1
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
2
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
3
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Blachier F, Andriamihaja M, Kong XF. Fate of undigested proteins in the pig large intestine: What impact on the colon epithelium? ANIMAL NUTRITION 2022; 9:110-118. [PMID: 35573094 PMCID: PMC9065739 DOI: 10.1016/j.aninu.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022]
Abstract
Apart from its obvious agronomic interest in feeding billions of people worldwide, the porcine species represents an irreplaceable experimental model for intestinal physiologists and nutritionists. In this review, we give an overview on the fate of proteins that are not fully digested in the pig small intestine, and thus are transferred into the large intestine. In the large intestine, dietary and endogenous proteins are converted to peptides and amino acids (AA) by the action of bacterial proteases and peptidases. AA, which cannot, except in the neonatal period, be absorbed to any significant level by the colonocytes, are used by the intestinal microbes for protein synthesis and for the production of numerous metabolites. Of note, the production of the AA-derived metabolites greatly depends on the amount of undigested polysaccharides in the pig's diet. The effects of these AA-derived bacterial metabolites on the pig colonic epithelium have not yet been largely studied. However, the available data, performed on colonic mucosa, isolated colonic crypts and colonocytes, indicate that some of them, like ammonia, butyrate, acetate, hydrogen sulfide (H2S), and p-cresol are active either directly or indirectly on energy metabolism in colonic epithelial cells. Further studies in that area will certainly gain from the utilization of the pig colonic organoid model, which allows for disposal of functional epithelial unities. Such studies will contribute to a better understanding of the potential causal links between diet-induced changes in the luminal concentrations of these AA-derived bacterial metabolites and effects on the colon epithelial barrier function and water/electrolyte absorption.
Collapse
|
5
|
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell 2021; 81:3749-3759. [PMID: 34469752 DOI: 10.1016/j.molcel.2021.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
The expression of the urea cycle (UC) proteins is dysregulated in multiple cancers, providing metabolic benefits to tumor survival, proliferation, and growth. Here, we review the main changes described in the expression of UC enzymes and metabolites in different cancers at various stages and suggest that these changes are dynamic and should hence be viewed in a context-specific manner. Understanding the evolvability in the activity of the UC pathway in cancer has implications for cancer-immune cell interactions and for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Beaumont M, Blachier F. Amino Acids in Intestinal Physiology and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:1-20. [PMID: 32761567 DOI: 10.1007/978-3-030-45328-2_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary protein digestion is an efficient process resulting in the absorption of amino acids by epithelial cells, mainly in the jejunum. Some amino acids are extensively metabolized in enterocytes supporting their high energy demand and/or production of bioactive metabolites such as glutathione or nitric oxide. In contrast, other amino acids are mainly used as building blocks for the intense protein synthesis associated with the rapid epithelium renewal and mucin production. Several amino acids have been shown to support the intestinal barrier function and the intestinal endocrine function. In addition, amino acids are metabolized by the gut microbiota that use them for their own protein synthesis and in catabolic pathways releasing in the intestinal lumen numerous metabolites such as ammonia, hydrogen sulfide, branched-chain amino acids, polyamines, phenolic and indolic compounds. Some of them (e.g. hydrogen sulfide) disrupts epithelial energy metabolism and may participate in mucosal inflammation when present in excess, while others (e.g. indole derivatives) prevent gut barrier dysfunction or regulate enteroendocrine functions. Lastly, some recent data suggest that dietary amino acids might regulate the composition of the gut microbiota, but the relevance for the intestinal health remains to be determined. In summary, amino acid utilization by epithelial cells or by intestinal bacteria appears to play a pivotal regulator role for intestinal homeostasis. Thus, adequate dietary supply of amino acids represents a key determinant of gut health and functions.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| |
Collapse
|
7
|
Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus. Sci Rep 2019; 9:19798. [PMID: 31875021 PMCID: PMC6930262 DOI: 10.1038/s41598-019-56391-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral effects remains unclear. This study determined the effects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) at 104.5 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profiles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid transporter 1, sodium-independent amino acid transporter, B(°,+)-type amino acid transport protein, sodium-dependent neutral amino acid transporter 1, sodium-dependent glutamate/aspartate transporter 3, and peptide transporter (1), lipid transport and metabolism-related genes (lipoprotein lipase, apolipoprotein A1, apolipoprotein A4, apolipoprotein C2, solute carrier family 27 member 2, solute carrier family 27 member 4, fatty acid synthase, and long-chain acyl-CoA synthetase (3), and glucose transport genes (glucose transporter-2 and insulin receptor) in the jejunum. However, PEDV administration increased mRNA levels for phosphoenolpyruvate carboxykinase 1, argininosuccinate synthase 1, sodium/glucose co-transporter-1, and cystic fibrosis transmembrane conductance regulator in the jejunum. Collectively, these comprehensive results indicate that PEDV infection induces intestinal injury and inhibits the expression of genes encoding for nutrient transporters.
Collapse
|
8
|
Growth performance and intestinal replacement time of 13C in newly weaned piglets supplemented with nucleotides or glutamic acid. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Manta-Vogli PD, Schulpis KH, Loukas YL, Dotsikas Y. Quantitation of the arginine family amino acids in the blood of full-term infants perinatally in relation to their birth weight. J Pediatr Endocrinol Metab 2019; 32:803-809. [PMID: 31246579 DOI: 10.1515/jpem-2019-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Arginine family amino acids (AFAAs) include glutamine (Gln) plus glutamate (Glu), ornithine (Orn), proline (Pro), citrulline (Cit) and arginine (Arg). We aimed to quantitate these amino acids in the blood of full-term infants in relation to their birth weight (BW) perinatally. Methods Breastfeeding full-term infants (n = 2000, 1000 males, 1000 females) with a BW of 2000-4000 g were divided into four equal groups: group A, 2000-2500 g; B, 2500-3000 g; C, 3000-3500 g and D, 3500-4000 g. Blood samples as dried blood spots (DBS) were collected on the third day of life and analyzed via a liquid chromatography tandem mass spectrometry (LC-MS/MS) protocol. Results Gln plus Glu mean values were found to be statistically significantly different between males and females in all studied groups. The highest values of these amino acids were detected in both males and females in group D. Orn mean values were found to be statistically significantly different between males and females of the same BW in all groups except the last one. The lower mean value was determined in group A, whereas the highest was determined in group D. Cit and Arg mean values were determined to be almost similar in all studied groups. Conclusions Gln plus Glu and Orn blood concentrations were directly related to infants' BW. Conversely, Cit and Arg did not vary significantly in all groups.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition and Dietetics, Agia Sofia Children's Hospital, Athens, Greece
| | | | - Yannis L Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece, Phone: +30 210 7274696, Fax: +30 210 7274039
| |
Collapse
|
10
|
Wu G, Bazer FW, Johnson GA, Hou Y. BOARD-INVITED REVIEW: Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 2019; 96:5035-5051. [PMID: 30445424 DOI: 10.1093/jas/sky377] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Arginine (Arg) has traditionally not been considered as a deficient nutrient in diets for gestating or lactating swine due to the assumption that these animals can synthesize sufficient amounts of Arg to meet their physiological needs. The lack of full knowledge about Arg nutrition has contributed to suboptimal efficiency of pork production. Over the past 25 yr, there has been growing interest in Arg metabolism in the pig, which is an agriculturally important species and a useful model for studying human biology. Arginine is a highly abundant amino acid in tissues of pigs, a major amino acid in allantoic fluid, and a key regulator of gene expression, cell signaling, and antioxidative reactions. Emerging evidence suggests that dietary supplementation with 0.5% to 1% Arg maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. Also, the inclusion of 1% Arg in diets is required to maximize skeletal muscle accretion and feed efficiency in growing pigs, whereas dietary supplementation with 1% Arg reduces muscle loss in endotoxin-challenged pigs. Furthermore, supplementing 0.83% Arg to corn- and soybean meal-based diets promotes embryonic/fetal survival in swine and milk production by lactating sows. Thus, an adequate amount of dietary Arg as a quantitatively major nutrient is necessary to support maximum growth, lactation, and reproduction performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX.,Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| | - Fuller W Bazer
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Gregory A Johnson
- Departments of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
11
|
|
12
|
Marini JC, Agarwal U, Robinson JL, Yuan Y, Didelija IC, Stoll B, Burrin DG. The intestinal-renal axis for arginine synthesis is present and functional in the neonatal pig. Am J Physiol Endocrinol Metab 2017; 313:E233-E242. [PMID: 28611027 PMCID: PMC5582884 DOI: 10.1152/ajpendo.00055.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023]
Abstract
The intestinal-renal axis for endogenous arginine synthesis is an interorgan process in which citrulline produced in the small intestine is utilized by the kidney for arginine synthesis. The function of this axis in neonates has been questioned because during this period the enzymes needed for arginine synthesis argininosuccinate synthase (ASS1) and lyase (ASL) are present in the gut. However, evidence of high plasma citrulline concentrations in neonates suggests otherwise. We quantified in vivo citrulline production in premature (10 days preterm), neonatal (7 days old), and young pigs (35 days old) using citrulline tracers. Neonatal pigs had higher fluxes (69 µmol·kg-1·h-1, P < 0.001) than premature and young pigs (43 and 45 µmol·kg-1·h-1, respectively). Plasma citrulline concentration was also greater in neonatal pigs than in the other age groups. We also determined the site of synthesis and utilization of citrulline in neonatal and young pigs by measuring organ balances across the gut and the kidney. Citrulline was released from the gut and utilized by the kidney in both neonatal and young pigs. The abundance and localization of the enzymes involved in the synthesis and utilization were determined in intestinal and kidney tissue. Despite the presence of ASS1 and ASL in the neonatal small intestine, the lack of colocalization with the enzymes that produce citrulline results in the release of citrulline by the PDV and its utilization by the kidney to produce arginine. In conclusion, the intestinal-renal axis for arginine synthesis is present in the neonatal pig.
Collapse
Affiliation(s)
- Juan C Marini
- Pediatric Critical Care Medicine; and
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Umang Agarwal
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jason L Robinson
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yang Yuan
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Inka C Didelija
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Marion V, Sankaranarayanan S, de Theije C, van Dijk P, Hakvoort TBM, Lamers WH, Köhler ES. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice. PLoS One 2013; 8:e67021. [PMID: 23785515 PMCID: PMC3681768 DOI: 10.1371/journal.pone.0067021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022] Open
Abstract
Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass) gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl) and Villin-Cre mice. Unexpectedly, Ass (fl/fl) /VilCre (tg/-) mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice). Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl) /VilCre (tg/-) mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl) /VilCre (tg/-) mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2) and transport (Slc25a13, Slc25a15, and Slc3a2), whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.
Collapse
Affiliation(s)
- Vincent Marion
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Laboratoire de Génetique Médicale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1112, Strasbourg Cedex, France
| | | | - Chiel de Theije
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Paul van Dijk
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Theo B. M. Hakvoort
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter H. Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Gastrointestinal Research, Academic Medical Center University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonore S. Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- *E-mail:
| |
Collapse
|
14
|
Ontogenic expression of the amino acid transporter b0,+AT in suckling Huanjiang piglets: effect of intra-uterine growth restriction. Br J Nutr 2013; 110:823-30. [DOI: 10.1017/s0007114512005843] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intestinal amino acid (AA) transport is critical for the supply of AA to other tissues. Few studies regarding AA intestinal transport systems during the period from postnatal intense development of piglets until weaning are available. In the present study, we measured the intestinal expression of b0,+AT according to developmental stage using the suckling Huanjiang piglet model, and documented the effect of intra-uterine growth restriction (IUGR) on such expression using real-time PCR and Western blot analysis. Suckling piglets that recovered after IUGR and those with normal body weights (NBW) were used after birth or at 7, 14 and 21 d of age. Blood samples were used for the measurement of plasma AA concentrations, and the jejunum was collected for the measurement of b0,+AT expression. In NBW piglets, b0,+AT expression was markedly decreased from days 0 to 21 (P< 0·01) and remained at a low level during all the suckling periods. In IUGR piglets, there was a marked decrease in b0,+AT expression at birth, which remained lower, when compared with NBW piglets, during the suckling period. These results coincided with decreased plasma arginine concentration at birth and decreased lysine concentration in 21-d-old piglets (P< 0·05). It is concluded that the high expression of b0,+AT at birth decreases during the suckling period, and that IUGR is associated with decreased expression of this apical AA transporter. The possible causal relationship between decreased b0,+AT expression and lower body weight of IUGR piglets in the suckling period is discussed.
Collapse
|
15
|
Dietary l-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br J Nutr 2012; 108:1371-81. [DOI: 10.1017/s0007114511006763] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intra-uterine growth retardation (IUGR) impairs postnatal growth and development of the small intestine (SI) in neonatal pigs and infants. l-Arginine (Arg), a critical amino acid involved in promoting growth and metabolism in young mammals, is more deficient in IUGR fetuses. However, little is known whether dietary Arg supplementation would accelerate the impaired development of the SI induced by IUGR in piglets. In the present study, a total of six litters of newborn piglets were used. In each litter, one normal and two IUGR littermates were obtained. Piglets were fed milk-based diets supplemented with 0 (Normal), 0 (IUGR) and 0·60% Arg (IUGR+Arg) from 7 to 14 d of age, respectively. Compared with Normal piglets at 14 d of age, IUGR decreased (P < 0·05) the growth performance, entire SI weight, and villus height in the jejunum and ileum. IUGR piglets had lower (P < 0·05) mucosal concentrations of Arg, insulin, insulin growth factor 1, as well as phosphorylated Akt, mammalian target of rapamycin (mTOR) and p70 S6 kinase but higher (P < 0·05) enterocyte apoptosis index (AI). After Arg treatment in IUGR piglets, the growth performance, weight of entire SI and mucosa, and villus height in the jejunum and ileum were increased (P < 0·05). Diet supplemented with Arg also increased (P < 0·05) the levels of Arg, insulin, phosphorylated Akt and mTOR in SI mucosa of IUGR piglets, and decreased (P < 0·05) the AI and caspase-3 activity. In conclusion, Arg has a beneficiary effect in improving the impaired SI development in IUGR piglets via regulating cell apoptosis and activating Akt and mTOR signals in SI mucosa.
Collapse
|
16
|
Zhou X, Wu X, Yin Y, Zhang C, He L. Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats. Amino Acids 2011; 43:813-21. [PMID: 22068917 DOI: 10.1007/s00726-011-1137-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/22/2011] [Indexed: 02/07/2023]
Abstract
The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P < 0.05) in the jejunum and ileum induced by LPS challenge. LPS administration resulted in a significant increase in TNF-α, IL-1β, IL-6 and IL-10 mRNA abundance. Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Research Center for Healthy Breeding of Livestock and Poultry, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | | | | | | | | |
Collapse
|
17
|
Bauchart-Thevret C, Cui L, Wu G, Burrin DG. Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. Am J Physiol Endocrinol Metab 2010; 299:E899-909. [PMID: 20841502 DOI: 10.1152/ajpendo.00068.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine is an indispensable amino acid in neonates and is required for growth. Neonatal intestinal epithelial cells (IEC) are capable of arginine transport, catabolism, and synthesis and express nitric oxide (NO) synthase to produce NO from arginine. Our aim was to determine whether arginine directly stimulates IEC growth and protein synthesis and whether this effect is mediated via mammalian target of rapamycin (mTOR) and is NO-dependent. We studied neonatal porcine IEC (IPEC-J2) cultured in serum- and arginine-free medium with increasing arginine concentrations for 4 or 48 h. Our results show that arginine enhances IPEC-J2 cell survival and protein synthesis, with a maximal response at a physiological concentration (0.1-0.5 mM). Addition of arginine increased the activation of mTOR, p70 ribosomal protein S6 (p70 S6) kinase, and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in a time- and dose-dependent manner. The arginine-induced protein synthesis response was not inhibited by the NO inhibitors nitro-l-arginine methyl ester (l-NAME) and aminoguanidine, despite inducible NO synthase expression in IPEC-J2 cells. Moreover, protein synthesis was not increased or decreased in some cases by addition of an NO donor (S-nitroso-N-acetylpenicillamine), arginine precursors (proline and citrulline) in the absence of arginine, or insulin; S-nitroso-N-acetylpenicillamine suppressed phosphorylation of mTOR, p70 S6 kinase, and 4E-BP1. We found a markedly higher arginase activity in IPEC-J2 cells than in primary pig IEC. Furthermore, mTOR inhibition by rapamycin partially (42%) reduced the arginine-induced protein synthesis response and phosphorylation of mTOR and 4E-BP1. We conclude that arginine-dependent cell survival and protein synthesis signaling in IPEC-J2 cells are mediated by mTOR, but not by NO.
Collapse
|
18
|
Blachier F, Boutry C, Bos C, Tomé D. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am J Clin Nutr 2009; 90:814S-821S. [PMID: 19571215 DOI: 10.3945/ajcn.2009.27462s] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
l-Glutamate is one of the most abundant amino acids in alimentary proteins, but its concentration in blood is among the lowest. This is largely because l-glutamate is extensively oxidized in small intestine epithelial cells during its transcellular journey from the lumen to the bloodstream and after its uptake from the bloodstream. This oxidative capacity coincides with a high energy demand of the epithelium, which is in rapid renewal and responsible for the nutrient absorption process. l-Glutamate is a precursor for glutathione and N-acetylglutamate in enterocytes. Glutathione is involved in the enterocyte redox state and in the detoxication process. N-acetylglutamate is an activator of carbamoylphosphate synthetase 1, which is implicated in l-citrulline production by enterocytes. Furthermore, l-glutamate is a precursor in enterocytes for several other amino acids, including l-alanine, l-aspartate, l-ornithine, and l-proline. Thus, l-glutamate can serve both locally inside enterocytes and through the production of other amino acids in an interorgan metabolic perspective. Intestinal epithelial cell capacity to oxidize l-glutamine and l-glutamate is already high in piglets at birth and during the suckling period. In colonocytes, l-glutamate also serves as a fuel but is provided from the bloodstream. Alimentary and endogenous proteins that escape digestion enter the large intestine and are broken down by colonic bacterial flora, which then release l-glutamate into the lumen. l-Glutamate can then serve in the colon lumen as a precursor for butyrate and acetate in bacteria. l-Glutamate, in addition to fiber and digestion-resistant starch, can thus serve as a luminally derived fuel precursor for colonocytes.
Collapse
Affiliation(s)
- François Blachier
- INRA, CRNH-IdF, UMR Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | |
Collapse
|
19
|
|
20
|
Ball RO, Urschel KL, Pencharz PB. Nutritional consequences of interspecies differences in arginine and lysine metabolism. J Nutr 2007; 137:1626S-1641S. [PMID: 17513439 DOI: 10.1093/jn/137.6.1626s] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.
Collapse
Affiliation(s)
- Ronald O Ball
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, and The Research Institute, The Hospital for Sick Children, Toronto, ON, Canada M5G.
| | | | | |
Collapse
|
21
|
Yang CH, Tsai PS, Lee JJ, Huang CH, Huang CJ. NF-kappaB inhibitors stabilize the mRNA of high-affinity type-2 cationic amino acid transporter in LPS-stimulated rat liver. Acta Anaesthesiol Scand 2005; 49:468-76. [PMID: 15777294 DOI: 10.1111/j.1399-6576.2005.00660.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Induction of inducible nitric oxide synthase (iNOS) results in nitric oxide (NO) overproduction during endotoxemia. Cellular uptake of L-arginine, modulated by the isozymes of type-2 cationic amino acid transporters (CAT), including CAT-2, CAT-2A and CAT-2B, has been reported to be a crucial factor in the regulation of iNOS activity. We sought to elucidate the expression of CAT-2 isozymes and the role of nuclear factor-kappaB (NF-kappaB) in this expression in lipopolysaccharide (LPS)-treated rat liver. METHODS Adult male Sprague-Dawley rats were randomly given intravenous (i.v.) injections of normal saline (N/S), LPS, LPS preceded by an NF-kappaB inhibitor (PDTC, dexamethasone or salicylate) or an NF-kappaB inhibitor alone. After injection, rats were sacrificed at different times and enzyme expression and liver injury were examined. Hepatic and systemic NO production were also measured. RESULTS CAT-2, CAT-2A and CAT-2B were constitutively expressed in un-stimulated rat liver. LPS stimulation not only significantly increased iNOS mRNA and NO concentrations but also decreased the mRNA concentrations of CAT-2 and CAT-2B, but not CAT-2A, in a time-dependent manner. LPS-induced hepatic and systemic NO overproduction was associated with hepatocellular injury. Pre-treatment with NF-kappaB inhibitors significantly attenuated LPS-induced iNOS induction as well as CAT-2/CAT-2B mRNA destabilization, which was associated with significant inhibition of NO biosynthesis and less liver injury. CONCLUSION NF-kappaB inhibitors stabilize CAT-2 and CAT-2B mRNA in LPS-stimulated rat liver. The hepatic CAT-2/CAT-2B pathway may be a constitutive part of cytoprotective mechanisms against sepsis.
Collapse
Affiliation(s)
- C-H Yang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Huang CJ, Tsai PS, Yang CH, Su TH, Stevens BR, Skimming JW, Pan WHT. Pulmonary transcription of CAT-2 and CAT-2B but not CAT-1 and CAT-2A were upregulated in hemorrhagic shock rats. Resuscitation 2004; 63:203-12. [PMID: 15531073 DOI: 10.1016/j.resuscitation.2004.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 11/29/2022]
Abstract
Hemorrhagic shock stimulates nitric oxide (NO) biosynthesis through upregulation of inducible NO synthase (iNOS) expression. Trans-membrane l-arginine transportation mediated by the isozymes of cationic amino acid transporters (e.g. CAT-1, CAT-2, CAT-2A, and CAT-2B) is one crucial regulatory mechanism that regulates iNOS activity. We sought to assess the effects of hemorrhage and resuscitation on the expression of these regulatory enzymes in hemorrhage-stimulated rat lungs. Twenty-four rats were randomized to a sham-instrumented group, a sustained shock group, a shock with blood resuscitation group, or a shock with normal saline resuscitation group. Hemorrhagic shock was induced by withdrawing blood to maintain MAP between 40 and 45mmHg for 60min. Resuscitation by infusing blood/saline mixtures (blood resuscitation group) or saline alone (saline resuscitation group) was then performed. At the end of the experiment (300min after hemorrhage began), rats were sacrificed and enzymes expression as well as pulmonary NO biosynthesis and lung injuries were assayed. Our data revealed that hemorrhage-induced pulmonary iNOS, CAT-2, and CAT-2B transcription which was associated with pulmonary NO overproduction and subsequent lung injury. Resuscitation significantly attenuated the hemorrhage-induced enzyme upregulation, pulmonary NO overproduction, and lung injury. Blood/saline mixtures were superior to saline as a resuscitation solution in treating hemorrhage-induced pulmonary NO overproduction and lung injury. Hemorrhage and/or resuscitation, however, did not affect the expression of pulmonary CAT-1 and CAT-2A. It is, therefore, concluded that the expression of pulmonary iNOS, CAT-2, and CAT-2B is inducible and that of CAT-1 and CAT-2A is constitutive in hemorrhagic shock rat lungs.
Collapse
Affiliation(s)
- Chun-Jen Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Mackay Junior College of Nursing, Institute of Pharmacology, National Yang-Ming University, 92 Sec. 2, Chung San N. Rd., Taipei 104, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Wilkinson DL, Bertolo RFP, Brunton JA, Shoveller AK, Pencharz PB, Ball RO. Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet. Am J Physiol Endocrinol Metab 2004; 287:E454-62. [PMID: 15149954 DOI: 10.1152/ajpendo.00342.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine is conditionally indispensable in the neonate, and its synthesis in the intestine is not sufficient to meet requirements. It is not known how neonatal endogenous arginine synthesis is regulated and the degree to which proline and glutamate are used as precursors. Primed, constant intraportal and intragastric infusions of L-[U-14C]proline and L-[3,4-3H]glutamate, and intragastric L-[guanido-14C]arginine were used to measure whole body and first-pass intestinal arginine synthesis in 10 neonatal piglets fed generous (1.80 g.kg(-1).day(-1)) or deficient (0.20 g.kg(-1).day(-1)) quantities of arginine for 5 days. Glutamate tracer was not detected in arginine, indicating a biologically insignificant conversion of <1% of arginine flux. Endogenous arginine synthesis from proline had obligatory (0.36 g.kg(-1).day(-1)) and maximal (0.68 g.kg(-1).day(-1)) levels (P < 0.05, pooled SE 0.05). Although first-pass gut metabolism is responsible for 42-63% of whole body arginine synthesis, the gut is incapable of upregulating proline to arginine conversion during arginine deficiency, compared with a more than threefold increase without first-pass gut metabolism. These data suggest that upregulation of proline-to-arginine conversion occurs via increased arterial extraction of proline by the gut or in nonintestinal tissues. This study demonstrates that dietary arginine is an important regulator of endogenous arginine synthesis in the neonatal piglet and that proline, but not glutamate, is an important precursor for arginine synthesis in the neonate.
Collapse
Affiliation(s)
- Dana Lee Wilkinson
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada T6G 2P5
| | | | | | | | | | | |
Collapse
|
24
|
Huang CJ, Tsai PS, Lu YT, Cheng CR, Stevens BR, Skimming JW, Pan WHT. NF-kappaB involvement in the induction of high affinity CAT-2 in lipopolysaccharide-stimulated rat lungs. Acta Anaesthesiol Scand 2004; 48:992-1002. [PMID: 15315617 DOI: 10.1111/j.1399-6576.2004.00454.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endotoxemia stimulates nitric oxide (NO) biosynthesis through induction of inducible NO synthase (iNOS). Cellular uptake of L-arginine, the sole substrate for iNOS, is an important mechanism regulating NO biosynthesis by iNOS. The isozymes of type-2 cationic amino acid transporters, including CAT-2, CAT-2A, and CAT-2B, constitute the most important pathways responsible for trans-membrane L-arginine transportation. Therefore, regulation of CAT-2 isozymes expression may constitute one of the downstream regulatory pathways that control iNOS activity. We investigated the time course of enzyme induction and the role of nuclear factor-kappaB (NF-kappaB) in CAT-2 isozymes expression in lipopolysaccharide-(LPS) treated rat lungs. METHODS Adult male Sprague-Dawley rats were randomly given intravenous injections of normal saline (N/S), LPS, LPS plus NF-kappaB inhibitor pre-treatment (PDTC, dexamethasone, or salicylate), or an NF-kappaB inhibitor alone. The rats were sacrificed at different times after injection and enzyme expression and lung injury were examined. Pulmonary and systemic NO production were also measured. RESULTS LPS co-induced iNOS, CAT-2, and CAT-2B but not CAT-2A expression in the lungs. Furthermore, NF-kappaB actively participated in LPS-induction of iNOS, CAT-2, and CAT-2B. LPS induced pulmonary and systemic NO overproduction and resulted in lung injuries. Attenuation of LPS-induced iNOS, CAT-2, and CAT-2B induction significantly inhibited NO biosynthesis and lessened lung injury. CONCLUSION NF-kappaB actively participates in the induction of CAT-2 and CAT-2B in intact animals. Our data further support the idea that CAT-2 and CAT-2B are crucial in regulating iNOS activity.
Collapse
Affiliation(s)
- C-J Huang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Huang CJ, Tsai PS, Cheng CR, Stevens BR, Skimming JW. Renal transcription of high-affinity type-2 cationic amino acid transporter is up-regulated in LPS-stimulated rodents. Acta Anaesthesiol Scand 2004; 48:308-16. [PMID: 14982563 DOI: 10.1111/j.0001-5172.2004.0338.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Sepsis stimulates renal nitric oxide (NO) biosynthesis through up-regulation of inducible NO synthase (iNOS) expression. Type-2 cationic amino acid transporter (CAT-2) mediation of trans-membrane L-arginine (L-Arg) transportation has been identified as one of the crucial regulatory mechanisms involved in the formation of NO by iNOS. We had previously shown that CAT-2B, a high-affinity alternative-spliced transcript of the CAT-2, is involved in induced NO biosynthesis by iNOS (Nitric Oxide, 2002). In this present study, we sought to assess the effects of sepsis on the expression of CAT-2B in lipopolysaccharide (LPS)-stimulated rat kidney. METHODS Forty rats were randomized to either a normal saline (N/S)-treated group or a LPS-treated group. Renal NO production was determined using chemiluminescence. Semi-quantitative RT-PCR was used to determine the mRNA concentrations of iNOS and L-Arg transporters (CAT-1, CAT-2 and CAT-2B) in kidney. RESULTS Lipopolysaccharide-coinduced iNOS, CAT-2 and CAT-2B mRNA expression in kidney and caused renal NO overproduction. A significant linear regression relationship was defined between renal NO concentrations and iNOS, CAT-2 and CAT-2B, respectively. On the contrary, CAT-1 expression was not affected by LPS-stimulation. CONCLUSIONS We provide the first evidence to illustrate that sepsis/septic shock induces the transcription of high-affinity CAT-2B in renal tissues. Transcription of iNOS, CAT-2 and CAT-2B correlates well with renal NO biosynthesis. Regulation of L-Arg uptake by modulating the expression regulation of induced CAT-2 and CAT-2B might be a potential target for therapies against renal pathologic conditions related to NO overproduction.
Collapse
Affiliation(s)
- S Yang
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Bertolo RFP, Brunton JA, Pencharz PB, Ball RO. Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am J Physiol Endocrinol Metab 2003; 284:E915-22. [PMID: 12527558 DOI: 10.1152/ajpendo.00269.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that arginine deficiency is exacerbated by the removal of dietary proline in orally, but not parenterally, fed piglets. Therefore, we hypothesized that the net interconversions of proline, ornithine, and arginine primarily occur in the small intestine of neonatal piglets. Ten intragastrically fed piglets received either intraportal (IP) or intragastric (IG) primed, constant infusions of [guanido-(14)C]arginine and [U-(14)C]ornithine + [2,3-(3)H]proline. By infusing amino acid isotopes via the stomach compared with the portal vein, we isolated small intestinal first-pass metabolism in vivo. During IP infusion, fractional net conversions (%) from proline to ornithine (0), ornithine to arginine (11 +/- 6), and ornithine to proline (5 +/- 1) were lower (P < 0.05) than during IG infusion (39 +/- 8, 18 +/- 6, and 42 +/- 12, respectively); we speculate that these data are due to the localization of ornithine aminotransferase to the gut. The balance of these conversions indicated a large synthesis of arginine (70.0 micromol. kg(-1). h(-1)) by the gut, with a corresponding degradation of ornithine (70.8 micromol. kg(-1). h(-1)) and no change in proline balance. Gut synthesis of arginine from proline (48.1 micromol. kg(-1). h(-1)) was 50% of its requirement, whereas proline synthesis from arginine (33.0 micromol. kg(-1). h(-1)) amounted to 10% of its requirement. Overall, arginine synthesis is more dependent on the gut than proline synthesis. In situations in which gut metabolism is compromised, such as during parenteral nutrition or gastrointestinal disease, arginine and proline are individually indispensable because their biosyntheses are negligible.
Collapse
Affiliation(s)
- Robert F P Bertolo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The urea cycle is comprised of five enzymes but also requires other enzymes and mitochondrial amino acid transporters to function fully. The complete urea cycle is expressed in liver and to a small degree also in enterocytes. However, highly regulated expression of several enzymes present in the urea cycle occurs also in many other tissues, where these enzymes are involved in synthesis of nitric oxide, polyamines, proline and glutamate. Glucagon, insulin, and glucocorticoids are major regulators of the expression of urea cycle enzymes in liver. In contrast, the "urea cycle" enzymes in nonhepatic cells are regulated by a wide range of pro- and antiinflammatory cytokines and other agents. Regulation of these enzymes is largely transcriptional in virtually all cell types. This review emphasizes recent information regarding roles and regulation of urea cycle and arginine metabolic enzymes in liver and other cell types.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
28
|
Burrin D. Chapter 24 Gastrointestinal protein and amino acid metabolism in growing animals. BIOLOGY OF GROWING ANIMALS 2002. [DOI: 10.1016/s1877-1823(09)70140-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Lobley GE, Hoskin SO, McNeil CJ. Glutamine in animal science and production. J Nutr 2001; 131:2525S-31S; discussion 2532S-4S. [PMID: 11533306 DOI: 10.1093/jn/131.9.2525s] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With its many proposed metabolic roles, glutamine would seem to have major potential in normal animal production systems as well as during situations involving adverse challenges. In practice, however, responses to glutamine supplementation have been inconsistent. Thus, during lactation and growth studies in ruminants, both positive and null effects on production responses have been reported. Similarly, therapeutic responses to glutamine supplementation during various digestive tract disorders have been inconsistent in both pigs and ruminants. This is despite a proven involvement in the nucleic acid biosynthesis necessary to support cell proliferation. In sheep, at least, glutamine may exert a protective effect against hepatic amino acid (AA) oxidation, particularly for methionine. This may offer anabolic potential because methionine is the first limiting AA in a number of animal feedstuffs. Glutamine is also important in control of metabolic acidosis, but, in contrast to rodents, the main site of production seems to be extra-hepatic. In the immune system, while lymphocyte proliferation is glutamine-dependent, intracellular concentrations are low (in contrast to other tissues, such as muscle and liver). Instead, glutamate is accumulated, but the majority of this (approximately 65%) is derived in vivo from plasma glutamine. In sheep, endotoxin challenge elevates the plasma flux of glutamine, with a corresponding decrease in plasma concentration. At the same time, both the glutamate accumulation and fractional rate of protein synthesis within lymphocytes are enhanced. These lymphocyte responses, however, are not altered by an AA supplement that contains glutamine. Overall, although glutamine obviously plays important metabolic roles within the body, supplementation does not appear to provide consistent beneficial or therapeutic effects, except during certain catabolic situations. Glutamine availability, therefore, does not seem to be a limitation in many challenge situations. Rather, glutamine may signal alterations in nutrient demands among organs and a better understanding of this role may increase understanding of where modulation of glutamine status would be beneficial.
Collapse
Affiliation(s)
- G E Lobley
- Rowett Research Institute, Bucksburn, Aberdeen, AB21 9SB, United Kingdom.
| | | | | |
Collapse
|
30
|
Daniel EE, Wang YF, Salapatek AM, Mao YK, Mori M. Arginosuccinate synthetase, arginosuccinate lyase and NOS in canine gastrointestinal tract: immunocytochemical studies. Neurogastroenterol Motil 2000; 12:317-34. [PMID: 10886674 DOI: 10.1046/j.1365-2982.2000.00208.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nitric oxide synthase (NOS) requires the substrate L-arginine for NO production to support multiple gastrointestinal functions. We asked, 'Where do enzymes to regenerate L-arginine from L-citrulline exist?'. We examined loci of immunoreactivities in the canine gastrointestinal tract for arginosuccinate synthetase and arginosuccinate lyase, enzymes that resynthesize L-arginine from L-citrulline, in relation to the distribution of nNOS immunoreactivity or NADPH-diaphorase histochemistry. Arginosuccinate synthetase and lyase were present in many neurones and nerve fibres in the myenteric plexus of the lower oesophageal sphincter (LOS), antrum, pylorus, ileum and colon; in the submucosal plexus of ileum and colon; in longitudinal muscle of ileum and colon; and in nerve bundles in circular muscle everywhere. LOS muscle was also immunoreactive for both enzymes. Circular and longitudinal muscle cells of the ileum and colon and cells resembling interstitial cells of Cajal in the deep muscular plexus of the ileum and the submuscular plexus of the colon also appeared immunoreactive. In neurones, arginosuccinate synthetase and nNOS were usually co-localized. NADPH diaphorase activity was present in LOS and likely in pylorus, but not in muscularis externa of ileum or colon. We conclude that resynthesis of L-arginine probably occurs in enteric nerves, interstitial cells of Cajal (ICC) and LOS muscle; also apparently in some cells without NOS to utilize it.
Collapse
Affiliation(s)
- E E Daniel
- Department of Medicine, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
31
|
Barziza DE, Buentello JA, Gatlin DM. Dietary arginine requirement of juvenile red drum (Sciaenops ocellatus) based on weight gain and feed efficiency. J Nutr 2000; 130:1796-9. [PMID: 10867053 DOI: 10.1093/jn/130.7.1796] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasing aquacultural production of red drum (Sciaenops ocellatus) has prompted the determination of many of this species' nutritional requirements. However, limited information is available concerning its amino acid requirements, especially for arginine. Therefore, a feeding trial was conducted with juvenile red drum to determine their quantitative dietary requirement for arginine. Experimental diets contained 35 g crude protein/100 g from red drum muscle and crystalline amino acids. Incremental levels of arginine were added to the diets in place of a mixture of glycine and aspartic acid to maintain all diets isonitrogenous. All diets were fed in triplicate to juvenile red drum for 7 wk. Graded levels of arginine significantly (P < 0.05) affected weight gain, feed efficiency, protein efficiency ratio (PER) and plasma arginine levels of the fish. Based on least-squares regression of feed efficiency and PER data, the minimum requirement (+/- SEM) of red drum for arginine was estimated at 1.44 (+/- 0.15) and 1.48 (+/- 0.12) g/100 g diet (4.11 and 4.23 g/100 g dietary protein), respectively. The arginine requirements estimated from weight gain data were 1.75 (+/- 0.18) g/100 g diet or 5.0 g/100 g dietary protein. These values are similar to those reported for other carnivorous fish species.
Collapse
Affiliation(s)
- D E Barziza
- Department of Wildlife and Fisheries Sciences, and Faculty of Nutrition, Texas A&M University System, College Station, TX 77843-2258, USA
| | | | | |
Collapse
|
32
|
Reeds PJ, Burrin DG, Davis TA, Fiorotto ML, Stoll B, van Goudoever JB. Protein nutrition of the neonate. Proc Nutr Soc 2000; 59:87-97. [PMID: 10828178 DOI: 10.1017/s0029665100000112] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The period of growth and development between birth and weaning is crucial for the long-term well-being of the organism. Protein deposition is very rapid, is achieved with a high nutritional efficiency, and is accompanied by marked differences in the growth rates of individual tissues and a series of maturational processes. These important aspects of development occur while the neonate is consuming a single and highly-specific food source, milk. Surprisingly, although there is a clear relationship between the nutrient density of milk and the growth rate of its recipient, this relationship does not apply to the overall amino acid composition of mixed milk proteins. Some amino acids, notably glycine and arginine, are supplied in milk in quantities that are much less than the needs of the neonate. The milk-fed neonate is therefore capable of carrying out a tightly-regulated transfer of N from amino acids in excess to those that are deficient. The rapid growth of the neonate is supported by a high rate of tissue protein synthesis. This process appears to be activated by the consumption of the first meals of colostrum. Recent research has identified that skeletal muscle and the brain are specifically responsive to an unidentified factor in colostrum. Following the initial anabolic response the rate of protein synthesis in some tissues, notably muscle, falls from birth to weaning. This decrease reflects a progressively smaller anabolic response to nutrient intake, which not only involves an overall fall in the capacity for protein synthesis, but also in responses to insulin and amino acids. The study of growth and protein metabolism, and their regulation in the neonate is not only important for pediatrics, but may provide important pointers to more general aspects of regulation that could be applied to the nutrition of the mature animal.
Collapse
Affiliation(s)
- P J Reeds
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Brunton JA, Bertolo RF, Pencharz PB, Ball RO. Proline ameliorates arginine deficiency during enteral but not parenteral feeding in neonatal piglets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E223-31. [PMID: 10444416 DOI: 10.1152/ajpendo.1999.277.2.e223] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The indispensability of arginine has not been conclusively established in newborns. Because parenteral feeding bypasses the gut (where de novo synthesis of arginine occurs from proline), a dietary supply of arginine that is sufficient to maintain urea cycle function may be of greater importance during intravenous compared with enteral feeding. Two-day-old piglets (n = 12) were fed nutritionally complete diets for 5 days via either a central vein catheter (IV pigs, n = 6) or a gastric catheter (IG pigs, n = 6). Subsequently, each piglet received three incomplete test diets [arginine free (-ARG/+PRO), proline free (-PRO/+ARG), or arginine and proline free (-ARG/-PRO)] in a randomized crossover design. Plasma ammonia was assayed every 30 min for 8 h or until hyperammonemia was observed. Ammonia increased rapidly in IV pigs receiving -ARG/+PRO and -ARG/-PRO (84 +/- 36 and 74 +/- 37 micromol. l(-1). h(-1), respectively), requiring early diet cessation. A rapid increase was also exhibited by IG pigs receiving the -ARG/-PRO, but not the -ARG/+PRO diet (31 +/- 15 vs. 11 +/- 7 micromol. l(-1). h(-1), respectively, P < 0.05). Plasma arginine and proline were indicative of deficiency (IG and IV groups) when deplete diets were infused. Arginine is indispensable in parenteral and enteral nutrition, independent of dietary proline.
Collapse
Affiliation(s)
- J A Brunton
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
34
|
Stoll B, Burrin DG, Henry J, Yu H, Jahoor F, Reeds PJ. Substrate oxidation by the portal drained viscera of fed piglets. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E168-75. [PMID: 10409141 DOI: 10.1152/ajpendo.1999.277.1.e168] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fully fed piglets (28 days old, 7-8 kg) bearing portal, arterial, and gastric catheters and a portal flow probe were infused with enteral [U-(13)C]glutamate (n = 4), enteral [U-(13)C]glucose (n = 4), intravenous [U-(13)C]glucose (n = 4), or intravenous [U-(13)C]glutamine (n = 3). A total of 94% of the enteral [U-(13)C]glutamate but only 6% of the enteral [U- (13)C]glucose was utilized in first pass by the portal-drained viscera (PDV). The PDV extracted 6.5% of the arterial flux of [U-(13)C]glucose and 20.4% of the arterial flux of [U-(13)C]glutamine. The production of (13)CO(2) (percentage of dose) by the PDV from enteral glucose (3%), arterial glucose (27%), enteral glutamate (52%), and arterial glutamine (70%) varied widely. The substrates contributed 15% (enteral glucose), 19% (arterial glutamine), 29% (arterial glucose), and 36% (enteral glutamate) of the total production of CO(2) by the PDV. Enteral glucose accounted for 18% of the portal alanine and 31% of the portal lactate carbon outflow. We conclude that, in vivo, three-fourths of the energy needs of the PDV are satisfied by the oxidation of glucose, glutamate, and glutamine, and that dietary glutamate is the most important single contributor to mucosal oxidative energy generation.
Collapse
Affiliation(s)
- B Stoll
- United States Department of Agriculture, Agricultural Research Station, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Mouillé B, Morel E, Robert V, Guihot-Joubrel G, Blachier F. Metabolic capacity for L-citrulline synthesis from ammonia in rat isolated colonocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:401-7. [PMID: 10350656 DOI: 10.1016/s0304-4165(99)00045-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ammonia is present at high concentration in the colon lumen and is considered a colon cancer suspect. Furthermore, ammonia usually eliminated by the liver in the ornithine cycle is considered highly toxic to cerebral function when present in excess in the blood plasma. Therefore, the metabolic pathways involved in ammonia metabolism in colonocytes were studied in the present study. Rat colonocytes were found equipped with low carbamoylphosphate synthase I activity, high ornithine carbamoyltransferase and arginase activities and low argininosuccinate synthase activity. High (10 and 50 mmol/l) NH4Cl concentrations but not low concentrations (1 and 5 mmol/l) were found able to increase respectively 3- and 10-fold the conversion of radioactive L-arginine to L-citrulline. In contrast, very low capacity for L-citrulline conversion to L-arginine is found in colonocytes. It is concluded that an incomplete ornithine cycle is operative in colonocytes which results in ammonia stimulated L-citrulline production. The contribution of this metabolic pathway in relation to ammonia detoxication by colonocytes is discussed.
Collapse
Affiliation(s)
- B Mouillé
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, F-78352, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
36
|
Abstract
Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes.
Collapse
Affiliation(s)
- G Wu
- Departments of Animal Science, Medical Physiology, and Veterinary Anatomy and Public Health, and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
37
|
Selamnia M, Robert V, Mayeur C, Delpal S, Blachier F. De novo synthesis of arginine and ornithine from citrulline in human colon carcinoma cells: metabolic fate of L-ornithine. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:93-102. [PMID: 9813260 DOI: 10.1016/s0304-4165(98)00056-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In human colon carcinoma cells (HT-29 cells), L-arginine is the common precursor of L-ornithine which generates polyamines strictly necessary for cellular growth, and nitric oxide which has a strong antiproliferative activity. We show here that proliferative HT-29 cells possess the capacity for de novo synthesis of L-arginine from L-citrulline, but not from L-ornithine. L-Ornithine is apparently not an L-arginine precursor due to the absence of any detectable ornithine carbamoyltransferase activity. In contrast, the newly synthesized L-arginine was competent for urea and thus L-ornithine production in a context of a high putrescine production in the ornithine decarboxylase pathway and a low degradation of this polyamine in the diamine oxidase pathway. However, cells grown in an arginine-free culture medium containing added L-citrulline were unable to reach confluency. Furthermore, the low amount of nitric oxide produced from L-arginine by these cells was apparently not involved in the control of cell growth since inhibition of nitric oxide synthase activity was without effect. On the other hand, the capacity of more differentiated and less proliferative HT-29 cells for de novo L-arginine synthesis from L-citrulline was increased. It is concluded that L-citrulline is a precursor of L-arginine and L-ornithine in proliferative HT-29 cells and that the metabolic fate of L-ornithine in these cells is mainly devoted to polyamine synthesis. The similarity between differentiated HT-29 cells and the enterocytes of newborn animals in terms of L-arginine metabolism is finally discussed.
Collapse
Affiliation(s)
- M Selamnia
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
38
|
Abstract
Arginine is a non-essential amino acid in mammals as judged from nitrogen balance study. Citrulline is synthesized from glutamate in the small intestine, whilst kidneys and some other tissues convert citrulline to arginine. Ornithine transcarbamylase and carbamylphosphate synthetase are expressed in liver and small intestine. Tissue-selective expression depends on the regulatory elements in the promoter, or far 5', region of these genes to which tissue-selective transcription factors bind and activate transcription. Argininosuccinate synthetase and argininosuccinate lyase do not appear to have such elements, therefore their expression is more or less ubiquitous. The selective expression of pyrroline-5-carboxylate synthase activity in the intestine remains to be clarified.
Collapse
Affiliation(s)
- Y Wakabayashi
- Department of Biochemistry, Kyoto Prefectural University of Medicine, Japan.
| |
Collapse
|
39
|
De Jonge WJ, Dingemanse MA, de Boer PA, Lamers WH, Moorman AF. Arginine-metabolizing enzymes in the developing rat small intestine. Pediatr Res 1998; 43:442-51. [PMID: 9544996 DOI: 10.1203/00006450-199804000-00002] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Before weaning, arginine biosynthesis from citrulline most likely takes place in the small intestine rather than in the kidney. We studied the expression of ornithine cycle enzymes in the rat small intestine during perinatal development. The spatiotemporal patterns of expression of ornithine aminotransferase, carbamoylphosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinate lyase, and arginase mRNAs were studied by Northern blot analysis and in situ hybridization. In addition, the expression of carbamoylphosphate synthetase and argininosuccinate synthetase protein was studied by immunohistochemistry. Before birth, the developmentally more mature proximal loops of the intestine expressed the mRNAs at higher concentrations than the more distal loops. After birth, this difference was no longer obvious. The mRNAs of argininosuccinate synthetase and argininosuccinate lyase, the enzymes that metabolize citrulline to arginine, were detectable only in the upper part of the villi, whereas the other mRNAs were concentrated in the crypts. The distribution of argininosuccinate synthetase protein corresponded with that of the mRNA, whereas carbamoylphosphate synthetase protein was present in all enterocytes of the crypts and villi. Hepatic arginase mRNA could not be detected in the enterocytes. The spatial distribution of the respective mRNAs and proteins along the villus axis of the suckling small intestine indicates that the basal enterocytes synthesize citrulline, whereas the enterocytes in the upper half of the villus synthesize arginine.
Collapse
Affiliation(s)
- W J De Jonge
- Department of Anatomy and Embryology, Academical Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 1998; 128:606-14. [PMID: 9482771 DOI: 10.1093/jn/128.3.606] [Citation(s) in RCA: 384] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate the extent of first-pass intestinal metabolism of dietary amino acids, seven female pigs (28 d old, 8.0 kg) were implanted with arterial, venous, portal and gastric catheters and with an ultrasonic portal blood flow probe. The pigs were fed a milk-based diet once hourly and infused intragastrically with [U-13C]algal protein. On average, 56% of the essential amino acid (EAA) intake appeared in the portal blood. However, the net portal balance of methionine (48% of intake) and threonine (38% of intake) tended (P = 0.08) to be lower than the mean of all EAA. The net portal balance (expressed as a percentage of intake) of alanine (205%), tyrosine (167%) and arginine (137%) exceeded their intake. Net portal outflow of ammonia accounted for 18% of total amino acid nitrogen intake. As a percentage of the enteral tracer input, there was substantial first-pass metabolism of lysine (35%), leucine (32%), phenylalanine (35%) and threonine (61%). However, only 18, 21, 18 and 12% of the total first-pass metabolism of lysine, leucine, phenylalanine and threonine, respectively, were recovered in mucosal protein. We conclude that roughly one third of dietary intake of EAA is consumed in first-pass metabolism by the intestine and that amino acid catabolism by the mucosal cells is quantitatively greater than amino acid incorporation into mucosal protein.
Collapse
Affiliation(s)
- B Stoll
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
41
|
Van Beers EH, Rings EH, Posthuma G, Dingemanse MA, Taminiau JA, Heymans HS, Einerhand AW, Büller HA, Dekker J. Intestinal carbamoyl phosphate synthase I in human and rat. Expression during development shows species differences and mosaic expression in duodenum of both species. J Histochem Cytochem 1998; 46:231-40. [PMID: 9446830 DOI: 10.1177/002215549804600212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The clinical importance of carbamoyl phosphate synthase I (CPSI) relates to its capacity to metabolize ammonia, because CPSI deficiencies cause lethal serum ammonia levels. Although some metabolic parameters concerning liver and intestinal CPSI have been reported, the extent to which enterocytes contribute to ammonia conversion remains unclear without a detailed description of its developmental and spatial expression patterns. Therefore, we determined the patterns of enterocytic CPSI mRNA and protein expression in human and rat intestine during embryonic and postnatal development, using in situ hybridization and immunohistochemistry. CPSI protein appeared during human embryogenesis in liver at 31-35 e. d. (embryonic days) before intestine (59 e.d.), whereas in rat CPSI detection in intestine (at 16 e.d.) preceded liver (20 e.d.). During all stages of development there was a good correlation between the expression of CPSI protein and mRNA in the intestinal epithelium. Strikingly, duodenal enterocytes in both species exhibited mosaic CPSI protein expression despite uniform CPSI mRNA expression in the epithelium and the presence of functional mitochondria in all epithelial cells. Unlike rat, CPSI in human embryos was expressed in liver before intestine. Although CPSI was primarily regulated at the transcriptional level, CPSI protein appeared mosaic in the duodenum of both species, possibly due to post-transcriptional regulation.
Collapse
Affiliation(s)
- E H Van Beers
- Pediatric Gastroenterology and Nutrition, Department Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Guihot G, Blachier F, Colomb V, Morel MT, Raynal P, Corriol O, Ricour C, Duée PH. Effect of an elemental vs a complex diet on L-citrulline production from L-arginine in rat isolated enterocytes. JPEN J Parenter Enteral Nutr 1997; 21:316-23. [PMID: 9406127 DOI: 10.1177/0148607197021006316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND L-Arginine and L-glutamine are highly metabolized by intestinal cells, leading to various metabolites, including L-citrulline, which is required for optimal growth. Elemental diets, used in clinical practice to treat growth failure and malnutrition, are very different from complex diets normally consumed. The aim of the present study was to assess the effects of an elemental diet compared with a complex diet on L-arginine metabolism in rat isolated enterocytes and its modulation by L-glutamine. METHODS Rats were fed the elemental diet (group ED) or the control diet (group C) for 14 days. Villus enterocytes then were isolated, and metabolic capacities or enzyme activities were assessed. RESULTS The incubation of enterocytes isolated from group C with 0.1 mmol/L L-[U-14C]-arginine led to the production of 125 +/- 25 pmol L-citrulline/10(6) cells per 30 minutes. This production showed a twofold increase in the presence of 2 mmol/L L-glutamine. In group ED, L-citrulline synthesis from L-arginine was markedly lower in the absence or in the presence of L-glutamine. This coincided with lower carbamoylphosphate synthase I activity and carbamoylphosphate (CP) content of enterocytes. Other L-arginine and L-glutamine metabolic pathways were not affected. Similar results were obtained when the elemental diet was administered continuously through a gastric catheter or fed by mouth. CONCLUSIONS L-Glutamine favors the synthesis of L-citrulline from L-arginine in isolated enterocytes, probably via an increase in CP production. Changing the diet composition, from a complex to an elemental diet, results in an alteration of the enterocyte capacity to synthesize L-citrulline from L-arginine, irrespective of the rhythm of delivery.
Collapse
Affiliation(s)
- G Guihot
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
van der Meulen J, Jansman AJ. Nitrogen metabolism in gastrointestinal tissue of the pig. Proc Nutr Soc 1997; 56:535-45. [PMID: 9264106 DOI: 10.1079/pns19970056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J van der Meulen
- Institute for Animal Science and Health, Department of Nutrition of Pigs and Poultry (ID-DLO), Lelystad, The Netherlands
| | | |
Collapse
|
44
|
Abstract
Urea synthesis from ammonia, glutamine and arginine was determined in enterocytes from newborn (0-day-old), 2-21-day-old suckling, and 29-58-day-old post-weaning pigs. Pigs were weaned at 21 days of age. Cells were incubated for 30 min at 37 degrees C in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing (i) 0.5-2 mM NH4Cl plus 0.05-2 mM ornithine and 2 mM aspartate, (ii) 1-5 mM glutamine, or (iii) 0.5-2 mM arginine. In enterocytes from newborn and suckling pigs, there was no measurable synthesis of urea from ammonia, glutamine or arginine, and analysis of amino acids by a sensitive fluorimetric HPLC method revealed the formation of negligible amounts of ornithine from arginine. In contrast, in cells from post-weaning pigs, relatively large amounts of urea and ornithine were produced from ammonia, glutamine and arginine in a dose-dependent manner. To elucidate the mechanism of the developmental change of urea synthesis in pig enterocytes, the activities of urea-cycle enzymes were determined. The activities of enterocyte carbamoyl phosphate synthase I and ornithine carbamoyltransferase were lower in post-weaning pigs than in suckling ones, whereas there was no difference in arginino-succinate lyase. The activities of argininosuccinate synthase and arginase were increased by 4-fold and 50-100-fold, respectively, in enterocytes from post-weaning pigs compared with suckling pigs. The induction of arginase appears to be sufficient to account for the formation of urea from ammonia, glutamine and arginine in post-weaning pig enterocytes. These results demonstrate for the first time the presence of synthesis of urea from extracellular or intramitochondrially generated ammonia in enterocytes of post-weaning pigs. This hitherto unrecognized urea synthesis in these cells may be a first line of defence against the potential toxicity of ammonia produced by the extensive intestinal degradation of glutamine (a major fuel for enterocytes) and derived from diet and luminal micro-organisms.
Collapse
Affiliation(s)
- G Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station 77843-2471, USA
| |
Collapse
|
45
|
Blachier F, Selamnia M, Robert V, M'Rabet-Touil H, Duée PH. Metabolism of L-arginine through polyamine and nitric oxide synthase pathways in proliferative or differentiated human colon carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:255-62. [PMID: 7548223 DOI: 10.1016/0167-4889(95)00083-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HT-29 Glc-/+ cells originate from a human colon adenocarcinoma. These cells have been selected in a glucose-free culture medium and switched back in a glucose-containing medium. In this condition, they can spontaneously differentiate after confluency in enterocyte-like cells according to the activity of the brush-border associated hydrolase dipeptidyl peptidase IV. Since L-arginine can generate polyamines which are necessary for cellular proliferation and also differentiation, and nitric oxide with reported anti-proliferative property, the metabolism of this amino acid was examined in proliferative and differentiated isolated HT-29 cells. Proliferative HT-29 cells were characterized by micromolar intracellular concentration of putrescine and millimolar concentration of spermidine and spermine. In these cells, L-arginine is converted to L-ornithine and putrescine and to a minor part to nitric oxide and L-citrulline. Putrescine was taken up by HT-29 cells, leading to the production of a modest amount of spermidine. The diamine was slightly incorporated into cellular proteins and largely released in the incubation medium. The proliferative HT-29 cells take up spermidine and spermine but do not catabolize these polyamines and slightly released spermidine. Differentiation of HT-29 cells is not associated with change in intracellular polyamine content but is paralleled by an almost complete extinction of de novo synthesis of putrescine (due to a dramatic decrease of ornithine decarboxylase activity) and by a reduced release capacity of putrescine. In contrast, putrescine net uptake and incorporation into cellular proteins remained unchanged after differentiation. Furthermore, spermidine and spermine metabolism as well as the circulation of L-arginine in the nitric oxide synthase pathway were also not modified after differentiation. In conclusion, putrescine is the L-arginine-derived molecule, the metabolism of which is specifically and markedly modified when HT-29 cells move from proliferative to differentiated state.
Collapse
Affiliation(s)
- F Blachier
- Unité d'Ecologie et de Physiologie du Système Digestif. Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
46
|
|
47
|
M'Rabet-Touil H, Blachier F, Hellio N, Robert V, Cherbuy C, Darcy-Vrillon B, Duée PH. Transglutaminase activity in enterocytes isolated from pig jejunum. Mol Cell Biochem 1995; 146:49-54. [PMID: 7651377 DOI: 10.1007/bf00926881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyamines appear to be involved in the turnover, growth and maintenance of intestinal mucosa integrity. Since polyamines could act -in part at least- through their incorporation into cellular proteins as catalyzed by transglutaminase, we have measured this enzyme activity in villus enterocytes isolated from pig jejunum and in homogenate derived from isolated cells. A part of putrescine, spermidine and spermine taken up by enterocytes is incorporated in TCA precipitable material derived from cells and this corresponds to the presence of transglutaminase activity in cellular homogenates. This activity which is time and substrate concentration dependent is strongly inhibited by the transglutaminase inhibitor glycine methyl ester. The capacity for de novo production of polyamines from L-arginine or L-glutamine is very limited in isolated enterocytes, and this coincided with a very low ornithine decarboxylase activity when compared with polyamine cell content. It is concluded that the main source of polyamines for pig enterocytes is extracellular and that exogenous polyamines are substrates for enterocyte transglutaminase.
Collapse
Affiliation(s)
- H M'Rabet-Touil
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Di Lorenzo M, Bass J, Krantis A. Use of L-arginine in the treatment of experimental necrotizing enterocolitis. J Pediatr Surg 1995; 30:235-40; discussion 240-1. [PMID: 7537808 DOI: 10.1016/0022-3468(95)90567-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED Although multifactorial in etiology, prematurity and feeding are two of the most common risk factors associated with necrotizing enterocolitis (NEC). To understand the pathogenesis of NEC, the complex interaction between intestinal contents and clearing mechanisms in the immature human gut must be elucidated. Nitric oxide (NO) is a proposed mediator of nonadrenergic noncholinergic neural inhibition, causing relaxation in the gut. In addition to its role as a neuroeffector substance, studies suggest that endogenous formation of NO maintains intestinal mucosal integrity, protecting the gut from blood-borne toxins and tissue-destructive mediators. Thus, NO has a dual role in both gut smooth muscle relaxation and mucosal protection. Because two of the primary risk factors in the development of NEC are prematurity (as it relates to gut dysmotility) and enteral feeding (as it relates to mucosal damage by intraluminal substrate), the authors chose to investigate the role of NO in the pathogenesis of NEC induced by intraluminal injection of acidified casein solution in neonatal piglets. METHODS Having confirmed the consistent induction of NEC both macroscopically and histologically with this model (n = 32), the following were undertaken. Neonatal piglets (< 3 days old) were laparotomized, and intestinal loops were created from the terminal ileum to the proximal colon. The loops were injected with acidified casein solution and separated by saline-injected control loops. When the abdomen was closed, a continuous peripheral intravenous infusion of L-arginine, an NO synthase substrate (600 mg/kg/h [n = 6]), or N-omega-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor (20 mg/kg/h [n = 6]), was begun. Gut segments were harvested 3 hours later and processed for evaluation of the extent of necrosis. RESULTS Macroscopically, the L-NAME-treated group showed areas of hemorrhagic necrosis in the NEC-induced loops. The L-arginine-treated group had greatly diminished or virtually absent lesions. H&E-stained sections were graded microscopically, using a scale from 0 to 4, ranging from intact villi (grade 0) to transmural necrosis (grade 4). In the untreated NEC group, intestinal damage in the acidified casein loops was exhibited by areas of necrosis (extending, in some cases, transmurally), submucosal edema, and inflammatory cell infiltrate (average grade, 3.5). In the L-NAME-treated group, the intestinal damage was similar to that of the NEC-induced group (average grade, 3.5), but also presented with marked hemorrhagic congestion. In the L-arginine group, NEC-induced tissue damage was greatly attenuated, with necrosis limited primarily to the villus tips (average grade, 1). Nevertheless, inflammatory cell infiltrate and mild submucosal edema were still present. CONCLUSION Continuous intravenous infusion with the NO synthase substrate L-arginine markedly attenuates intestinal injury in this neonatal piglet model of NEC. Intravenous administration of the NO synthase inhibitor L-NAME causes hemorrhagic congestion of the gut wall. Based on these findings, the authors propose that treatment with the amino acid L-arginine should be considered as a potential therapeutic modality for NEC.
Collapse
Affiliation(s)
- M Di Lorenzo
- Department of Physiology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
49
|
Abstract
The synthesis of citrulline from glutamine was quantified in enterocytes from pre-weaning (14-21 days old) and post-weaning (29-58 days old) pigs. The cells were incubated at 37 degrees C for 30 min in Krebs-Henseleit bicarbonate buffer (pH 7.4) containing 0, 0.5, 2 and 5 mM glutamine. Oxygen consumption was linear during the 30 min incubation period. The rates of citrulline synthesis were low or negligible in enterocytes from 14-21-day-old pigs, but increased 10-20-fold in the cells from 29-58-day-old pigs. This marked elevation of citrulline synthesis coincided with an increase in the activity of pyrroline-5-carboxylate synthase with the animal's post-weaning growth. In contrast, decreases in the activities of phosphate-dependent glutaminase, ornithine aminotransferase, ornithine carbamoyltransferase and carbamoyl-phosphate synthase were observed as the age of the pigs increased. The concentrations of carbamoyl phosphate in enterocytes from pre-weaning pigs were higher than, or similar to, those in the cells from post-weaning pigs. It is possible that the low rate of citrulline synthesis from glutamine in enterocytes from pre-weaning pigs was due to a limited availability of ornithine, rather than that of carbamoyl phosphate. We suggest that this limited availability of ornithine in pre-weaning-pig enterocytes results from (i) the low rate of pyrroline-5-carboxylate synthesis from glutamate, due to the low activity of pyrroline-5-carboxylate synthase, and (ii) the competitive conversion of pyrroline-5-carboxylate into proline. Our present findings on the developmental aspect of citrulline synthesis in pig enterocytes may offer a biochemical mechanism for the previous observations that arginine is a nutritionally essential amino acid for suckling piglets, but not for adult pigs.
Collapse
Affiliation(s)
- G Wu
- Department of Animal Science, Texas A&M University, College Station 77843-2471
| | | | | |
Collapse
|