1
|
Nam D, Matsumoto Y, Uchida T, O'Brian MR, Ishimori K. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr). J Biol Chem 2020; 295:11316-11325. [PMID: 32554810 DOI: 10.1074/jbc.ra119.011855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Indexed: 11/06/2022] Open
Abstract
The transcription factor iron response regulator (Irr) is a key regulator of iron homeostasis in the nitrogen-fixating bacterium Bradyrhizobium japonicum Irr acts by binding to target genes, including the iron control element (ICE), and is degraded in response to heme binding. Here, we examined this binding activity using fluorescence anisotropy with a 6-carboxyfluorescein-labeled ICE-like oligomer (FAM-ICE). In the presence of Mn2+, Irr addition increased the fluorescence anisotropy, corresponding to formation of the Irr-ICE complex. The addition of EDTA to the Irr-ICE complex reduced fluorescence anisotropy, but fluorescence was recovered after Mn2+ addition, indicating that Mn2+ binding is a prerequisite for complex formation. Binding activity toward ICE was lost upon introduction of substitutions in a His-cluster region of Irr, revealing that Mn2+ binds to this region. We observed that the His-cluster region is also the heme binding site; results from fluorescence anisotropy and electrophoretic mobility shift analyses disclosed that the addition of a half-equivalent of heme dissociates Irr from ICE, likely because of Mn2+ release due to heme binding. We hypothesized that heme binding to another heme binding site, Cys-29, would also inhibit the formation of the Irr-ICE complex because it is proximal to the ICE binding site, which was supported by the loss of ICE binding activity in a Cys-29-mutated Irr. These results indicate that Irr requires Mn2+ binding to form the Irr-ICE complex and that the addition of heme dissociates Irr from ICE by replacing Mn2+ with heme or by heme binding to Cys-29.
Collapse
Affiliation(s)
- Dayeon Nam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuki Matsumoto
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan .,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Sarvan S, Charih F, Butcher J, Brunzelle JS, Stintzi A, Couture JF. Crystal structure of Campylobacter jejuni peroxide regulator. FEBS Lett 2018; 592:2351-2360. [PMID: 29856899 DOI: 10.1002/1873-3468.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/08/2022]
Abstract
In Campylobacter jejuni (Cj), the metal-cofactored peroxide response regulator (PerR) transcription factor allows C. jejuni to respond to oxidative stresses. The crystal structure of the metalated form of CjPerR shows that the protein folds as an asymmetric dimer displaying structural differences in the orientation of its DNA-binding domain. Comparative analysis shows that such asymmetry is a conserved feature among crystallized PerR proteins, and mutational analysis reveals that residues found in the first α-helix of CjPerR contribute to DNA binding. These studies present the structure of CjPerR protein and highlight structural heterogeneity in the orientation of the metalated PerR DNA-binding domain which may underlie the ability of PerR to recognize DNA, control gene expression, and contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Sabina Sarvan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | - François Charih
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | - Joseph S Brunzelle
- Life Science Collaborative Access Team, Northwestern Synchrotron Research Centers, Northwestern University, Evanston, IL, USA
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| | - Jean-François Couture
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Canada
| |
Collapse
|
3
|
Kaushik MS, Singh P, Tiwari B, Mishra AK. Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1134-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Abstract
The nature of the cytosolic iron pool remains largely uncharacterized, although a range of candidate ligands and chaperones have been proposed. Herein an overview is presented of cytosolic non heme and non iron-sulphur cluster protein iron binding sites and the influence of ligands on the redox activity of iron. This analysis leads to the concept of iron(II) glutathione functioning as the labile cytosolic iron pool and offers a means for the selection of iron over manganese in subsequent incorporation into a wide range of iron-dependent enzymes and electron transfer proteins. Glutathione and glutathione-binding glutaredoxins play a critical role in iron sulfur cluster synthesis and Fe(II)GS (iron(II) coordinated by the thiol function of glutathione) is a suitable iron donor for this biosynthetic route. Significantly, both glutathione and glutaredoxins are universally distributed and thus a controlling influence of glutathione on intracellular iron trafficking is likely to be a common feature of the majority of living organisms.
Collapse
Affiliation(s)
- Robert C Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
5
|
Mutagenesis of conserved amino acids of Helicobacter pylori fur reveals residues important for function. J Bacteriol 2010; 192:5037-52. [PMID: 20644138 DOI: 10.1128/jb.00198-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ferric uptake regulator (Fur) of the medically important pathogen Helicobacter pylori is unique in that it has been shown to function as a repressor both in the presence of an Fe2+ cofactor and in its apo (non-Fe2+-bound) form. However, virtually nothing is known concerning the amino acid residues that are important for Fur functioning. Therefore, mutations in six conserved amino acid residues of H. pylori Fur were constructed and analyzed for their impact on both iron-bound and apo repression. In addition, accumulation of the mutant proteins, protein secondary structure, DNA binding ability, iron binding capacity, and the ability to form higher-order structures were also examined for each mutant protein. While none of the mutated residues completely abrogated the function of Fur, we were able to identify residues that were critical for both iron-bound and apo-Fur repression. One mutation, V64A, did not alter regulation of any target genes. However, each of the five remaining mutations showed an effect on either iron-bound or apo regulation. Of these, H96A, E110A, and E117A mutations altered iron-bound Fur regulation and were all shown to influence iron binding to different extents. Additionally, the H96A mutation was shown to alter Fur oligomerization, and the E110A mutation was shown to impact oligomerization and DNA binding. Conversely, the H134A mutant exhibited changes in apo-Fur regulation that were the result of alterations in DNA binding. Although the E90A mutant exhibited alterations in apo-Fur regulation, this mutation did not affect any of the assessed protein functions. This study is the first for H. pylori to analyze the roles of specific amino acid residues of Fur in function and continues to highlight the complexity of Fur regulation in this organism.
Collapse
|
6
|
Sun K, Cheng S, Wang F, Sun L. Domain analysis of the Edwardsiella tarda ferric uptake regulator. J GEN APPL MICROBIOL 2009; 55:351-8. [PMID: 19940381 DOI: 10.2323/jgam.55.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have shown that the ferric uptake regulator (Fur) of Edwardsiella tarda (Fur(Et)) shares high sequence identity with the Escherichia coli Fur (Fur(Ec)) at the N-terminal DNA-binding region. In the present study, the functional importance of the C-terminal region of Fur(Et) was investigated. It was found that Fur(Et) bearing deletion of the C-terminal 12 residues still possesses most of the repressor activity, whereas Fur(Et) bearing deletions of the C-terminal 16 and more than 16 residues are severely affected in activity. Domain swapping analyses indicated that the chimeric Fur proteins (Et75Ec73 and Et75Vh74) consisting of the N-terminal 1-75 region of Fur(Et) fused to the C-terminal 76-148 region of Fur(Ec) and the C-terminal 76-149 region of the Vibrio harveyi Fur (Fur(Vh)), respectively, are fully active. C92 of Fur(Ec) and C137 of Fur(Vh), which are functionally essential in Fur(Ec) and Fur(Vh), respectively, are also essential in Et75Ec73 and Et75Vh74, respectively. Further study identified an artificial Fur protein, EtMF54, which is composed of the N-terminal 49 residues of Fur(Et) and five artificial residues. Compared to Fur(Et), EtMF54 possesses partial Fur activity that is iron-dependent. These results (i) indicate that there exist certain functional/structural compatibilities among Fur(Et), Fur(Ec), and Fur(Vh) at the C-terminal region; (ii) provide insights to the potential location of the regulatory ion-binding site of Fur(Et).
Collapse
Affiliation(s)
- Kun Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | |
Collapse
|
7
|
Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 2009; 72:1208-20. [PMID: 19400801 DOI: 10.1111/j.1365-2958.2009.06718.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur. Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.
Collapse
Affiliation(s)
- Md Arif Sheikh
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
8
|
Yang Y, Harris DP, Luo F, Xiong W, Joachimiak M, Wu L, Dehal P, Jacobsen J, Yang Z, Palumbo AV, Arkin AP, Zhou J. Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC Genomics 2009; 10:131. [PMID: 19321007 PMCID: PMC2667191 DOI: 10.1186/1471-2164-10-131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 03/25/2009] [Indexed: 01/08/2023] Open
Abstract
Background Iron homeostasis of Shewanella oneidensis, a γ-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of S. oneidensis. Results We show that the iron response in S. oneidensis is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. Conclusion Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a role in anaerobic energy metabolism.
Collapse
Affiliation(s)
- Yunfeng Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sun K, Cheng S, Zhang M, Wang F, Sun L. Cys-92, Cys-95, and the C-terminal 12 residues of the Vibrio harveyi ferric uptake regulator (Fur) are functionally inessential. J Microbiol 2008; 46:670-80. [PMID: 19107396 DOI: 10.1007/s12275-008-0113-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/21/2008] [Indexed: 11/24/2022]
Abstract
Ferric uptake regulator (Fur) is a global regulator involved in multiple aspects of bacterial life. The gene encoding the Vibrio harveyi Fur (FurVh) was cloned from a pathogenic V. harveyi strain isolated from diseased fish. FurVh shares 77% overall sequence identity with the Escherichia coli Fur (FurEc) and could complement a mutant of FurEc. Like FurEc, FurVh, possesses two cysteine residues at positions 92 and 95, yet unlike FurEc, in which these cysteine residues constitute part of the metal ion coordination site and hence are vital to the repressor activity, C92 and C95 of FurVh proved to be functionally inessential. Further study identified a Vibrio Fur signature sequence, which is preserved in all the ten Vibrio Fur proteins that have been discovered to date but in none of the non-vibrio Fur proteins. Site-directed and random mutation analyses of the signature residues, the cysteine residues, and seven highly charged amino acid residues indicated that D9, H32, C137, and K138 of FurVh are functionally important but D9, C137, and K138 can be replaced by more than one functional substitutes. Systematic deletion analysis demonstrated that the C-terminal 12 residues of FurVh are functionally inessential. These results (i) indicated that the activation mechanism, or certain aspects of which, of FurVh is possibly different from that of FurEc; and (ii) suggested that it is not very likely that the C-terminal 12 residues play any significant role in the activation or stability of FurVh; and (iii) provided insights into the potential function of the local structure involving C137 and K138.
Collapse
Affiliation(s)
- Kun Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | | | | | | | | |
Collapse
|
10
|
Pastore C, Franzese M, Sica F, Temussi P, Pastore A. Understanding the binding properties of an unusual metal-binding protein--a study of bacterial frataxin. FEBS J 2007; 274:4199-210. [PMID: 17651435 DOI: 10.1111/j.1742-4658.2007.05946.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Deficiency of the small mitochondrial protein frataxin causes Friedreich's ataxia, a severe neurodegenerative pathology. Frataxin, which has been highly conserved throughout evolution, is thought to be involved in, among other processes, Fe-S cluster formation. Independent evidence shows that it binds iron directly, although with very distinct features and low affinity. Here, we have carried out an extensive study of the binding properties of CyaY, the bacterial ortholog of frataxin, to different divalent and trivalent cations, using NMR and X-ray crystallography. We demonstrate that the protein has low cation specificity and contains multiple binding sites able to chelate divalent and trivalent metals with low affinity. Binding does not involve cavities or pockets, but exposed glutamates and aspartates, which are residues that are unusual for iron chelation when not assisted by histidines and/or cysteines. We have related how such an ability to bind cations on a relatively large area through an electrostatic mechanism could be a valuable asset for protein function.
Collapse
|
11
|
Hamed MY, Al-Jabour S. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. J Mol Graph Model 2006; 25:234-46. [PMID: 16443380 DOI: 10.1016/j.jmgm.2005.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022]
Abstract
In order to identify the Fur dimerization domain, a three-dimensional structure of the ferric uptake regulation protein from Escherichia coli (Fur EC) was determined using homology modeling and energy minimization. The Fur monomer consists of turn- helix -turn motif on the N-terminal domain, followed by another helix-turn-helix-turn motif, and two beta-strands separated by a turn which forms the wing. The C-terminal domain, separated by a long coil from the N-terminal, and consisting of two anti parallel beta strands, and a turn-helix-turn-helix-turn motif. Residues in central domain were found to aid the dimer formation, residues 45-70 as evident in the calculated distances; this region is rich in hydrophobic residues. Most interactions occur between residues Val55, Leu53, Gln52, Glu49 and Tyr56 with closest contacts occurring at residues 49-56. These residues are part of an alpha-helix (alpha(4)) near the N-terminal. Upon raising the Fe(2+) concentration the binding of Fur dimer to DNA was enhanced, this was evident when, the Fur EC dimer was docked onto DNA "iron box" (it was found to bind the AT-rich region) and upon addition of Fe(2+) the helices near the N-terminal bound to the major groove of the DNA. Addition of high Fe(2+) concentration triggered further conformational changes in the Fur dimer as was measured by distances between the two subunits, Fe(2+) mediated the Fur binding to DNA by attaching itself to the DNA. At the same time DNA changed conformation as was evident in the distortion in the backbone and the shrinking of major groove distance from 11.4 to 9.3A. Two major Fe(2+) sites were observed on the C-terminal domain: site 1, the traditional Zn site, the cavity contains the residues Cys92, Cys95, Asp137, Asp141, Arg139, Glu 140, His 145 and His 143 at distances range from 1.3 to 2.2A. Site 2 enclave consists of His71, Ile50, Asn72, Gly97, Asp105 and Ala109 at very close proximity to Fe(2+). The closest contacts between Fur dimer and DNA at the AT-rich region were at residues Ala11, Gly12, Leu13, Pro18 and Arg19 mostly hydrophobic residues near the N-terminal domain. Close contacts repeated at His87, His88 and Arg112, and a third region near the C-terminal at Asn137, Arg 139, Glu140, Asn141, His143, Asn141 and His145. Fur dimer has three major contact regions with DNA, the first on the N-terminal domain, a second smaller region at His87, His88 and Arg112 mediated by Fe(2+) ions, and a third region on the C-terminal domain consisting mainly of hydrophobic contacts and mediated by Fe(2+) ions at high concentration.
Collapse
Affiliation(s)
- Mazen Y Hamed
- Computational Science Program, Chemistry Department, Birzeit University, PO Box 14, Birzeit, Palestine.
| | | |
Collapse
|
12
|
Pecqueur L, D'Autréaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B. Structural Changes of Escherichia coli Ferric Uptake Regulator during Metal-dependent Dimerization and Activation Explored by NMR and X-ray Crystallography. J Biol Chem 2006; 281:21286-21295. [PMID: 16690618 DOI: 10.1074/jbc.m601278200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.
Collapse
Affiliation(s)
- Ludovic Pecqueur
- Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France; Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
| | - Benoît D'Autréaux
- Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Jérome Dupuy
- Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
| | - Yvain Nicolet
- Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
| | - Lilian Jacquamet
- Laboratoire de Cristallographie et de Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
| | - Bernhard Brutscher
- Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1
| | - Isabelle Michaud-Soret
- Laboratoire de Physicochimie des Métaux en Biologie (Unité Mixte de Recherche 5155 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), Département Réponse et Dynamique Cellulaires, Commissariat à l'Energie Atomique-Grenoble, 17 Avenue des Martyrs, F-38054 Grenoble Cedex 9, France.
| | - Beate Bersch
- Laboratoire de Résonance Magnétique Nucléaire des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel (Unité Mixte de Recherche 5075 CNRS/Commissariat à l'Energie Atomique/Université Joseph Fourier), F-38027 Grenoble Cedex 1.
| |
Collapse
|
13
|
Gonzalez de Peredo A, Saint-Pierre C, Latour JM, Michaud-Soret I, Forest E. Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. J Mol Biol 2001; 310:83-91. [PMID: 11419938 DOI: 10.1006/jmbi.2001.4769] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fur (ferric uptake regulation protein) is a bacterial global regulator that uses iron as a cofactor to bind to specific DNA sequences. It has been suggested that metal binding induces a conformational change in the protein, which is subsequently able to recognize DNA. This mechanism of activation has been investigated here using selective chemical modification monitored by mass spectrometry. The reactivity of each lysine residue of the Fur protein was studied, first in the apo form of the protein, then after metal activation and finally after DNA binding. Of particular interest is Lys76, which was shown to be highly protected from modification in the presence of target DNA. Hydrogen-deuterium exchange experiments were performed to map with higher resolution the conformational changes induced by metal binding. On the basis of these results, together with a secondary structure prediction, the presence in Fur of a non-classical helix-turn-helix motif is proposed. Experimental results show that activation upon metal binding induces conformational modification of this specific motif. The recognition helix, interacting directly with the major groove of the DNA, would include the domain [Y55-F61]. This helix would be followed by a small "wing" formed between two beta strands, containing Lys76, which might interact directly with DNA. These results suggest that Fur and DtxR (diphtheria toxin repressor), another bacterial repressor, share not only the function of being iron concentration regulators, and the structure of their DNA-binding domain.
Collapse
Affiliation(s)
- A Gonzalez de Peredo
- Laboratoire de Spectrométrie de Masse des Protéines, Institut de Biologie Structurale, (UMR 5075 CEA/CNRS/UJF), Grenoble Cedex 1, F-38027, France
| | | | | | | | | |
Collapse
|
14
|
Lowe CA, Asghar AH, Shalom G, Shaw JG, Thomas MS. The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1303-1314. [PMID: 11320133 DOI: 10.1099/00221287-147-5-1303] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ferric uptake regulator (Fur) functions as a transcription repressor of many genes in bacteria in response to iron, but the presence of a functional equivalent of this protein has not been demonstrated in Burkholderia cepacia. A segment of the Burkholderia pseudomallei fur gene was amplified using degenerate primers and used to identify chromosomal restriction fragments containing the entire fur genes of B. cepacia and B. pseudomallei. These fragments were cloned and sequenced, revealing the Fur protein of both species to be a polypeptide of 142 amino acids possessing a high degree of amino acid sequence identity to Fur of other members of the beta subclass of the Proteobacteria. Primer extension analysis demonstrated that transcription of B. cepacia fur originated from a single promoter located 36 bp upstream from the fur translation initiation codon. The Fur polypeptide of B. cepacia was shown to functionally substitute for Fur in an Escherichia coli fur mutant. Single copy fur-lacZ fusions were constructed and used to examine the regulation of B. cepacia fur. The B. cepacia fur promoter was not responsive to iron availability, the presence of hydrogen peroxide or the superoxide generator methyl viologen. In addition, fur expression was not significantly influenced by carbon source. Interestingly, the presence of the divergently transcribed omlA/smpA gene upstream of fur in some members of the gamma subclass of the Proteobacteria is retained in several genera within the beta taxon, including Burkholderia.
Collapse
Affiliation(s)
- Carolyn A Lowe
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Atif H Asghar
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Gil Shalom
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Jonathan G Shaw
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Mark S Thomas
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| |
Collapse
|
15
|
Abstract
The ability of pathogens to obtain iron from transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central to whether they live or die. To combat invading bacteria, animals go into an iron-withholding mode and also use a protein (Nramp1) to generate reactive oxygen species in an attempt to kill the pathogens. Some invading bacteria respond by producing specific iron chelators-siderophores-that remove the iron from the host sources. Other bacteria rely on direct contact with host iron proteins, either abstracting the iron at their surface or, as with heme, taking it up into the cytoplasm. The expression of a large number of genes (>40 in some cases) is directly controlled by the prevailing intracellular concentration of Fe(II) via its complexing to a regulatory protein (the Fur protein or equivalent). In this way, the biochemistry of the bacterial cell can accommodate the challenges from the host. Agents that interfere with bacterial iron metabolism may prove extremely valuable for chemotherapy of diseases.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, Hull HU6 7RX.
| | | |
Collapse
|
16
|
Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S. Characterization and mutagenesis of fur gene from Burkholderia pseudomallei. Gene 2000; 254:129-37. [PMID: 10974543 DOI: 10.1016/s0378-1119(00)00279-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A homolog of the ferric uptake regulator gene (fur) was isolated from Burkholderia pseudomallei (Bp) by a reverse genetic technique. Sequencing of a 2.2kb DNA fragment revealed an open reading frame with extensive homology to bacterial Fur proteins. The cloned gene encodes a 16kDa protein that cross-reacts with a polyclonal anti-Escherichia coli Fur serum. The transcription start site was determined by the primer extension technique. Expression analysis of fur showed no increased fur mRNA levels in response to various stresses and iron conditions. A positive selection procedure involving the isolation of manganese-resistant mutants was used to isolate mutants that produce altered Fur proteins. Sequencing of a fur mutant revealed a nucleotide change (G to A) converting a conserved amino acid arginine-69 to histidine. The fur missense mutant produced an elevated level of siderophore that could be complemented by a multicopy plasmid carrying the Bp fur. Interestingly, Fur was found to play roles as a positive regulator of FeSOD and peroxidase. The mutant showed a decreased activity of FeSOD and peroxidase, which could be important in its pathogenicity and survival in macrophages.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Burkholderia pseudomallei/drug effects
- Burkholderia pseudomallei/genetics
- Chlorides/pharmacology
- Cloning, Molecular
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Iron/pharmacology
- Manganese Compounds/pharmacology
- Molecular Sequence Data
- Mutagenesis/drug effects
- Mutation
- Oxidants/pharmacology
- Peroxidases/metabolism
- Promoter Regions, Genetic
- RNA, Bacterial/drug effects
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Repressor Proteins/genetics
- Sequence Analysis, DNA
- Superoxide Dismutase/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- S Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, 10210, Bangkok, Thailand.
| | | | | | | |
Collapse
|
17
|
Patzer SI, Hantke K. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 2000; 275:24321-32. [PMID: 10816566 DOI: 10.1074/jbc.m001775200] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of the Escherichia coli zinc transporter, encoded by the znuACB gene cluster, is regulated in response to the intracellular zinc concentration by the zur gene product. Inactivation of the zur gene demonstrated that Zur acts as a repressor when binding Zn(2+). Eight chromosomal mutant zur alleles were sequenced to correlate the loss of Zur function with individual mutations. Wild-type Zur and ZurDelta46-91 formed homo- and heterodimers. Dimerization was independent of metal ions since it also occurred in the presence of metal chelators. Using an in vivo titration assay, the znu operator was narrowed down to a 31-base pair region overlapping the translational start site of znuA. This location was confirmed by footprinting assays. Zur directly binds to a single region comprising a nearly perfect palindrome. Zinc chelators completely inhibited and Zn(2+) in low concentrations enhanced DNA binding of Zur. No evidence for autoregulation of Zur was found. Zur binds at least 2 zinc ions/dimer specifically. Although most of the mutant Zur proteins bound to the znu operator in vitro, no protection was observed in in vivo footprinting experiments. Analysis of the mutant Zur proteins suggested an amino-terminal DNA contact domain around residue 65 and a dimerization and Zn(2+)-binding domain toward the carboxyl-terminal end.
Collapse
Affiliation(s)
- S I Patzer
- Lehrstuhl Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
18
|
Escolar L, Pérez-Martín J, de Lorenzo V. Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli. J Biol Chem 2000; 275:24709-14. [PMID: 10833520 DOI: 10.1074/jbc.m002839200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of the siderophore aerobactin in Escherichia coli is transcriptionally metalloregulated through the iron-dependent binding of the Fur (ferric uptake regulator) to a large region (>100 base pairs) within the cognate promoter in the pColV-K30 plasmid. We show in this article that such an unusually long operator results from the specific addition of degenerate repeats 5'-NAT(A/T)AT-3' and not from a fortuitous occupation of the DNA adjacent to the primary binding sites by an excess of the repressor. Furthermore, the protection pattern revealed by DNase I and hydroxyl radical footprinting reflected a side-by-side oligomerization of the protein along an extended DNA stretch. This type of DNA-protein interactions is more like those observed in some eukaryotic factors and nucleoid-associated proteins than typical of specific prokaryotic regulators.
Collapse
Affiliation(s)
- L Escolar
- Department of Microbial Biotechnology, Centro Nacional de Biotecnologia CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
19
|
|
20
|
Funahashi T, Fujiwara C, Okada M, Miyoshi S, Shinoda S, Narimatsu S, Yamamoto S. Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 2000; 44:963-70. [PMID: 11220684 DOI: 10.1111/j.1348-0421.2000.tb02591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In many bacteria, the ferric uptake regulatory protein (Fur) has a central role in the negative regulation of genes affected by iron limitation. In this study, Vibrio parahaemolyticus strains carrying mutations in the fur gene encoding Fur were isolated by the manganese selection method to assess the function of Fur in connection with alternations in the coordinate expression of the siderophore vibrioferrin (VF) and iron-repressible outer membrane proteins (IROMPs). Ten out of 25 manganese-resistant mutants constitutively produced VF and expressed at least two IROMPs irrespective of the iron concentration in the medium. PCR-direct DNA sequencing of the fur genes in these mutants identified four different point mutations causing amino acid changes. Moreover, a fur overexpressing plasmid was constructed to prepare antiserum against V. parahaemolyticus Fur. Western blotting with this antiserum revealed that the intracellular abundance of the wild-type Fur was not significantly affected by the iron concentrations in the growth medium, and that the Fur proteins of the mutant strains occurred at substantially smaller amounts and/or migrated more rapidly in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the wild-type Fur. These data afford an additional insight into the structure-function relationship of Fur and imply its involvement in the iron acquisition systems of V. parahaemolyticus, although it is yet unknown whether its action on the target genes is direct or indirect.
Collapse
Affiliation(s)
- T Funahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
During the past decade significant progress has been made towards identifying some of the schemes that Pseudomonas aeruginosa uses to obtain iron and towards cataloguing and characterizing many of the genes and gene products that are likely to play a role in these processes. This review will largely recount what we have learned in the past few years about how P. aeruginosa regulates its acquisition, intake and, to some extent, trafficking of iron, and the role of iron acquisition systems in the virulence of this remarkable opportunistic pathogen. More specifically, the genetics, biochemistry and biology of an essential regulator (Ferric uptake regulator - Fur) and a Fur-regulated alternative sigma factor (PvdS), which are central to these processes, will be discussed. These regulatory proteins directly or indirectly regulate a substantial number of other genes encoding proteins with remarkably diverse functions. These genes include: (i) other regulatory genes, (ii) genes involved in basic metabolic processes (e.g. Krebs cycle), (iii) genes required to survive oxidative stress (e.g. superoxide dismutase), (iv) genes necessary for scavenging iron (e.g. siderophores and their cognate receptors) or genes that contribute to the virulence (e.g. exotoxin A) of this opportunistic pathogen. Despite this recent expansion of knowledge about the response of P. aeruginosa to iron, many significant biological issues surrounding iron acquisition still need to be addressed. Virtually nothing is known about which of the distinct iron acquisition mechanisms P. aeruginosa brings to bear on these questions outside the laboratory, whether it be in soil, in a pipeline, on plants or in the lungs of cystic fibrosis patients.
Collapse
Affiliation(s)
- M L Vasil
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
22
|
Escolar L, Pérez-Martín J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999; 181:6223-9. [PMID: 10515908 PMCID: PMC103753 DOI: 10.1128/jb.181.20.6223-6229.1999] [Citation(s) in RCA: 596] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- L Escolar
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | | | |
Collapse
|
23
|
Escolar L, Pérez-Martín J, de Lorenzo V. Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 1998; 283:537-47. [PMID: 9784364 DOI: 10.1006/jmbi.1998.2119] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mode of DNA binding of the Fur (ferric uptake regulator) repressor which controls transcription of iron-responsive genes in Escherichia coli, has been re-examined. Using as a reference the known sites at the promoter of the aerobactin operon of Escherichia coli, we have compared in detail the patterns of interaction between the purified Fur protein and natural or synthetic DNA targets. DNase I and hydroxyl radical footprinting, as well as missing-T assays, consistently revealed that functional Fur sites are composed of a minimum of three repeats of the hexameric motif GATAAT rather than by a palindromic 19 bp target sequence. Extended binding sites, constructed by stepwise addition of one or two direct repeats of the same sequence, were occupied co-operatively by Fur with the same pattern of interactions as those observed with the core of three repeats. This indicated that functional sites with a range of affinities can be formed by the addition of discrete GATAAT extensions to a minimal recognition sequence. The fashion in which Fur binds its target, virtually unknown in prokaryotic transcriptional regulators, accounts for the observed helical wrapping of the protein around the DNA helix.
Collapse
Affiliation(s)
- L Escolar
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, 28049, Spain
| | | | | |
Collapse
|
24
|
Patzer SI, Hantke K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998; 28:1199-210. [PMID: 9680209 DOI: 10.1046/j.1365-2958.1998.00883.x] [Citation(s) in RCA: 367] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, lacZ operon fusions were isolated that were derepressed under iron repletion and repressed under iron depletion. Two fusions were localized in genes that formed an operon whose gene products had characteristics of a binding protein-dependent transport system. The growth defect of these mutants on TY medium containing 5mM EGTA was compensated for by the addition of Zn2+. In the presence of 0.5mM EGTA, only the parental strain was able to take up 65Zn2+. This high-affinity transport was energized by ATP. The genes were named znuACB (for zinc uptake; former name yebLMI) and localized at 42 min on the genetic map of E. coli. At high Zn2+ concentrations, the znu mutants took up more 65Zn2+ than the parental strain. The high-affinity 65Zn2+ uptake was repressed by growth in the presence of 10 microM Zn2+. A znuA-lacZ operon fusion was repressed by 5 microM Zn2+ and showed a more than 20-fold increase in beta-galactosidase activity when Zn2+ was bound to 1.5 microM TPEN [tetrakis-(2-pyridylmethyl) ethylenediamine]. To identify the Zn2+-dependent regulator, constitutive mutants were isolated and tested for complementation by a gene bank of E. coli. A complementing gene, yjbK of the E. coli genome, was identified and named zur (for zinc uptake regulation). The Zur protein showed 27% sequence identity with the iron regulator Fur. High-affinity 65Zn2+ transport of the constitutive zur mutant was 10-fold higher than that of the uninduced parental strain. An in vivo titration assay suggested that Zur binds to the bidirectional promoter region of znuA and znuCB.
Collapse
Affiliation(s)
- S I Patzer
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Germany
| | | |
Collapse
|
25
|
Westenberg DJ, Guerinot ML. Regulation of bacterial gene expression by metals. ADVANCES IN GENETICS 1998; 36:187-238. [PMID: 9348656 DOI: 10.1016/s0065-2660(08)60310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D J Westenberg
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
26
|
Michaud-Soret I, Adrait A, Jaquinod M, Forest E, Touati D, Latour JM. Electrospray ionization mass spectrometry analysis of the apo- and metal-substituted forms of the Fur protein. FEBS Lett 1997; 413:473-6. [PMID: 9303558 DOI: 10.1016/s0014-5793(97)00963-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fur has been purified and reconstituted with Co2+ and Mn2+. The ESI-MS spectra of the apoprotein as well as Mn-Fur and Co-Fur under acidic denaturating conditions showed the existence of two species of molecular mass 16,660 +/- 3 and 16,792 +/- 3 Da, which correspond, respectively, to the N-terminal methionine 'excised' or 'non-excised' forms of the monomer. This result proves the absence of any other post-translational modification or modification due to metal incorporation. On the other hand, under soft conditions, ESI spectra provided for the first time direct evidence for dimeric metal-containing forms in solution.
Collapse
Affiliation(s)
- I Michaud-Soret
- Département de Recherche Fondamentale sur la Matière Condensée, (Unité de Recherche Associée au CNRS No. 1194), CEA-Grenoble, France.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
During the last decade, marked progress has been made in the study of the fine details of the structures of milk proteins such as caseins, beta-lactoglobulin, alpha-lactalbumin, and lactotransferrin. Many of the functional properties of the individual milk proteins, as well as the milk protein products, may be described at the molecular level. This article is an attempt to thoroughly review the three-dimensional structures of major milk proteins, and to correlate them with the functional aspects of these proteins as food ingredients.
Collapse
Affiliation(s)
- D W Wong
- USDA-ARS-WRRC, Albany, California 94710, USA
| | | | | |
Collapse
|
28
|
Abstract
Iron regulation in a growing number of bacterial species is being attributed to the presence of a fur (ferric uptake regulation) regulatory system. In the presence of iron, Fur acts as a classical negative regulator, binding conserved sequences within the promoter of iron-repressible genes and blocking transcription. Western blot analysis utilizing Escherichia coli Fur antisera detected a band of approximately 17 kDa in soluble extracts of Haemophilus ducreyi. Additionally, Southern blot hybridization of the H. ducreyi chromosome with a meningococcal fur probe indicated that H. ducreyi might contain a fur homolog. This putative fur homolog was cloned into the E. coli vector pACYC184. This clone was capable of repressing expression of a normally Furregulated lacZ fusion in the fur-background of E. coli strain H1780. The deduced amino acid sequence shows H. ducreyi fur to be 54% identical and 73% similar to E. coli fur, containing putative DNA-binding and metal-binding domains. These data demonstrate that H. ducreyi has a functional fur system.
Collapse
Affiliation(s)
- S D Carson
- Department of Microbiology, University of North Carolina at Chapel Hill 27599, USA
| | | | | |
Collapse
|
29
|
Hall HK, Foster JW. The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 1996; 178:5683-91. [PMID: 8824613 PMCID: PMC178407 DOI: 10.1128/jb.178.19.5683-5691.1996] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The response of Salmonella typhimurium to low pH includes a low-pH protection system called the acid tolerance response (ATR). The iron-regulatory protein Fur has been implicated in the ATR since fur mutants are acid sensitive and cause altered expression of several acid shock proteins (J. W. Foster, J. Bacteriol. 173:6896-6902, 1991). We have determined that the acid-sensitive phenotype of fur mutations is indeed due to a defect in Fur that can be complemented by a fur(+)-containing plasmid. However, changes in cellular iron status alone did not trigger the ATR. Cells clearly required exposure to low pH in order to induce acid tolerance. The role of Fur in acid tolerance was found to extend beyond regulating iron acquisition. A mutation in fur converting histidine 90 to an arginine (H90R) eliminated Fur-mediated iron regulation of enterochelin production and deregulated an iroA-lacZ fusion but had no effect on acid tolerance. The H90R iron-blind Fur protein also mediated acid shock induction of several Fur-dependent acid shock proteins and acid control of the hyd locus. In addition, a Fur superrepressor that constitutively repressed iron-regulated genes mediated normal Fur-dependent acid tolerance and pH-controlled gene expression. The results indicate the acid-sensing and iron-sensing mechanisms of Fur are separable by mutation and reinforce the concept of Fur as a major global regulator in the cell.
Collapse
Affiliation(s)
- H K Hall
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | |
Collapse
|
30
|
Smith A, Hooper NI, Shipulina N, Morgan WT. Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene of Escherichia coli. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:575-83. [PMID: 8895104 DOI: 10.1007/bf01908539] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fur gene product, Fur, of Escherichia coli is a repressor when it binds Fe(II). Since heme and iron metabolism are closely linked and Fur is rich in histidine, a ligand for heme, the binding of heme to Fur was investigated. The oxidized Fur-heme complex is stable and low spin with a Soret maximum at 404 nm and no 620-nm band. CO coordinates with the reduced heme-Fur complex, causing a shift from 412 nm to 410 nm, and stabilizes it, increasing the half-life from 5 to 15 min. Circular dichroism (CD) spectra in the Soret region show heme bound in an asymmetric environment in Fur, both in the oxidized and reduced-CO forms. Quenching of tyrosine fluorescence by heme revealed rapid, tight binding (Kd < 1 microM) with an unusual stoichiometry of 1 heme:1 Fur dimer. Fur binds Mn(II), a model ligand for the endogenous Fe(II), much more weakly (Kd > 80 microM). Far-ultraviolet CD spectroscopy showed that the alpha-helix content of apo-Fur decreases slightly with heme binding, but increases with Mn(II) binding. Competition experiments indicated that heme interacts with Fur dimers at the same site as Mn(II) and can displace the metal. In contrast to Mn(II), Zn(II) did not quench the tyrosine fluoroescence of Fur, affected the CD spectrum less than Mn(II), but did bind in a manner which prevented heme from binding. In sum, Fur not only binds heme and Zn(II) with sufficient affinity to be biologically relevant, but the interactions that occur between these ligands and their effects on Mn(II) binding need to be taken into account when addressing the biological function of Fur.
Collapse
Affiliation(s)
- A Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110, USA.
| | | | | | | |
Collapse
|
31
|
Heidrich C, Hantke K, Bierbaum G, Sahl HG. Identification and analysis of a gene encoding a Fur-like protein of Staphylococcus epidermidis. FEMS Microbiol Lett 1996; 140:253-9. [PMID: 8764488 DOI: 10.1111/j.1574-6968.1996.tb08345.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gene (fur) for a Fur-like protein was identified on a 1.1 kb chromosomal DNA fragment of Staphylococcus epidermidis BN 280; the fur gene is followed by an open reading frame coding for the N-terminus of a putative superoxide dismutase. Within the -35 promoter region of both genes, as sequence motif was detected with low similarity to Fur-binding regulatory DNA segments, the so-called Fur boxes. Fur titration in Escherichia coli strain H1717 demonstrated that the E. coli Fur protein binds to the Fur box of the promoter region of the S. epidermidis fur gene. The S. epidermidis Fur protein was expressed in E. coli as indicated by the formation of inactive dimers with the chimeric repressor CI(N)-Fur(C) (Stojiljkovic, I. and Hantke. K. (1995) Mol. Gen. Genet. 247, 199-205), but was not able to complement the Fur mutation in E. coli H1681.
Collapse
Affiliation(s)
- C Heidrich
- Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Germany
| | | | | | | |
Collapse
|
32
|
Abstract
The pathogenic Neisseria spp. produce a number of iron-regulated gene products that are thought to be important in virulence. Iron-responsive regulation of these gene products has been attributed to the presence in Neisseria spp. of the Fur (ferric uptake regulation) protein. Evidence for the role of Fur in neisserial iron regulation has been indirect because of the inability to make fur null mutations. To circumvent this problem, we used manganese selection to isolate missense mutations of Neisseria gonorrhoeae fur. We show that a mutation in gonococcal fur resulted in reduced modulation of expression of four well-studied iron-repressed genes and affected the iron regulation of a broad range of other genes as judged by two-dimensional polyacrylamide gel electrophoresis (PAGE). All 15 of the iron-repressed spots observed by two-dimensional PAGE were at least partially derepressed in the fur mutant, and 17 of the 45 iron-induced spots were affected by the fur mutation. Thus, Fur plays a central role in regulation of iron-repressed gonococcal genes and appears to be involved in regulation of many iron-induced genes. The size and complexity of the iron regulons in N. gonorrhoeae are much greater than previously recognized.
Collapse
Affiliation(s)
- C E Thomas
- Department of Microbiology, School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
33
|
Chan VL, Louie H, Bingham HL. Cloning and transcription regulation of the ferric uptake regulatory gene of Campylobacter jejuni TGH9011. Gene 1995; 164:25-31. [PMID: 7590316 DOI: 10.1016/0378-1119(95)00477-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A Campylobacter jejuni (Cj) TGH9011 (ATCC 43431) gene homologous to the Escherichia coli ferric uptake regulatory gene (fur) has been cloned and characterized. Cj fur encodes a polypeptide consisting of 157 amino acids (aa) (18.1 kDa). The 5'-flanking region of the Cj fur gene contains two putative catabolite activator protein (CAP)-binding sequences and four Fur boxes or Fur-binding sequences (FBS), implicating cAMP and autogenous regulation respectively. A major and a minor transcription start point (tsp) were active in Fe(+) and Fe(-) media and three tsp were suppressed in Fe(+) condition. The major transcript has an unusually short leader sequence. The homology of the Cj Fur to other Proteobacteria Fur proteins is moderately low with identity ranging from 36.3% for Yersinia pestis to 31.8% for Legionella pneumophila. Multiple alignments of the Fur sequences identified three conserved motifs, I [aGLKvTlpR1KiL], II [eiGlATvYR] and III [HHDHlvCldcGeviEf] (uppercase aa are identical in 12 or all 13 Fur sequences and lowercase aa are identical in six or more sequences). A truncated TGFH9011 Fur missing 18 aa of the N terminus but retaining all three conserved motifs was shown to bind all four FBS sequences. The binding and transcription studies support autoregulation of fur expression in Cj.
Collapse
Affiliation(s)
- V L Chan
- Department of Microbiology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Stojiljkovic I, Hantke K. Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). MOLECULAR & GENERAL GENETICS : MGG 1995; 247:199-205. [PMID: 7753029 DOI: 10.1007/bf00705650] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The functions of N- and C-terminal domains of the Fur repressor of Escherichia coli in promoter recognition and dimerization were studied. We investigated the ability of fusion proteins containing the N- or C-terminal domain of Fur to dimerize and to repress a Fur-regulated lacZ fusion gene. The N-terminal domain, when fused to the C-terminal domain of the repressor CI857, repressed a Fur-regulated lacZ fusion. However, the Fur-CI857 fusion was unable to complement the growth defect of an E. coli fur mutant on fumarate and succinate. The C-terminal domain of Fur, when fused to the N-terminus of CI857, repressed a lambda Pr-regulated lacZ fusion, indicating dimerization of the chimeric protein, which is a prerequisite for CI activity. Both fusion proteins were fully active under both iron-rich and iron-poor growth conditions. We conclude that the N-terminal domain of Fur is involved in recognition of the Fur-responsive promoter and the C-terminus mediates oligomerization of the repressor.
Collapse
Affiliation(s)
- I Stojiljkovic
- Mikrobiologie/Membranphysiologie, Auf der Morgenstelle, Tübingen, Germany
| | | |
Collapse
|
35
|
Abstract
Salmonella typhimurium periodically confronts acid environments during its life. These situations arise in chemically compromised ponds, soil, degradative cellular organelles, host digestive systems, and may even result from byproducts of their own metabolism. The levels of acid that are encountered range from mild to extreme. As a neutralophile, S. typhimurium prefers to grown in pH environments above pH 5.5. They can survive down to pH 4 for extended periods of time. However, the limits of endurance can be stretched if the organisms are first adapted to a moderate acid pH before exposing them to acidity below pH 4.0. This adaptation, called the acid-tolerance response (ATR), includes several log phase and stationary phase systems. Some of these systems are dependent on an alternate sigma factor for RNA polymerase called sigma s, whereas other systems are sigma s-independent. A key to the ATR is the synthesis of a series of acid shock inducible proteins (ASPs), 51 for log phase ATR and 15 for stationary phase ATR. Some of these ASPs require sigma s for their synthesis; others require the participation of the ferric uptake regulator protein Fur. Effective acid tolerance involves RecA-independent DNA repair systems, iron, and facets of fatty acid metabolism. Aspects of medium composition and carbon metabolism are also known to influence the nature of acid tolerance in this organism. In addition to aiding survival in the natural non-host environment, aspects of acid tolerance are also tied to virulence, as evidenced by the involvement of the mouse virulence locus mviA and the fact that acid-sensitive strains of S. typhimurium exhibit reduced virulence. This review summarizes these aspects of acid adaptation and includes a discussion of acid-regulated gene expression.
Collapse
Affiliation(s)
- J W Foster
- Department of Microbiology and Immunology, University of South Alabama, College of Medicine, Mobile 36688, USA.
| |
Collapse
|
36
|
Lam MS, Litwin CM, Carroll PA, Calderwood SB. Vibrio cholerae fur mutations associated with loss of repressor activity: implications for the structural-functional relationships of fur. J Bacteriol 1994; 176:5108-15. [PMID: 8051024 PMCID: PMC196351 DOI: 10.1128/jb.176.16.5108-5115.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We used the Vibrio cholerae Fur protein as a model of iron-sensitive repressor proteins in gram-negative bacteria. Utilizing manganese mutagenesis, we isolated twelve independent mutations in V. cholerae fur that resulted in partial or complete loss of Fur repressor function. The mutant fur genes were recovered by PCR and sequenced; 11 of the 12 contained point mutations (two of which were identical), and one contained a 7-bp insertion that resulted in premature truncation of Fur. All of the mutants, except that containing the prematurely truncated Fur, produced protein by Western blot (immunoblot) analysis, although several had substantially smaller amounts of Fur and two made an immunoreactive protein that migrated more rapidly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nine of the 11 point mutations altered amino acids that are identical in all of the fur genes sequenced so far, suggesting that these amino acids may play important structural or functional roles in Fur activity. Eight of the point mutations occurred in the amino-terminal half of Fur, which is thought to mediate DNA binding; most of these mutations occurred in conserved amino acids that have been previously suggested to play a role in the interaction between adjacent alpha-helices of the protein. Three of the point mutations occurred in the carboxy-terminal half of Fur, which is thought to bind iron. One mutation at histidine-90 was associated with complete loss of Fur function; this amino acid is within a motif previously suggested as being involved in iron binding by Fur. The fur allele mutant at histidine-90 interfered with iron regulation by wild-type fur in the same cell when the mutant allele was present at higher copy number; wild-type fur was dominant over all other fur mutant alleles studied. These results are analyzed with respect to previous models of the structure and function of Fur as an iron-sensitive repressor.
Collapse
Affiliation(s)
- M S Lam
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114
| | | | | | | |
Collapse
|
37
|
Wang Z, Schmitt MP, Holmes RK. Characterization of mutations that inactivate the diphtheria toxin repressor gene (dtxR). Infect Immun 1994; 62:1600-8. [PMID: 8168920 PMCID: PMC186363 DOI: 10.1128/iai.62.5.1600-1608.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The diphtheria toxin repressor (DtxR) is an iron-dependent regulator of diphtheria toxin production and iron uptake in Corynebacterium diphtheriae. It is activated in vitro by divalent metal ions including Fe2+, Cd2+, Co2+, Mn2+, Ni2+, and Zn2+. We characterized 20 different mutations in dtxR induced by bisulfite mutagenesis, 18 of which caused single-amino-acid substitutions in DtxR and two of which were chain-terminating mutations. Six of the amino acid replacements were clustered between residues 39 and 52 in a predicted helix-turn-helix motif that exhibits homology with several other repressors and is identified as the putative DNA-binding domain of DtxR. Three substitutions occurred within a predicted alpha-helical region with the sequence His-98-X3-Cys-102-X3-His-106 that resembles metal-binding motifs in several other proteins and is identified as the putative metal-binding site of DtxR. Several purified variants of DtxR with decreased repressor activity failed to bind in gel retardation assays to DNA fragments that contained the tox operator. A quantitative assay for binding of DtxR to 63Ni2+ was also developed. Scatchard analysis revealed that DtxR has a single class of high-affinity 63Ni(2+)-binding sites with a Kd of 2.11 x 10(-6) M and a maximum binding capacity of approximately 1.2 atoms of Ni2+ per DtxR monomer. The P39L, T40I, T44I, and R47H variants of DtxR exhibited normal to slightly decreased 63Ni(2+)-binding activity, but H106Y, which has an amino acid substitution in the presumed metal-binding domain, exhibited markedly decreased 63Ni(2+)-binding activity.
Collapse
Affiliation(s)
- Z Wang
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | |
Collapse
|
38
|
Hamed MY, Neilands JB. An electron spin resonance study of the Mn(II) and Cu(II) complexes of the Fur repressor protein. J Inorg Biochem 1994; 53:235-48. [PMID: 8169605 DOI: 10.1016/0162-0134(94)85111-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
EPR spectra of Mn(II) Fur complex suggested the presence of Mn(II) in one site per Fur monomer in which Mn(II) is present in a low symmetry environment. The binding of the Mn(II) Fur complex to a DNA fragment "iron box" has a slight broadening effect on the Mn(II) signal and hence it altered the symmetry of the Mn(II) environment. We also report EPR spectra of Cu(II) Fur and Cu(II) C92S C95S mutant Fur complexes as models for Fe(II) complexes; the anisotropic g values and A values observed indicate the presence of Cu(II) in two different environments in the protein; a major axially distorted Cu(II) site bound to nitrogen and a minor distorted tetrahedral sulfur bound to the Cu(II) site. The effect of metal ion on Fur DNA binding is also discussed.
Collapse
Affiliation(s)
- M Y Hamed
- Department of Biochemistry, University of California, Berkeley
| | | |
Collapse
|
39
|
Young GM, Postle K. Repression of tonB transcription during anaerobic growth requires Fur binding at the promoter and a second factor binding upstream. Mol Microbiol 1994; 11:943-54. [PMID: 8022270 DOI: 10.1111/j.1365-2958.1994.tb00373.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although iron is an essential nutrient, its toxicity at high levels necessitates regulated transport. In Gram-negative bacteria a central target for regulation is the TonB protein, an energy transducer that couples the cytoplasmic membrane proton motive force to active transport of (FeIII)-siderophore complexes across the outer membrane. We have previously demonstrated the threefold repression of tonB transcription by excess iron in the presence of Fur repressor protein under aerobic conditions. In this report, we examine tonB regulation under anaerobic conditions where the solubility of iron is not a limiting factor and, presumably, siderophore-mediated transport is not required. Under these conditions, tonB transcription is repressed at least 10-fold by excess iron in the presence of Fur, but can be fully derepressed in the absence of Fur. Based on several lines of evidence, this anaerobic repression is not due to increased negative supercoiling as previously postulated. Our results rule out both supercoiling-mediated decreased promoter function and increased Fur binding as mediators of anaerobic repression. Under iron-limiting anaerobic conditions tonB expression is as high or higher than under iron-limiting aerobic conditions, suggesting that promoter function has not decreased anaerobically. Furthermore, under anaerobic conditions in tonB+ strains, tonB promoter function is insensitive to the gyrase inhibitor novobiocin and to changes in medium osmolarity and temperature, three conditions known to change levels of supercoiling. We also rule out effects of mutations in arcA or fnr as mediators of anaerobic repression. Results from in vivo dimethyl sulphate protection foot-printing indicate that Fur binds to an operator site between the -10 and -35 regions of the promoter, but not to a less homologous operator site centered at +26. The binding is, if anything, weaker under anaerobic conditions, indicating that anaerobic repression is not mediated through Fur. Additional changes in the in vivo footprint upstream from the promoter implicate a second factor in tonB anaerobic repression. Together, these results suggest that the mechanism responsible for this regulation (and, by analogy, that of other anaerobically repressed, iron-regulated genes such as cir, exbB, and fhuA) is a novel one.
Collapse
Affiliation(s)
- G M Young
- Department of Microbiology, Washington State University, Pullman 99164-4233
| | | |
Collapse
|
40
|
Abstract
The iron response in a number of bacterial systems is mediated by fur (ferric uptake regulation)-like regulatory systems. We have cloned and characterized a gene from Neisseria meningitidis that was homologous to Escherichia coli fur. This clone was capable of modulating expression from both E. coli and neisserial iron-regulated promoters in response to iron, and it produced a protein that reacted with anti-E. coli fur serum. Although the DNA and predicted amino acid sequences were very similar to those of four other published fur homologues, meningococcal fur was the most divergent of the group. Inability to construct a meningococcal fur mutant suggested that fur may be essential in this species.
Collapse
Affiliation(s)
- C E Thomas
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599
| | | |
Collapse
|
41
|
Abstract
Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.
Collapse
Affiliation(s)
- T V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113
| |
Collapse
|
42
|
Schmitt MP, Holmes RK. Analysis of diphtheria toxin repressor-operator interactions and characterization of a mutant repressor with decreased binding activity for divalent metals. Mol Microbiol 1993; 9:173-81. [PMID: 8412663 DOI: 10.1111/j.1365-2958.1993.tb01679.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The diphtheria toxin repressor (DtxR) is an Fe(2+)-activated protein with sequence-specific DNA-binding activity for the diphtheria toxin (tox) operator. Under high-iron conditions in Corynebacterium diphtheriae, DtxR represses toxin and siderophore biosynthesis as well as iron uptake. DtxR and a mutant repressor with His-47 substituted for Arg-47, designated DtxR-R47H, were purified and compared. Six different divalent cations (Cd2+, Co2+, Fe2+, Mn2+, Ni2+, and Zn2+) activated the sequence-specific DNA-binding activity of DtxR and enabled it to protect the tox operator from DNase I digestion, but Cu2+ failed to activate DtxR. Hydroxyl radical footprinting experiments indicated that DtxR binds symmetrically about the dyad axis of the tox operator. Methylation protection experiments demonstrated that DtxR binding alters the susceptibility to methylation of three G residues within the AT-rich tox operator. These findings suggest that two or more monomers of DtxR are involved in binding to the tox operator, with symmetrical DNA-protein interactions occurring at each end of the palindromic operator. In this regard, DtxR resembles several other well-characterized prokaryotic repressor proteins but differs dramatically from the Fe(2+)-activated ferric uptake repressor protein (Fur) of Escherichia coli. The concentration of Co2+ required to activate DtxR-R47H was at least 10-fold greater than that needed to activate DtxR, but the sequence-specific DNA binding of activated DtxR-R47H was indistinguishable from that of wild-type DtxR. The markedly deficient repressor activity of DtxR-R47H is consistent with a significant decrease in its binding activity for divalent cations.
Collapse
Affiliation(s)
- M P Schmitt
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | |
Collapse
|
43
|
Silver S, Walderhaug M. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 1992; 56:195-228. [PMID: 1579110 PMCID: PMC372861 DOI: 10.1128/mr.56.1.195-228.1992] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+, SbO2-, TeO3(2-), Zn2+, and other toxic ions. To study the regulation of these systems, we need to define both the trans-acting regulatory proteins and the cis-acting target operator DNA regions for the proteins. The regulation of gene expression for K+ and PO4(3-) transport systems involves two-component sensor-effector pairs of proteins. The first protein responds to an extracellular ionic (or related) signal and then transmits the signal to an intracellular DNA-binding protein. Regulation of Fe3+ transport utilizes the single iron-binding and DNA-binding protein Fur. The MerR regulatory protein for mercury resistance both represses and activates transcription. The ArsR regulatory protein functions as a repressor for the arsenic and antimony(III) efflux system. Although the predicted cadR regulatory gene has not been identified, cadmium, lead, bismuth, zinc, and cobalt induce this system in a carefully regulated manner from a single mRNA start site. The cadA Cd2+ resistance determinant encodes an E1(1)-1E2-class efflux ATPase (consisting of two polypeptides, rather than the one earlier identified). Cadmium resistance is also conferred by the czc system (which confers resistances to zinc and cobalt in Alcaligenes species) via a complex efflux pump consisting of four polypeptides. These two cadmium efflux systems are not otherwise related. For chromate resistance, reduced cellular accumulation is again the resistance mechanism, but the regulatory components are not identified. For other toxic heavy metals (with few exceptions), there exist specific plasmid resistances that remain relatively terra incognita for future exploration of bioinorganic molecular genetics and gene regulation.
Collapse
Affiliation(s)
- S Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60680
| | | |
Collapse
|
44
|
Abstract
Proteolytic enzymes were used to detect metal-induced conformational changes in the ferric uptake regulation (Fur) protein of Escherichia coli K12. Metal binding results in enhanced cleavage of the N-terminal region of Fur by trypsin and chymotrypsin. Activation of both trypsinolysis sensitivity and DNA binding have similar metal ion specificity and concentration dependencies, suggesting that the conformational change detected is required for operator DNA binding. Isolation and characterization of biochemically generated fragments of Fur as well as other data indicate that the N-terminal region is necessary for the interaction of the repressor with DNA and that a C-terminal domain is sufficient for binding to metal ions.
Collapse
Affiliation(s)
- M Coy
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720
| | | |
Collapse
|
45
|
Thomson AJ. Does ferredoxin I (Azotobacter) represent a novel class of DNA-binding proteins that regulate gene expression in response to cellular iron(II)? FEBS Lett 1991; 285:230-6. [PMID: 1855590 DOI: 10.1016/0014-5793(91)80807-f] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azotobacter vinelandii (Av) and chroococcum (Ac) ferredoxin I contain [3Fe-4S]1 + 0 and [4Fe-4S]2+1+ clusters, when isolated aerobically, which undergo one-electron redox cycles at potentials of -460 +/- 10 mV (vs SHE) at pH 8.3 and -645 +/- 10 mV, respectively. The X-ray structure of Fd I (Av) reveals that the N-terminal half of the polypeptide folds as a sandwich of beta-strands which enclose the iron-sulphur clusters. The C-terminal sequence contains an amphiphilic alpha-helix of four turns which lies on the surface of the beta-barrel. Fd I (Av) controls expression of an unknown protein of Mr approximately 18,000. Fd I (Ac) will complex iron(II) avidly above pH approximately 8.0 only when the [3Fe-4S] cluster is reduced and provided that cellular nucleic acid is bound. Fd I (Ac) rigorously purified from nucleic acid does not undergo iron(II) uptake. These facts, together with recent evidence that the interconversion process [3Fe-4S]0 + Fe2+----[4Fe-4S]2+ in the iron-responsive element binding protein (IRE-BP) of eukaryotic cells is controlling protein expression at the level of mRNA [1991, Cell 64, 4771; 1991, Nucleic Acid Res. 19, 1739] leads to the following hypothesis. Fd I is a DNA-binding protein which interacts by single alpha-helix binding in the wide groove of DNA. The binding is regulated by iron(II) levels in the cell. The 7Fe form binds to DNA and represses gene expression. Only the DNA-bound form of the 7Fe Fd I will take up iron(II), not the form free in solution. Iron(II) becomes bound when the [3Fe-4S] cluster is reduced. The 8Fe Fd I thus generated no longer binds DNA and the gene is de-repressed. Sequence comparisons and the crystal structure suggests that the two central turns of the alpha-helix are important elements of the DNA-recognition process and that residues Gln69 and Glu73, which lie on the outer surface of the helix, hydrogen-bond with specific base pairs.
Collapse
Affiliation(s)
- A J Thomson
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
46
|
Saito T, Duly D, Williams RJ. The histidines of the iron-uptake regulation protein, Fur. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:39-42. [PMID: 2015824 DOI: 10.1111/j.1432-1033.1991.tb15879.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There are 12 histidine residues/molecule in the iron-uptake regulation protein (Fur). Here we examine their pH dependence using proton nuclear magnetic resonance spectroscopy. The histidines have widely spread acid dissociation constants but we can not offer a simple explantation for their complicated behaviour.
Collapse
Affiliation(s)
- T Saito
- Inorganic Chemistry Laboratory, University of Oxford, UK
| | | | | |
Collapse
|
47
|
Saito T, Williams RJ. The binding of the ferric uptake regulation protein to a DNA fragment. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:43-7. [PMID: 2015825 DOI: 10.1111/j.1432-1033.1991.tb15880.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using proton NMR, we have studied the binding of a DNA fragment in double-stranded form to the ferric uptake regulation protein, Fur. We have also looked at the binding of [Cr(CN)6]3- to Fur with a view to testing whether binding is due to electrostatic interaction between Fur and the negative surface of the DNA. No competition at the DNA binding site was observed. Additionally, we have examined the binding of manganese ions to Fur in the presence of the DNA fragment and go on to discuss the likely way in which the Fur.DNA complex responds to metal-ion binding to Fur.
Collapse
Affiliation(s)
- T Saito
- Inorganic Chemistry Laboratory, University of Oxford, England
| | | |
Collapse
|