1
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
2
|
Schirmann JG, Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Miranda-Sapla MM, Lima CHS, Bispo MLF, Costa IN, Conchon-Costa I, Pavanelli WR, Dekker RFH, Barbosa-Dekker AM. In-vitro biological evaluation of 3,3',5,5'-tetramethoxy-biphenyl-4,4'-diol and molecular docking studies on trypanothione reductase and Gp63 from Leishmania amazonensis demonstrated anti-leishmania potential. Sci Rep 2023; 13:6928. [PMID: 37117253 PMCID: PMC10147928 DOI: 10.1038/s41598-023-34124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Available treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3',5,5'-Tetramethoxy-biphenyl-4,4'-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62-0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.
Collapse
Affiliation(s)
- Jéseka G Schirmann
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - Bruna T S Bortoleti
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela D Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena M Miranda-Sapla
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Camilo H S Lima
- Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle L F Bispo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania N Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus de Londrina, Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
3
|
de Santiago-Silva KM, Bortoleti BTDS, Oliveira LDN, Maia FLDA, Castro JC, Costa IC, Lazarin DB, Wardell JL, Wardell SMSV, Albuquerque MG, Lima CHDS, Pavanelli WR, Bispo MDLF, Gonçalves RSB. Antileishmanial Activity of 4,8-Dimethoxynaphthalenyl Chalcones on Leishmania amazonensis. Antibiotics (Basel) 2022; 11:antibiotics11101402. [PMID: 36290060 PMCID: PMC9598561 DOI: 10.3390/antibiotics11101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania species. Available therapeutic options have several limitations. The drive to develop new, more potent, and selective antileishmanial agents is thus a major goal. Herein we report the synthesis and the biological activity evaluation against promastigote and amastigote forms of Leishmania amazonensis of nine 4,8-dimethoxynaphthalenyl chalcones. Compound ((E)-1-(4,8-dimethoxynaphthalen-1-yl)-3-(4-nitrophenyl)prop-2-en-1-one), 4f, was the most promising with an IC50 = 3.3 ± 0.34 μM (promastigotes), a low cytotoxicity profile (CC50 = 372.9 ± 0.04 μM), and a high selectivity index (SI = 112.6). Furthermore, 4f induced several morphological and ultrastructural changes in the free promastigote forms, loss of plasma membrane integrity, and increased reactive oxygen species (ROS). An in silico analysis of drug-likeness and ADME parameters suggested high oral bioavailability and intestinal absorption. Compound 4f reduced the number of infected macrophages and the number of amastigotes per macrophage, with an IC50 value of 18.5 ± 1.19 μM. Molecular docking studies with targets, ARG and TR, showed that compound 4f had more hydrogen bond interactions with the ARG enzyme, indicating a more stable protein-ligand binding. These results suggest that 4,8-dimethoxynaphthalenyl chalcones are worthy of further study as potential antileishmanial drugs.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba 81350-010, PR, Brazil
| | | | | | - Joyce Cristina Castro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Ivete Conchon Costa
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Danielle Bidóia Lazarin
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - James L. Wardell
- Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | | | - Magaly Girão Albuquerque
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
- Correspondence: (M.d.L.F.B.); (R.S.B.G.); Tel.: +55-43-33714810 (M.d.L.F.B.)
| | - Raoni Schroeder B. Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
- Correspondence: (M.d.L.F.B.); (R.S.B.G.); Tel.: +55-43-33714810 (M.d.L.F.B.)
| |
Collapse
|
4
|
Identification of 3-Methoxycarpachromene and Masticadienonic Acid as New Target Inhibitors against Trypanothione Reductase from Leishmania Infantum Using Molecular Docking and ADMET Prediction. Molecules 2021; 26:molecules26113335. [PMID: 34206087 PMCID: PMC8199445 DOI: 10.3390/molecules26113335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.
Collapse
|
5
|
Camargo PG, Bortoleti BTDS, Fabris M, Gonçalves MD, Tomiotto-Pellissier F, Costa IN, Conchon-Costa I, Lima CHDS, Pavanelli WR, Bispo MDLF, Macedo F. Thiohydantoins as anti-leishmanial agents: n vitro biological evaluation and multi-target investigation by molecular docking studies. J Biomol Struct Dyn 2020; 40:3213-3222. [PMID: 33183184 DOI: 10.1080/07391102.2020.1845979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcieli Fabris
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Battista T, Colotti G, Ilari A, Fiorillo A. Targeting Trypanothione Reductase, a Key Enzyme in the Redox Trypanosomatid Metabolism, to Develop New Drugs against Leishmaniasis and Trypanosomiases. Molecules 2020; 25:E1924. [PMID: 32326257 PMCID: PMC7221613 DOI: 10.3390/molecules25081924] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023] Open
Abstract
The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (G.C.); (A.I.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Colotti G, Saccoliti F, Gramiccia M, Di Muccio T, Prakash J, Yadav S, Dubey VK, Vistoli G, Battista T, Mocci S, Fiorillo A, Bibi A, Madia VN, Messore A, Costi R, Di Santo R, Ilari A. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Amino Acids 2019; 52:247-259. [PMID: 31037461 DOI: 10.1007/s00726-019-02731-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023]
Abstract
Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.
Collapse
Affiliation(s)
- Gianni Colotti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, IBPM-CNR, c/o Dip. Scienze Biochimiche Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Saccoliti
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marina Gramiccia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità Viale Regina Elena, 299, 00161, Rome, Italy
| | - Trentina Di Muccio
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità Viale Regina Elena, 299, 00161, Rome, Italy
| | - Jay Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 981039, India
| | - Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, 221005, India
| | - Giulio Vistoli
- Dip. di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy
| | - Theo Battista
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Stefano Mocci
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Annarita Fiorillo
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Aasia Bibi
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Valentina Noemi Madia
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Messore
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Costi
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberto Di Santo
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, IBPM-CNR, c/o Dip. Scienze Biochimiche Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
8
|
da Paixão VG, Pita SSDR. In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB). Comput Biol Chem 2019; 79:36-47. [PMID: 30710804 DOI: 10.1016/j.compbiolchem.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.
Collapse
Affiliation(s)
- Vinícius Guimarães da Paixão
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Universidade Federal da Bahia, Av. Barão de Jeremoabo, 147, Faculdade de Farmácia, Ondina, 40170-115, Salvador, BA, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Universidade Federal da Bahia, Av. Barão de Jeremoabo, 147, Faculdade de Farmácia, Ondina, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
9
|
Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Negl Trop Dis 2018; 12:e0006969. [PMID: 30475811 PMCID: PMC6283646 DOI: 10.1371/journal.pntd.0006969] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/06/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against Leishmaniasis. This enzyme is fundamental for parasite survival in the host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize hydrogen peroxide produced by host macrophages during infection. In order to identify new lead compounds against Leishmania we developed and validated a new luminescence-based high-throughput screening (HTS) assay that allowed us to screen a library of 120,000 compounds. We identified a novel chemical class of TR inhibitors, able to kill parasites with an IC50 in the low micromolar range. The X-ray crystal structure of TR in complex with a compound from this class (compound 3) allowed the identification of its binding site in a pocket at the entrance of the NADPH binding site. Since the binding site of compound 3 identified by the X-ray structure is unique, and is not present in human homologs such as glutathione reductase (hGR), it represents a new target for drug discovery efforts. Human leishmaniasis is one of the most diffused neglected vector-borne diseases and causes 60,000 deaths annually, a rate surpassed only by malaria among parasitic diseases. Anti-Leishmania treatments are unsatisfactory in terms of their safety and efficacy and there is an urgent need to find treatments. Compounds targeting proteins that are essential for parasite survival but that are not present in the human host are of especial interest with a view to developing selective and non-toxic drugs. Leishmania uses trypanothione as its main detoxifying molecule, allowing the parasite to neutralize the reactive oxygen species produced by macrophages during the infection. Trypanothione is activated by Trypanothione reductase (TR), an enzyme that is absent in man but that is essential for parasite survival, and is therefore considered an attractive target. The new luminescence-based high-throughput screening assay that we have developed and validated allowed us to identify new TR inhibitors by screening a collection of 120,000 compounds. Hit follow-up led to a prototype molecule, compound 3, that we have shown is able to bind in a cavity at the entrance of the NADPH binding site, thereby inhibiting TR. Compound 3 is not able to inhibit the human homolog glutathione reductase (hGR) since the residues lining its NADPH binding cavity are not conserved with respect to TR. Based on their mechanism of action, compounds from the class represented by compound 3 are useful leads for the design new drugs against leishmaniasis.
Collapse
|
10
|
Tiwari N, Tanwar N, Munde M. Molecular insights into trypanothione reductase-inhibitor interaction: A structure-based review. Arch Pharm (Weinheim) 2018; 351:e1700373. [DOI: 10.1002/ardp.201700373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Neha Tiwari
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Neetu Tanwar
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Manoj Munde
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
11
|
Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, Comini MA. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal 2018; 28:463-486. [PMID: 29048199 DOI: 10.1089/ars.2017.7133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.
Collapse
Affiliation(s)
- Bruno Manta
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Mariana Bonilla
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica , Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Fiestas
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mattia Sturlese
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Gustavo Salinas
- 4 Worm Biology Lab, Institut Pasteur de Montevideo , Montevideo, Uruguay .,5 Departamento de Biociencias, Facultad de Química, Universidad de la República , Montevideo, Uruguay
| | - Massimo Bellanda
- 3 Department of Chemical Sciences, Università degli Studi di Padova , Padova, Italy
| | - Marcelo A Comini
- 1 Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo , Montevideo, Uruguay
| |
Collapse
|
12
|
Khan MOF. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design. Drug Target Insights 2017. [DOI: 10.1177/117739280700200007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- M. Omar F. Khan
- College of Pharmacy, Southwestern Oklahoma State University, 100 Campus Drive, Weatherford, OK 73096, U.S.A
| |
Collapse
|
13
|
Font M, Baquedano Y, Plano D, Moreno E, Espuelas S, Sanmartín C, Palop JA. Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism. J Mol Graph Model 2015; 60:63-78. [PMID: 26119983 DOI: 10.1016/j.jmgm.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/07/2015] [Accepted: 06/09/2015] [Indexed: 01/02/2023]
Abstract
A molecular modeling study has been carried out on two previously reported series of symmetric diselenide derivatives that show remarkable antileishmanial in vitro activity against Leishmania infantum intracellular amastigotes and in infected macrophages (THP-1 cells), in addition to showing favorable selectivity indices. Series 1 consists of compounds that can be considered as central scaffold constructed with a diaryl/dialkylaryl diselenide central nucleus, decorated with different substituents located on the aryl rings. Series 2 consists of compounds constructed over a diaryl diselenide central nucleus, decorated in 4 and 4' positions with an aryl or heteroaryl sulfonamide fragment, thus forming the diselenosulfonamide derivatives. With regard to the diselenosulfonamide derivatives (2 series), the activity can be related, as a first approximation, with (a) the ability to release bis(4-aminophenyl) diselenide, the common fragment which can be ultimately responsible for the activity of the compounds. (b) the anti-parasitic activity achieved by the sulfonamide pharmacophore present in the analyzed derivatives. The data that support this connection include the topography of the molecules, the conformational behavior of the compounds, which influences the bond order, as well as the accessibility of the hydrolysis point, and possibly the hydrophobicity and polarizability of the compounds.
Collapse
Affiliation(s)
- María Font
- Sección de Modelización Molecular, Departamento de Química Orgánica y Farmacéutica, Spain; Instituto de Salud Tropical, Spain.
| | - Ylenia Baquedano
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Daniel Plano
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Esther Moreno
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | | | - Carmen Sanmartín
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Juan Antonio Palop
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| |
Collapse
|
14
|
O’Sullivan MC, Durham TB, Valdes HE, Dauer KL, Karney NJ, Forrestel AC, Bacchi CJ, Baker JF. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 2015; 23:996-1010. [DOI: 10.1016/j.bmc.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
|
15
|
Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem 2014; 85:51-64. [DOI: 10.1016/j.ejmech.2014.07.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022]
|
16
|
Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1708-17. [PMID: 24981797 DOI: 10.1016/j.bbapap.2014.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 11/20/2022]
Abstract
The NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4 is a member of the single cysteine-containing subset of the family of disulfide reductases represented by glutathione reductase. We have determined the kinetics of the reductive half-reaction of the enzyme with NADH using stopped-flow spectroscopy and kinetic isotope effects, and these results indicate that the reductive and oxidative half-reactions are both partially rate-limiting for enzyme turnover. During reaction with NADH, the reduced nucleotide appears to bind rapidly in an unproductive conformation, followed by the formation of a productive E·NADH complex and subsequent electron transfer to FAD. F161 of Npsr fills the space in which the nicotinamide ring of NADH would be expected to bind. We have shown that while this residue is not absolutely required for catalysis, it does assist in the forward commitment to catalysis through its role in the reductive half reaction, where it appears to enhance hydride transfer in the productive E·NADH complex. While the fluorescence and absorbance spectra of the stable redox forms of the wild-type and F161A mutant enzymes are similar, intermediates formed during reduction and turnover have different characteristics and appear to indicate that the enzyme-NADH complex formed just prior to hydride transfer on the F161A enzyme has weaker FAD-NADH interactions than the wild-type enzyme, consistent with a "looser" enzyme-NADH complex. The 2.7Å crystal structure of the F161A mutant was determined, and shows that the nicotinamide ring of NADH would have the expected freedom of motion in the more open NADH binding cavity.
Collapse
|
17
|
Persch E, Bryson S, Todoroff NK, Eberle C, Thelemann J, Dirdjaja N, Kaiser M, Weber M, Derbani H, Brun R, Schneider G, Pai EF, Krauth-Siegel RL, Diederich F. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. ChemMedChem 2014; 9:1880-91. [PMID: 24788386 DOI: 10.1002/cmdc.201402032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 01/16/2023]
Abstract
The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T. cruzi.
Collapse
Affiliation(s)
- Elke Persch
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Da Rocha Pita SS, Batista PR, Albuquerque MG, Pascutti PG. Molecular Dynamics Simulations of Peptide Inhibitors Complexed WithTrypanosoma cruziTrypanothione Reductase. Chem Biol Drug Des 2012; 80:561-71. [DOI: 10.1111/j.1747-0285.2012.01429.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
de Paula da Silva CHT, Bernardes LSC, da Silva VB, Zani CL, Carvalho I. Novel arylβ-aminocarbonyl derivatives as inhibitors ofTrypanosoma cruzitrypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures. J Biomol Struct Dyn 2012; 29:702-16. [DOI: 10.1080/07391102.2011.672633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
da Rocha Pita SS, Albuquerque MG, Rodrigues CR, Castro HC, Hopfinger AJ. Receptor-dependent 4D-QSAR analysis of peptidemimetic inhibitors of Trypanosoma cruzi trypanothione reductase with receptor-based alignment. Chem Biol Drug Des 2012; 79:740-8. [PMID: 22269140 DOI: 10.1111/j.1747-0285.2012.01338.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-dependent four-dimensional quantitative structure-activity relationship (RD-4D-QSAR) studies were applied on a series of 21 peptides reversible inhibitors of Trypanosoma cruzi trypanothione reductase (TR) (Amino Acids, 20, 2001, 145). The RD-4D-QSAR (J Chem Inform Comp Sci, 43, 2003, 1591) approach can evaluate multiple conformations from molecular dynamics simulation and several superposition structure alignments inside a box composed by unitary cubic cells. The descriptors are the occupancy frequency of the atoms types inside the grid cells. We could develop 3D-QSAR models that were highly predictive (q(2) above 0.71). The 3D-QSAR models can be visualized as a spatial map of atom types that are important on the comprehension of the ligand-enzyme interaction mechanism, pointing main pharmacophoric groups and TR subsites described in the literature. We were able also to identify some TR subsites for further development in the drug discovery process against tropical diseases not yet studied.
Collapse
|
21
|
Walton JGA, Jones DC, Kiuru P, Durie AJ, Westwood NJ, Fairlamb AH. Synthesis and evaluation of indatraline-based inhibitors for trypanothione reductase. ChemMedChem 2011; 6:321-8. [PMID: 21275055 PMCID: PMC3047706 DOI: 10.1002/cmdc.201000442] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/11/2010] [Indexed: 11/23/2022]
Abstract
The search for novel compounds of relevance to the treatment of diseases caused by trypanosomatid protozoan parasites continues. Screening of a large library of known bioactive compounds has led to several drug-like starting points for further optimisation. In this study, novel analogues of the monoamine uptake inhibitor indatraline were prepared and assessed both as inhibitors of trypanothione reductase (TryR) and against the parasite Trypanosoma brucei. Although it proved difficult to significantly increase the potency of the original compound as an inhibitor of TryR, some insight into the preferred substituent on the amine group and in the two aromatic rings of the parent indatraline was deduced. In addition, detailed mode of action studies indicated that two of the inhibitors exhibit a mixed mode of inhibition.
Collapse
Affiliation(s)
- Jeffrey G A Walton
- School of Chemistry and Biomedical Sciences Research Complex, University of St AndrewsNorth Haugh, St Andrews, Fife, KY16 9ST (UK)
| | - Deuan C Jones
- Division of Biological Chemistry and Drug Discovery, University of DundeeDundee, DD1 5EH (UK)
| | - Paula Kiuru
- School of Chemistry and Biomedical Sciences Research Complex, University of St AndrewsNorth Haugh, St Andrews, Fife, KY16 9ST (UK)
| | - Alastair J Durie
- School of Chemistry and Biomedical Sciences Research Complex, University of St AndrewsNorth Haugh, St Andrews, Fife, KY16 9ST (UK)
| | - Nicholas J Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St AndrewsNorth Haugh, St Andrews, Fife, KY16 9ST (UK)
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, University of DundeeDundee, DD1 5EH (UK)
| |
Collapse
|
22
|
Karioti A, Skaltsa H, Kaiser M, Tasdemir D. Trypanocidal, leishmanicidal and cytotoxic effects of anthecotulide-type linear sesquiterpene lactones from Anthemis auriculata. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:783-787. [PMID: 19200703 DOI: 10.1016/j.phymed.2008.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/07/2008] [Accepted: 12/11/2008] [Indexed: 05/27/2023]
Abstract
Trypanosomiasis and leishmaniasis pose major public health threats for many countries, particularly those in sub-Saharan Africa and South America. In the present study, we evaluated the in vitro antiprotozoal activity of three irregular, linear sesquiterpene lactones recently isolated from Greek Anthemis auriculata, namely anthecotulide (1), 4-hydroxyanthecotulide (2) and 4-acetoxyanthecotulide (3). Trypomastigote forms of Trypanosoma brucei rhodesiense and T. cruzi as well as axenic amastigotes of Leishmania donovani were used for testing. The cytotoxic potential of the compounds was also assessed against mammalian (rat) skeletal myoblasts (L6 cells). All compounds showed potent trypanocidal and leishmanicidal activity. 4-Hydroxyanthecotulide (2) appeared to be the most active compound against all parasites, particularly towards T. b. rhodesiense (IC(50) 0.56 microg/ml), whereas 4-acetoxyanthecotulide (3) was the least active. All three metabolites possessed toxicity on mammalian cells, which might limit their use as antiprotozoal agents.
Collapse
Affiliation(s)
- Anastasia Karioti
- Department of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
23
|
In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates. Bioorg Med Chem Lett 2009; 19:3661-3. [DOI: 10.1016/j.bmcl.2009.04.087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 11/21/2022]
|
24
|
Rai S, Dwivedi UN, Goyal N. Leishmania donovani trypanothione reductase: role of urea and guanidine hydrochloride in modulation of functional and structural properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1474-84. [PMID: 19563920 DOI: 10.1016/j.bbapap.2009.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/29/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
Trypanothione reductase [TR], an NADPH-dependent disulfide oxidoreductase, unique to kinetoplastid parasites including Trypanosoma and Leishmania, is a validated target for the design of improved drugs. TR is a stable homodimer with a FAD molecule tightly bound to each subunit. In this paper, structure, function, stability properties and cofactor protein interactions of recombinant TR from Leishmania donovani were investigated under equilibrium unfolding/denaturing conditions. Urea induced unfolding was non-reductive in nature and led to the formation of partially folded intermediate. This intermediate species lacks catalytic activity and characteristic conformation of native LdTR but has significant secondary structure and could be partially reactivated. Guanidine hydrochloride-induced irreversible denaturation was marked by the presence of molten globule intermediate. Reactivation and cross-linking experiments clearly demonstrated that the loss of activity at lower denaturant concentrations was not coincided by dimer dissociation or structural unfolding. The studies demonstrate that functional conformation and stability are largely governed by ionic interactions and active site disulfide plays a vital role in maintaining functional conformation. The results obtained from this study provide intriguing insight into the possible mechanism/s of modulation of structure, function and stability of LdTR induced by the cationic, guanidine hydrochloride and the neutral denaturant, urea.
Collapse
Affiliation(s)
- Smita Rai
- Division of Biochemistry, Central Drug Research Institute, Lucknow-226001, India
| | | | | |
Collapse
|
25
|
Perez-Pineiro R, Burgos A, Jones DC, Andrew LC, Rodriguez H, Suarez M, Fairlamb AH, Wishart DS. Development of a novel virtual screening cascade protocol to identify potential trypanothione reductase inhibitors. J Med Chem 2009; 52:1670-80. [PMID: 19296695 PMCID: PMC2659691 DOI: 10.1021/jm801306g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The implementation of a novel sequential computational approach that can be used effectively for virtual screening and identification of prospective ligands that bind to trypanothione reductase (TryR) is reported. The multistep strategy combines a ligand-based virtual screening for building an enriched library of small molecules with a docking protocol (AutoDock, X-Score) for screening against the TryR target. Compounds were ranked by an exhaustive conformational consensus scoring approach that employs a rank-by-rank strategy by combining both scoring functions. Analysis of the predicted ligand−protein interactions highlights the role of bulky quaternary amine moieties for binding affinity. The scaffold hopping (SHOP) process derived from this computational approach allowed the identification of several chemotypes, not previously reported as antiprotozoal agents, which includes dibenzothiepine, dibenzooxathiepine, dibenzodithiepine, and polycyclic cationic structures like thiaazatetracyclo-nonadeca-hexaen-3-ium. Assays measuring the inhibiting effect of these compounds on T. cruzi and T. brucei TryR confirm their potential for further rational optimization.
Collapse
Affiliation(s)
- Rolando Perez-Pineiro
- Department of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Trypanothione reductase high-throughput screening campaign identifies novel classes of inhibitors with antiparasitic activity. Antimicrob Agents Chemother 2009; 53:2824-33. [PMID: 19364854 DOI: 10.1128/aac.01568-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-throughput screening of 100,000 lead-like compounds led to the identification of nine novel chemical classes of trypanothione reductase (TR) inhibitors worthy of further investigation. Hits from five of these chemical classes have been developed further through different combinations of preliminary structure-activity relationship rate probing and assessment of antiparasitic activity, cytotoxicity, and chemical and in vitro metabolic properties. This has led to the identification of novel TR inhibitor chemotypes that are drug-like and display antiparasitic activity. For one class, a series of analogues have displayed a correlation between TR inhibition and antiparasitic activity. This paper explores the process of identifying, investigating, and evaluating a series of hits from a high-throughput screening campaign.
Collapse
|
27
|
Galarreta BC, Sifuentes R, Carrillo AK, Sanchez L, Amado MDRI, Maruenda H. The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors. Bioorg Med Chem 2008; 16:6689-95. [DOI: 10.1016/j.bmc.2008.05.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
|
28
|
Stump B, Eberle C, Kaiser M, Brun R, Krauth-Siegel RL, Diederich F. Diaryl sulfide-based inhibitors of trypanothione reductase: inhibition potency, revised binding mode and antiprotozoal activities. Org Biomol Chem 2008; 6:3935-47. [DOI: 10.1039/b806371k] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Martyn DC, Jones DC, Fairlamb AH, Clardy J. High-throughput screening affords novel and selective trypanothione reductase inhibitors with anti-trypanosomal activity. Bioorg Med Chem Lett 2007; 17:1280-3. [PMID: 17197182 PMCID: PMC3428910 DOI: 10.1016/j.bmcl.2006.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/04/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
Trypanothione reductase (TR), an enzyme that buffers oxidative stress in trypanosomatid parasites, was screened against commercial libraries containing approximately 134,500 compounds. After secondary screening, four chemotypes were identified as screening positives with selectivity for TR over human glutathione reductase. Thirteen compounds from these four chemotypes were purchased, and their in vitro activity against TR and Trypanosoma brucei is described.
Collapse
Affiliation(s)
- Derek C. Martyn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Deuan C. Jones
- Division of Biological Chemistry and Molecular Biochemistry, University of Dundee, Dundee, UK
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Molecular Biochemistry, University of Dundee, Dundee, UK
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| |
Collapse
|
30
|
Ravaschino EL, Docampo R, Rodriguez JB. Design, synthesis, and biological evaluation of phosphinopeptides against Trypanosoma cruzi targeting trypanothione biosynthesis. J Med Chem 2006; 49:426-35. [PMID: 16392828 DOI: 10.1021/jm050922i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a part of our project aimed at the search for new safe chemotherapeutic and chemoprophylactic agents against American trypanosomiasis (Chagas's disease), a series of phosphinopeptides structurally related to glutathione was designed, synthesized, and evaluated as antiproliferative agents against the parasite responsible for this disease, the hemoflagellated protozoan Trypanosoma cruzi. The rationale for the synthesis of these compounds was supported on the basis that the presence of the phosphinic acid moiety would mimic the tetrahedral transition state of trypanothione synthase (TryS), a typical C:N ligase, and the molecular target of these drugs. Of the designed compounds, 53 and 54 were potent growth inhibitors against the clinically more relevant form of T. cruzi (amastigotes) growing in myoblasts. The efficacy for these drugs was comparable to that exhibited by the well-known antiparasitic agent WC-9. The simple phosphinopeptide structure found as a pharmacophore in the present study constitutes a starting point for the development of straightforward optimized drugs.
Collapse
Affiliation(s)
- Esteban L Ravaschino
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | | | | |
Collapse
|
31
|
Parveen S, Khan MOF, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT. Antitrypanosomal, Antileishmanial, and Antimalarial Activities of Quaternary Arylalkylammonium 2-Amino-4-Chlorophenyl Phenyl Sulfides, a New Class of Trypanothione Reductase Inhibitor, and of N-Acyl Derivatives of 2-Amino-4-Chlorophenyl Phenyl Sulfide. J Med Chem 2005; 48:8087-97. [PMID: 16335933 DOI: 10.1021/jm050819t] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quaternization of the nitrogen atom of 2-amino-4-chlorophenyl phenyl sulfide analogues of chlorpromazine improved inhibition approximately 40-fold (3',4'-dichlorobenzyl-[5-chloro-2-phenylsulfanyl-phenylamino)-propyl]-dimethylammonium chloride inhibited trypanothione reductase from Trypanosoma cruzi with a linear competitive Ki value of 1.7 +/- 0.2 microM). Molecular modelling explained docking orientations and energies by: (i) involvement of the Z-site hydrophobic pocket (roughly bounded by F396', P398', and L399'), (ii) ionic interactions for the cationic nitrogen with Glu-466' or -467'. A series of N-acyl-2-amino-4-chlorophenyl sulfides showed mixed inhibition (Ki, Ki' = 11.3-42.8 microM). The quaternized analogues of the 2-chlorophenyl phenyl sulfides had strong antitrypanosomal and antileishmanial activity in vitro against T. brucei rhodesiense STIB900, T. cruzi Tulahuan, and Leishmania donovani HU3. The N-acyl-2-amino-4-chlorophenyl sulfides were active against Plasmodium falciparum. The phenothiazine and diaryl sulfide quaternary compounds were also powerful antimalarials, providing a new structural framework for antimalarial design.
Collapse
Affiliation(s)
- Seheli Parveen
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Meiering S, Inhoff O, Mies J, Vincek A, Garcia G, Kramer B, Dormeyer M, Krauth-Siegel RL. Inhibitors of Trypanosoma cruzi trypanothione reductase revealed by virtual screening and parallel synthesis. J Med Chem 2005; 48:4793-802. [PMID: 16033259 DOI: 10.1021/jm050027z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an approach to discover new inhibitors of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease, a virtual high-throughput screening was performed. Two structurally new types of inhibitors emerged, the antimicrobial chlorhexidine {1,1'-hexamethylenebis[5-(4-chlorophenyl)biguanide]}, a linear competitive inhibitor (K(i) = 2 +/- 1 microM), and a piperidine derivative acting as mixed inhibitor (K(i) = 6.2 +/- 2 microM and K(i)' = 8.5 +/- 2 microM). Neither compound interferes with human glutathione reductase. Based on chlorhexidine, different series of compounds were synthesized and studied as inhibitors of T. cruzi trypanothione reductase. Most efficient derivatives were three bis(amidines) showing mixed type inhibition with K(i,slope) and K(i,int) values of 2-5 microM and 16-47 microM, respectively. Although these compounds did not exert an improved inhibitory potency compared to chlorhexidine, the change from competitive to mixed-type inhibition is advantageous, since substrate accumulation does not overcome inhibition. Remarkably, all three derivatives carried two copies of an identical 2-methoxy-4-methyl-1-(phenylmethoxy)benzene substituent.
Collapse
Affiliation(s)
- Svea Meiering
- Biochemie-Zentrum, Universität Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hand CE, Honek JF. Biological chemistry of naturally occurring thiols of microbial and marine origin. JOURNAL OF NATURAL PRODUCTS 2005; 68:293-308. [PMID: 15730267 DOI: 10.1021/np049685x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The presence of thiols in living systems is critical for the maintenance of cellular redox potentials and protein thiol-disulfide ratios, as well as for the protection of cells from reactive oxygen species. In addition to the well-studied tripeptide glutathione (gamma-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. This review provides a survey of the chemistry and biochemistry of several critically important and naturally occurring intracellular thiols such as coenzyme M, trypanothione, mycothiol, ergothioneine, and the ovothiols. Coenzyme M is a key thiol required for methane production in methogenic bacteria. Trypanothione and mycothiol are very important to the biochemistry of a number of human pathogens, and the enzymes utilizing these thiols have been recognized as important novel drug targets. Ergothioneine, although synthesized by fungi and the Actinomycetales bacteria, is present at significant physiological levels in humans and may contribute to single electron redox reactions in cells. The ovothiols appear to function as important modulators of reactive oxygen toxicity and appear to serve as small molecule mimics of glutathione peroxidase, a key enzyme in the detoxification of reactive oxygen species.
Collapse
Affiliation(s)
- Christine E Hand
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
34
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiol Proteins as Guardians of the Intracellular Redox Milieu in Parasites: Old and New Drug Targets in Trypanosomes and Malaria-Causing Plasmodia. Angew Chem Int Ed Engl 2005; 44:690-715. [PMID: 15657967 DOI: 10.1002/anie.200300639] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.
Collapse
Affiliation(s)
- R Luise Krauth-Siegel
- Universität Heidelberg, Biochemie-Zentrum, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
35
|
Krauth-Siegel RL, Bauer H, Schirmer RH. Dithiolproteine als Hüter des intrazellulären Redoxmilieus bei Parasiten: alte und neue Wirkstoff-Targets bei Trypanosomiasis und Malaria. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200300639] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Aguirre G, Cerecetto H, Di Maio R, González M, Alfaro MEM, Jaso A, Zarranz B, Ortega MA, Aldana I, Monge-Vega A. Quinoxaline N , N ′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi . Structure–activity relationships. Bioorg Med Chem Lett 2004; 14:3835-9. [PMID: 15203172 DOI: 10.1016/j.bmcl.2004.04.088] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 03/10/2004] [Accepted: 04/21/2004] [Indexed: 11/22/2022]
Abstract
Quinoxaline derivatives presented good inhibitor activity of growth of Trypanosoma cruzi in in vitro assays. The 50% inhibitory doses were of the same order of that of Nifurtimox. Derivative 13, a quinoxaline N,N'-dioxide derivative, and the reduced derivatives 19 and 20 were the most cytotoxic compounds against the protozoan. Structural requirements for optimal activity were studied by computational methods. From statistical analysis we could establish a multiple correlation between activity and lipophilic properties and LUMO energy.
Collapse
Affiliation(s)
- Gabriela Aguirre
- Departamento de Química Orgánica, Facultad de Química, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sevrioukova IF, Li H, Poulos TL. Crystal structure of putidaredoxin reductase from Pseudomonas putida, the final structural component of the cytochrome P450cam monooxygenase. J Mol Biol 2004; 336:889-902. [PMID: 15095867 DOI: 10.1016/j.jmb.2003.12.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 12/22/2003] [Accepted: 12/29/2003] [Indexed: 11/28/2022]
Abstract
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and consists of the FAD-binding, NAD-binding, and C-terminal domains. Compared to homologous flavoenzymes, the reductase component of biphenyl dioxygenase (BphA4) and apoptosis-inducing factor, Pdr lacks one of the arginine residues that compensates partially for the negative charge on the pyrophosphate of FAD. This uncompensated negative charge is likely to decrease the electron-accepting ability of the flavin. The aromatic side-chain of the "gatekeeper" Tyr159 is in the "out" conformation and leaves the nicotinamide-binding site of Pdr completely open. The presence of electron density in the NAD-binding channel indicates that NAD originating from Escherichia coli is partially bound to Pdr. A structural comparison of Pdr with homologous flavoproteins indicates that an open and accessible nicotinamide-binding site, the presence of an acidic residue in the middle part of the NAD-binding channel that binds the nicotinamide ribose, and multiple positively charged arginine residues surrounding the entrance of the NAD-binding channel are the special structural elements that assist tighter and more specific binding of the oxidized pyridine nucleotide by the BphA4-like flavoproteins. The crystallographic model of Pdr explains differences in the electron transfer mechanism in the Pdr-putidaredoxin redox couple and their mammalian counterparts, adrenodoxin reductase and adrenodoxin.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92612-3900, USA.
| | | | | |
Collapse
|
38
|
Aguirre G, Cabrera E, Cerecetto H, Di Maio R, González M, Seoane G, Duffaut A, Denicola A, Gil MJ, Martínez-Merino V. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design. Eur J Med Chem 2004; 39:421-31. [PMID: 15110968 DOI: 10.1016/j.ejmech.2004.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 02/21/2004] [Accepted: 02/25/2004] [Indexed: 11/30/2022]
Abstract
Design, using force-field calculations on the catalytic site of trypanothione reductase from Trypanosoma cruzi, has led to the development of new 5-nitrofuryl derivatives as potential anti-trypanosomal agents. The synthesized compounds were tested in vitro against T. cruzi and more than 75% of the prepared derivatives showed higher activity than nifurtimox. Compounds 5 and 11, hexyl 4-(5-nitrofurfurylidene)carbazate and N-hexyl 3-(5-nitrofuryl)propenamide, showed the highest in vitro trypanocidal effect reported to date for members of the nitrofuran family. Partition coefficients and energies for the single-electron reduction of compounds were theoretically determined. These properties could be not the major cause of the activities' differences. The physicochemical environment around E19, W22, C53 and Y111 residues within the trypanothione binding site of trypanothione reductase resulted a valuable target for the rational design of anti-trypanosomal drugs.
Collapse
Affiliation(s)
- Gabriela Aguirre
- Departamento de Química Orgánica, Facultad de Química-Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 697] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
40
|
Krauth-Siegel RL, Meiering SK, Schmidt H. The parasite-specific trypanothione metabolism of trypanosoma and leishmania. Biol Chem 2003; 384:539-49. [PMID: 12751784 DOI: 10.1515/bc.2003.062] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The bis(glutathionyl)spermidine trypanothione exclusively occurs in parasitic protozoa of the order Kinetoplastida, such as trypanosomes and leishmania, some of which are the causative agents of several tropical diseases. The dithiol is kept reduced by the flavoenzyme trypanothione reductase and the trypanothione system replaces in these parasites the nearly ubiquitous glutathione/glutathione reductase couple. Trypanothione is a reductant of thioredoxin and tryparedoxin, small dithiol proteins, which in turn deliver reducing equivalents for the synthesis of deoxyribonucleotides as well as for the detoxification of hydroperoxides by different peroxidases. Depending on the individual organism and the developmental state, the parasites also contain significant amounts of glutathione, mono-glutathionylspermidine and ovothiol, whereby all four low molecular mass thiols are directly (trypanothione and mono-glutathionylspermidine) or indirectly (glutathione and ovothiol) maintained in the reduced state by trypanothione reductase. Thus the trypanothione system is central for any thiol regeneration and trypanothione reductase has been shown to be an essential enzyme in these parasites. The absence of this pathway from the mammalian host and the sensitivity of trypanosomatids toward oxidative stress render the enzymes of the trypanothione metabolism attractive target molecules for the rational development of new drugs against African sleeping sickness, Chagas' disease and the different forms of leishmaniasis.
Collapse
Affiliation(s)
- R Luise Krauth-Siegel
- Center of Biochemistry, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
41
|
Chibale K, Visser M, van Schalkwyk D, Smith PJ, Saravanamuthu A, Fairlamb AH. Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00240-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Hamilton CJ, Saravanamuthu A, Eggleston IM, Fairlamb AH. Ellman's-reagent-mediated regeneration of trypanothione in situ: substrate-economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochem J 2003; 369:529-37. [PMID: 12416994 PMCID: PMC1223126 DOI: 10.1042/bj20021298] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Revised: 10/17/2002] [Accepted: 11/05/2002] [Indexed: 11/17/2022]
Abstract
Trypanothione reductase (TryR) is a key enzyme involved in the oxidative stress management of the Trypanosoma and Leishmania parasites, which helps to maintain an intracellular reducing environment by reduction of the small-molecular-mass disulphide trypanothione (T[S](2)) to its di-thiol derivative dihydrotrypanothione (T[SH](2)). TryR inhibition studies are currently impaired by the prohibitive costs of the native enzyme substrate T[S](2). Such costs are particularly notable in time-dependent and high-throughput inhibition assays. In the present study we report a protocol that greatly decreases the substrate quantities needed for such assays. This is achieved by coupling the assay with the chemical oxidant 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), which can rapidly re-oxidize the T[SH](2) product back into the disulphide substrate T[S](2), thereby maintaining constant substrate concentrations and avoiding deviations from rate linearity due to substrate depletion. This has enabled the development of a continuous microplate assay for both classical and time-dependent TryR inhibition in which linear reaction rates can be maintained for 60 min or more using minimal substrate concentrations (<1 microM, compared with a substrate K (m) value of 30 microM) that would normally be completely consumed within seconds. In this manner, substrate requirements are decreased by orders of magnitude. The characterization of a novel time-dependent inhibitor, cis -3-oxo-8,9b-bis-(N(1)-acrylamidospermidyl)-1,2,3,4,4a,9b-hexahydrobenzofuran (PK43), is also described using these procedures.
Collapse
Affiliation(s)
- Chris J Hamilton
- Division of Biological Chemistry & Molecular Microbiology, School of Life Sciences, Carnelley Building, University of Dundee, Dundee DD1 4HN, UK
| | | | | | | |
Collapse
|
43
|
Paulino M, Iribarne F, Hansz M, Vega M, Seoane G, Cerecetto H, Di Maio R, Caracelli I, Zukerman-Schpector J, Olea C, Stoppani AO, Berriman M, Fairlamb AH, Tapia O. Computer assisted design of potentially active anti-trypanosomal compounds. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00009-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
D'Silva C, Daunes S. The therapeutic potential of inhibitors of the trypanothione cycle. Expert Opin Investig Drugs 2002; 11:217-31. [PMID: 11829713 DOI: 10.1517/13543784.11.2.217] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is an urgent need for new drugs in the treatment of human African trypanosomiasis, Chagas' disease and leishmaniasis. This article provides an overview of current drugs, formulations and their deficiencies. Targets for the design of new drugs and the rational provided for targeting enzymes of the trypanothione cycle are described. Biochemical aspects of the cycle and the currently investigated target trypanothione reductase are discussed as are the several classes of inhibitors and their in vitro potencies. Evidence is provided for considering the tryparedoxins as a new target for antiprotozoal chemotherapy and a summary of glutathione-based inhibitors with significant in vitro activity is reported.
Collapse
Affiliation(s)
- Claudius D'Silva
- Department of Chemistry & Materials, The Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | | |
Collapse
|
45
|
Abstract
Leishmania and Trypanosoma are two genera of the protozoal Order Kinetoplastida that cause widespread diseases of humans and their livestock. The production of reactive oxygen and nitrogen intermediates by the host plays an important role in the control of infections by these organisms. Signal transduction and its redox regulation have not been studied in any depth in trypanosomatids, but homologs of the redox-sensitive signal transduction machinery of other eukaryotes have been recognized. These include homologs of activator protein-1, human apurinic endonuclease 1 (Ref-1) endonuclease, iron-responsive protein, protein kinases, and phosphatases. The detoxification of peroxide is catalyzed by a trypanothione-dependent system that has no counterpart in mammals, and thus ranks as one of the biochemical peculiarities of trypanosomatids. There is substantial evidence that trypanothione is essential for the survival of Trypanosoma brucei and for the virulence of Leishmania spp. Apart from trypanothione and its precursors, trypanosomatids also possess significant amounts of N(1)-methyl-4-mercaptohistidine or ovothiol A, but its function in the trypanosomatids is not presently understood. The biosynthesis of ovothiol A in Crithidia fasciculata proceeds by addition of sulfur from cysteine to histidine to form 4-mercaptohistidine. S-(4'-L-Histidyl)-L-cysteine sulfoxide is the transsulfuration intermediate. 4-Mercaptohistidine is subsequently methylated with S-adenosylmethionine as the likely methyl donor.
Collapse
Affiliation(s)
- Daniel J Steenkamp
- Division of Chemical Pathology, Department of Laboratory Medicine, University of Cape Town Medical School, Observatory 7925, South Africa.
| |
Collapse
|
46
|
Pletneva EV, Laederach AT, Fulton DB, Kostic NM. The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. J Am Chem Soc 2001; 123:6232-45. [PMID: 11427046 DOI: 10.1021/ja010401u] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cation-pi interactions between amino acid side chains are increasingly being recognized as important structural and functional features of proteins and other biomolecules. Although these interactions have been found in static protein structures, they have not yet been detected in dynamic biomolecular systems. We determined, by (1)H NMR spectroscopic titrations, the energies of cation-pi interactions of the amino acid derivative AcLysOMe (1) with AcPheOEt (2) and with AcTyrOEt (3) in aqueous and three organic solvents. The interaction energy is substantial; it ranges from -2.1 to -3.4 kcal/mol and depends only slightly on the dielectric constant of the solvent. To assess the effects of auxiliary interactions and structural preorganization on formation of cation-pi interactions, we studied these interactions in the association of pentapeptides. Upon binding of the positively-charged peptide AcLysLysLysLysLysNH(2) (5) to the negatively-charged partner AcAspAspXAspAspNH(2) (6), in which X is Leu (6a), Tyr (6b), and Phe (6c), multiple interactions occur. Association of the two pentapeptides is dynamic. Free peptides and their complex are in fast exchange on the NMR time-scale, and 2D (1)H ROESY spectra of the complex of the two pentapeptides do not show intermolecular ROESY peaks. Perturbations of the chemical shifts indicated that the aromatic groups in peptides 6b and 6c were affected by the association with 5. The association constants K(A) for 5 with 6a and with 6b are nearly equal, (4.0 +/- 0.7) x 10(3) and (5.0 +/- 1.0) x 10(3) M(-)(1), respectively, while K(A) for 5 with 6c is larger, (8.3 +/- 1.3) x 10(3) M(-)(1). Molecular-dynamics (MD) simulations of the pentapeptide pairs confirmed that their association is dynamic and showed that cation-pi contacts between the two peptides are stereochemically possible. A transient complex between 5 and 6 with a prominent cation-pi interaction, obtained from MD simulations, was used as a template to design cyclic peptides C(X) featuring persistent cation-pi interactions. The cyclic peptide C(X) had a sequence in which X is Tyr, Phe, and Leu. The first two peptides do, but the third does not, contain the aromatic residue capable of interacting with a cationic Lys residue. This covalent construct offered conformational stability over the noncovalent complexes and allowed thorough studies by 2D NMR spectroscopy. Multiple conformations of the cyclic peptides C(Tyr) and C(Phe) are in slow exchange on the NMR time-scale. In one of these conformations, cation-pi interaction between Lys3 and Tyr9/Phe9 is clearly evident. Multiple NOEs between the side chains of residues 3 and 9 are observed; chemical-shift changes are consistent with the placement of the side chain of Lys3 over the aromatic ring. In contrast, the cyclic peptide C(Leu) showed no evidence for close approach of the side chains of Lys3 and Leu9. The cation-pi interaction persists in both DMSO and aqueous solvents. When the disulfide bond in the cyclic peptide C(Phe) was removed, the cation-pi interaction in the acyclic peptide AC(Phe) remained. To test the reliability of the pK(a) criterion for the existence of cation-pi interactions, we determined residue-specific pK(a) values of all four Lys side chains in all three cyclic peptides C(X). While NOE cross-peaks and perturbations of the chemical shifts clearly show the existence of the cation-pi interaction, pK(a) values of Lys3 in C(Tyr) and in C(Phe) differ only marginally from those values of other lysines in these dynamic peptides. Our experimental results with dynamic peptide systems highlight the role of cation-pi interactions in both intermolecular recognition at the protein-protein interface and intramolecular processes such as protein folding.
Collapse
Affiliation(s)
- E V Pletneva
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
47
|
Hofmann B, Budde H, Bruns K, Guerrero SA, Kalisz HM, Menge U, Montemartini M, Nogoceke E, Steinert P, Wissing JB, Flohé L, Hecht HJ. Structures of Tryparedoxins Revealing Interaction with Trypanothione. Biol Chem 2001; 382:459-71. [PMID: 11347894 DOI: 10.1515/bc.2001.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tryparedoxins (TXNs) catalyse the reduction of peroxiredoxin-type peroxidases by the bis-glutathionyl derivative of spermidine, trypanothione, and are relevant to hydroperoxide detoxification and virulence of trypanosomes. The 3D-structures of the following tryparedoxins are presented: authentic tryparedoxin1 of Crithidia fasciculata, CfTXN1; the his-tagged recombinant protein, CfTXN1H6; reduced and oxidised CfTXN2, and an alternative substrate derivative of the mutein CfTXN2H6-Cys44Ser. Cys41 (Cys40 in TXN1) of the active site motif 40-WCPPCR-45 proved to be the only solvent-exposed redox active residue in CfTXN2. In reduced TXNs, its nucleophilicity is increased by a network of hydrogen bonds. In oxidised TXNs it can be attacked by the thiol of the 1N-glutathionyl residue of trypanothione, as evidenced by the structure of 1N-glutathionylspermidine-derivatised CfTXN2H6-Cys44Ser. Modelling suggests Arg45 (44), Glu73 (72), the Ile110 (109) cis-Pro111 (110)-bond and Arg129 (128) to be involved in the binding of trypanothione to CfTXN2 (CfTXN1). The model of TXN-substrate interaction is consistent with functional characteristics of known and newly designed muteins (CfTXN2H6-Arg129Asp and Glu73Arg) and the 1N-glutathionyl-spermidine binding in the CfTXN2H6-Cys44Ser structure.
Collapse
Affiliation(s)
- B Hofmann
- Department of Biochemistry, Technical University of Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL. (2,2':6',2"-Terpyridine)platinum(II) complexes are irreversible inhibitors of Trypanosoma cruzi trypanothione reductase but not of human glutathione reductase. J Med Chem 2000; 43:4812-21. [PMID: 11123991 DOI: 10.1021/jm000219o] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(2,2':6',2"-terpyridine)platinum(II) complexes possess pronounced cytostatic activities against trypanosomes and leishmania. As shown here, the complexes are irreversible inhibitors of trypanothione reductase (TR) from Trypanosoma cruzi, the causative agent of Chagas' disease. The most effective derivatives are the (4'-chloro-2, 2':6',2"-terpyridine)platinum(II) ammine and the (4-picoline)(4'-p-bromophenyl-2,2':6',2" -terpyridine)platinum(II) complexes which in the presence of NADPH inhibit TR with second-order rate constants of about 1.3 x 10(4) M(-1) s(-1). The modified enzyme species possess increased oxidase activities. The inhibition is not reversed upon dialysis or treatment with low-molecular-mass thiols. Kinetic and spectroscopic data suggest that Cys52 in the active site has been specifically altered. Inhibition of this key enzyme of parasite thiol metabolism probably contributes to the antitrypanosomal activity of the compounds. In contrast to the parasite enzyme, most (terpyridine)platinum complexes interact only reversibly with human glutathione reductase and an initial inhibition is completely abolished during the course of the assay.
Collapse
Affiliation(s)
- S Bonse
- Biochemie-Zentrum Heidelberg, Heidelberg University, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Garrard EA, Borman EC, Cook BN, Pike EJ, Alberg DG. Inhibition of trypanothione reductase by substrate analogues. Org Lett 2000; 2:3639-42. [PMID: 11073664 DOI: 10.1021/ol0065423] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanothione reductase (TR) catalyzes the NAPDH-dependent reduction of the spermidine-glutathione conjugate trypanothione, an antioxidant found in Trypanosomatid parasites. TR plays an essential role in the parasite's defense against oxidative stress and has emerged as a prime target for drug development. Here we report the synthesis of several trypanothione analogues and their inhibitory effects on T. cruzi TR. All are competitive inhibitors with K(i) values ranging from 30 to 91 microM.
Collapse
Affiliation(s)
- E A Garrard
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, USA
| | | | | | | | | |
Collapse
|
50
|
Ziegler GA, Schulz GE. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 2000; 39:10986-95. [PMID: 10998235 DOI: 10.1021/bi000079k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenodoxin reductase is a flavoenzyme that shuffles electrons for the biosynthesis of steroids. Its chain topology belongs to the glutathione reductase family of disulfide oxidoreductases, all of which bind FAD at equivalent positions. The three reported structures of adrenodoxin reductase were ligated with reduced and oxidized NADP and have now confirmed this equivalence also for the NADP-binding site. Remarkably, the conformations and relative positions of the prosthetic group FAD and the cofactor NADP have been conserved during protein evolution despite very substantial changes in the polypeptide. The ligated enzymes showed small changes in the domain positions. When compared with the structure of the NADP-free enzyme, these positions correspond to several states of the domain motion during NADP binding. On the basis of the observed structures, we suggest an enzymatic mechanism for the subdivision of the received two-electron package into the two single electrons transferred to the carrier protein adrenodoxin. The data banks contain 10 sequences that are closely related to bovine adrenodoxin reductase. Most of them code for gene products with unknown functions. Within this family, the crucial residues of adrenodoxin reductase are strictly conserved. Moreover, the putative docking site of the carrier is rather well conserved. Five of the family members were assigned names related to ferredoxin:NADP(+) reductase, presumably because adrenodoxin reductase was considered a member of this functionally similar family. Since this is not the case, the data bank entries should be corrected.
Collapse
Affiliation(s)
- G A Ziegler
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany
| | | |
Collapse
|