1
|
Bocharova O, Makarava N, Pandit NP, Molesworth K, Baskakov IV. Multiple steps of prion strain adaptation to a new host. Front Neurosci 2024; 18:1329010. [PMID: 38362022 PMCID: PMC10867973 DOI: 10.3389/fnins.2024.1329010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Bocharova O, Makarava N, Pandit NP, Molesworth K, Baskakov IV. Multiple steps of prion strain adaptation to a new host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563743. [PMID: 37961127 PMCID: PMC10634783 DOI: 10.1101/2023.10.24.563743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The transmission of prions across species is a critical aspect of their dissemination among mammalian hosts, including humans. This process often necessitates strain adaptation. In this study, we sought to investigate the mechanisms underlying prion adaptation while mitigating biases associated with the history of cross-species transmission of natural prion strains. To achieve this, we utilized the synthetic hamster prion strain S05. Propagation of S05 using mouse PrPC in Protein Misfolding Cyclic Amplification did not immediately overcome the species barrier. This finding underscores the involvement of factors beyond disparities in primary protein structures. Subsequently, we performed five serial passages to stabilize the incubation time to disease in mice. The levels of PrPSc increased with each passage, reaching a maximum at the third passage, and declining thereafter. This suggests that only the initial stage of adaptation is primarily driven by an acceleration in PrPSc replication. During the protracted adaptation to a new host, we observed significant alterations in the glycoform ratio and sialylation status of PrPSc N-glycans. These changes support the notion that qualitative modifications in PrPSc contribute to a more rapid disease progression. Furthermore, consistent with the decline in sialylation, a cue for "eat me" signaling, the newly adapted strain exhibited preferential colocalization with microglia. In contrast to PrPSc dynamics, the intensity of microglia activation continued to increase after the third passage in the new host. In summary, our study elucidates that the adaptation of a prion strain to a new host is a multi-step process driven by several factors.
Collapse
Affiliation(s)
- Olga Bocharova
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, Baltimore, Maryland, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Makarava N, Baskakov IV. Role of sialylation of N-linked glycans in prion pathogenesis. Cell Tissue Res 2023; 392:201-214. [PMID: 35088180 PMCID: PMC9329487 DOI: 10.1007/s00441-022-03584-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/12/2022] [Indexed: 01/10/2023]
Abstract
Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of the prion protein or PrPC. PrPC and PrPSc are posttranslationally modified with N-linked glycans, which are sialylated at the terminal positions. More than 30 years have passed since the first characterization of the composition and structural diversity of N-linked glycans associated with the prion protein, yet the role of carbohydrate groups that constitute N-glycans and, in particular, their terminal sialic acid residues in prion disease pathogenesis remains poorly understood. A number of recent studies shed a light on the role of sialylation in the biology of prion diseases. This review article discusses several mechanisms by which terminal sialylation dictates the spread of PrPSc across brain regions and the outcomes of prion infection in an organism. In particular, relationships between the sialylation status of PrPSc and important strain-specific features including lymphotropism, neurotropism, and neuroinflammation are discussed. Moreover, emerging evidence pointing out the roles of sialic acid residues in prion replication, cross-species transmission, strain competition, and strain adaptation are reviewed. A hypothesis according to which selective, strain-specified recruitment of PrPC sialoglycoforms dictates unique strain-specific disease phenotypes is examined. Finally, the current article proposes that prion strains evolve as a result of a delicate balance between recruiting highly sialylated glycoforms to avoid an "eat-me" response by glia and limiting heavily sialylated glycoforms for enabling rapid prion replication.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Makarava N, Katorcha E, Chang JCY, Lau JTY, Baskakov IV. Deficiency in ST6GAL1, one of the two α2,6-sialyltransferases, has only a minor effect on the pathogenesis of prion disease. Front Mol Biosci 2022; 9:1058602. [PMID: 36452458 PMCID: PMC9702343 DOI: 10.3389/fmolb.2022.1058602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 10/22/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by misfolding of the normal cellular form of the prion protein or PrPC, into a disease-associated self-replicating state or PrPSc. PrPC and PrPSc are posttranslationally modified with N-linked glycans, in which the terminal positions occupied by sialic acids residues are attached to galactose predominantly via α2-6 linkages. The sialylation status of PrPSc is an important determinant of prion disease pathogenesis, as it dictates the rate of prion replication and controls the fate of prions in an organism. The current study tests whether a knockout of ST6Gal1, one of the two mammalian sialyltransferases that catalyze the sialylation of glycans via α2-6 linkages, reduces the sialylation status of PrPSc and alters prion disease pathogenesis. We found that a global knockout of ST6Gal1 in mice significantly reduces the α2-6 sialylation of the brain parenchyma, as determined by staining with Sambucus Nigra agglutinin. However, the sialylation of PrPSc remained stable and the incubation time to disease increased only modestly in ST6Gal1 knockout mice (ST6Gal1-KO). A lack of significant changes in the PrPSc sialylation status and prion pathogenesis is attributed to the redundancy in sialylation and, in particular, the plausible involvement of a second member of the sialyltransferase family that sialylate via α2-6 linkages, ST6Gal2.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph T. Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
6
|
Adhikari UK, Sakiz E, Habiba U, Mikhael M, Senesi M, David MA, Guillemin GJ, Ooi L, Karl T, Collins S, Tayebi M. Treatment of microglia with Anti-PrP monoclonal antibodies induces neuronal apoptosis in vitro. Heliyon 2021; 7:e08644. [PMID: 35005289 PMCID: PMC8715334 DOI: 10.1016/j.heliyon.2021.e08644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 12/16/2021] [Indexed: 11/04/2022] Open
Abstract
Previous reports highlighted the neurotoxic effects caused by some motif-specific anti-PrPC antibodies in vivo and in vitro. In the current study, we investigated the detailed alterations of the proteome with liquid chromatography–mass spectrometry following direct application of anti-PrPC antibodies on mouse neuroblastoma cells (N2a) and mouse primary neuronal (MPN) cells or by cross-linking microglial PrPC with anti-PrPC antibodies prior to co-culture with the N2a/MPN cells. Here, we identified 4 (3 upregulated and 1 downregulated) and 17 (11 upregulated and 6 downregulated) neuronal apoptosis-related proteins following treatment of the N2a and N11 cell lines respectively when compared with untreated cells. In contrast, we identified 1 (upregulated) and 4 (2 upregulated and 2 downregulated) neuronal apoptosis-related proteins following treatment of MPN cells and N11 when compared with untreated cells. Furthermore, we also identified 3 (2 upregulated and 1 downregulated) and 2 (1 upregulated and 1 downregulated) neuronal apoptosis-related related proteins following treatment of MPN cells and N11 when compared to treatment with an anti-PrP antibody that lacks binding specificity for mouse PrP. The apoptotic effect of the anti-PrP antibodies was confirmed with flow cytometry following labelling of Annexin V-FITC. The toxic effects of the anti-PrP antibodies was more intense when antibody-treated N11 were co-cultured with the N2a and the identified apoptosis proteome was shown to be part of the PrPC-interactome. Our observations provide a new insight into the prominent role played by microglia in causing neurotoxic effects following treatment with anti-PrPC antibodies and might be relevant to explain the antibody mediated toxicity observed in other related neurodegenerative diseases such as Alzheimer. Antibody cross-linking neuronal PrPC induces apoptosis. Antibody cross-linking microglial PrPC induces neuronal apoptosis. Different apoptotic pathways were triggered by specific anti-PrP antibody treatments.
Collapse
|
7
|
Cazzaniga FA, Bistaffa E, De Luca CMG, Bufano G, Indaco A, Giaccone G, Moda F. Sporadic Creutzfeldt-Jakob disease: Real-Time Quaking Induced Conversion (RT-QuIC) assay represents a major diagnostic advance. Eur J Histochem 2021; 65:3298. [PMID: 34657408 PMCID: PMC8529530 DOI: 10.4081/ejh.2021.3298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare and fatal neurodegenerative disorder with an incidence of 1.5 to 2 cases per million population/year. The disease is caused by a proteinaceous infectious agent, named prion (or PrPSc), which arises from the conformational conversion of the cellular prion protein (PrPC). Once formed, PrPSc interacts with the normally folded PrPC coercing it to undergo similar structural rearrangement. The disease is highly heterogeneous from a clinical and neuropathological point of view. The origin of this variability lies in the aberrant structures acquired by PrPSc. At least six different sCJD phenotypes have been described and each of them is thought to be caused by a peculiar PrPSc strain. Definitive sCJD diagnosis requires brain analysis with the aim of identifying intracerebral accumulation of PrPSc which currently represents the only reliable biomarker of the disease. Clinical diagnosis of sCJD is very challenging and is based on the combination of several clinical, instrumental and laboratory tests representing surrogate disease biomarkers. Thanks to the advent of the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, PrPSc was found in several peripheral tissues of sCJD patients, sometimes even before the clinical onset of the disease. This discovery represents an important step forward for the clinical diagnosis of sCJD. In this manuscript, we present an overview of the current applications and future perspectives of RT-QuIC in the field of sCJD diagnosis.
Collapse
Affiliation(s)
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | | | - Giuseppe Bufano
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Antonio Indaco
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan.
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5-Neuropathology, Milan, Italy.
| |
Collapse
|
8
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
9
|
Bistaffa E, Marín-Moreno A, Espinosa JC, De Luca CMG, Cazzaniga FA, Portaleone SM, Celauro L, Legname G, Giaccone G, Torres JM, Moda F. PMCA-generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice. eLife 2021; 10:65311. [PMID: 33851575 PMCID: PMC8064759 DOI: 10.7554/elife.65311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA). Methods: In this work, we have challenged PMCA-generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology. Results: All inoculated mice developed mild spongiform changes, astroglial activation, and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate. Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious. Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer’s Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (SPEEDY) to FM; by the Spanish Ministerio de Economía y Competitividad (grant AGL2016-78054-R [AEI/FEDER, UE]) to JMT and JCE; AM-M was supported by a fellowship from the INIA (FPI-SGIT-2015-02).
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Sara Maria Portaleone
- ASST Santi Paolo e Carlo, Department of Health Sciences, Otolaryngology Unit, Università Degli Studi di Milano, Milan, Italy
| | - Luigi Celauro
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Department of Neuroscience, Laboratory of Prion Biology, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milan, Italy
| |
Collapse
|
10
|
Kushwaha R, Sinha A, Makarava N, Molesworth K, Baskakov IV. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun 2021; 9:22. [PMID: 33546775 PMCID: PMC7866439 DOI: 10.1186/s40478-021-01123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Under normal conditions, astrocytes perform a number of important physiological functions centered around neuronal support and synapse maintenance. In neurodegenerative diseases including Alzheimer’s, Parkinson’s and prion diseases, astrocytes acquire reactive phenotypes, which are sustained throughout the disease progression. It is not known whether in the reactive states associated with prion diseases, astrocytes lose their ability to perform physiological functions and whether the reactive states are neurotoxic or, on the contrary, neuroprotective. The current work addresses these questions by testing the effects of reactive astrocytes isolated from prion-infected C57BL/6J mice on primary neuronal cultures. We found that astrocytes isolated at the clinical stage of the disease exhibited reactive, pro-inflammatory phenotype, which also showed downregulation of genes involved in neurogenic and synaptogenic functions. In astrocyte-neuron co-cultures, astrocytes from prion-infected animals impaired neuronal growth, dendritic spine development and synapse maturation. Toward examining the role of factors secreted by reactive astrocytes, astrocyte-conditioned media was found to have detrimental effects on neuronal viability and synaptogenic functions via impairing synapse integrity, and by reducing spine size and density. Reactive microglia isolated from prion-infected animals were found to induce phenotypic changes in primary astrocytes reminiscent to those observed in prion-infected mice. In particular, astrocytes cultured with reactive microglia-conditioned media displayed hypertrophic morphology and a downregulation of genes involved in neurogenic and synaptogenic functions. In summary, the current study provided experimental support toward the non-cell autonomous mechanisms behind neurotoxicity in prion diseases and demonstrated that the astrocyte reactive phenotype associated with prion diseases is synaptotoxic.
Collapse
|
11
|
Sangeetham SB, Engelke AD, Fodor E, Krausz SL, Tatzelt J, Welker E. The G127V variant of the prion protein interferes with dimer formation in vitro but not in cellulo. Sci Rep 2021; 11:3116. [PMID: 33542378 PMCID: PMC7862613 DOI: 10.1038/s41598-021-82647-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Scrapie prion, PrPSc, formation is the central event of all types of transmissible spongiform encephalopathies (TSEs), while the pathway with possible intermediates and their mechanism of formation from the normal isoform of prion (PrP), remains not fully understood. Recently, the G127V variant of the human PrP is reported to render the protein refractory to transmission of TSEs, via a yet unknown mechanism. Molecular dynamics studies suggested that this mutation interferes with the formation of PrP dimers. Here we analyze the dimerization of 127G and 127VPrP, in both in vitro and a mammalian cell culture system. Our results show that while molecular dynamics may capture the features affecting dimerization in vitro, G127V inhibiting dimer formation of PrP, these are not evidenced in a more complex cellular system.
Collapse
Affiliation(s)
- Sudheer Babu Sangeetham
- Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Anna Dorothee Engelke
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Sarah Laura Krausz
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, 1085, Hungary
- Aktogen Hungary Ltd., Kecskemét, 6000, Hungary
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany.
- Cluster of Excellence RESOLV, Bochum, Germany.
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
12
|
From Posttranslational Modifications to Disease Phenotype: A Substrate Selection Hypothesis in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22020901. [PMID: 33477465 PMCID: PMC7830165 DOI: 10.3390/ijms22020901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
A number of neurodegenerative diseases including prion diseases, tauopathies and synucleinopathies exhibit multiple clinical phenotypes. A diversity of clinical phenotypes has been attributed to the ability of amyloidogenic proteins associated with a particular disease to acquire multiple, conformationally distinct, self-replicating states referred to as strains. Structural diversity of strains formed by tau, α-synuclein or prion proteins has been well documented. However, the question how different strains formed by the same protein elicit different clinical phenotypes remains poorly understood. The current article reviews emerging evidence suggesting that posttranslational modifications are important players in defining strain-specific structures and disease phenotypes. This article put forward a new hypothesis referred to as substrate selection hypothesis, according to which individual strains selectively recruit protein isoforms with a subset of posttranslational modifications that fit into strain-specific structures. Moreover, it is proposed that as a result of selective recruitment, strain-specific patterns of posttranslational modifications are formed, giving rise to unique disease phenotypes. Future studies should define whether cell-, region- and age-specific differences in metabolism of posttranslational modifications play a causative role in dictating strain identity and structural diversity of strains of sporadic origin.
Collapse
|
13
|
Baskakov IV. Role of sialylation in prion disease pathogenesis and prion structure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:31-52. [PMID: 32958238 DOI: 10.1016/bs.pmbts.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein or PrPC. Sialylation of the prion protein, a terminal modification of N-linked glycans, was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis is not well understood. This chapter summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss recent data suggesting that sialylation of PrPSc N-linked glycans determines the fate of prion infection in an organism and control prion lymphotropism. Second, emerging evidence pointing out at the role N-glycans in neuroinflammation are discussed. Thirds, this chapter reviews a mechanism postulating that sialylated N-linked glycans are important players in defining strain-specific structures. A new hypothesis according to which individual strain-specific PrPSc structures govern selection of PrPC sialoglycoforms is discussed. Finally, this chapter explain how N-glycan sialylation control the prion replication and strain interference. In summary, comprehensive review of our knowledge on N-linked glycans and their sialylation provided in this chapter helps to answer important questions of prion biology that have been puzzling for years.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Department of Anatomy and Neurobiology, and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
14
|
Makarava N, Chang JCY, Molesworth K, Baskakov IV. Posttranslational modifications define course of prion strain adaptation and disease phenotype. J Clin Invest 2020; 130:4382-4395. [PMID: 32484800 PMCID: PMC7410085 DOI: 10.1172/jci138677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications are a common feature of proteins associated with neurodegenerative diseases including prion protein (PrPC), tau, and α-synuclein. Alternative self-propagating protein states or strains give rise to different disease phenotypes and display strain-specific subsets of posttranslational modifications. The relationships between strain-specific structure, posttranslational modifications, and disease phenotype are poorly understood. We previously reported that among hundreds of PrPC sialoglycoforms expressed by a cell, individual prion strains recruited PrPC molecules selectively, according to the sialylation status of their N-linked glycans. Here we report that transmission of a prion strain to a new host is accompanied by a dramatic shift in the selectivity of recruitment of PrPC sialoglycoforms, giving rise to a self-propagating scrapie isoform (PrPSc) with a unique sialoglycoform signature and disease phenotype. The newly emerged strain has the shortest incubation time to disease and is characterized by colocalization of PrPSc with microglia and a very profound proinflammatory response, features that are linked to a unique sialoglycoform composition of PrPSc. The current work provides experimental support for the hypothesis that strain-specific patterns of PrPSc sialoglycoforms formed as a result of selective recruitment dictate strain-specific disease phenotypes. This work suggests a causative relationship between a strain-specific structure, posttranslational modifications, and disease phenotype.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Lathe R, Darlix JL. Prion protein PrP nucleic acid binding and mobilization implicates retroelements as the replicative component of transmissible spongiform encephalopathy. Arch Virol 2020; 165:535-556. [PMID: 32025859 PMCID: PMC7024060 DOI: 10.1007/s00705-020-04529-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/13/2019] [Indexed: 12/21/2022]
Abstract
The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element – retroelement nucleic acid – bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh School of Medicine, Edinburgh, UK. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, Russia.
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Laboratory of Bioimaging and Pathologies (Unité Mixte de Recherche 7021), Université de Strasbourg, Illkirch, France.
| |
Collapse
|
16
|
Makarava N, Chang JCY, Baskakov IV. Region-Specific Sialylation Pattern of Prion Strains Provides Novel Insight into Prion Neurotropism. Int J Mol Sci 2020; 21:ijms21030828. [PMID: 32012886 PMCID: PMC7037812 DOI: 10.3390/ijms21030828] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mammalian prions are unconventional infectious agents that invade and replicate in an organism by recruiting a normal form of a prion protein (PrPC) and converting it into misfolded, disease-associated state referred to as PrPSc. PrPC is posttranslationally modified with two N-linked glycans. Prion strains replicate by selecting substrates from a large pool of PrPC sialoglycoforms expressed by a host. Brain regions have different vulnerability to prion infection, however, molecular mechanisms underlying selective vulnerability is not well understood. Toward addressing this question, the current study looked into a possibility that sialylation of PrPSc might be involved in defining selective vulnerability of brain regions. The current work found that in 22L -infected animals, PrPSc is indeed sialylated in a region dependent manner. PrPSc in hippocampus and cortex was more sialylated than PrPSc from thalamus and stem. Similar trends were also observed in brain materials from RML- and ME7-infected animals. The current study established that PrPSc sialylation status is indeed region-specific. Together with previous studies demonstrating that low sialylation status accelerates prion replication, this work suggests that high vulnerability of certain brain region to prion infection could be attributed to their low sialylation status.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.M.); (J.C.-Y.C.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.M.); (J.C.-Y.C.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.M.); (J.C.-Y.C.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Correspondence:
| |
Collapse
|
17
|
Honda R. Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis. Biophys J 2019; 114:885-892. [PMID: 29490248 DOI: 10.1016/j.bpj.2017.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrPSc. Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP.
Collapse
Affiliation(s)
- Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Department of Molecular Pathobiochemistry, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
18
|
Baskakov IV, Katorcha E, Makarava N. Prion Strain-Specific Structure and Pathology: A View from the Perspective of Glycobiology. Viruses 2018; 10:v10120723. [PMID: 30567302 PMCID: PMC6315442 DOI: 10.3390/v10120723] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/15/2023] Open
Abstract
Prion diseases display multiple disease phenotypes characterized by diverse clinical symptoms, different brain regions affected by the disease, distinct cell tropism and diverse PrPSc deposition patterns. The diversity of disease phenotypes within the same host is attributed to the ability of PrPC to acquire multiple, alternative, conformationally distinct, self-replicating PrPSc states referred to as prion strains or subtypes. Structural diversity of PrPSc strains has been well documented, yet the question of how different PrPSc structures elicit multiple disease phenotypes remains poorly understood. The current article reviews emerging evidence suggesting that carbohydrates in the form of sialylated N-linked glycans, which are a constitutive part of PrPSc, are important players in defining strain-specific structures and disease phenotypes. This article introduces a new hypothesis, according to which individual strain-specific PrPSc structures govern selection of PrPC sialoglycoforms that form strain-specific patterns of carbohydrate epitopes on PrPSc surface and contribute to defining the disease phenotype and outcomes.
Collapse
Affiliation(s)
- Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MA 21201, USA.
| |
Collapse
|
19
|
Makarava N, Savtchenko R, Lasch P, Beekes M, Baskakov IV. Preserving prion strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol Commun 2018; 6:92. [PMID: 30208966 PMCID: PMC6134792 DOI: 10.1186/s40478-018-0597-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Last decade witnessed an enormous progress in generating authentic infectious prions or PrPSc in vitro using recombinant prion protein (rPrP). Previous work established that rPrP that lacks posttranslational modification is able to support replication of highly infectious PrPSc with assistance of cofactors of polyanionic nature and/or lipids. Unexpectedly, previous studies also revealed that seeding of rPrP by brain-derived PrPSc gave rise to new prion strains with new disease phenotypes documenting loss of a strain identity upon replication in rPrP substrate. Up to now, it remains unclear whether prion strain identity can be preserved upon replication in rPrP. The current study reports that faithful replication of hamster strain SSLOW could be achieved in vitro using rPrP as a substrate. We found that a mixture of phosphatidylethanolamine (PE) and synthetic nucleic acid polyA was sufficient for stable replication of hamster brain-derived SSLOW PrPSc in serial Protein Misfolding Cyclic Amplification (sPMCA) that uses hamster rPrP as a substrate. The disease phenotype generated in hamsters upon transmission of recombinant PrPSc produced in vitro was strikingly similar to the original SSLOW diseases phenotype with respect to the incubation time to disease, as well as clinical, neuropathological and biochemical features. Infrared microspectroscopy (IR-MSP) indicated that PrPSc produced in animals upon transmission of recombinant PrPSc is structurally similar if not identical to the original SSLOW PrPSc. The current study is the first to demonstrate that rPrP can support replication of brain-derived PrPSc while preserving its strain identity. In addition, the current work is the first to document that successful propagation of a hamster strain could be achieved in vitro using hamster rPrP.
Collapse
|
20
|
Sangeetham SB, Huszár K, Bencsura P, Nyeste A, Hunyadi-Gulyás É, Fodor E, Welker E. Interrogating the Dimerization Interface of the Prion Protein Via Site-Specific Mutations to p-Benzoyl-L-Phenylalanine. J Mol Biol 2018; 430:2784-2801. [PMID: 29778603 DOI: 10.1016/j.jmb.2018.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023]
Abstract
Transmissible spongiform encephalopathies are centered on the conformational transition of the prion protein from a mainly helical, monomeric structure to a β-sheet rich ordered aggregate. Experiments indicate that the main infectious and toxic species in this process are however shorter oligomers, formation of which from the monomers is yet enigmatic. Here, we created 25 variants of the mouse prion protein site-specifically containing one genetically-incorporated para-benzoyl-phenylalanine (pBpa), a cross-linkable non-natural amino acid, in order to interrogate the interface of a prion protein-dimer, which might lie on the pathway of oligomerization. Our results reveal that the N-terminal part of the prion protein, especially regions around position 127 and 107, is integral part of the dimer interface. These together with additional pBpa-containing variants of mPrP might also facilitate to gain more structural insights into oligomeric and fibrillar prion protein species including the pathological variants.
Collapse
Affiliation(s)
- Sudheer Babu Sangeetham
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Krisztina Huszár
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petra Bencsura
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Antal Nyeste
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; ProteoScientia Ltd., Cserhátszentiván, Hungary
| | - Éva Hunyadi-Gulyás
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Elfrieda Fodor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
21
|
Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes α-Cleavage of PrP C. Mol Neurobiol 2018; 55:7758-7774. [PMID: 29460268 PMCID: PMC6132731 DOI: 10.1007/s12035-018-0944-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/31/2018] [Indexed: 11/03/2022]
Abstract
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer's disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.
Collapse
|
22
|
Katorcha E, Baskakov IV. Analysis of Covalent Modifications of Amyloidogenic Proteins Using Two-Dimensional Electrophoresis: Prion Protein and Its Sialylation. Methods Mol Biol 2018; 1779:241-255. [PMID: 29886537 DOI: 10.1007/978-1-4939-7816-8_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A number of proteins associated with neurodegenerative disease undergo several types of posttranslational modifications. They include N-linked glycosylation of the prion protein and amyloid precursor protein, phosphorylation of tau and α-synuclein. Posttranslational modifications alter physical properties of proteins including their net and surface charges, affecting their processing, life-time and propensity to acquire misfolded, disease-associated states. As such, analysis of posttranslational modifications is important for understanding the mechanisms of pathogenesis. Recent studies documented that sialylation of the disease-associated form of the prion protein or PrPSc controls the fate of prions in an organism and outcomes of prion infection. For assessing sialylation status of PrPSc, we developed a reliable protocol that involves two-dimensional electrophoresis followed by Western blot (2D). The current chapter describes the procedure for the analysis of sialylation status of PrPSc from various sources including central nervous system, secondary lymphoid organs, cultured cells, or PrPSc produced in Protein Misfolding Cyclic Amplification.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ilia V Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Zhan YA, Abskharon R, Li Y, Yuan J, Zeng L, Dang J, Martinez MC, Wang Z, Mikol J, Lehmann S, Bu S, Steyaert J, Cui L, Petersen RB, Kong Q, Wang GX, Wohlkonig A, Zou WQ. Quiescin-sulfhydryl oxidase inhibits prion formation in vitro. Aging (Albany NY) 2017; 8:3419-3429. [PMID: 27959866 PMCID: PMC5270677 DOI: 10.18632/aging.101132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/24/2016] [Indexed: 02/03/2023]
Abstract
Prions are infectious proteins that cause a group of fatal transmissible diseases in animals and humans. The scrapie isoform (PrPSc) of the cellular prion protein (PrPC) is the only known component of the prion. Several lines of evidence have suggested that the formation and molecular features of PrPSc are associated with an abnormal unfolding/refolding process. Quiescin-sulfhydryl oxidase (QSOX) plays a role in protein folding by introducing disulfides into unfolded reduced proteins. Here we report that QSOX inhibits human prion propagation in protein misfolding cyclic amplification reactions and murine prion propagation in scrapie-infected neuroblastoma cells. Moreover, QSOX preferentially binds PrPSc from prion-infected human or animal brains, but not PrPC from uninfected brains. Surface plasmon resonance of the recombinant mouse PrP (moPrP) demonstrates that the affinity of QSOX for monomer is significantly lower than that for octamer (312 nM vs 1.7 nM). QSOX exhibits much lower affinity for N-terminally truncated moPrP (PrP89-230) than for the full-length moPrP (PrP23-231) (312 nM vs 2 nM), suggesting that the N-terminal region of PrP is critical for the interaction of PrP with QSOX. Our study indicates that QSOX may play a role in prion formation, which may open new therapeutic avenues for treating prion diseases.
Collapse
Affiliation(s)
- Yi-An Zhan
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Romany Abskharon
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium.,National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt.,CNS, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yu Li
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Liang Zeng
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Johnny Dang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Manuel Camacho Martinez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Jacqueline Mikol
- Hôpital Lariboisière, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Sylvain Lehmann
- IRMB -Hôpital ST ELOI, CHU de Montpellier, Montpellier, France
| | - Shizhong Bu
- Diabetes Research Center, Ningbo University, The People's Republic of China
| | - Jan Steyaert
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Gong-Xiang Wang
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China
| | - Alexandre Wohlkonig
- VIB Center for Structural Biology, VIB, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Wen-Quan Zou
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, The People's Republic of China.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.,Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin Province, The People's Republic of China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, The People's Republic of China
| |
Collapse
|
24
|
Shah SZA, Zhao D, Hussain T, Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res Rev 2017; 40:51-63. [PMID: 28903070 DOI: 10.1016/j.arr.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Katorcha E, Baskakov IV. Analyses of N-linked glycans of PrP Sc revealed predominantly 2,6-linked sialic acid residues. FEBS J 2017; 284:3727-3738. [PMID: 28898525 DOI: 10.1111/febs.14268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
Abstract
Mammalian prions (PrPSc ) consist of misfolded, conformationally altered, self-replicating states of the sialoglycoprotein called prion protein or PrPC . Recent studies revealed that the sialylation status of PrPSc plays a major role in evading innate immunity and infecting a host. Establishing the type of linkage by which sialic acid residues are attached to galactose is important, as it helps to identify the sialyltransferases responsible for sialylating PrPC and outline strategies for manipulating the sialyation status of PrPSc . Using enzymatic treatment with sialidases and lectin blots, this study demonstrated that in N-linked glycans of PrPSc , the sialic acid residues are predominantly alpha 2,6-linked. High percentages of alpha 2,6-linked sialic acids were observed in PrPSc of three prion strains 22L, RML, and ME7, as well as PrPSc from brain, spleen, or N2a cells cultured in vitro. Moreover, the variation in the percentage of alpha 2,3- versus 2,6-linked sialic acid was found to be relatively minor between brain-, spleen-, or cell-derived PrPSc , suggesting that the type of linkage is independent of tissue type. Based on the current results, we propose that sialyltransferases of St6Gal family, which is responsible for attaching sialic acids via alpha 2,6-linkages to N-linked glycans, controls sialylation of PrPC and PrPSc .
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Bistaffa E, Rossi M, De Luca CMG, Moda F. Biosafety of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:455-485. [PMID: 28838674 DOI: 10.1016/bs.pmbts.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martina Rossi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara M G De Luca
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Università degli Studi di Pavia, Pavia, Italy
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
27
|
Redaelli V, Tagliavini F, Moda F. Clinical features, pathophysiology and management of fatal familial insomnia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1311251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Srivastava S, Katorcha E, Daus ML, Lasch P, Beekes M, Baskakov IV. Sialylation Controls Prion Fate in Vivo. J Biol Chem 2017; 292:2359-2368. [PMID: 27998976 PMCID: PMC5313106 DOI: 10.1074/jbc.m116.768010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Prions or PrPSc are proteinaceous infectious agents that consist of misfolded, self-replicating states of a sialoglycoprotein called the prion protein or PrPC The current work tests a new hypothesis that sialylation determines the fate of prions in an organism. To begin, we produced control PrPSc from PrPC using protein misfolding cyclic amplification with beads (PMCAb), and also generated PrPSc with reduced sialylation levels using the same method but with partially desialylated PrPC as a substrate (dsPMCAb). Syrian hamsters were inoculated intraperitoneally with brain-derived PrPSc or PrPSc produced in PMCAb or dsPMCAb and then monitored for disease. Animals inoculated with brain- or PMCAb-derived PrPSc developed prion disease, whereas administration of dsPMCAb-derived PrPSc with reduced sialylation did not cause prion disease. Animals inoculated with dsPMCAb-derived material were not subclinical carriers of scrapie, as no PrPSc was detected in brains or spleen of these animals by either Western blotting or after amplification by serial PMCAb. In subsequent experiments, trafficking of brain-, PMCAb-, and dsPMCAb-derived PrPSc to secondary lymphoid organs was monitored in wild type mice. PrPSc sialylation was found to be critical for effective trafficking of PrPSc to secondary lymphoid organs. By 6 hours after inoculation, brain- and PMCAb-derived PrPSc were found in spleen and lymph nodes, whereas dsPMCAb-derived PrPSc was found predominantly in liver. This study demonstrates that the outcome of prion transmission to a wild type host is determined by the sialylation status of the inoculated PrPSc Furthermore, this work suggests that the sialylation status of PrPSc plays an important role in prion lymphotropism.
Collapse
Affiliation(s)
- Saurabh Srivastava
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Elizaveta Katorcha
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Martin L Daus
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Peter Lasch
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Michael Beekes
- the Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Ilia V Baskakov
- From the Center for Biomedical Engineering and Technology and
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
30
|
Abstract
Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease.
Collapse
|
31
|
Mays CE, Soto C. The stress of prion disease. Brain Res 2016; 1648:553-560. [PMID: 27060771 DOI: 10.1016/j.brainres.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders that include scrapie of sheep, bovine spongiform encephalopathy of cattle, chronic wasting disease of cervids, and Creutzfeldt-Jakob disease (CJD) of humans. The etiology for prion diseases can be infectious, sporadic, or hereditary. However, the common denominator for all types is the formation of a transmissible agent composed of a β-sheet-rich, misfolded version of the host-encoded prion protein (PrPC), known as PrPSc. PrPSc self-replicates through a template-assisted process that converts the α-helical conformation of PrPC into the disease-associated isoform. In parallel with PrPSc accumulation, spongiform change is pathologically observed in the central nervous system, where "holes" appear because of massive neuronal death. Here, we review the cellular pathways triggered in response to PrPSc formation and accumulation. Available data suggest that neuronal dysfunction and death may be caused by what originates as a cellular pro-survival response to chronic PrPSc accumulation. We also discuss what is known about the complex cross-talk between the endoplasmic reticulum stress components and the quality control pathways. Better knowledge about these processes may lead to innovative therapeutic strategies based on manipulating the stress response and its consequences for neurodegeneration. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Katorcha E, Daus ML, Gonzalez-Montalban N, Makarava N, Lasch P, Beekes M, Baskakov IV. Reversible off and on switching of prion infectivity via removing and reinstalling prion sialylation. Sci Rep 2016; 6:33119. [PMID: 27609323 PMCID: PMC5017131 DOI: 10.1038/srep33119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/19/2016] [Indexed: 01/14/2023] Open
Abstract
The innate immune system provides the first line of defense against pathogens. To recognize pathogens, this system detects a number of molecular features that discriminate pathogens from host cells, including terminal sialylation of cell surface glycans. Mammalian cell surfaces, but generally not microbial cell surfaces, have sialylated glycans. Prions or PrPSc are proteinaceous pathogens that lack coding nucleic acids but do possess sialylated glycans. We proposed that sialylation of PrPSc is essential for evading innate immunity and infecting a host. In this study, the sialylation status of PrPSc was reduced by replicating PrPSc in serial Protein Misfolding Cyclic Amplification using sialidase-treated PrPC substrate and then restored to original levels by replication using non-treated substrate. Upon intracerebral administration, all animals that received PrPSc with original or restored sialylation levels were infected, whereas none of the animals that received PrPSc with reduced sialylation were infected. Moreover, brains and spleens of animals from the latter group were completely cleared of prions. The current work established that the ability of prions to infect the host via intracerebral administration depends on PrPSc sialylation status. Remarkably, PrPSc infectivity could be switched off and on in a reversible manner by first removing and then restoring PrPSc sialylation.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Martin L Daus
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Michael Beekes
- Centre for Biological Threats and Special Pathogens, Robert Koch-Institute, 13353 Berlin, Germany
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America
| |
Collapse
|
33
|
Katorcha E, Srivastava S, Klimova N, Baskakov IV. Sialylation of Glycosylphosphatidylinositol (GPI) Anchors of Mammalian Prions Is Regulated in a Host-, Tissue-, and Cell-specific Manner. J Biol Chem 2016; 291:17009-19. [PMID: 27317661 PMCID: PMC5016106 DOI: 10.1074/jbc.m116.732040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Prions or PrP(Sc) are proteinaceous infectious agents that consist of misfolded, self-replicating states of the prion protein or PrP(C) PrP(C) is posttranslationally modified with N-linked glycans and a sialylated glycosylphosphatidylinositol (GPI) anchor. Conformational conversion of PrP(C) gives rise to glycosylated and GPI-anchored PrP(Sc) The question of the sialylation status of GPIs within PrP(Sc) has been controversial. Previous studies that examined scrapie brains reported that both sialo- and asialo-GPIs were present in PrP(Sc), with the majority being asialo-GPIs. In contrast, recent work that employed cultured cells claimed that only PrP(C) with sialylo-GPIs could be recruited into PrP(Sc), whereas PrP(C) with asialo-GPIs inhibited conversion. To resolve this controversy, we analyzed the sialylation status of GPIs within PrP(Sc) generated in the brain, spleen, or cultured N2a or C2C12 myotube cells. We found that recruiting PrP(C) with both sialo- and asialo-GPIs is a common feature of PrP(Sc) The mixtures of sialo- and asialo-GPIs were observed in PrP(Sc) universally regardless of prion strain as well as host, tissue, or type of cells that produced PrP(Sc) Remarkably, the proportion of sialo- versus asialo-GPIs was found to be controlled by host, tissue, and cell type but not prion strain. In summary, this study found no strain-specific preferences for selecting PrP(C) with sialo- versus asialo-GPIs. Instead, this work suggests that the sialylation status of GPIs within PrP(Sc) is regulated in a cell-, tissue-, or host-specific manner and is likely to be determined by the specifics of GPI biosynthesis.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Saurabh Srivastava
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nina Klimova
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Ilia V Baskakov
- From the Center for Biomedical Engineering and Technology and the Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
34
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
35
|
Imamura M, Kato N, Iwamaru Y, Mohri S, Yokoyama T, Murayama Y. Multiple affinity purification of a baculovirus-derived recombinant prion protein with in vitro ability to convert to its pathogenic form. Prep Biochem Biotechnol 2016; 47:1-7. [PMID: 26918377 DOI: 10.1080/10826068.2016.1155058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously showed that baculovirus-derived recombinant prion protein (Bac-PrP) can be converted to the misfolded infectious form (PrPSc) by protein misfolding cyclic amplification, an in vitro conversion technique. Bac-PrP, with post-translational modifications, would be useful for various applications such as using PrP as an immunogen for generating anti-PrP antibody, developing anti-prion drugs or diagnostic assays using in vitro conversion systems, and establishing an in vitro prion propagation model. For this purpose, highly purified Bac-PrP with in vitro conversion activity is necessary for use as a PrPC source, to minimize contamination. Furthermore, an exogenous affinity tag-free form is desirable to avoid potential steric interference by the affinity tags during the conversion process. In this study, we established purification methods for the untagged Bac-PrP under native conditions by combining exogenous double-affinity tags, namely, a polyhistidine-tag and a profinity eXact tag, with an octarepeat sequence of the N-terminal region of PrP, which has metal ion-binding affinity. The untagged Bac-PrP with near-homogeneity was obtained by three-step affinity purification, and it was shown that the final, purified Bac-PrP could convert to its pathogenic form. The presented purification procedure could be applied not only to PrP but also to other eukaryotic, recombinant proteins that require high purity and intact physiological activity.
Collapse
Affiliation(s)
- Morikazu Imamura
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Nobuko Kato
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yoshifumi Iwamaru
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Shirou Mohri
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Takashi Yokoyama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| | - Yuichi Murayama
- a Influenza and Prion Disease Research Center, National Institute of Animal Health , Tsukuba , Ibaraki , Japan
| |
Collapse
|
36
|
Silva CJ, Erickson-Beltran ML, Dynin IC. Covalent Surface Modification of Prions: A Mass Spectrometry-Based Means of Detecting Distinctive Structural Features of Prion Strains. Biochemistry 2016; 55:894-902. [PMID: 26786805 DOI: 10.1021/acs.biochem.5b01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prions (PrP(Sc)) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrP(C)) into a prion. The only demonstrated difference between PrP(C) and PrP(Sc) is conformational: they are isoforms. A given host can be infected by more than one kind or strain of prion. Five strains of hamster-adapted scrapie [Sc237 (=263K), drowsy, 139H, 22AH, and 22CH] and recombinant PrP were reacted with five different concentrations (0, 1, 5, 10, and 20 mM) of reagent (N-hydroxysuccinimide ester of acetic acid) that acetylates lysines. The extent of lysine acetylation was quantitated by mass spectrometry. The lysines in rPrP react similarly. The lysines in the strains react differently from one another in a given strain and react differently when strains are compared. Lysines in the C-terminal region of prions have different strain-dependent reactivity. The results are consistent with a recently proposed model for the structure of a prion. This model proposes that prions are composed of a four-rung β-solenoid structure comprised of four β-sheets that are joined by loops and turns of amino acids. Variation in the amino acid composition of the loops and β-sheet structures is thought to result in different strains of prions.
Collapse
Affiliation(s)
- Christopher J Silva
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| | - Irina C Dynin
- Western Regional Research Center, United States Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
37
|
Srivastava S, Makarava N, Katorcha E, Savtchenko R, Brossmer R, Baskakov IV. Post-conversion sialylation of prions in lymphoid tissues. Proc Natl Acad Sci U S A 2015; 112:E6654-62. [PMID: 26627256 PMCID: PMC4672809 DOI: 10.1073/pnas.1517993112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sialylated glycans on the surface of mammalian cells act as part of a "self-associated molecular pattern," helping the immune system to recognize "self" from "altered self" or "nonself." To escape the host immune system, some bacterial pathogens have evolved biosynthetic pathways for host-like sialic acids, whereas others recruited host sialic acids for decorating their surfaces. Prions lack nucleic acids and are not conventional pathogens. Nevertheless, prions might use a similar strategy for invading and colonizing the lymphoreticular system. Here we show that the sialylation status of the infectious, disease-associated state of the prion protein (PrP(Sc)) changes with colonization of secondary lymphoid organs (SLOs). As a result, spleen-derived PrP(Sc) is more sialylated than brain-derived PrP(Sc). Enhanced sialylation of PrP(Sc) is recapitulated in vitro by incubating brain-derived PrP(Sc) with primary splenocytes or cultured macrophage RAW 264.7 cells. General inhibitors of sialyltranserases (STs), the enzymes that transfer sialic acid residues onto terminal positions of glycans, suppressed extrasialylation of PrP(Sc). A fluorescently labeled precursor of sialic acid revealed ST activity associated with RAW macrophages. This study illustrates that, upon colonization of SLOs, the sialylation status of prions changes by host STs. We propose that this mechanism is responsible for camouflaging prions in SLOs and has broad implications.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
38
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
39
|
Katorcha E, Makarava N, Savtchenko R, Baskakov IV. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep 2015; 5:16912. [PMID: 26576925 PMCID: PMC4649626 DOI: 10.1038/srep16912] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrP(C). PrP(C) has two sialylated N-linked carbohydrates. In PrP(Sc), the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrP(Sc) glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrP(C) molecules that have more sialic groups per molecule than monoglycosylated PrP(C) were preferentially excluded from conversion. However, when partially desialylated PrP(C) was used as a substrate, recruitment of three glycoforms into PrP(Sc) was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrP(C) significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
40
|
Katorcha E, Klimova N, Makarava N, Savtchenko R, Pan X, Annunziata I, Takahashi K, Miyagi T, Pshezhetsky AV, d’Azzo A, Baskakov IV. Loss of Cellular Sialidases Does Not Affect the Sialylation Status of the Prion Protein but Increases the Amounts of Its Proteolytic Fragment C1. PLoS One 2015; 10:e0143218. [PMID: 26569607 PMCID: PMC4646690 DOI: 10.1371/journal.pone.0143218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/02/2015] [Indexed: 11/29/2022] Open
Abstract
The central molecular event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC), which is a sialoglycoprotein, into the disease-associated, transmissible form denoted PrPSc. Recent studies revealed a correlation between the sialylation status of PrPSc and incubation time to disease and introduced a new hypothesis that progression of prion diseases could be controlled or reversed by altering the sialylation level of PrPC. Of the four known mammalian sialidases, the enzymes that cleave off sialic acid residues, only NEU1, NEU3 and NEU4 are expressed in the brain. To test whether cellular sialidases control the steady-state sialylation level of PrPC and to identify the putative sialidase responsible for desialylating PrPC, we analyzed brain-derived PrPC from knockout mice deficient in Neu1, Neu3, Neu4, or from Neu3/Neu4 double knockouts. Surprisingly, no differences in the sialylation of PrPC or its proteolytic product C1 were noticed in any of the knockout mice tested as compared to the age-matched controls. However, significantly higher amounts of the C1 fragment relative to full-length PrPC were detected in the brains of Neu1 knockout mice as compared to WT mice or to the other knockout mice. Additional experiments revealed that in neuroblastoma cell line the sialylation pattern of C1 could be changed by an inhibitor of sialylatransferases. In summary, this study suggests that targeting cellular sialidases is apparently not the correct strategy for altering the sialylation levels of PrPC, whereas modulating the activity of sialylatransferases might offer a more promising approach. Our findings also suggest that catabolism of PrPC involves its α-cleavage followed by desialylation of the resulting C1 fragments by NEU1 and consequent fast degradation of the desialylated products.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nina Klimova
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Xuefang Pan
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Ida Annunziata
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kohta Takahashi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Alessandra d’Azzo
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2228-39. [DOI: 10.1016/j.bbamcr.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/19/2022]
|
42
|
Ubiquitin-specific protease 14 modulates degradation of cellular prion protein. Sci Rep 2015; 5:11028. [PMID: 26061634 PMCID: PMC4462021 DOI: 10.1038/srep11028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 12/04/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of prion protein (PrPC). To date, there is no effective treatment for the disease. The accumulated PrP, termed PrPSc, forms amyloid fibrils and could be infectious. It has been suggested that PrPSc is abnormally folded and resistant to proteolytic degradation, and also inhibits proteasomal functions in infected cells, thereby inducing neuronal death. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To reveal the significance of prion protein ubiqitination, we focused on ubiquitin-specific protease 14 (USP14), a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes. Results from the present study showed that treatment with a selective inhibitor of USP14 reduced PrPC, as well as PrPSc, levels in prion-infected neuronal cells. Overexpression of the dominant negative mutant form of USP14 reduced PrPSc, whereas wildtype USP14 increased PrPSc in prion-infected cells. These results suggest that USP14 prevents degradation of both normal and abnormal PrP. Collectively, a better understanding about the regulation of PrPSc clearance caused by USP14 might contribute greatly to the development of therapeutic strategies for prion diseases.
Collapse
|
43
|
Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res 2015; 207:120-6. [PMID: 25816779 DOI: 10.1016/j.virusres.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.
Collapse
|
44
|
Silva CJ. Applying the tools of chemistry (mass spectrometry and covalent modification by small molecule reagents) to the detection of prions and the study of their structure. Prion 2015; 8:42-50. [PMID: 24509645 DOI: 10.4161/pri.27891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prions are molecular pathogens, able to convert a normal cellular prion protein (PrP(C)) into a prion (PrP(Sc)). The information necessary for this conversion is contained in the conformation of PrP(Sc). Mass spectrometry (MS) and small-molecule covalent reactions have been used to study prions. Mass spectrometry has been used to detect and quantitate prions in the attomole range (10⁻¹⁸ mole). MS-based analysis showed that both possess identical amino acid sequences, one disulfide bond, a GPI anchor, asparagine-linked sugar antennae, and unoxidized methionines. Mass spectrometry has been used to define elements of the secondary and tertiary structure of wild-type PrP(Sc) and GPI-anchorless PrP(Sc). It has also been used to study the quaternary structure of the PrP(Sc) multimer. Small molecule reagents react differently with the same lysine in the PrP(C) conformation than in the PrP(Sc) conformation. Such differences can be detected by Western blot using mAbs with lysine-containing epitopes, such as 3F4 and 6D11. This permits the detection of PrP(Sc) without the need for proteinase K pretreatment and can be used to distinguish among prion strains. These results illustrate how two important chemical tools, mass spectrometry and covalent modification by small molecules, are being applied to the detection and structural study of prions. Furthermore these tools are or can be applied to the study of the other protein misfolding diseases such as Alzheimer Disease, Parkinson Disease, or ALS.
Collapse
|
45
|
Subcellular distribution of the prion protein in sickness and in health. Virus Res 2015; 207:136-45. [PMID: 25683509 DOI: 10.1016/j.virusres.2015.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 11/22/2022]
Abstract
The cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein that is most abundant in the central nervous system. It is thought to play a role in many cellular processes, including neuroprotection, but may also contribute to Alzheimer's disease and some cancers. However, it is best known for its central role in the prion diseases, such as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE), and scrapie. These protein misfolding diseases can be sporadic, acquired, or genetic and are caused by refolding of endogenous PrP(C) into a beta sheet-rich, pathogenic form, PrP(Sc). Once prions are present in the central nervous system, they increase and spread during a long incubation period that is followed by a relatively short clinical disease phase, ending in death. PrP molecules can be broadly categorized as either 'good' (cellular) PrP(C) or 'bad' (scrapie prion-type) PrP(Sc), but both populations are heterogeneous and different forms of PrP(C) may influence various cellular activities. Both PrP(C) and PrP(Sc) are localized predominantly at the cell surface, with the C-terminus attached to the plasma membrane via a glycosyl-phosphatidylinositol (GPI) anchor and both can exist in cleaved forms. PrP(C) also has cytosolic and transmembrane forms, and PrP(Sc) is known to exist in a variety of conformations and aggregation states. Here, we discuss the roles of different PrP isoforms in sickness and in health, and show the subcellular distributions of several forms of PrP that are particularly relevant for PrP(C) to PrP(Sc) conversion and prion-induced pathology in the hippocampus.
Collapse
|
46
|
Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLoS Pathog 2014; 10:e1004366. [PMID: 25211026 PMCID: PMC4161476 DOI: 10.1371/journal.ppat.1004366] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/28/2014] [Indexed: 12/15/2022] Open
Abstract
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches. The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into disease-associated, transmissible form (PrPSc). The amino acid sequence of PrPC and strain-specific structure of PrPSc are among the key parameters that control prion replication and transmission. The current study showed that PrPC posttranslational modification, specifically sialylation of N-linked glycans, plays a key role in regulating prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. A decrease in PrPC sialylation level increased the rate of prion replication in a strain-specific manner and reduced or eliminated a species barrier when prion replication was seeded by heterologous seeds. At the same time, a decrease in sialylation correlated with a drop in infectivity of PrPSc material produced in vitro. The current study also demonstrated that the PrPSc glycoform ratio, which is an important feature used for strain typing, is not only controlled by prion strain or host but also the sialylation status of PrPC. This study opens multiple new directions in prion research, including development of new therapeutic approaches.
Collapse
|
47
|
Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech 2014; 7:21-9. [PMID: 24396151 PMCID: PMC3882045 DOI: 10.1242/dmm.012146] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer’s disease primarily affects parts of the brain that play a role in memory, whereas Parkinson’s disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery.
Collapse
Affiliation(s)
- Walker S Jackson
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 25, 53127-Bonn, Germany
| |
Collapse
|
48
|
Groveman BR, Dolan MA, Taubner LM, Kraus A, Wickner RB, Caughey B. Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids. J Biol Chem 2014; 289:24129-42. [PMID: 25028516 DOI: 10.1074/jbc.m114.578344] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures of the infectious form of prion protein (e.g. PrP(Sc) or PrP-Scrapie) remain poorly defined. The prevalent structural models of PrP(Sc) retain most of the native α-helices of the normal, noninfectious prion protein, cellular prion protein (PrP(C)), but evidence is accumulating that these helices are absent in PrP(Sc) amyloid. Moreover, recombinant PrP(C) can form amyloid fibrils in vitro that have parallel in-register intermolecular β-sheet architectures in the domains originally occupied by helices 2 and 3. Here, we provide solid-state NMR evidence that the latter is also true of initially prion-seeded recombinant PrP amyloids formed in the absence of denaturants. These results, in the context of a primarily β-sheet structure, led us to build detailed models of PrP amyloid based on parallel in-register architectures, fibrillar shapes and dimensions, and other available experimentally derived conformational constraints. Molecular dynamics simulations of PrP(90-231) octameric segments suggested that such linear fibrils, which are consistent with many features of PrP(Sc) fibrils, can have stable parallel in-register β-sheet cores. These simulations revealed that the C-terminal residues ∼124-227 more readily adopt stable tightly packed structures than the N-terminal residues ∼90-123 in the absence of cofactors. Variations in the placement of turns and loops that link the β-sheets could give rise to distinct prion strains capable of faithful template-driven propagation. Moreover, our modeling suggests that single PrP monomers can comprise the entire cross-section of fibrils that have previously been assumed to be pairs of laterally associated protofilaments. Together, these insights provide a new basis for deciphering mammalian prion structures.
Collapse
Affiliation(s)
- Bradley R Groveman
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Michael A Dolan
- the Computational Biology Section, Bioinformatics and Computational Biosciences Branch, NIAID, and
| | - Lara M Taubner
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Allison Kraus
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Byron Caughey
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840 and
| |
Collapse
|
49
|
Abstract
Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. Importance: During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and prion formation is undefined. Here we generated Drosophila transgenic for cytosolic PrP expression in order to investigate its toxic potential in the absence or presence of exogenous prions. Cytosolic ovine PrP expressed in Drosophila was not overtly detrimental to the flies. However, cytosolic PrP transgenic Drosophila exposed to ovine scrapie showed a toxic phenotype absent from similar flies exposed to scrapie-free material. Significantly, the scrapie-induced toxic phenotype in cytosolic transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that cytosolic PrP can participate in the generation of transmissible prion-induced toxicity and highlight the utility of Drosophila as a model of mammalian prion disease.
Collapse
|
50
|
Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G, Lyakhovetsky R, Papy-Garcia D, Kutzsche J, Korth C, Carlson GA, Godsave SF, Peters PJ, Luhr K, Kristensson K, Taraboulos A. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. ACTA ACUST UNITED AC 2014; 204:423-41. [PMID: 24493590 PMCID: PMC3912534 DOI: 10.1083/jcb.201308028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|