1
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
2
|
Yasuda K, Nishikawa M, Mano H, Takano M, Kittaka A, Ikushiro S, Sakaki T. Development of In Vitro and In Vivo Evaluation Systems for Vitamin D Derivatives and Their Application to Drug Discovery. Int J Mol Sci 2021; 22:ijms222111839. [PMID: 34769269 PMCID: PMC8584323 DOI: 10.3390/ijms222111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
- Correspondence:
| |
Collapse
|
3
|
Lin Z, Chen L, Chen X, Zhong Y, Yang Y, Xia W, Liu C, Zhu W, Wang H, Yan B, Yang Y, Liu X, Sternang Kvie K, Røed KH, Wang K, Xiao W, Wei H, Li G, Heller R, Gilbert MTP, Qiu Q, Wang W, Li Z. Biological adaptations in the Arctic cervid, the reindeer ( Rangifer tarandus). Science 2020; 364:364/6446/eaav6312. [PMID: 31221829 DOI: 10.1126/science.aav6312] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 12/23/2022]
Abstract
The reindeer is an Arctic species that exhibits distinctive biological characteristics, for which the underlying genetic basis remains largely unknown. We compared the genomes of reindeer against those of other ruminants and nonruminant mammals to reveal the genetic basis of light arrhythmicity, high vitamin D metabolic efficiency, the antler growth trait of females, and docility. We validate that two reindeer vitamin D metabolic genes (CYP27B1 and POR) show signs of positive selection and exhibit higher catalytic activity than those of other ruminants. A mutation upstream of the reindeer CCND1 gene endows an extra functional binding motif of the androgen receptor and thereby may result in female antlers. Furthermore, a mutation (proline-1172→threonine) in reindeer PER2 results in loss of binding ability with CRY1, which may explain circadian arrhythmicity in reindeer.
Collapse
Affiliation(s)
- Zeshan Lin
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xianqing Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Yue Yang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhao Xia
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chang Liu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenbo Zhu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Biyao Yan
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yifeng Yang
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kjersti Sternang Kvie
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Knut Håkon Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haijun Wei
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Guangyu Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim 7491, Norway
| | - Qiang Qiu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wen Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhipeng Li
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
4
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
5
|
Significance of urinary C-megalin excretion in vitamin D metabolism in pre-dialysis CKD patients. Sci Rep 2019; 9:2207. [PMID: 30778159 PMCID: PMC6379559 DOI: 10.1038/s41598-019-38613-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/27/2018] [Indexed: 11/08/2022] Open
Abstract
Serum 1,25(OH)2D and 24,25(OH)2D are decreased in CKD. Megalin in proximal tubular epithelial cells reabsorbs glomerular-filtered 25(OH)D-DBP complex to convert 25(OH)D to 1,25(OH)2D and 24,25(OH)2D. Urinary C-megalin excretion is increased via exocytosis from injured nephrons overloaded with megalin-mediated protein metabolism. This study investigated the significance of urinary C-megalin excretion in vitamin D metabolism in 153 pre-dialysis CKD patients. Urinary C-megalin was positively associated with urinary protein, β2MG and α1MG, and exhibited negative correlations with serum 25(OH)D, 1,25(OH)2D and 24,25(OH)2D. Multiple regression analysis showed that urinary C-megalin had a significantly negative association with 25(OH)D. Serum 1,25(OH)2D and 24,25(OH)2D, as well as 1,25(OH)2D/25(OH)D and 24,25(OH)2D/25(OH)D ratios, showed positive correlations with eGFR. Additionally, wholePTH was positively associated with 1,25(OH)2D/25(OH)D and 1,25(OH)2D/24,25(OH)2D, while FGF23 was positively associated with 24,25(OH)2D/25(OH)D and negatively with 1,25(OH)2D/24,25(OH)2D. Urinary C-megalin emerged as an independent factor positively associated with 1,25(OH)2D/25(OH)D and 1,25(OH)2D/24,25(OH)2D. Although 1,25(OH)2D and 24,25(OH)2D are decreased in CKD patient serum, our findings suggest that PTH and FGF23 retain their effects to regulate vitamin D metabolism even in the kidneys of these patients, while production of 1,25(OH)2D and 24,25(OH)2D from 25(OH)D is restricted due to either impairment of megalin-mediated reabsorption of the 25(OH)D-DBP complex or reduced renal mass.
Collapse
|
6
|
Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21. [PMID: 30205156 PMCID: PMC6342654 DOI: 10.1016/j.jsbmb.2018.09.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Vitamin D, referring to the two forms, D2 from the diet and D3 primarily derived from phototransformation in the skin, is a prohormone important in human health. The most hormonally active form, 1α,25-dihydroxyvitamin D (1α,25(OH)2D), formed from vitamin D via 25-hydroxyvitamin D (25(OH)D), is not only important for regulating calcium metabolism, but has many pleiotropic effects including regulation of the immune system and has anti-cancer properties. The major circulating form of vitamin D is 25(OH)D and both D2 and D3 forms are routinely measured by LC/MS/MS to assess vitamin D status, due to their relatively long half-lives and much higher concentrations compared to 1α,25(OH)2D. Inactivation of both 25(OH)D and 1α,25(OH)2D is catalyzed by CYP24A1 and 25-hydroxyvitamin D3 3-epimerase. Initial products from these enzymes acting on 25(OH)D3 are 24R,25(OH)2D3 and 3-epi-25(OH)D3, respectively, and both of these can also be measured routinely in some clinical laboratories to further document vitamin D status. With advances in LC/MS/MS and its increased availability, and with the help of studies with recombinant vitamin D-metabolizing enzymes, many other vitamin D metabolites have now been detected and in some cases quantitated, in human serum. CYP11A1 which catalyzes the first step in steroidogenesis, has been found to also act on vitamins D3 and D2 hydroxylating both at C20, but with some secondary metabolites produced by subsequent hydroxylations at other positions on the side chain. The major vitamin D3 metabolite, 20S-hydroxyvitamin D3 (20S(OH)D3), shows biological activity, often similar to 1α,25(OH)2D3 but without calcemic effects. Using standards produced enzymatically by purified CYP11A1 and characterized by NMR, many of these new metabolites have been detected in human serum, with semi-quantitative measurement of 20S(OH)D3 indicating it is present at comparable concentrations to 24R,25(OH)2D3 and 3-epi-25(OH)D3. Recently, vitamin D-related hydroxylumisterols derived from lumisterol3, a previtamin D3 photoproduct, have also been measured in human serum and displayed biological activity in initial in vitro studies. With the current extensive knowledge on the reactions and pathways of metabolism of vitamin D, especially those catalyzed by CYP24A1, CYP27A1, CYP27B1, CYP3A4 and CYP11A1, it is likely that many other of the resulting hydroxyvitamin D metabolites will be measured in human serum in the future, some contributing to a more detailed understanding of vitamin D status in health and disease.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Chloe Y S Cheng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, 35294, USA; Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
7
|
Wang P, Qin X, Liu M, Wang X. The burgeoning role of cytochrome P450-mediated vitamin D metabolites against colorectal cancer. Pharmacol Res 2018; 133:9-20. [PMID: 29719203 DOI: 10.1016/j.phrs.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The metabolites of vitamin D3 (VD3) mediated by different cytochrome P450 (CYP) enzymes, play fundamental roles in many physiological processes in relation to human health. These metabolites regulate a variety of cellular signal pathways through the direct binding of activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Thus, the polymorphisms of VDR and VD3 metabolizing enzymes lead to differentiated efficiency of VD3 and further affect serum VD3 levels. Moreover, VDR activation is demonstrated to inhibit the growth of various cancers, including colorectal cancer. However, excessive intake of vitamin D may lead to hypercalcemia, which limits the application of vitamin D tremendously. In this review, we have summarized the advances in VD3 research, especially the metabolism map of VD3 and the molecular mechanisms of inhibiting growth and inducing differentiation in colorectal cancer mediated by VDR-associated cellular signal pathways. The relationship between VDR polymorphism and the risk of colorectal cancer is also illustrated. In particular, novel pathways of the activation of VD3 started by CYP11A1 and CYP3A4 are highlighted, which produce several noncalcemic and antiproliferative metabolites. At last, the hypothesis is put forward that further research of CYP-mediated VD3 metabolites may develop therapeutic agents for colorectal cancer without resulting in hypercalcemia.
Collapse
Affiliation(s)
- Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Sciences Center, Houston, TX, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
8
|
Yasuda K, Tohyama E, Takano M, Kittaka A, Ohta M, Ikushiro S, Sakaki T. Metabolism of 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-dihydroxyvitamin D 3 by CYP24A1 and biological activity of its 24R-hydroxylated metabolite. J Steroid Biochem Mol Biol 2018; 178:333-339. [PMID: 29425808 DOI: 10.1016/j.jsbmb.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Our previous study revealed that the 2α-substituted vitamin D analog 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (AH-1) exhibited a higher osteocalcin promoter transactivation activity in human osteosarcoma cells and a greater effect on bone mineral density in a rat model of osteoporosis than 1α,25(OH)2D3 without increasing blood calcium concentration. Thus, we hypothesized that AH-1 could be a promising therapeutic agent for osteoporosis without any serious side effects. In this study, we compared the CYP24A1-dependent metabolism of AH-1 with that of 1α,25(OH)2D3. The resistance to CYP24A1-dependent metabolism could be an important property of vitamin D analogs in prolonging their biological effects. A kinetic analysis was performed using a membrane fraction prepared from recombinant E. coli expressing human CYP24A1. The kcat/Km (μM-1 min-1) value for AH-1 was 31% of that for 1α,25(OH)2D3, suggesting that AH-1 is not as resistant to CYP24A1-dependent metabolism as the other C2-substituted vitamin D analogs such as eldecalcitol [2β-hydroxypropoxy-1α,25(OH)2D3]. The major metabolite of AH-1 was the 24R-hydroxylated metabolite, which had high vitamin D receptor (VDR) binding affinity and high HL-60 cell differentiation activity similar to AH-1 itself. In contrast, 1α,25(OH)2D3 was metabolized by multistep monooxygenation reactions, which led to the loss of affinity for VDR. Thus, the greater therapeutic effects of AH-1 than those of 1α,25(OH)2D3 in in vivo studies using osteoporosis rat models may be due to 24R-hydroxy-AH-1 whose VDR affinity was 91% of that of AH-1.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Eri Tohyama
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University, 4-4-1 Nankonaka, Suminoe, Osaka 559-0033, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
9
|
Flores A, Massarelli I, Thoden JB, Plum LA, DeLuca HF. A Methylene Group on C-2 of 24,24-Difluoro-19-nor-1α,25-dihydroxyvitamin D3 Markedly Increases Bone Calcium Mobilization in Vivo. J Med Chem 2015; 58:9731-41. [PMID: 26630444 DOI: 10.1021/acs.jmedchem.5b01564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four side chain fluorinated analogues of 1α,25-dihydroxy-19-norvitamin D have been prepared in convergent syntheses using the Wittig-Horner reaction as a key step. Structures and absolute configurations of analogues 3 and 5 were confirmed by X-ray crystallography. All analogues showed high potency in HL-60 cell differentiation and vitamin D-24-hydroxylase (24-OHase) transcription as compared to 1α,25-dihydroxyvitamin D3 (1). Most important is that all of the 20S-configured derivatives (4 and 6) had high bone mobilizing activity in vivo. However, in the 20R series, a 2-methylene group was required for high bone mobilizing activity. A change in positioning of the 20R molecule in the vitamin D receptor when the 2-methylene group is present may provide new insight into the molecular basis of bone calcium mobilization induced by vitamin D.
Collapse
Affiliation(s)
- Agnieszka Flores
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison , Madison, Wisconsin 53706-1544, United States
| | - Ilaria Massarelli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali , Via Giusti 9, 50121 Firenze, Italy
| | - James B Thoden
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison , Madison, Wisconsin 53706-1544, United States
| | - Lori A Plum
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison , Madison, Wisconsin 53706-1544, United States
| | - Hector F DeLuca
- Department of Biochemistry, College of Agriculture and Life Sciences, 433 Babcock Drive, University of Wisconsin-Madison , Madison, Wisconsin 53706-1544, United States
| |
Collapse
|
10
|
Yasuda K, Iwanaga Y, Ogawa K, Mano H, Ueno S, Kimoto S, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Human hepatic metabolism of the anti-osteoporosis drug eldecalcitol involves sterol C4-methyl oxidase. Pharmacol Res Perspect 2015; 3:e00120. [PMID: 26038696 PMCID: PMC4448988 DOI: 10.1002/prp2.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 11/22/2022] Open
Abstract
The metabolism of eldecalcitol (ED-71), a 2β-hydroxypropoxylated analog of the active form of vitamin D3 was investigated by using in vitro systems. ED-71 was metabolized to 1α,2β,25-trihydroxyvitamin D3 (1α,2β,25(OH)3D3) in human small intestine and liver microsomes. To identify the enzymes involved in this metabolism, we examined NADPH-dependent metabolism by recombinant P450 isoforms belonging to the CYP1, 2, and 3 families, and revealed that CYP3A4 had the activity. However, the CYP3A4 -specific inhibitor, ketoconazole, decreased the activity in human liver microsomes by only 36%, suggesting that other enzymes could be involved in ED-71 metabolism. Because metabolism was dramatically inhibited by cyanide, we assumed that sterol C4-methyl oxidase like gene product (SC4MOL) might contribute to the metabolism of ED-71. It is noted that SC4MOL is physiologically essential for cholesterol synthesis. Recombinant human SC4MOL expressed in COS7, Saccharomyces cerevisiae, or Escherichia coli cells converted ED-71 to 1α,2β,25(OH)3D3. Furthermore, we evaluated the metabolism of ED-71 by recombinant CYP24A1, which plays an important role in the metabolism of the active form of vitamin D3 (1α,25(OH)2D3) and its analogs. The kcat/Km value for 24- or 23-hydroxylation of ED-71 was only 3% of that for 1α,25(OH)2D3, indicating that ED-71 was resistant to CYP24A1-dependent catabolism. Among the three enzymes catalyzing ED-71, SC4MOL appears to be most important in the metabolism of ED-71. To the best of our knowledge, this is the first study showing that SC4MOL can function as a drug-metabolizing enzyme. The yeast and E. coli expression systems for SC4MOL could be useful for structure-function analyses of SC4MOL.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuasa Iwanaga
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kazuaki Ogawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hiroki Mano
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Sera Ueno
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shutaro Kimoto
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University 4-4-1 Nankonaka, Suminoe, Osaka, 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
11
|
Rhieu SY, Annalora AJ, LaPorta E, Welsh J, Itoh T, Yamamoto K, Sakaki T, Chen TC, Uskokovic MR, Reddy GS. Potent antiproliferative effects of 25-hydroxy-16-ene-23-yne-vitamin D₃ that resists the catalytic activity of both CYP27B1 and CYP24A1. J Cell Biochem 2015; 115:1392-402. [PMID: 24535953 DOI: 10.1002/jcb.24789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/06/2022]
Abstract
The potency of 25-hydroxyvitamin D3 (25(OH)D3) is increased by several fold through its metabolism into 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by cytochrome P450 27B1 (CYP27B1). Thus, the pivotal role of 1α-hydroxylation in the activation of vitamin D compounds is well known. Here, we examined the metabolism of 25-hydroxy-16-ene-23-yne-vitamin D3 (25(OH)-16-ene-23-yne-D3), a synthetic analog of 25(OH)D3 in a cell-free system and demonstrated that 25(OH)-16-ene-23-yne-D3 is neither activated by CYP27B1 nor inactivated by cytochrome P450 24A1 (CYP24A1). These findings were also confirmed in immortalized normal human prostate epithelial cells (PZ-HPV-7) which are known to express both CYP27B1 and CYP24A1, indicating that the structural modifications featured in 25(OH)-16-ene-23-yne-D3 enable the analog to resist the actions of both CYP27B1 and CYP24A1. To provide intelligible structure-function information, we also performed molecular docking analysis between the analog and CYP27B1. Furthermore, 25(OH)-16-ene-23-yne-D3 was found to suppress the growth of PZ-HPV-7 cells with a potency equivalent to 1α,25(OH)2D3. The antiproliferative activity of 25(OH)-16-ene-23-yne-D3 was found to be vitamin D receptor (VDR)-dependent as it failed to inhibit the growth of mammary tumor cells derived from VDR-knockout mice. Furthermore, stable introduction of VDR into VDR-knockout cells restored the growth inhibition by 25(OH)-16-ene-23-yne-D3. Thus, we identified 25-hydroxy-16-ene-23-yne-vitamin D3 as a novel non-1α-hydroxylated vitamin D analog which is equipotent to 1α,25(OH)2D3 in its antiproliferative activity. We now propose that the low potency of the intrinsic VDR-mediated activities of 25(OH)D3 can be augmented to the level of 1α,25(OH)2D3 without its activation through 1α-hydroxylation by CYP27B1, but by simply preventing its inactivation by CYP24A1.
Collapse
Affiliation(s)
- Steve Y Rhieu
- Epimer LLC, North Smithfield, Rhode Island, 02896, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tieu EW, Tang EKY, Tuckey RC. Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24-oxidation pathway. FEBS J 2014; 281:3280-96. [PMID: 24893882 DOI: 10.1111/febs.12862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/14/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022]
Abstract
CYP24A1 is the multicatalytic cytochrome P450 responsible for the catabolism of vitamin D via the C23- and C24-oxidation pathways. We successfully expressed the labile human enzyme in Escherichia coli and partially purified it in an active state that permitted detailed characterization of its metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] and the intermediates of the C24-oxidation pathway in a phospholipid-vesicle reconstituted system. The C24-oxidation pathway intermediates, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, 24-oxo-1,23,25-trihydroxyvitamin D3 and tetranor-1,23-dihydroxyvitamin D3, were enzymatically produced from 1,25(OH)2 D3 using rat CYP24A1. Both 1,25(OH)2 D3 and 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 were found to partition strongly into the phospholipid bilayer when in aqueous medium. Changes to the phospholipid concentration did not affect the kinetic parameters for the metabolism of 1,25(OH)2 D3 by CYP24A1, indicating that it is the concentration of substrates in the membrane phase (mol substrate·mol phospholipid(-1) ) that determines their rate of metabolism. CYP24A1 exhibited Km values for the different C24-intermediates ranging from 0.34 to 15 mmol·mol phospholipid(-1) , with 24-oxo-1,23,25-trihydroxyvitamin D3 [24-oxo-1,23,25(OH)3 D3] displaying the lowest and 1,24,25-trihydroxyvitamin D3 [1,24,25(OH)3 D3] displaying the highest. The kcat values varied by up to 3.8-fold, with 1,24,25(OH)3 D3 displaying the highest kcat (34 min(-1) ) and 24-oxo-1,23,25(OH)3 D3 the lowest. The data show that the cleavage of the side chain of 24-oxo-1,23,25(OH)3 D3 occurs with the highest catalytic efficiency (kcat /Km ) and produces 1-hydroxy-23-oxo-24,25,26,27-tetranorvitamin D3 and not 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3, as the primary product. These kinetic analyses also show that intermediates of the C24-oxidation pathway effectively compete with precursor substrates for binding to the active site of the enzyme, which manifests as an accumulation of intermediates, indicating that they dissociate after each catalytic step.
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
13
|
Munetsuna E, Kawanami R, Nishikawa M, Ikeda S, Nakabayashi S, Yasuda K, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Anti-proliferative activity of 25-hydroxyvitamin D3 in human prostate cells. Mol Cell Endocrinol 2014; 382:960-70. [PMID: 24291609 DOI: 10.1016/j.mce.2013.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
Abstract
1α-Hydroxylation of 25-hydroxyvitamin D3 is believed to be essential for its biological effects. In this study, we evaluated the biological activity of 25(OH)D3 itself comparing with the effect of cell-derived 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). First, we measured the cell-derived 1α,25(OH)2D3 level in immortalized human prostate cell (PZ-HPV-7) using [(3)H]-25(OH)D3. The effects of the cell-derived 1α,25(OH)2D3 on vitamin D3 24-hydroxylase (CYP24A1) mRNA level and the cell growth inhibition were significantly lower than the effects of 25(OH)D3 itself added to cell culture. 25-Hydroxyvitamin D3 1α-hydroxylase (CYP27B1) gene knockdown had no significant effects on the 25(OH)D3-dependent effects, whereas vitamin D receptor (VDR) gene knockdown resulted in a significant decrease in the 25(OH)D3-dependent effects. These results strongly suggest that 25(OH)D3 can directly bind to VDR and exerts its biological functions. DNA microarray and real-time RT-PCR analyses suggest that semaphorin 3B, cystatin E/M, and cystatin D may be involved in the antiproliferative effect of 25(OH)D3.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biochemistry, Fujita Health University for Medical Science, Toyoake 470-1192, Japan
| | - Rie Kawanami
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sachie Nakabayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University, 4-4-1 Nankonaka, Suminoe, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
14
|
Abstract
Vitamin D metabolism consists of both production and catabolism, which are enzymatically driven and highly regulated. Renal vitamin D metabolism requires filtration and tubular reabsorption of 25-hydroxyvitamin D and is regulated by parathyroid hormone, fibroblast growth factor-23, and 1,25-dihydroxyvitamin D. In chronic kidney disease, renal production of 1,25-dihydroxyvitamin D from 25-hydroxyvitamin D is reduced. In addition, pharmacokinetic studies and epidemiologic studies of 24,25-dihydroxyvitamin D, the most abundant product of 25-hydroxyvitamin D catabolism by CYP24A1, suggest that vitamin D catabolism also is reduced. New insights into the mechanisms and regulation of vitamin D metabolism may lead to novel approaches to assess and treat impaired vitamin D metabolism in chronic kidney disease.
Collapse
Affiliation(s)
- Cortney Bosworth
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
15
|
Rhieu SY, Annalora AJ, Wang G, Flarakos CC, Gathungu RM, Vouros P, Sigüeiro R, Mouriño A, Schuster I, Palmore GTR, Reddy GS. Metabolic stability of 3-Epi-1α,25-dihydroxyvitamin D3over 1α, 25-dihydroxyvitamin D3: Metabolism and molecular docking studies using rat CYP24A1. J Cell Biochem 2013; 114:2293-305. [DOI: 10.1002/jcb.24576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Andrew J. Annalora
- Department of Molecular Biology; The Scripps Research Institute; La Jolla; California; 92037
| | | | - Caroline C. Flarakos
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Rose M. Gathungu
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Paul Vouros
- Department of Chemistry and Chemical Biology; Northeastern University; Boston; Massachusetts; 02115
| | - Rita Sigüeiro
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; E-15706; Santiago de Compostela; Spain
| | - Antonio Mouriño
- Departamento de Química Orgánica, Laboratorio de Investigación Ignacio Ribas; Universidad de Santiago de Compostela; E-15706; Santiago de Compostela; Spain
| | - Inge Schuster
- Institute for Theoretical Chemistry; University of Vienna; Vienna; Austria
| | | | | |
Collapse
|
16
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
17
|
Yasuda K, Ikushiro S, Kamakura M, Takano M, Saito N, Kittaka A, Chen TC, Ohta M, Sakaki T. Human cytochrome P450-dependent differential metabolism among three 2α-substituted-1α,25-dihydroxyvitamin D(3) analogs. J Steroid Biochem Mol Biol 2013; 133:84-92. [PMID: 22982757 DOI: 10.1016/j.jsbmb.2012.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022]
Abstract
Our previous studies revealed that C2α-substituted-1α,25(OH)(2)D(3) analogs had unique biological activities. For example, 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (MART-10), which has a high affinity for vitamin D receptor (VDR), is more bioavailable and more potent than 1α,25(OH)(2)D(3) in inhibiting cancer cell growth and invasion because of its weaker binding to vitamin D binding protein (DBP), and more resistance to CYP24A1-dependent metabolism. In this study, we examined the metabolism of MART-10 and two other 2α-substituted analogs, 2α-(3-hydroxypropoxy)-1α,25(OH)(2)D(3) (O2C3) and 2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (O1C3) by using human liver microsomes and human P450s. We demonstrated that O2C3 was converted to 1α,2α,25(OH)(3)D(3) in human liver microsomes, whereas both O1C3 and MART-10 were hardly metabolized. The metabolism of O2C3 was significantly inhibited by ketoconazole, and the recombinant human CYP3A4 converted O2C3 to 1α,2α,25(OH)(3)D(3), which suggests that CYP3A4 is responsible for the metabolism of O2C3 in human liver. The k(cat)/K(m) values of CYP3A4 for O1C3 and MART-10 are much smaller than that for O2C3. The k(cat)/K(m) values of human CYP24A1 for the three analogs are 1% (MART-10), 3% (O2C3), and 4% (O1C3) of that for 1α,25(OH)(2)D(3), indicating that MART-10 is the most resistant to CYP24A1 hydroxylation. On the other hand, 1α,2α,25(OH)(3)D(3), the metabolite of O2C3 by CYP3A4, was metabolized by CYP24A1 via multiple pathways similar to 1α,25(OH)(2)D(3), which suggests that O2C3 can be metabolized by two sequential hydroxylations, first by CYP3A4 and then by CYP24A1 in human body. These results suggest that modification at C-2α position and C-19 demethylenation markedly change metabolic profiles and biological activities of vitamin D analogs.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim JS, Roberts JM, Weigel NL. Vitamin D and Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Tieu EW, Tang EKY, Chen J, Li W, Nguyen MN, Janjetovic Z, Slominski A, Tuckey RC. Rat CYP24A1 acts on 20-hydroxyvitamin D(3) producing hydroxylated products with increased biological activity. Biochem Pharmacol 2012; 84:1696-704. [PMID: 23041230 DOI: 10.1016/j.bcp.2012.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022]
Abstract
20-Hydroxyvitamin D(3) (20(OH)D(3)), the major product of CYP11A1 action on vitamin D(3), is biologically active and is produced in vivo. As well as potentially having important physiological actions, it is of interest as a therapeutic agent due to its lack of calcemic activity. In the current study we have examined the ability of CYP24A1, the enzyme that inactivates 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), to metabolize 20(OH)D(3). Rat CYP24A1 was expressed in Escherichia coli, purified by Ni-affinity chromatography and assayed with substrates incorporated into phospholipid vesicles which served as a model of the inner mitochondrial membrane. In this system CYP24A1 metabolized 1,25(OH)(2)D(3) with a catalytic efficiency 1.4-fold higher than that seen for 25-hydroxyvitamin D(3) (25(OH)D(3)). CYP24A1 hydroxylated 20(OH)D(3) to several dihydroxy-derivatives with the major two identified by NMR as 20,24-dihydroxyvitamin D(3) (20,24(OH)(2)D(3)) and 20,25-dihydroxyvitamin D(3) (20,25(OH)(2)D(3)). The catalytic efficiency of CYP24A1 for 20(OH)D(3) metabolism was more than 10-fold lower than for either 25(OH)D(3) or 1,25(OH)(2)D(3) and no secondary metabolites were produced. The two major products, 20,24(OH)(2)D(3) and 20,25(OH)(2)D(3), caused significantly greater inhibition of colony formation by SKMEL-188 melanoma cells than either 1,25(OH)(2)D(3) or the parent 20(OH)D(3), showing that CYP24A1 plays an activating, rather than an inactivating role on 20(OH)D(3).
Collapse
Affiliation(s)
- Elaine W Tieu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kumar R, Tebben PJ, Thompson JR. Vitamin D and the kidney. Arch Biochem Biophys 2012; 523:77-86. [PMID: 22426203 PMCID: PMC3361542 DOI: 10.1016/j.abb.2012.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 12/22/2022]
Abstract
The kidney is essential for the maintenance of normal calcium and phosphorus homeostasis. Calcium and inorganic phosphorus are filtered at the glomerulus, and are reabsorbed from tubular segments by transporters and channels which are regulated by 1α,25-dihydroxyvitamin (1α,25(OH)(2)D) and parathyroid hormone (PTH). The kidney is the major site of the synthesis of 1α,25(OH)(2)D under physiologic conditions, and is one of the sites of 24,25-dihydroxyvitamin D (24,25(OH)(2)D) synthesis. The activity of the 25(OH)D-1α-hydroxylase, the mixed function oxidase responsible for the synthesis of 1α,25(OH)(2)D, is regulated by PTH, 1α,25(OH)(2)D, fibroblast growth factor 23 (FGF23), inorganic phosphorus and other growth factors. Additionally, the vitamin D receptor which binds to, and mediates the activity of 1α,25(OH)(2)D, is widely distributed in the kidney. Thus, the kidney, by regulating multiple transport and synthetic processes is indispensible in the maintenance of mineral homeostasis in physiological states.
Collapse
Affiliation(s)
- Rajiv Kumar
- Division of Nephrology and Hypertension, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Kaufmann M, Prosser DE, Jones G. Bioengineering anabolic vitamin D-25-hydroxylase activity into the human vitamin D catabolic enzyme, cytochrome P450 CYP24A1, by a V391L mutation. J Biol Chem 2011; 286:28729-28737. [PMID: 21697097 PMCID: PMC3190681 DOI: 10.1074/jbc.m111.236679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/21/2011] [Indexed: 01/08/2023] Open
Abstract
CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)) to different products: calcitroic acid or 1α,25-(OH)(2)D(3)-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D(3), the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D(3) (1α-OH-D(3)), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)(2)D(3)-24-hydroxylase into an anabolic 1α-OH-D(3)-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)(2)D(3). Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)(2)D(3) via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)(2)D(3) from 1α-OH-D(3), but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D(3) is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D(3) above the heme for hydroxylation.
Collapse
Affiliation(s)
- Martin Kaufmann
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - David E Prosser
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Glenville Jones
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Medicine, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
23
|
Roumen L, Van Hoof B, Pieterse K, Hilbers PA, Custers EM, Plate R, De Gooyer M, Beugels IP, Emmen JM, Leysen D, Smits JF, Ottenheijm HC, Hermans JR. Application of a ligand-based theoretical approach to derive conversion paths and ligand conformations in CYP11B2-mediated aldosterone formation. J Comput Chem 2011; 32:2441-8. [DOI: 10.1002/jcc.21827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/31/2011] [Indexed: 11/11/2022]
|
24
|
Rayalam S, Yang JY, Della-Fera MA, Baile CA. Novel molecular targets for prevention of obesity and osteoporosis. J Nutr Biochem 2011; 22:1099-104. [PMID: 21429725 DOI: 10.1016/j.jnutbio.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Evidence from both epidemiological studies and basic research suggests that obesity and osteoporosis are interrelated. Though there is an increase in the prevalence of these disorders, a limited number of treatments are available, one of the reasons being the complexity of the pathways involved and difficulty in identifying a single molecular target. Due to adverse effects of pharmaceuticals, intake of herbal drugs by patients without a physician's recommendation is increasing globally. Lack of success with targeted monotherapy has encouraged scientists to determine whether combinations of phytochemicals that interfere with numerous cell-signaling pathways can be a more effective approach to treat complex diseases. For example, evidence is emerging that specific combinations of phytochemicals are far more effective than single compounds in decreasing adipogenesis and promoting bone formation. Since multiple pathways are dysfunctional in obesity and osteoporosis, an ideal approach for preventing and treating these diseases may be to use a combination of phytochemicals to address several targets simultaneously.
Collapse
Affiliation(s)
- Srujana Rayalam
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
25
|
Rhieu SY, Annalora AJ, Gathungu RM, Vouros P, Uskokovic MR, Schuster I, Palmore GTR, Reddy GS. A new insight into the role of rat cytochrome P450 24A1 in metabolism of selective analogs of 1α,25-dihydroxyvitamin D₃. Arch Biochem Biophys 2011; 509:33-43. [PMID: 21338573 DOI: 10.1016/j.abb.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
We examined the metabolism of two synthetic analogs of 1α,25-dihydroxyvitamin D₃ (1), namely 1α,25-dihydroxy-16-ene-23-yne-vitamin D₃ (2) and 1α,25-dihydroxy-16-ene-23-yne-26,27-dimethyl-vitamin D₃ (4) using rat cytochrome P450 24A1 (CYP24A1) in a reconstituted system. We noted that 2 is metabolized into a single metabolite identified as C26-hydroxy-2 while 4 is metabolized into two metabolites, identified as C26-hydroxy-4 and C26a-hydroxy-4. The structural modification of adding methyl groups to the side chain of 1 as in 4 is also featured in another analog, 1α,25-dihydroxy-22,24-diene-24,26,27-trihomo-vitamin D₃ (6). In a previous study, 6 was shown to be metabolized exactly like 4, however, the enzyme responsible for its metabolism was found to be not CYP24A1. To gain a better insight into the structural determinants for substrate recognition of different analogs, we performed an in silico docking analysis using the crystal structure of rat CYP24A1 that had been solved for the substrate-free open form. Whereas analogs 2 and 4 docked similar to 1, 6 showed altered interactions for both the A-ring and side chain, despite prototypical recognition of the CD-ring. These findings hint that CYP24A1 metabolizes selectively different analogs of 1, based on their ability to generate discrete recognition cues required to close the enzyme and trigger the catalytic mechanism.
Collapse
|
26
|
Zhu J, Barycki R, Chiellini G, Deluca HF. Screening of selective inhibitors of 1α,25-dihydroxyvitamin D3 24-hydroxylase using recombinant human enzyme expressed in Escherichia coli. Biochemistry 2010; 49:10403-11. [PMID: 21058632 DOI: 10.1021/bi101488p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High-level heterologous expression of human 1α,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1) in Escherichia coli was attained via a fusion construct by appending the mature CYP24A1 without the leader sequence to the maltose binding protein (MBP). Facile purification was achieved efficiently through affinity chromatography and afforded fully functional enzyme of near homogeneity, with a k(cat) of 0.12 min(-1) and a K(M) of 0.19 μM toward 1α,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. A convenient and reliable cell-free assay was established and used to screen vitamin D analogues with potential inhibitory properties toward CYP24A1. Some of the compounds exhibited potent inhibition with K(I) values as low as 0.021 μM. Furthermore, TS17 and CPA1 exhibited superior specificity toward CYP24A1 over 25-hydroxyvitamin D(3) 1α-hydroxylase (CYP27B1), with selectivities of 39 and 80, respectively. Addition of TS17 or CPA1 to a mouse osteoblast culture sustained the level of 1,25(OH)(2)D(3) in the medium. Their activities in vitamin D receptor (VDR) binding, CYP24A1 transcription, and HL-60 cell differentiation were evaluated as well.
Collapse
Affiliation(s)
- Jinge Zhu
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
27
|
Helvig CF, Cuerrier D, Hosfield CM, Ireland B, Kharebov AZ, Kim JW, Ramjit NJ, Ryder K, Tabash SP, Herzenberg AM, Epps TM, Petkovich M. Dysregulation of renal vitamin D metabolism in the uremic rat. Kidney Int 2010; 78:463-72. [DOI: 10.1038/ki.2010.168] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:249-56. [PMID: 20654743 DOI: 10.1016/j.bbapap.2010.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/29/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Bioconversion processes, including specific hydroxylations, promise to be useful for practical applications because chemical syntheses often involve complex procedures. One of the successful applications of P450 reactions is the bioconversion of vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Recently, a cytochrome P450 gene encoding a vitamin D hydroxylase from the CYP107 family was cloned from Pseudonocardia autotrophica and is now applied in the bioconversion process that produces 1α,25-dihydroxyvitamin D₃. In addition, the directed evolution study of CYP107 has significantly enhanced its activity. On the other hand, we found that Streptomyces griseolus CYP105A1 can convert vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Site-directed mutagenesis of CYP105A1 based on its crystal structure dramatically enhanced its activity. To date, multiple vitamin D hydroxylases have been found in bacteria, fungi, and mammals, suggesting that vitamin D is a popular substrate of the enzymes belonging to the P450 superfamily. A combination of these cytochrome P450s would produce a large number of compounds from vitamin D and its analogs. Therefore, we believe that the bioconversion of vitamin D and its analogs is one of the most promising P450 reactions in terms of practical application.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Posner GH, Helvig C, Cuerrier D, Collop D, Kharebov A, Ryder K, Epps T, Petkovich M. Vitamin D analogues targeting CYP24 in chronic kidney disease. J Steroid Biochem Mol Biol 2010; 121:13-9. [PMID: 20347976 DOI: 10.1016/j.jsbmb.2010.03.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/16/2010] [Accepted: 03/22/2010] [Indexed: 11/24/2022]
Abstract
The cytochrome P450 enzyme 24-hydroxylase (CYP24) plays a critical role in regulating levels of vitamin D hormone. Aberrant expression of CYP24 has been implicated in vitamin D insufficiency and resistance to vitamin D therapy. We have demonstrated amplified CYP24 expression in uremic rats, suggesting that CYP24 has an etiological role in vitamin D insufficiency commonly associated with chronic kidney disease (CKD). We have designed two new analogues of 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), namely CTA091 and CTA018/MT2832, which are potent inhibitors of CYP24. In vitro studies with CTA091 show that it enhances the potency of 1alpha,25(OH)2D3. In vivo studies demonstrate that CTA091 decreases serum intact parathyroid hormone (iPTH) levels and increases circulating 1alpha,25(OH)2D3. CTA091 increases both Cmax and AUC of co-administered 1alpha,25(OH)2D3. These studies indicate that CYP24 inhibition can increase cellular responsiveness to vitamin D hormone and potentiate vitamin D therapy. CTA018/MT2832 differs from CTA091 in that it also has the ability to activate vitamin D receptor-mediated transcription. CTA018/MT2832 effectively suppresses elevated iPTH secretion at doses which do not affect serum calcium or phosphorus levels in a rodent model of CKD. Studies with both new analogues underscore the potential utility of CYP24 inhibition in the treatment of secondary hyperparathyroidism in CKD.
Collapse
Affiliation(s)
- Gary H Posner
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Vitamin D has gone through a renaissance with the association of vitamin D deficiency with a wide array of common diseases including breast, colorectal and prostate cancers, cardio-vascular disease, autoimmune conditions and infections. Vitamin D analogs constitute a valuable group of compounds which can be used to regulate gene expression in functions as varied as calcium and phosphate homeostasis, as well as cell growth regulation and cell differentiation of a wide spectrum of cell types. This review will discuss the full range of vitamin D compounds currently available, some of their possible uses, and potential mechanisms of action.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biochemistry Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
31
|
Urushino N, Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T. Metabolism of 1alpha,25-dihydroxyvitamin D2 by human CYP24A1. Biochem Biophys Res Commun 2009; 384:144-8. [PMID: 19393625 DOI: 10.1016/j.bbrc.2009.04.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
The metabolism of 1alpha,25-dihydroxyvitamin D2 (1alpha,25(OH)2D2) by human CYP24A1 was examined using the recombinant enzyme expressed in Escherichia coli cells. HPLC analysis revealed that human CYP24A1 produces at least 10 metabolites, while rat CYP24A1 produces only three metabolites, indicating a remarkable species-based difference in the CYP24A1-dependent metabolism of 1alpha,25(OH)2D2 between humans and rats. LC-MS analysis and periodate treatment of the metabolites strongly suggest that human CYP24A1 converts 1alpha,25(OH)2D2 to 1alpha,24,25,26(OH)4D2, 1alpha,24,25,28(OH)4D2, and 24-oxo-25,26,27-trinor-1alpha(OH)D2 via 1alpha,24,25(OH)3D2. These results indicate that human CYP24A1 catalyzes the C24-C25 bond cleavage of 1alpha,24,25(OH)2D2, which is quite effective in the inactivation of the active form of vitamin D2. The combination of hydroxylation at multiple sites and C-C bond cleavage could form a large number of metabolites. Our findings appear to be useful to predict the metabolism of vitamin D2 and its analogs in the human body.
Collapse
Affiliation(s)
- Naoko Urushino
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
The development of our understanding of the function of vitamin D from its discovery in the second and third decades of the 20(th) century to its hormonal activation of its nuclear receptor and to its present position of an important factor in public health has been traced. The key discoveries of the conversion of vitamin D to its hormonal form, its regulation, and the evolving picture of its molecular mechanism of action are presented. The recognition of its role beyond mineralization of the skeleton to its role in skin, the immune system, and its protective role in some forms of malignancy represent more recent developments. The evolution of derivatives of 1alpha,25-dihydroxyvitamin D(3) as therapeutic agents suggests a richness of therapeutic potential. All of this nevertheless illustrates that much more remains to be discovered and applied to our armaments for preventing and treating disease.
Collapse
Affiliation(s)
- Hector F DeLuca
- The Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
34
|
Urushino N, Nakabayashi S, Arai MA, Kittaka A, Chen TC, Yamamoto K, Hayashi K, Kato S, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Kinetic Studies of 25-Hydroxy-19-nor-vitamin D3 and 1α,25-Dihydroxy-19-nor-vitamin D3 Hydroxylation by CYP27B1 and CYP24A1. Drug Metab Dispos 2007; 35:1482-8. [PMID: 17553915 DOI: 10.1124/dmd.107.015602] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous study demonstrated that 25-hydroxy-19-nor-vitamin D(3) [25(OH)-19-nor-D(3)] inhibited the proliferation of immortalized noncancerous PZ-HPV-7 prostate cells similar to 1 alpha,25-dihydroxyvitamin D(3) [1 alpha,25(OH)(2)D(3)], suggesting that 25(OH)-19-nor-D(3) might be converted to 1 alpha,25-dihydroxy-19-nor-vitamin D(3) [1 alpha,25(OH)(2)-19-nor-D(3)] by CYP27B1 before exerting its antiproliferative activity. Using an in vitro cell-free model to study the kinetics of CYP27B1-dependent 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) and 25-hydroxyvitamin D(3) [25(OH)D(3)] and CYP24A1-dependent hydroxylation of 1 alpha,25(OH)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3), we found that k(cat)/K(m) for 1 alpha-hydroxylation of 25(OH)-19-nor-D(3) was less than 0.1% of that for 25(OH)D(3), and the k(cat)/K(m) value for 24-hydroxylation was not significantly different between 1 alpha,25(OH)(2)-19-nor-D(3) and 1 alpha,25(OH)(2)D(3). The data suggest a much slower formation and a similar rate of degradation of 1 alpha,25(OH)(2)-19-nor-D(3) compared with 1 alpha,25(OH)(2)D(3). We then analyzed the metabolites of 25(OH)D(3) and 25(OH)-19-nor-D(3) in PZ-HPV-7 cells by high-performance liquid chromatography. We found that a peak that comigrated with 1 alpha,25(OH)(2)D(3) was detected in cells incubated with 25(OH)D(3), whereas no 1 alpha,25(OH)(2)-19-nor-D(3) was detected in cells incubated with 25(OH)-19-nor-D(3). Thus, the present results do not support our previous hypothesis that 25(OH)-19-nor-D(3) is converted to 1 alpha,25(OH)(2)-19-nor-D(3) by CYP27B1 in prostate cells to inhibit cell proliferation. We hypothesize that 25(OH)-19-nor-D(3) by itself may have a novel mechanism to activate vitamin D receptor or it is metabolized in prostate cells to an unknown metabolite with antiproliferative activity without 1 alpha-hydroxylation. Thus, the results suggest that 25(OH)-19-nor-D(3) has potential as an attractive agent for prostate cancer therapy.
Collapse
Affiliation(s)
- Naoko Urushino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reddy GS, Omdahl JL, Robinson M, Wang G, Palmore GTR, Vicchio D, Yergey AL, Tserng KY, Uskokovic MR. 23-Carboxy-24,25,26,27-tetranorvitamin D3 (calcioic acid) and 24-carboxy-25,26,27-trinorvitamin D3 (cholacalcioic acid): End products of 25-hydroxyvitamin D3 metabolism in rat kidney through C-24 oxidation pathway. Arch Biochem Biophys 2006; 455:18-30. [PMID: 17027908 DOI: 10.1016/j.abb.2006.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
During the past two and half decades the elucidation of the metabolic pathways of 25OHD(3) and its active metabolite 1alpha,25(OH)(2)D(3) progressed in parallel. In spite of many advances in this area of vitamin D research, the unequivocal identification of the end products of 25OHD(3) metabolism through C-24 oxidation pathway has not been achieved. It is now well established that both 25OHD(3) and 1alpha,25(OH)(2)D(3) are metabolized through the same C-24 oxidation pathway initiated by the enzyme 24-hydroxylase (CYP24A1). Based on the information that the end product of 1alpha,25(OH)(2)D(3) metabolism through C-24 oxidation pathway is 1alpha-OH-23- COOH-24,25,26,27-tetranor D(3) or calcitroic acid; the metabolism of 25OHD(3) into 23-COOH-24,25,26,27-tetranor D(3) has been assumed. Furthermore, a previous study indicated 24-COOH-25,26,27-trinor D(3) as a water soluble metabolite of 24R,25(OH)(2)D(3) produced in rat kidney homogenates. Therefore, 24-COOH-25,26,27-trinor D(3) was also assumed as another end product of 25OHD(3) metabolism through C-24 oxidation pathway. We embarked on our present study to provide unequivocal proof for these assumptions. We first studied the metabolism of 25OHD(3) at low substrate concentration (3x10(-10)M) using [1,2-(3)H]25OHD(3) as the substrate in the perfused rat kidneys isolated from both normal and vitamin D(3) intoxicated rats. A highly polar water soluble metabolite, labeled as metabolite X was isolated from the kidney perfusate. The amount of metabolite X produced in the kidney of a vitamin D intoxicated rat was about seven times higher than that produced in the kidney of a normal rat. We then produced metabolite X in a quantity sufficient for its structure identification by perfusing kidneys isolated from vitamin D intoxicated rats with high substrate concentration of 25OHD(3) (5x10(-6)M). Using the techniques of electron impact and thermospray mass spectrometry, we established that the metabolite X contained both 23-COOH-24,25,26,27-tetranor D(3) and 24-COOH-25,26,27-trinor D(3) in a ratio of 4:1. The same metabolite X containing both acids in the same ratio of 4:1 was also produced when 24R,25(OH)(2)D(3) was used as the starting substrate. Previously, the trivial name of cholacalcioic acid was assigned to 24-COOH-25,26,27-trinorvitamin D(3). Using the same guidelines, we now assign the trivial name of calcioic acid to 23-COOH-24,25,26,27-tetranor D(3). In summary, for the first time our study provides unequivocal evidence to indicate that both calcioic and cholacalcioic acids as the end products of 25OHD(3) metabolism in rat kidney through C-24 oxidation pathway.
Collapse
|
36
|
Aiba I, Yamasaki T, Shinki T, Izumi S, Yamamoto K, Yamada S, Terato H, Ide H, Ohyama Y. Characterization of rat and human CYP2J enzymes as Vitamin D 25-hydroxylases. Steroids 2006; 71:849-56. [PMID: 16842832 DOI: 10.1016/j.steroids.2006.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 04/15/2005] [Indexed: 01/08/2023]
Abstract
vitamin D is 25-hydroxylated in the liver, before being activated by 1alpha-hydroxylation in the kidney. Recently, the rat cytochrome P450 2J3 (CYP2J3) has been identified as a principal vitamin D 25-hydroxylase in the rat [Yamasaki T, Izumi S, Ide H, Ohyama Y. Identification of a novel rat microsomal vitamin D3 25-hydroxylase. J Biol Chem 2004;279(22):22848-56]. In this study, we examine whether human CYP2J2 that exhibits 73% amino acid homology to rat CYP2J3 has similar catalytic properties. Recombinant human CYP2J2 was overexpressed in Escherichia coli, purified, and assayed for vitamin D 25-hydroxylation activity. We found significant 25-hydroxylation activity toward vitamin D3 (turnover number, 0.087 min(-1)), vitamin D2 (0.16 min(-1)), and 1alpha-hydroxyvitamin D3 (2.2 min(-1)). Interestingly, human CYP2J2 hydroxylated vitamin D2, an exogenous vitamin D, at a higher rate than it did vitamin D3, an endogenous vitamin D, whereas, rat CYP2J3 hydroxylated vitamin D3 (1.4 min(-1)) more efficiently than vitamin D2 (0.86 min(-1)). Our study demonstrated that human CYP2J2 exhibits 25-hydroxylation activity as well as rat CYP2J3, although the activity of human CYP2J2 is weaker than rat CYP2J3. CYP2J2 and CYP2J3 exhibit distinct preferences toward vitamin D3 and D2.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Urushino N, Yamamoto K, Kagawa N, Ikushiro S, Kamakura M, Yamada S, Kato S, Inouye K, Sakaki T. Interaction between mitochondrial CYP27B1 and adrenodoxin: role of arginine 458 of mouse CYP27B1. Biochemistry 2006; 45:4405-12. [PMID: 16584176 DOI: 10.1021/bi060072o] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular modeling study of CYP27B1 suggests that Arg458 of mouse CYP27B1 is involved in interaction with adrenodoxin (ADX). Thus, we generated CYP27B1 mutants R458K and R458Q and revealed their enzymatic properties. Substrate-induced difference spectra and K(m) values for 1alpha-hydroxylation of 25(OH)D3 indicate that the replacement of Arg458 with Lys or Gln does not affect substrate binding. However, these mutants showed remarkable decreases of both kcat values and the ratio of product formation to NADPH oxidation (coupling efficiency). A high K(m) value of R458Q for ADX concentration and a decrease of rate constant of the first electron transfer seem reasonable considering that the conversion from Arg to noncharged Gln abolishes salt-bridge formation with the acidic residue of ADX. On the other hand, R458K showed atypical kinetics for ADX concentration with Hill's constant of 2.0 and high catalytic activity at high ADX concentration by increase of coupling efficiency. These results suggest that conformational change of R458K by binding the two ADX molecules is essential for 1alpha-hydroxylation of 25(OH)D3. On the other hand, binding one ADX molecule is sufficient for the conformational change of the wild-type CYP27B1, judging from its Michaelis-Menten-type kinetics for ADX concentration with high coupling efficiency. These results suggest that ADX functions as an effector for the oxygen transfer reaction in addition to being an electron donor for CYP27B1.
Collapse
Affiliation(s)
- Naoko Urushino
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hamamoto H, Kusudo T, Urushino N, Masuno H, Yamamoto K, Yamada S, Kamakura M, Ohta M, Inouye K, Sakaki T. Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats. Mol Pharmacol 2006; 70:120-8. [PMID: 16617161 DOI: 10.1124/mol.106.023275] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies revealed the species-based difference of CYP24A1-dependent vitamin D metabolism. Although human CYP24A1 catalyzes both C-23 and C-24 oxidation pathways, rat CYP24A1 shows almost no C-23 oxidation pathway. We tried to identify amino acid residues that cause the species-based difference by site-directed mutagenesis. In the putative substrate-binding regions, amino acid residue of rat CYP24A1 was converted to the corresponding residue of human CYP24A1. Among eight mutants examined, T416M and I500T showed C-23 oxidation pathway. In addition, the mutant I500F showed quite a different metabolism of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] from both human and rat CYP24A1. These results strongly suggest that the amino acid residues at positions 416 and 500 play a crucial role in substrate binding and greatly affect substrate orientation. A three-dimensional model of CYP24A1 indicated that the A-ring and triene part of 1alpha,25(OH)2D3 could be located close to amino acid residues at positions 416 and 500, respectively. Our findings provide useful information for the development of new vitamin D analogs for clinical use.
Collapse
Affiliation(s)
- Hiromi Hamamoto
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hakki T, Bernhardt R. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther 2006; 111:27-52. [PMID: 16426683 DOI: 10.1016/j.pharmthera.2005.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 01/03/2023]
Abstract
Steroid hormone biosynthesis is catalyzed by the action of a series of cytochrome P450 enzymes as well as reductases. Defects in steroid hydroxylating P450s are the cause of several severe defects such as the adrenogenital syndrome (AGS), corticosterone methyl oxidase (CMO) I or II deficiencies, or pseudohermaphroditism. In contrast, overproduction of steroid hormones can be involved in breast or prostate cancer, in hypertension, and heart fibrosis. Besides inhibiting the action of the steroid hormones on the level of steroid hormone receptors by using antihormones, which often is connected with severe side effects, more recently the steroid hydroxylases themselves turned out to be promising new targets for drug development. Since the 3-dimensional structures of steroid hydroxylases are not yet available, computer models of the corresponding CYPs may help to develop new inhibitors of these enzymes. During the past years, the necessary test systems have been developed and new compounds have been synthesized, which displayed selective and specific inhibition of CYP17, CYP11B2, and CYP11B1. With some of these potential new drugs, clinical trials are under way. It can be expected that in the near future some of these compounds will contribute to our arsenal of new and selective drugs.
Collapse
Affiliation(s)
- Tarek Hakki
- Institute of Biochemistry, P.O. Box 151150, Saarland University, D-66041 Saarbrücken, Germany
| | | |
Collapse
|
40
|
Sakaki T, Inouye K. Practical application of mammalian cytochrome P450. J Biosci Bioeng 2005; 90:583-90. [PMID: 16232916 DOI: 10.1263/jbb.90.583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Accepted: 08/31/2000] [Indexed: 11/17/2022]
Abstract
Heterologous expression systems play an important role in the analysis of structure-function relationships of mammalian P450s. In addition, these expression systems allow practical application of mammalian P450s. Genetically engineered fused enzymes between mammalian P450 and yeast NADPH-P450 reductase have possible applications in bioconversion processes. Combined use of techniques reported thus far could produce steroid hormones in the recombinant yeast cells harboring four P450 species, CYP11A1, CYP17A1, CYP21B1 and CYP11B1. In an Escherichia coli expression system, the technology of the construction of the mitochondrial P450 electron transport chain has been established. The recombinant E. coli cells expressing CYP27B1, adrenodoxin and NADPH-adrenodoxin reductase would be applicable to a bioconversion process to produce 1alpha,25-dihydroxyvitamin D3. We also demonstrated the usefulness of heterologous expression systems for human liver microsomal P450s for the prediction of drug metabolism in the human body. Microsomal fractions prepared from recombinant yeast, insect and mammalian cells are commercially available and play an important role in preclinical drug development. Application of mammalian P450 to bioremediation with genetic engineering has also been developed. Thus, mammalian P450s appear to have great potential for a wide range of practical applications.
Collapse
Affiliation(s)
- T Sakaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
41
|
Chau TS, Lai WP, Cheung PY, Favus MJ, Wong MS. Age-related alteration of vitamin D metabolism in response to low-phosphate diet in rats. Br J Nutr 2005; 93:299-307. [PMID: 15877868 DOI: 10.1079/bjn20041325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The responses of renal vitamin D metabolism to its major stimuli alter with age. Previous studies showed that the increase in circulating 1,25-dihydroxyvitamin D (1,25(OH)2D3) as well as renal 25-hydroxyvitamin D3 1-alpha hydroxylase (1-OHase) activity in response to dietary Ca or P restriction reduced with age in rats. We hypothesized that the mechanism involved in increasing circulating 1,25(OH)2D3 in response to mineral deficiency alters with age. In the present study, we tested the hypothesis by studying the expression of genes involved in renal vitamin D metabolism (renal 1-OHase, 25-hydroxyvitamin D 24-hydroxylase (24-OHase) and vitamin D receptor (VDR)) in young (1-month-old) and adult (6-month-old) rats in response to low-phosphate diet (LPD). As expected, serum 1,25(OH)2D3 increased in both young and adult rats upon LPD treatment and the increase was much higher in younger rats. In young rats, LPD treatment decreased renal 24-OHase (days 1-7, P<0.01) and increased renal 1-OHase mRNA expression (days 1-5, P<0.01). LPD treatment failed to increase renal 1-OHase but did suppress 24-OHase mRNA expression (P<0.01) within 7 d of LPD treatment in adult rats. Renal expression of VDR mRNA decreased with age (P<0.001) and was suppressed by LPD treatment in both age groups (P<0.05). Feeding of adult rats with 10 d of LPD increased 1-OHase (P<0.05) and suppressed 24-OHase (P<0.001) as well as VDR (P<0.05) mRNA expression. These results indicate that the increase in serum 1,25(OH)2D3 level in adult rats during short-term LPD treatment is likely to be mediated by a decrease in metabolic clearance via the down-regulation of both renal 24-OHase and VDR expression. The induction of renal 1-OHase mRNA expression in adult rats requires longer duration of LPD treatment than in younger rats.
Collapse
Affiliation(s)
- Tsui-Shan Chau
- Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PRC
| | | | | | | | | |
Collapse
|
42
|
Kamao M, Hatakeyama S, Sakaki T, Sawada N, Inouye K, Kubodera N, Reddy GS, Okano T. Measurement and characterization of C-3 epimerization activity toward vitamin D3. Arch Biochem Biophys 2005; 436:196-205. [PMID: 15752725 DOI: 10.1016/j.abb.2005.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 01/07/2005] [Indexed: 11/15/2022]
Abstract
Recently, epimerization of the hydroxyl group at C-3 has been identified as a unique metabolic pathway of vitamin D compounds. We measured C-3 epimerization activity in subcellular fractions prepared from cultured cells and investigated the basic properties of the enzyme responsible for the epimerization. C-3 epimerization activity was detected using a NADPH-generating system containing glucose-6-phosphate, NADP, glucose-6-phosphate dehydrogenase, and Mg(2+). The highest level of activity was observed in a microsomal fraction prepared from rat osteoblastic UMR-106 cells but activity was also observed in microsomal fractions prepared from MG-63, Caco-2, Hep G2, and HUH-7 cells. In terms of maximum velocity (V(max)) and the Michaelis constant (K(m)), 25-hydroxyvitamin D(3) [25(OH)D(3)] exhibited the highest specificity for the epimerization at C-3 among 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], 25(OH)D(3), 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], and 22-oxacalcitriol (OCT). The epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha-->beta)hydroxysteroid epimerase (HSE) catalyzed the epimerization in vitro. Based on these results, the enzyme(s) responsible for the epimerization of vitamin D(3) at C-3 are thought to be located in microsomes and different from cytochrome P450 and HSE.
Collapse
Affiliation(s)
- Maya Kamao
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abe D, Sakaki T, Kusudo T, Kittaka A, Saito N, Suhara Y, Fujishima T, Takayama H, Hamamoto H, Kamakura M, Ohta M, Inouye K. METABOLISM OF 2α-PROPOXY-1α,25-DIHYDROXYVITAMIN D3AND 2α-(3-HYDROXYPROPOXY)-1α,25-DIHYDROXYVITAMIN D3BY HUMAN CYP27A1 AND CYP24A1. Drug Metab Dispos 2005; 33:778-84. [PMID: 15764712 DOI: 10.1124/dmd.104.003038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated that some A-ring-modified vitamin D3 analogs had unique biological activity. Of these analogs, 2alpha-propoxy-1alpha,25(OH)2D3 (C3O1) and 2alpha-(3-hydroxypropoxy)-1alpha,25(OH)2D3 (O2C3) were examined for metabolism by CYP27A1 and CYP24A1. Surprisingly, CYP27A1 catalyzed the conversion from C3O1 to O2C3, which has 3 times more affinity for vitamin D receptor than C3O1. Thus, the conversion from C3O1 to O2C3 by CYP27A1 is considered to be a metabolic activation process. Five metabolites were detected in the metabolism of C3O1 and O2C3 by human CYP24A1 including both C-23 and C-24 oxidation pathways. On the other hand, three metabolites of the C-24 oxidation pathway were detected in their metabolism by rat CYP24A1, indicating a species-based difference in the CYP24A1-dependent metabolism of C3O1 and O2C3 between humans and rats. Kinetic analysis revealed that the Km and kcat values of human CYP24A1 for O2C3 are, respectively, approximately 16 times more and 3 times less than those for 1alpha,25(OH)2D3. Thus, the catalytic efficiency, kcat/Km, of human CYP24A1 for O2C3 is only 2% of 1alpha,25(OH)2D3. These results and a high calcium effect of C3O1 and O2C3 in animal experiments using rats suggest that C3O1 and O2C3 are promising for clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Daisuke Abe
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shinkyo R, Sakaki T, Kamakura M, Ohta M, Inouye K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem Biophys Res Commun 2004; 324:451-7. [PMID: 15465040 DOI: 10.1016/j.bbrc.2004.09.073] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Indexed: 01/13/2023]
Abstract
The activation of vitamin D requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. However, it remains unclear which enzyme is relevant to vitamin D 25-hydroxylation. Recently, human CYP2R1 has been reported to be a potential candidate for a hepatic vitamin D 25-hydroxylase. Thus, vitamin D metabolism by CYP2R1 was compared with human mitochondrial CYP27A1, which used to be considered a physiologically important vitamin D(3) 25-hydroxylase. A clear difference was observed between CYP2R1 and CYP27A1 in the metabolism of vitamin D(2). CYP2R1 hydroxylated vitamin D(2) at the C-25 position while CYP27A1 hydroxylated it at positions C-24 and C-27. The K(m) and k(cat) values for the CYP2R1-dependent 25-hydroxylation activity toward vitamin D(3) were 0.45microM and 0.97min(-1), respectively. The k(cat)/K(m) value of CYP2R1 was 26-fold higher than that of CYP27A1. These results strongly suggest that CYP2R1 plays a physiologically important role in the vitamin D 25-hydroxylation in humans.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
45
|
Astecker N, Bobrovnikova EA, Omdahl JL, Gennaro L, Vouros P, Schuster I, Uskokovic MR, Ishizuka S, Wang G, Reddy GS. C-25 hydroxylation of 1alpha,24(R)-dihydroxyvitamin D3 is catalyzed by 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1): metabolism studies with human keratinocytes and rat recombinant CYP24A1. Arch Biochem Biophys 2004; 431:261-70. [PMID: 15488475 DOI: 10.1016/j.abb.2004.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/18/2004] [Indexed: 11/17/2022]
Abstract
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.
Collapse
Affiliation(s)
- Norbert Astecker
- Department of Chemistry, Brown University, Box H, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bühler B, Schmid A. Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 2004; 113:183-210. [PMID: 15380656 DOI: 10.1016/j.jbiotec.2004.03.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 02/19/2004] [Accepted: 03/04/2004] [Indexed: 11/25/2022]
Abstract
Oxidoreductases catalyze a large variety of regio-, stereo-, and chemoselective hydrocarbon oxyfunctionalizations, reactions, which are important in industrial organic synthesis but difficult to achieve by chemical means. This review summarizes process implementation aspects for the in vivo application of the especially versatile enzyme class of oxygenases, capable of specifically introducing oxygen from molecular oxygen into a large range of organic molecules. Critical issues such as reaching high enzyme activity and specificity, product degradation, cofactor recycling, reactant toxicity, and substrate and oxygen mass transfer can be overcome by biochemical process engineering and biocatalyst engineering. Both strategies provide a growing toolset to facilitate process implementation, optimization, and scale-up. Major advances were achieved via heterologous overexpression of oxygenase genes, directed evolution, metabolic engineering, and in situ product removal. Process examples from industry and academia show that the combined use of different concepts enables efficient oxygenase-based whole-cell catalysis of various commercially interesting reactions such as the biosynthesis of chiral compounds, the specific oxyfunctionalization of complex molecules, and also the synthesis of medium-priced chemicals. Better understanding of the cell metabolism and future developments in both biocatalyst and bioprocess engineering are expected to promote the implementation of many and various industrial biooxidation processes.
Collapse
Affiliation(s)
- Bruno Bühler
- Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, ETH Zurich, Hönggerberg HPT, CH-8093
| | | |
Collapse
|
47
|
Uchida E, Kagawa N, Sakaki T, Urushino N, Sawada N, Kamakura M, Ohta M, Kato S, Inouye K. Purification and characterization of mouse CYP27B1 overproduced by an Escherichia coli system coexpressing molecular chaperonins GroEL/ES. Biochem Biophys Res Commun 2004; 323:505-11. [PMID: 15369780 DOI: 10.1016/j.bbrc.2004.08.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Indexed: 11/15/2022]
Abstract
The expression of mouse CYP27B1 in Escherichia coli has been dramatically enhanced by coexpression of GroEL/ES. To reveal the enzymatic properties of CYP27B1, we measured its hydroxylation activity toward vitamin D3 and 1alpha-hydroxyvitamin D3 (1alpha(OH)D3) in addition to the physiological substrate 25(OH)D3. Surprisingly, CYP27B1 converted vitamin D3 to 1alpha,25(OH)D3. Both 1alpha-hydroxylation activity toward vitamin D3, and 25-hydroxylation activity toward 1alpha(OH)D3 were observed. The Km and Vmax values for 25-hydroxylation activity toward 1alpha(OH)D3 were estimated to be 1.7 microM and 0.51 mol/min/mol P450, respectively, while those for 1alpha-hydroxylation activity toward 25(OH)D3 were 0.050 microM and 2.73 mol/min/mol P450, respectively. Note that the substrate must be fixed in the opposite direction in the substrate-binding pocket of CYP27B1 between 1alpha-hydroxylation and 25-hydroxylation. Based on these results and the fact that human CYP27A1 and Streptomyces CYP105A1 also convert vitamin D3 to 1alpha,25(OH)D3, 1alpha-hydroxylation, and 25-hydroxylation of vitamin D3 appear to be closely linked together.
Collapse
Affiliation(s)
- Eriko Uchida
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kusudo T, Sakaki T, Abe D, Fujishima T, Kittaka A, Takayama H, Hatakeyama S, Ohta M, Inouye K. Metabolism of A-ring diastereomers of 1α,25-dihydroxyvitamin D3 by CYP24A1. Biochem Biophys Res Commun 2004; 321:774-82. [PMID: 15358094 DOI: 10.1016/j.bbrc.2004.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Indexed: 11/26/2022]
Abstract
The metabolism of 1alpha,25(OH)(2)D(3) (1alpha,3beta) and its A-ring diastereomers, 1beta,25(OH)(2)D(3) (1beta,3beta), 1alpha,25(OH)(2)-3-epi-D(3) (1alpha,3alpha), and 1beta,25(OH)(2)-3-epi-D(3) (1beta,3alpha), was examined to compare the substrate specificity and reaction specificity of CYP24A1 between humans and rats. The ratio between C-23 and C-24 oxidation pathways in human CYP24A1-dependent metabolism of (1alpha,3alpha) and (1beta,3alpha) was 1:1, although the ratio for (1alpha,3beta) and (1beta,3beta) was 1:4. These results indicate that the orientation of the hydroxyl group at the C-3 position determines the ratio between C-23 and C-24 oxidation pathways. A remarkable increase of metabolites in the C-23 oxidation pathway was also observed in rat CYP24A1-dependent metabolism. The binding affinity of human CYP24A1 for A-ring diastereomers was (1alpha,3beta)>(1alpha,3alpha)>(1beta,3beta)>(1beta,3alpha), indicating that both hydroxyl groups at C-1 and C-3 positions significantly affect substrate-binding. The information obtained in this study is quite useful for understanding substrate recognition of CYP24A1 and designing new vitamin D analogs.
Collapse
Affiliation(s)
- Tatsuya Kusudo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sawada N, Kusudo T, Sakaki T, Hatakeyama S, Hanada M, Abe D, Kamao M, Okano T, Ohta M, Inouye K. Novel metabolism of 1 alpha,25-dihydroxyvitamin D3 with C24-C25 bond cleavage catalyzed by human CYP24A1. Biochemistry 2004; 43:4530-7. [PMID: 15078099 DOI: 10.1021/bi030207f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3).
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 2004; 320:156-64. [PMID: 15207715 DOI: 10.1016/j.bbrc.2004.05.140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Indexed: 11/28/2022]
Abstract
Streptomyces griseolus cytochrome P450SU-1 (CYP105A1) was expressed in Escherichia coli at a level of 1.0 micromol/L culture and purified with a specific content of 18.0 nmol/mg protein. Enzymatic studies revealed that CYP105A1 had 25-hydroxylation activity towards vitamin D2 and vitamin D3. Surprisingly, CYP105A1 also showed 1alpha-hydroxylation activity towards 25(OH)D3. As mammalian mitochondrial CYP27A1 catalyzes a similar two-step hydroxylation towards vitamin D3, the enzymatic properties of CYP105A1 were compared with those of human CYP27A1. The major metabolite of vitamin D2 by CYP105A1 was 25(OH)D2, while the major metabolites by CYP27A1 were both 24(OH)D2 and 27(OH)D2. These results suggest that CYP105A1 recognizes both vitamin D2 and vitamin D3 in a similar manner, while CYP27A1 does not. The Km values of CYP105A1 for vitamin D2 25-hydroxylation, vitamin D3 25-hydroxylation, and 25-hydroxyvitamin D3 1alpha-hydroxylation were 0.59, 0.54, and 0.91 microM, respectively, suggesting a high affinity of CYP105A1 for these substrates.
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|