nearly the same.
Collapse
Affiliation(s)
- M Brouwer
- Institute of Marine Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi, 39564, USA.
| | | |
Collapse
|
20
|
|
21
|
Sparla AM, Overnell J. The binding of cadmium to crab cadmium metallothionein. A polarographic investigation. Biochem J 1990; 267:539-40. [PMID: 2334407 PMCID: PMC1131323 DOI: 10.1042/bj2670539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differential pulse polarography was used to monitor the titration of crab (Cancer pagurus) cadmium metallothionein with additional cadmium. Scatchard analysis was used to calculate an apparent second-order dissociation constant. A mean value of 3.60 x 10(-7) M was calculated at 20 degrees C in 0.016 M-NaClO4, pH 8.0.
Collapse
Affiliation(s)
- A M Sparla
- Dunstaffnage Marine Laboratory, Scotland, U.K
| | | |
Collapse
|