1
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Cai L, Pessoa MT, Gao Y, Strause S, Banerjee M, Tian J, Xie Z, Pierre SV. The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes. Biomedicines 2023; 11:3207. [PMID: 38137428 PMCID: PMC10740578 DOI: 10.3390/biomedicines11123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases.
Collapse
Affiliation(s)
- Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sidney Strause
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
3
|
Socha MW, Chmielewski J, Pietrus M, Wartęga M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2023; 24:12743. [PMID: 37628922 PMCID: PMC10454430 DOI: 10.3390/ijms241612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE), the most severe presentation of hypertensive disorders of pregnancy, is the major cause of morbidity and mortality linked to pregnancy, affecting both mother and fetus. Despite advances in prophylaxis and managing PE, delivery of the fetus remains the only causative treatment available. Focus on complex pathophysiology brought the potential for new treatment options, and more conservative options allowing reduction of feto-maternal complications and sequelae are being investigated. Endogenous digitalis-like factors, which have been linked to the pathogenesis of preeclampsia since the mid-1980s, have been shown to play a role in the pathogenesis of various cardiovascular diseases, including congestive heart failure and chronic renal disease. Elevated levels of EDLF have been described in pregnancy complicated by hypertensive disorders and are currently being investigated as a therapeutic target in the context of a possible breakthrough in managing preeclampsia. This review summarizes mechanisms implicating EDLFs in the pathogenesis of preeclampsia and evidence for their potential role in treating this doubly life-threatening disease.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Jakub Chmielewski
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie- Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
4
|
Short-Term Mild Hypoxia Modulates Na,K-ATPase to Maintain Membrane Electrogenesis in Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms231911869. [PMID: 36233169 PMCID: PMC9570130 DOI: 10.3390/ijms231911869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments. In this study, we tested the possibility of mild hypoxia to modulate the Na,K-ATPase and to improve skeletal muscle electrogenesis. The rats were subjected to simulated high-altitude (3000 m above sea level) hypobaric hypoxia (HH) for 3 h using a hypobaric chamber. Isolated diaphragm and soleus muscles were tested. In the diaphragm muscle, HH increased the α2 Na,K-ATPase isozyme electrogenic activity and stably hyperpolarized the extrajunctional membrane for 24 h. These changes were accompanied by a steady increase in the production of thiobarbituric acid reactive substances as well as a decrease in the serum level of endogenous ouabain, a specific ligand of the Na,K-ATPase. HH also increased the α2 Na,K-ATPase membrane abundance without changing its total protein content; the plasma membrane lipid-ordered phase did not change. In the soleus muscle, HH protected against disuse (hindlimb suspension) induced sarcolemmal depolarization. Considering that the Na,K-ATPase is critical for maintaining skeletal muscle electrogenesis and performance, these findings may have implications for countermeasures in disuse-induced pathology and hypoxic therapy.
Collapse
|
5
|
Lopina OD, Fedorov DA, Sidorenko SV, Bukach OV, Klimanova EA. Sodium Ions as Regulators of Transcription in Mammalian Cells. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:789-799. [PMID: 36171659 DOI: 10.1134/s0006297922080107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
The maintenance of an uneven distribution of Na+ and K+ ions between the cytoplasm and extracellular medium is the basis for the functioning of any animal cell. Changes in the intracellular ratio of these cations occur in response to numerous stimuli and are important for the cell activity regulation. Numerous experimental data have shown that gene transcription in mammalian cells can be regulated by changes in the intracellular [Na+]i/[K+]i ratio. Here, we discuss possible mechanisms of such regulation in various cell types, with special attention to the [Ca2+]-independent signaling pathways that suggest the presence of an intracellular sensor of monovalent cations. As such sensor, we propose the secondary structures of nucleic acids called G-quadruplexes. They are widely represented in mammalian genomes and are often found in the promoters of genes encoding transcription factors.
Collapse
Affiliation(s)
- Olga D Lopina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| | - Dmitrii A Fedorov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | | - Olesya V Bukach
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | | |
Collapse
|
6
|
Wang J, Wang X, Gao Y, Lin Z, Chen J, Gigantelli J, Shapiro JI, Xie Z, Pierre SV. Stress Signal Regulation by Na/K-ATPase As a New Approach to Promote Physiological Revascularization in a Mouse Model of Ischemic Retinopathy. Invest Ophthalmol Vis Sci 2021; 61:9. [PMID: 33275652 PMCID: PMC7718810 DOI: 10.1167/iovs.61.14.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The identification of target pathways to block excessive angiogenesis while simultaneously restoring physiological vasculature is an unmet goal in the therapeutic management of ischemic retinopathies. pNaKtide, a cell-permeable peptide that we have designed by mapping the site of α1 Na/K-ATPase (NKA)/Src binding, blocks the formation of α1 NKA/Src/reactive oxygen species (ROS) amplification loops and restores physiological ROS signaling in a number of oxidative disease models. The aim of this study was to evaluate the importance of the NKA/Src/ROS amplification loop and the effect of pNaKtide in experimental ischemic retinopathy. Methods Human retinal microvascular endothelial cells (HRMECs) and retinal pigment epithelium (ARPE-19) cells were used to evaluate the effect of pNaKtide on viability, proliferation, and angiogenesis. Retinal toxicity and distribution were assessed in those cells and in the mouse. Subsequently, the role and molecular mechanism of NKA/Src in ROS stress signaling were evaluated biochemically in the retinas of mice exposed to the well-established protocol of oxygen-induced retinopathy (OIR). Finally, pNaKtide efficacy was assessed in this model. Results The results suggest a key role of α1 NKA in the regulation of ROS stress and the Nrf2 pathway in mouse OIR retinas. Inhibition of α1 NKA/Src by pNaKtide reduced pathologic ROS signaling and restored normal expression of hypoxia-inducible factor 1-α/vascular endothelial growth factor (VEGF). Unlike anti-VEGF agents, pNaKtide did promote retinal revascularization while inhibiting neovascularization and inflammation. Conclusions Targeting α1 NKA represents a novel strategy to develop therapeutics that not only inhibit neovascularization but also promote physiological revascularization in ischemic eye diseases.
Collapse
Affiliation(s)
- Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.,Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Zhucheng Lin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - James Gigantelli
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Joseph I Shapiro
- Departments of Medicine, Ophthalmology, Pharmacology, and Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States
| |
Collapse
|
7
|
Li L, Bi Z, Hu Y, Sun L, Song Y, Chen S, Mo F, Yang J, Wei Y, Wei X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol 2021; 37:177-191. [PMID: 32367270 DOI: 10.1007/s10565-020-09526-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Owing to the excellent antibacterial and antiviral activity, silver nanoparticles have a widespread use in the food and pharmaceutical industries. With the increase in the production and use of the related products, the potential hazard of silver nanoparticles has aroused public attention. The main purpose of this study is to explore the toxicity of silver nanoparticles and induction of lung inflammation in vitro and in vivo. Here, we validated that small amounts of silver ions dissolved from silver nanoparticles caused the depolarization of plasma membrane, resulting in an overload of intracellular sodium and calcium, and eventually led to the cell necrosis. The blockers of calcium or sodium channels inversed the toxicity of silver ions. Then, we instilled silver nanoparticles or silver nitrate (50 μg per mouse) into the lungs of mice, and this induced pulmonary injury and mitochondrial content release, led to the recruitment of neutrophils to the lung tissue via p38 MAPK pathway. Altogether, these data show that released silver ions from nanoparticles induced cell necrosis through Na+ and Ca2+ influx and triggered pulmonary inflammation through elevating mitochondrial-related contents released from these necrotic cells.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuzhu Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lu Sun
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
8
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
9
|
Li LL, Ke XY, Jiang C, Qin SQ, Liu YY, Xian XH, Liu LZ, He JC, Chen YM, An HF, Sun N, Hu YH, Wang Y, Zhang LN, Lu QY. Na + , K + -ATPase participates in the protective mechanism of rat cerebral ischemia-reperfusion through the interaction with glutamate transporter-1. Fundam Clin Pharmacol 2021; 35:870-881. [PMID: 33481320 DOI: 10.1111/fcp.12652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Glutamate excitotoxicity in cerebral ischemia/reperfusion is an important cause of neurological damage. The aim of this study was to investigate the mechanism of Na+, K+-ATPase (NKA) involved in l ow concentration of ouabain (Oua, activating NKA)-induced protection of rat cerebral ischemia-reperfusion injury. The 2,3,5-triphenyltetrazolium chloride (TTC) staining and neurological deficit scores (NDS) were performed to evaluate rat cerebral injury degree respectively at 2 h, 6 h, 1 d and 3 d after reperfusion of middle cerebral artery occlusion (MCAO) 2 h in rats. NKA α1/α2 subunits and glutamate transporter-1 (GLT-1) protein expression were investigated by Western blotting. The cerebral infarct volume ratio were evidently decreased in Oua group vs MCAO/R group at 1 d and 3 d after reperfusion of 2 h MCAO in rats (*p < 0.05 ). Moreover, NDS were not significantly different (p > 0.05 ). NKA α1 was decreased at 6 h and 1 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. However, NKA α1 and α2 were increased at 3 d after reperfusion of 2 h MCAO in rats, and was decreased in Oua group. GLT-1 was decreased at 6 h, 1 d and 3 d after reperfusion of 2 h MCAO in rats, and was improved in Oua group. These data indicated that l ow concentration of Oua could improve MCAO/R injury through probably changing NKA α1/α2 and GLT-1 protein expression, then increasing GLT-1 function and promoting Glu transport and absorption, which could be useful to determine potential therapeutic strategies for patients with stroke. Low concentration of Oua improved rat MCAO/R injury via NKA α1/α2 and GLT-1.
Collapse
Affiliation(s)
- Lin-Lin Li
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Xue-Ying Ke
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Chen Jiang
- Forensic Medical College, Hebei Medical University, Hebei, China
| | - Shi-Qi Qin
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yang-Yang Liu
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Jin-Chen He
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Ya-Meng Chen
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Hong-Fei An
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Nan Sun
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yue-Hua Hu
- Basic Medical College, Hebei Medical University, Hebei, China
| | - Yan Wang
- North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, Hebei, China
| | - Qi-Yong Lu
- Department of Neurosurgery, Hengshui Fifth People's Hospital, Hebei, China
| |
Collapse
|
10
|
Klimanova EA, Fedorov DA, Sidorenko SV, Abramicheva PA, Lopina OD, Orlov SN. Ouabain and Marinobufagenin: Physiological Effects on Human Epithelial and Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2020; 85:507-515. [PMID: 32569558 DOI: 10.1134/s0006297920040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-term study on the identification of Na,K-ATPase endogenous inhibitors in mammalian tissues has resulted in the discovery of ouabain, marinobufagenin (MBG), and other cardiotonic steroids (CTS) in the blood plasma. Production of ouabain and MBG is increased in essential hypertension and other diseases associated with hypervolemia. Here, we compared the effects of ouabain and MBG on the Na,K-ATPase activity (measured as the transport of Na+, K+, and Rb+ ions) and proliferation and death of human renal epithelial cells (HRECs) and human umbilical vein endothelial cells (HUVEC) expressing α1-Na,K-ATPase. Ouabain concentration that provided the half-maximal inhibition of the Rb+ influx (IC50) into HRECs and HUVECs was 0.07 μM. In both types of cells, the IC50 values for MBG were 10 times higher than for ouabain. Incubation of HREC and HUVEC with 0.001-0.01 μM ouabain for 30 h resulted in 40% increase in the [3H]thymidine incorporation into DNA; further elevation of ouabain concentration to 0.1 μM completely suppressed DNA synthesis. MBG at the concentration of 0.1 μM activated DNA synthesis by 25% in HRECs, but not in HUVECs; 1 μM MBG completely inhibited DNA synthesis in HRECs and by 50% in HUVECs. In contrast to HRECs, incubation of HUVECs in the serum-free medium induced apoptosis, which was almost completely suppressed by ouabain and MBG at the concentrations of 0.1 and 3 μM, respectively. Based on these data, we can conclude that (i) the effect of MBG at the concentrations detected in the blood plasma (<0.01 μM) on HRECs and HUVECs was not due to the changes in the [Na+]i/[K+]i ratio; (ii) the effect of physiological concentrations of ouabain on these cells might be mediated by the activation of Na,K-ATPase, leading to cell proliferation.
Collapse
Affiliation(s)
- E A Klimanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| | - D A Fedorov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S V Sidorenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - P A Abramicheva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - O D Lopina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S N Orlov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
11
|
Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 2020; 21:ijms21082875. [PMID: 32326025 PMCID: PMC7215781 DOI: 10.3390/ijms21082875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
While the role of circulating ouabain-like compounds in the cardiovascular and central nervous systems, kidney and other tissues in health and disease is well documented, little is known about its effects in skeletal muscle. In this study, rats were intraperitoneally injected with ouabain (0.1-10 µg/kg for 4 days) alone or with subsequent injections of lipopolysaccharide (1 mg/kg). Some rats were also subjected to disuse for 6 h by hindlimb suspension. In the diaphragm muscle, chronic ouabain (1 µg/kg) hyperpolarized resting potential of extrajunctional membrane due to specific increase in electrogenic transport activity of the 2 Na,K-ATPase isozyme and without changes in 1 and 2 Na,K-ATPase protein content. Ouabain (10-20 nM), acutely applied to isolated intact diaphragm muscle from not injected rats, hyperpolarized the membrane to a similar extent. Chronic ouabain administration prevented lipopolysaccharide-induced (diaphragm muscle) or disuse-induced (soleus muscle) depolarization of the extrajunctional membrane. No stimulation of the 1 Na,K-ATPase activity in human red blood cells, purified lamb kidney and Torpedo membrane preparations by low ouabain concentrations was observed. Our results suggest that skeletal muscle electrogenesis is subjected to regulation by circulating ouabain via the 2 Na,K-ATPase isozyme that could be important for adaptation of this tissue to functional impairment.
Collapse
|
12
|
Orlov SN, Tverskoi AM, Sidorenko SV, Smolyaninova LV, Lopina OD, Dulin NO, Klimanova EA. Na,K-ATPase as a target for endogenous cardiotonic steroids: What's the evidence? Genes Dis 2020; 8:259-271. [PMID: 33997173 PMCID: PMC8093582 DOI: 10.1016/j.gendis.2020.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
With an exception of few reports, the plasma concentration of ouabain and marinobufagenin, mostly studied cardiotonic steroids (CTS) assessed by immunoassay techniques, is less than 1 nM. During the last 3 decades, the implication of these endogenous CTS in the pathogenesis of hypertension and other volume-expanded disorders is widely disputed. The threshold for inhibition by CTS of human and rodent α1-Na,K-ATPase is ∼1 and 1000 nM, respectively, that rules out the functioning of endogenous CTS (ECTS) as natriuretic hormones and regulators of cell adhesion, cell-to-cell communication, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations. In several types of cells ouabain and marinobufagenin at concentrations corresponding to its plasma level activate Na,K-ATPase, decrease the [Na+]i/[K+]i-ratio and increase cell proliferation. Possible physiological significance and mechanism of non-canonical Na+i/K+i-dependent and Na+i/K+i-independent cell responses to CTS are discussed.
Collapse
Affiliation(s)
- Sergei N Orlov
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | | | - Svetlana V Sidorenko
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Larisa V Smolyaninova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Olga D Lopina
- MV Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Elizaveta A Klimanova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
13
|
Kravtsova VV, Vilchinskaya NA, Rozlomii VL, Shenkman BS, Krivoi II. Low Ouabain Doses and AMP-Activated Protein Kinase as Factors Supporting Electrogenesis in Skeletal Muscle. BIOCHEMISTRY (MOSCOW) 2019; 84:1085-1092. [PMID: 31693468 DOI: 10.1134/s0006297919090116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many motor disorders are associated with depolarization of the membrane of skeletal muscle fibers due to the impaired functioning of Na,K-ATPase. Here, we studied the role of ouabain (specific Na,K-ATPase ligand) and AMP-activated protein kinase (key regulator of muscle metabolism) in the maintenance of muscle electrogenesis; the levels of these endogenous factors are directly related to the motor activity. After 4-day intraperitoneal administration of ouabain (1 µg/kg daily), a hyperpolarization of sarcolemma was registered in isolated rat diaphragm muscles due to an increase in the electrogenic activity of Na,K-ATPase. In acute experiments, addition of nanomolar ouabain concentrations to the bathing solution resulted in the muscle membrane hyperpolarization within 15 min. The effect of ouabain reversed to membrane depolarization with the increase in the external potassium concentration. It is possible that Na,K-ATPase activation by ouabain may be regulated by such factors as specific subcellular location, interaction with molecular partners, and changes in the ionic balance. Preventive administration of the AMP-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; 400 mg/kg body weight daily for 7 days) in chronic experiments resulted in the stabilization of the endplate structure and abolishment of depolarization of the rat soleus muscle membrane caused by the motor activity cessation. The obtained data can be useful for creating approaches for correction of muscle dysfunction, especially at the early stages, prior to the development of muscle atrophy.
Collapse
Affiliation(s)
- V V Kravtsova
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia
| | - N A Vilchinskaya
- Institute of Biomedical Problems, Laboratory of Myology, Russian Academy of Sciences, Moscow, 123007, Russia
| | - V L Rozlomii
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Laboratory of Myology, Russian Academy of Sciences, Moscow, 123007, Russia
| | - I I Krivoi
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia.
| |
Collapse
|
14
|
Khajah MA, Mathew PM, Luqmani YA. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS One 2018; 13:e0193779. [PMID: 29590154 PMCID: PMC5874017 DOI: 10.1371/journal.pone.0193779] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/17/2018] [Indexed: 01/27/2023] Open
Abstract
Background The Na+/K+-ATPase (NKP) is an important ion transporter also involved in signal transduction. Its expression profile is altered in various tumours including that of the breast. We studied the effect of inhibiting NKP activity in non-tumorigenic breast cell line and in estrogen receptor positive and negative breast cancer cells. Methods Expression and localization of NKP and downstream signaling molecules were determined by RT-PCR, western blotting and immunofluorescence. Cell proliferation, apoptosis and cell cycle stage were determined using MTT, annexin V and flow cytometry. Cell motility and invasion were determined using wound healing and matrigel assays. Total matrix metalloproteinase (MMP) was determined by a fluorescence-based assay. Results NKP was mainly localized on the cell membrane. Its baseline expression and activity were enhanced in breast cancer compared to the non-tumorigenic breast cell line. Ouabain and 3,4,5,6-tetrahydroxyxanthone (TTX) treatment significantly inhibited NKP activity, which significantly reduced cell proliferation, motility, invasion and pH-induced membrane blebbing. EGF stimulation induced internalization of NKP from the cell membrane to the cytoplasm. Ouabain inhibited EGF-induced phosphorylation of Rac/cdc42, profillin, ERK1/2 and P70S6K. Conclusions The NKP may offer a novel therapeutic target in breast cancer patients who have developed metastasis, aiming to improve therapeutic outcomes and enhance survival rate.
Collapse
|
15
|
Peng M, Yang M, Ding Y, Yu L, Deng Y, Lai W, Hu Y. Mechanism of endogenous digitalis-like factor‑induced vascular endothelial cell damage in patients with severe preeclampsia. Int J Mol Med 2017; 41:985-994. [PMID: 29251320 DOI: 10.3892/ijmm.2017.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
Although endogenous digitalis‑like factor (EDLF) is associated with the development of various physical disorders, the role in preeclampsia remains unclear. This study investigated the effects of EDLF on vascular endothelial cell damage in patients with preeclampsia and the potential mechanisms. From July 2014 to July 2015, 120 singleton pregnancy cases underwent a prenatal examination, inpatient delivery and had normal blood pressure were included in the study, either as patients with severe preeclampsia or the control patients. Serum EDLF levels were compared in these two groups, and an in vitro hypoxic trophocyte‑induced vascular endothelial cell damage model was established to explore the changes in hypoxic trophocyte EDLF level and the subsequent effects on human umbilical vein endothelial cells (HUVECs). Nuclear factor‑κB (NF‑κB) p65 gene expression was silenced in hypoxic trophocytes, and EDLF levels and HUVEC damage were subsequently assessed. Serum EDLF levels were significantly higher in the severe preeclampsia cases than in the controls at the same gestational week (P<0.001). EDLF levels in hypoxic trophocytes increased with the increasing co‑culture duration. Damage to the biofunctions of HUVECs co‑cultured with hypoxic trophocytes also increased with co‑culture duration. However, silencing of NF‑κB p65 in the hypoxic trophocytes reduced the EDLF levels. Annexin A2 was highly expressed in HUVECs, and no biofunctions were significantly damaged (P<0.05) compared with the group without receiving NF‑κB p65 silencing. Serum EDLF levels were significantly higher in patients with severe preeclampsia compared with the controls. The results of the current study indicate that NF‑κB p65 has a role in regulating EDLF production in hypoxic trophocytes.
Collapse
Affiliation(s)
- Mei Peng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mengyuan Yang
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yiling Ding
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Yu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yali Deng
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Weisi Lai
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Hu
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
16
|
Cavalcante-Silva LHA, Lima ÉDA, Carvalho DCM, de Sales-Neto JM, Alves AKDA, Galvão JGFM, da Silva JSDF, Rodrigues-Mascarenhas S. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front Physiol 2017; 8:895. [PMID: 29176951 PMCID: PMC5686084 DOI: 10.3389/fphys.2017.00895] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation), independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Éssia de Almeida Lima
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Deyse C M Carvalho
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Anne K de Abreu Alves
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José G F M Galvão
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Juliane S de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
17
|
Na⁺ i,K⁺ i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 2017; 22:molecules22040635. [PMID: 28420099 PMCID: PMC6153942 DOI: 10.3390/molecules22040635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 11/17/2022] Open
Abstract
Na⁺,K⁺-ATPase is the only known receptor of cardiotonic steroids (CTS) whose interaction with catalytic α-subunits leads to inhibition of this enzyme. As predicted, CTS affect numerous cellular functions related to the maintenance of the transmembrane gradient of monovalent cations, such as electrical membrane potential, cell volume, transepithelial movement of salt and osmotically-obliged water, symport of Na⁺ with inorganic phosphate, glucose, amino acids, nucleotides, etc. During the last two decades, it was shown that side-by-side with these canonical Na⁺i/K⁺i-dependent cellular responses, long-term exposure to CTS affects transcription, translation, tight junction, cell adhesion and exhibits tissue-specific impact on cell survival and death. It was also shown that CTS trigger diverse signaling cascades via conformational transitions of the Na⁺,K⁺-ATPase α-subunit that, in turn, results in the activation of membrane-associated non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase and the inositol 1,4,5-triphosphate receptor. These findings allowed researchers to propose that endogenous CTS might be considered as a novel class of steroid hormones. We focus our review on the analysis of the relative impact Na⁺i,K⁺i-mediated and -independent pathways in cellular responses evoked by CTS.
Collapse
|
18
|
Klimanova EA, Tverskoi AM, Koltsova SV, Sidorenko SV, Lopina OD, Tremblay J, Hamet P, Kapilevich LV, Orlov SN. Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na + and K +: a comparative analysis. Sci Rep 2017; 7:45403. [PMID: 28345607 PMCID: PMC5366943 DOI: 10.1038/srep45403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Recent studies demonstrated that in addition to Na+,K+-ATPase inhibition cardiotonic steroids (CTSs) affect diverse intracellular signaling pathways. This study examines the relative impact of [Na+]i/[K+]i-mediated and -independent signaling in transcriptomic changes triggered by the endogenous CTSs ouabain and marinobufagenin (MBG) in human umbilical vein endothelial cells (HUVEC). We noted that prolongation of incubation increased the apparent affinity for ouabain estimated by the loss of [K+]i and gain of [Na+]i. Six hour exposure of HUVEC to 100 and 3,000 nM ouabain resulted in elevation of the [Na+]i/[K+]i ratio by ~15 and 80-fold and differential expression of 258 and 2185 transcripts, respectively. Neither [Na+]i/[K+]i ratio nor transcriptome were affected by 6-h incubation with 30 nM ouabain. The 96-h incubation with 3 nM ouabain or 30 nM MBG elevated the [Na+]i/[K+]i ratio by ~14 and 3-fold and led to differential expression of 880 and 484 transcripts, respectively. These parameters were not changed after 96-h incubation with 1 nM ouabain or 10 nM MBG. Thus, our results demonstrate that elevation of the [Na+]i/[K+]i ratio is an obligatory step for transcriptomic changes evoked by CTS in HUVEC. The molecular origin of upstream [Na+]i/[K+]i sensors involved in transcription regulation should be identified in forthcoming studies.
Collapse
Affiliation(s)
| | - Artem M Tverskoi
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Koltsova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Sidorenko
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga D Lopina
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Johanne Tremblay
- Research Centre, University of Montreal Hospital (CRCHUM), Montreal, H2X 0A9, Canada
| | - Pavel Hamet
- Research Centre, University of Montreal Hospital (CRCHUM), Montreal, H2X 0A9, Canada
| | | | - Sergei N Orlov
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
19
|
Tverskoi AM, Sidorenko SV, Klimanova EA, Akimova OA, Smolyaninova LV, Lopina OD, Orlov SN. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. BIOCHEMISTRY (MOSCOW) 2016; 81:876-83. [DOI: 10.1134/s0006297916080083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, Tang C, Gu Y. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med 2015; 36:1001-11. [PMID: 26311435 PMCID: PMC4564091 DOI: 10.3892/ijmm.2015.2320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of artery restenosis following percutaneous coronary intervention. Digoxin has long been used in the treatment of heart failure and has been shown to inhibit the proliferation of cancer cells through multiple pathways. However, the potential role of digoxin in the regulation of VSMC proliferation and migration and its effectiveness in the treatment of cardiovascular diseases, such as restenosis, remains unexplored. In the present study, we demonstrate that digoxin-induced growth inhibition is associated with the downregulation of CDK activation and the restoration of p27Kip1 levels in platelet-derived growth factor (PDGF)-stimulated VSMCs. In addition, we found that digoxin restored the PDGF‑BB-induced inhibition of integrin linked kinase (ILK) expression and prevented the PDGF‑BB-induced activation of glycogen synthase kinase (GSK)-3β. Furthermore, digoxin inhibited adhesion molecule and extracellular matrix relative protein expression. Finally, we found that digoxin significantly inhibited neointima formation, accompanied by a decrease in cell proliferation following vascular injury in rats. These effects of digoxin were shown to be mediated, at least in part, through an increase in ILK/Akt signaling and a decrease in GSK-3β signaling in PDGF‑BB-stimulated VSMCs. In conclusion, our data demonstrate that digoxin exerts an inhibitory effect on the PDGF‑BB-induced proliferation, migration and phenotypic modulation of VSMCs, and prevents neointima formation in rats. These observations indicate the potential therapeutic application of digoxin in the treatment of cardiovascular diseases, such as restenosis.
Collapse
Affiliation(s)
- Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Qingjie Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Shengda Hu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, Jiangsu 210009, P.R. China
| | - Yuchun Gu
- Institute of Molecular Medicine (IMM), Peking University, Beijing 100190, P.R. China
| |
Collapse
|
21
|
Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy. Stem Cells Int 2015; 2015:524756. [PMID: 26339251 PMCID: PMC4539177 DOI: 10.1155/2015/524756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/28/2015] [Accepted: 03/11/2015] [Indexed: 01/25/2023] Open
Abstract
With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.
Collapse
|
22
|
Chronic ouabain treatment induces Rho kinase activation. Arch Pharm Res 2015; 38:1897-905. [PMID: 25860025 DOI: 10.1007/s12272-015-0597-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2015] [Indexed: 01/21/2023]
Abstract
Ouabain is an endogenous Na(+)/K(+)-ATPase inhibitor whose chronic administration induces hypertension. Endogenous ouabain levels increase in human essential hypertension. On the other hand, Rho/Rho kinase (ROCK) pathway has been implicated in various animal models of hypertension. In the current work, we evaluated the possible involvement of Rho kinase in ouabain-induced hypertension. Ouabain was administered daily (20 µg/kg, i.p.) to Wistar rats for 6 weeks. After the ouabain treatment, we evaluated the possible changes in vascular responses to KCl and phenylephrine alone and in the presence of Rho kinase inhibitor Y27632. We also determined the expressions of ROCKs, Rho A and phosphorylation of myosin binding subunit of myosin light chain phosphatase (pMYPT) and activation of Rho A. Agonist-induced contractions in the presence of Y27632 are significantly decreased and Y27632-induced relaxations in aortas precontracted with phenylephrine are significantly enhanced with the chronic treatment of ouabain. Although the expressions of ROCK I and ROCK II remained unchanged, pMYPT expression was significantly increased in ouabain-treated group. Moreover, Rho A expression and activation were decreased after treatment with ouabain. Although Rho kinase expression did not change in aortas, increased basal Rho kinase activation may contribute to the development of ouabain-induced hypertension. Our current data present the first evidence that Rho kinase is involved in the development of ouabain-induced hypertension in rats.
Collapse
|
23
|
Chen D, Song M, Mohamad O, Yu SP. Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 2014; 14:716. [PMID: 25255962 PMCID: PMC4190379 DOI: 10.1186/1471-2407-14-716] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is very difficult to treat with conventional anti-cancer/anti-apoptotic drugs. We tested the hypothesis that inhibition of Na+/K+-ATPase causes a mixed or hybrid form of concurrent apoptosis and necrosis and therefore should enhance anti-cancer effects of chemotherapy on glioblastoma cells. Methods In human LN229 and drug-resistant T98G glioblastoma cell cultures, cell death and signal pathways were measured using immunocytochemistry and Western blotting. Fluorescent dyes were applied to measure intracellular Ca2+, Na+ and K+ changes. Results The specific Na+/K+-ATPase blocker ouabain (0.1 - 10 μM) induced cell death and disruption of K+ homeostasis in a time- and concentration-dependent manner. Annexin-V translocation and caspase-3 activation indicated an apoptotic component in ouabain cytoxicity, which was accompanied with reduced Bcl-2 expression and mitochondrial membrane potential. Ouabain-induced cell death was partially attenuated by the caspase inhibitor Z-VAD (100 μM). Consistently, the K+ ionophore valinomycin initiated apoptosis in LN229 cells in a K+ efflux-dependent manner. Ouabain caused an initial cell swell, which was followed by a sustained cell volume decrease. Electron microscopy revealed ultrastructural features of both apoptotic and necrotic alterations in the same cells. Finally, human T98G glioblastoma cells that are resistant to the chemotherapy drug temozolomide (TMZ) showed a unique high expression of the Na+/K+-ATPase α2 and α3 subunits compared to the TMZ-sensitive cell line LN229 and normal human astrocytes. At low concentrations, ouabain selectively killed T98G cells. Knocking down the α3 subunit sensitized T98G cells to TMZ and caused more cell death. Conclusion This study suggests that inhibition of Na+/K+-ATPase triggers hybrid cell death and serves as an underlying mechanism for an enhanced chemotherapy effect on glioblastoma cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-716) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
A synthetic thiourea-based tripodal receptor that impairs the function of human first trimester cytotrophoblast cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7456-69. [PMID: 25050653 PMCID: PMC4113887 DOI: 10.3390/ijerph110707456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/25/2023]
Abstract
A synthetic tripodal-based thiourea receptor (PNTTU) was used to explore the receptor/ligand binding affinity using CTB cells. The human extravillous CTB cells (Sw.71) used in this study were derived from first trimester chorionic villus tissue. The cell proliferation, migration and angiogenic factors were evaluated in PNTTU-treated CTB cells. The PNTTU inhibited the CTBs proliferation and migration. The soluble fms-like tyrosine kinase-1 (sFlt-1) secretion was increased while vascular endothelial growth factor (VEGF) was decreased in the culture media of CTB cells treated with ≥1 nM PNTTU. The angiotensin II receptor type 2 (AT2) expression was significantly upregulated in ≥1 nM PNTTU-treated CTB cells in compared to basal; however, the angiotensin II receptor, type 1 (AT1) and vascular endothelial growth factor receptor 1 (VEGFR-1) expression was downregulated. The anti-proliferative and anti-angiogenic effect of this compound on CTB cells are similar to the effect of CTSs. The receptor/ligand affinity of PNTTU on CTBs provides us the clue to design a potent inhibitor to prevent the CTS-induced impairment of CTB cells.
Collapse
|
25
|
Abstract
Ouabain (Oua)-induced hypertension in rodents provides a model to study cardiovascular changes associated with human hypertension. We examined vascular function in rats after a long-term treatment with Oua. Systolic blood pressure was measured by tail-cuff plethysmography in male Sprague-Dawley rats treated with Oua (≈ 25 µg/d) or placebo for 8 weeks. Blood pressure increased in Oua-treated animals, reaching 30% above baseline systolic blood pressure after 7 weeks. At the end of treatment, vascular responses were studied in mesenteric resistance arteries (MRAs) by wire myography. Contraction to potassium chloride in intact and denuded arteries showed greater sensitivity in Oua-treated animals. Contraction to phenylephrine and relaxation to acetylcholine were similar between groups with a lower response to sodium nitroprusside in Oua-treated arteries. Sensitivity to endothelin-1 was higher in Oua-treated arteries. Na⁺-K⁺ ATPase activity was decreased in MRAs from Oua-treated animals, whereas protein expression of the Na⁺-K⁺ ATPase α₂ isoform was increased in heart and unchanged in mesenteric artery. Preincubation with indomethacin (10⁻⁵ M) or Nω-nitro-L-arginine methyl ester (10⁻⁴ M) abolished the differences in potassium chloride response and Na⁺-K⁺ ATPase activity. Changes in MRAs are consistent with enhanced vascular smooth muscle cell reactivity, a contributor to the increased vascular tone observed in this model of hypertension.
Collapse
|
26
|
Xie JX, Li X, Xie Z. Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB Life 2013; 65:991-8. [PMID: 24323927 PMCID: PMC5375025 DOI: 10.1002/iub.1229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/08/2013] [Indexed: 12/23/2022]
Abstract
The Na/K-ATPase as an essential ion pump was discovered more than 50 years ago (Skou (1989) Biochim. Biophys. Acta 1000, 439-446; Feraille and Doucet (2001) Physiol. Rev. 81, 345-418). The signaling function of Na/K-ATPase has been gradually appreciated over the last 20 years, first from the studies of regulatory effects of ouabain on cardiac cell growth. Several reviews on this topic have been written during the last few years (Schoner and Scheiner-Bobis (2007) Am. J. Physiol. Cell. Physiol. 293, C509-C536; Xie and Cai (2003) Mol. Interv. 3, 157 - 168; Bagrov et al. (2009) Pharmacol. Rev. 61, 9-38; Tian and Xie (2008) Physiology 23, 205-211; Fontana et al. (2013) FEBS J. 280, 5450-5455; Blanco and Wallace (2013) Am. J. Physiol. Renal Physiol. 305, F797-F812). This article will focus on the molecular mechanism of Na/K-ATPase-mediated signal transduction and its potential regulatory role in renal physiology and diseases.
Collapse
Affiliation(s)
- Jeffrey X Xie
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA
| | | | | |
Collapse
|
27
|
Cuozzo F, Raciti M, Bertelli L, Parente R, Di Renzo L. Pro-death and pro-survival properties of ouabain in U937 lymphoma derived cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:95. [PMID: 23153195 PMCID: PMC3541998 DOI: 10.1186/1756-9966-31-95] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Epidemiological studies revealed significantly lower mortality rates in cancer patients receiving cardiac glycosides, which turned on interest in the anticancer properties of these drugs. However, cardiac glycosides have also been shown to stimulate cell growth in several cell types. In the present investigation we analyzed the pro-death and pro-survival properties of ouabain in the human lymphoma derived cell line U937. METHODS ROS, intracellular Ca++, cell cycle were evaluated by loading the cells with fluorescent probes under cytofluorimetry. Cell counts and evaluation of trypan blue-excluding cells were performed under optic microscope. Protein detection was done by specific antibodies after protein separation from cellular lysates by SDS-PAGE and transfer blot. RESULTS High doses of ouabain cause ROS generation, elevation of [Ca++]i and death of lymphoma derived U937 cells. Lower doses of OUA activate a survival pathway in which plays a role the Na+/Ca++-exchanger (NCX), active in the Ca++ influx mode rather than in the Ca++ efflux mode. Also p38 MAPK plays a pro-survival role. However, the activation of this MAPK does not appear to depend on NCX. CONCLUSION This investigation shows that the cardiac glycoside OUA is cytotoxic also for the lymphoma derived cell line U937 and that can activate a survival pathway in which are involved NCX and p38 MAPK. These molecules can represent potential targets of combined therapy.
Collapse
Affiliation(s)
- Francesca Cuozzo
- Department of Experimental Medicine, University of Rome La Sapienza, Viale Regina Elena 324, Rome 00161, Italy
| | | | | | | | | |
Collapse
|
28
|
Chen DP, Xiong YJ, Tang ZY, Yao QY, Ye DM, Liu SS, Lin Y. Characteristics of deslanoside-induced modulation on jejunal contractility. World J Gastroenterol 2012; 18:5889-96. [PMID: 23139604 PMCID: PMC3491595 DOI: 10.3748/wjg.v18.i41.5889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/03/2012] [Accepted: 08/14/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterize the dual effects of deslanoside on the contractility of jejunal smooth muscle.
METHODS: Eight pairs of different low and high contractile states of isolated jejunal smooth muscle fragment (JSMF) were established. Contractile amplitude of JSMF in different low and high contractile states was selected to determine the effects of deslanoside, and Western blotting analysis was performed to measure the effects of deslanoside on myosin phosphorylation of jejunal smooth muscle.
RESULTS: Stimulatory effects on the contractility of JSMF were induced (45.3% ± 4.0% vs 87.0% ± 7.8%, P < 0.01) by deslanoside in 8 low contractile states, and inhibitory effects were induced (180.6% ± 17.8% vs 109.9% ± 10.8%, P < 0.01) on the contractility of JSMF in 8 high contractile states. The effect of deslanoside on the phosphorylation of myosin light chain of JSMF in low (78.1% ± 4.1% vs 96.0% ± 8.1%, P < 0.01) and high contractile state (139.2% ± 8.5% vs 105.5 ± 7.34, P < 0.01) was also bidirectional. Bidirectional regulation (BR) was abolished in the presence of tetrodotoxin. Deslanoside did not affect jejunal contractility pretreated with the Ca2+ channel blocker verapamil or in a Ca2+-free assay condition. The stimulatory effect of deslanoside on JSMF in a low contractile state (low Ca2+ induced) was abolished by atropine. The inhibitory effect of deslanoside on jejunal contractility in a high contractile state (high Ca2+ induced) was blocked by phentolamine, propranolol and L-NG-nitro-arginine, respectively.
CONCLUSION: Deslanoside-induced BR is Ca2+ dependent and is related to cholinergic and adrenergic systems when JSMF is in low or high contractile states.
Collapse
|
29
|
Nar R, Bedir A, Alacam H, Kilinc V, Avci B, Salis O, Gulten S. The effect of ouabain on mitochondrial DNA damage in HepG2 cell lines. Tumour Biol 2012; 33:2107-15. [PMID: 22890828 DOI: 10.1007/s13277-012-0470-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/23/2012] [Indexed: 02/01/2023] Open
Abstract
Our purpose in this study is to analyze mitochondrial DNA (mtDNA) lesion frequencies and mtDNA(4977) deletion in HepG2 cells to examine the effects of ouabain on mtDNA. HepG2 cells were treated with 0.75, 7.5, 75, and 750 nM of ouabain for 24 h in the presence and absence of 10 mM 2-deoxyglucose (2-DG). The frequency of mtDNA(4977) deletions and mitochondrial lesions were determined by real-time polymerase chain reaction. A ≥ 1.2-fold change or greater was considered significant. Ouabain doses of 750, 75, and 7.5 nM alone increased the frequency of mtDNA(4977) deletions 1.39, 1.92, and 1.44 times, respectively. The 750 and 75 nM ouabain doses combined with 2-DG increased the mtDNA(4977) deletion frequency 4.94 and 1.57 times, respectively. The 750 and 75 nM ouabain doses alone increased the mtDNA lesion frequency 2.5 and 1.5 times, respectively. The 750 nM ouabain dose combined with 2-DG increased the mtDNA lesion frequency 2.28 times. The 7.5 nM ouabain dose alone and combined with 2-DG decreased the mtDNA lesion frequency 0.67 and 0.45 times, respectively. Ouabain alone and when combined with 2-DG increases mtDNA lesion and mtDNA(4977) deletion frequencies. This supports the thesis that ouabain creates oxidative stress and induces DNA damage and apoptosis.
Collapse
|
30
|
Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling. Int J Nephrol 2012; 2012:381320. [PMID: 22518311 PMCID: PMC3299271 DOI: 10.1155/2012/381320] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/07/2011] [Indexed: 01/11/2023] Open
Abstract
The Na/K-ATPase is the primary force regulating renal sodium handling and plays a key role in both ion homeostasis and blood pressure regulation. Recently, cardiotonic steroids (CTS)-mediated Na/K-ATPase signaling has been shown to regulate fibrosis, renal proximal tubule (RPT) sodium reabsorption, and experimental Dahl salt-sensitive hypertension in response to a high-salt diet. Reactive oxygen species (ROS) are an important modulator of nephron ion transport. As there is limited knowledge regarding the role of ROS-mediated fibrosis and RPT sodium reabsorption through the Na/K-ATPase, the focus of this review is to examine the possible role of ROS in the regulation of Na/K-ATPase activity, its signaling, fibrosis, and RPT sodium reabsorption.
Collapse
|
31
|
Arnaud-Batista FJ, Costa GT, Oliveira IMBD, Costa PPC, Santos CF, Fonteles MC, Uchôa DE, Silveira ER, Cardi BA, Carvalho KM, Amaral LS, Pôças ESC, Quintas LEM, Noël F, Nascimento NRF. Natriuretic effect of bufalin in isolated rat kidneys involves activation of the Na+-K+-ATPase-Src kinase pathway. Am J Physiol Renal Physiol 2012; 302:F959-66. [PMID: 22237798 DOI: 10.1152/ajprenal.00130.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bufadienolides are structurally related to the clinically relevant cardenolides (e.g., digoxin) and are now considered as endogenous steroid hormones. Binding of ouabain to Na(+)-K(+)-ATPase has been associated, in kidney cells, to the activation of the Src kinase pathway and Na(+)-K(+)-ATPase internalization. Nevertheless, whether the activation of this cascade also occurs with other cardiotonic steroids and leads to diuresis and natriuresis in the isolated intact kidney is still unknown. In the present work, we perfused rat kidneys for 120 min with bufalin (1, 3, or 10 μM) and measured its vascular and tubular effects. Thereafter, we probed the effect of 10 μM 3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4amine (PP2), a Src family kinase inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (UO126), a highly selective inhibitor of both MEK1 and MEK2, on bufalin-induced renal alterations. Bufalin at 3 and 10 μM profoundly increased several parameters of renal function in a time- and/or concentration-dependent fashion. At a concentration that produced similar inhibition of the rat kidney Na(+)-K(+)-ATPase, ouabain had a much smaller diuretic and natriuretic effect. Although bufalin fully inhibited the rat kidney Na(+)-K(+)-ATPase in vitro, its IC(50) (33 ± 1 μM) was threefold higher than the concentration used ex vivo and all its renal effects were blunted by PP2 and UO126. Furthermore, the phosphorylated (activated) ERK1/2 expression was increased after bufalin perfusion and this effect was totally prevented after PP2 pretreatment. The present study shows for the first time the direct diuretic, natriuretic, and kaliuretic effects of bufalin in isolated rat kidney and the relevance of Na(+)-K(+)-ATPase-mediated signal transduction.
Collapse
Affiliation(s)
- Francisco J Arnaud-Batista
- Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Av. Carlos Chagas 373, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Synthesis and biological evaluation of RON-neoglycosides as tumor cytotoxins. Carbohydr Res 2011; 346:2663-76. [DOI: 10.1016/j.carres.2011.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/21/2022]
|
33
|
Hoenicka M, Keyser A, Rupprecht L, Puehler T, Hirt S, Schmid C. Endothelium-dependent vasoconstriction in isolated vessel grafts: a novel mechanism of vasospasm? Ann Thorac Surg 2011; 92:1299-306. [PMID: 21958775 DOI: 10.1016/j.athoracsur.2011.05.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND YC-1 (3-(5'-hydroxymethyl-2'furyl)-1-benzyl-indazole) is an allosteric activator of soluble guanylyl cyclase (sGC) and a vasodilator. This study describes a paradoxical action of YC-1 in isolated vessels of patients with coronary artery disease (CAD) that appears to trigger an endothelium-dependent vasoconstrictor pathway present in vessels with endothelial dysfunction. METHODS Effects of YC-1 on the tensions of isolated vessels were investigated in an organ bath. Vasoconstrictors released from the vessels were quantified through enzyme-linked immunosorbent assay. RESULTS YC-1 elicited long-lasting constriction in saphenous veins and radial arteries from patients with CAD, but not in human umbilical veins. The half-maximal effective dose was 1.0 μmol/L. Constriction was attenuated by nifedipine (an L-type Ca(2+)-channel blocker), bosentan (an endothelin [ET](A)/ET(B) inhibitor), BQ-788 (N-[(cis-2,6-Dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl-1-(methoxycarbonyl)-D-tryptophyl-D-norleucine; an ET(B) inhibitor), and by denuding, but not by ODQ (1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one; an inhibitor of sGC), BQ-123 (cyclo(-D-Trp-D-Asp-Pro-D-Val-Leu); an ET(A) inhibitor), or phosphoramidon (an endothelin converting enzyme inhibitor). Indomethacin (an inhibitor of cyclooxygenase-1 and -2) and SQ29,548 ([1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-5-heptenoic acid; a thromboxane receptor antagonist) suppressed YC-1-induced constriction, whereas DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulfonyl)phenyl-2(5H)-furanone; a cyclooxygenase-2 inhibitor) had no effect. Rings of saphenous vein released significantly more endothelin-1 in the presence than in the absence of YC-1. CONCLUSIONS YC-1-induced vasoconstriction demonstrates the existence of an endothelium-dependent vasoconstrictor pathway in the blood vessels of patients with CAD that to date has been described only in animal models of hypertension. Patients with CAD who have elevated plasma levels of endothelin-1 are thus prone to endothelium-dependent vasoconstriction, which may also play a role in vasospasm in vascular grafts.
Collapse
Affiliation(s)
- Markus Hoenicka
- Department of Cardiothoracic Surgery, University of Regensburg Medical Center, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Feldmann T, Shahar M, Baba A, Matsuda T, Lichtstein D, Rosen H. The Na(+)/Ca(2+)-exchanger: an essential component in the mechanism governing cardiac steroid-induced slow Ca(2+) oscillations. Cell Calcium 2011; 50:424-32. [PMID: 21930298 DOI: 10.1016/j.ceca.2011.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 02/07/2023]
Abstract
Plasma membrane (PM) Na(+), K(+)-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na(+), K(+)-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca(2+) oscillations in COS-7 cells by enhancing the interactions between Na(+), K(+)-ATPase, inositol 1,4,5-trisphosphate receptor (IP(3)R) and Ankyrin B (Ank-B) to form a Ca(2+) signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca(2+) oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca(2+) oscillations. These oscillations depend on extracellular Ca(2+) concentrations [Ca(2+)](out) and are inhibited by Ni(2+). Furthermore, we found that these slow oscillations are Na(+)(out) dependent, abolished by Na(+)/Ca(2+) exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca(2+) oscillations in COS-7 cells.
Collapse
Affiliation(s)
- Tomer Feldmann
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Wang HYL, Xin W, Zhou M, Stueckle TA, Rojanasakul Y, O'Doherty GA. Stereochemical survey of digitoxin monosaccharides: new anticancer analogues with enhanced apoptotic activity and growth inhibitory effect on human non-small cell lung cancer cell. ACS Med Chem Lett 2011; 2:73-78. [PMID: 21643465 DOI: 10.1021/ml100219d] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A stereochemically diverse array of monosaccharide analogues of the trisaccharide based cardiac glycoside natural product digitoxin has been synthesized using a de novo asymmetric approach. The analogues were tested for cytotoxicity against the NCI panel of 60 human cancer cell lines and in more detail against non-small cell human lung cancer cells (NCI-H460). The results were compared with digitoxin and its aglycone digitoxigenin. Three novel digitoxin monosaccharide analogues with β-d-digitoxose, α-l-rhamnose, and α-l-amicetose sugar moieties showed excellent selectivity and activity. Further investigation revealed that digitoxin α-l-rhamnose and α-l-amicetose analogues displayed similar anti-proliferation effects, but with at least 5-fold greater potency in apoptosis induction than digitoxin against NCI-H460. This study demonstrates the ability to improve the digitoxin anti-cancer activity by modification of the stereochemistry and substitution of the carbohydrate moiety of this known cardiac drug.
Collapse
Affiliation(s)
- Hua-Yu Leo Wang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States, and
| | | | | | | | | | - George A. O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States, and
| |
Collapse
|
36
|
Iyer AKV, Zhou M, Azad N, Elbaz H, Wang L, Rogalsky DK, Rojanasakul Y, O'Doherty GA, Langenhan JM. A Direct Comparison of the Anticancer Activities of Digitoxin MeON-Neoglycosides and O-Glycosides: Oligosaccharide Chain Length-Dependent Induction of Caspase-9-Mediated Apoptosis. ACS Med Chem Lett 2010; 1:326-330. [PMID: 21103068 DOI: 10.1021/ml1000933] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Digitoxin is a cardiac glycoside currently being investigated for potential use in oncology. While a number of structure-activity relationship studies have been conducted, an investigation of anticancer activity as a function of oligosaccharide chain length has not yet been performed. We generated mono-, di-, and tri-O-digitoxoside derivatives of digitoxin and compared their activity to the corresponding MeON-neoglycosides. Both classes of cardenolide derivatives display comparable oligosaccharide chain length-dependent cytotoxicity toward human cancer cell lines. Further investigation revealed that both classes of compounds induce caspase-9-mediated apoptosis in non-small cell lung cancer cells (NCI-H460). Since O-glycosides and MeON-neoglycosides share a similar mode of action, the convenience of MeON-neoglycosylation could be exploited in future SAR work to rapidly survey large numbers of carbohydrates to prioritize selected O-glycoside candidates for traditional synthesis.
Collapse
Affiliation(s)
| | | | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia 23668
| | | | | | - Derek K. Rogalsky
- Department of Chemistry, Seattle University, Seattle, Washington 98122
| | | | | | | |
Collapse
|
37
|
Quintas LEM, Pierre SV, Liu L, Bai Y, Liu X, Xie ZJ. Alterations of Na+/K+-ATPase function in caveolin-1 knockout cardiac fibroblasts. J Mol Cell Cardiol 2010; 49:525-31. [PMID: 20451529 DOI: 10.1016/j.yjmcc.2010.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that the Na(+)/K(+)-ATPase is not only an ion pump, but also a membrane receptor that confers the ligand-like effects of cardiotonic steroids (CTS) such as ouabain on protein kinases and cell growth. Because CTS have been implicated in cardiac fibrosis, this study examined the role of caveolae in the regulation of Na(+)/K(+)-ATPase function and CTS signaling in cardiac fibroblasts. In cardiac fibroblasts prepared from wild-type and caveolin-1 knockout [Cav-1(-/-)] mice, we found that the absence of caveolin-1 did not affect total cellular amount or surface expression of Na(+)/K(+)-ATPase alpha1 subunit. However, it did increase ouabain-sensitive (86)Rb(+) uptake. While knockout of caveolin-1 increased basal activities of Src and ERK1/2, it abolished the activation of these kinases induced by ouabain but not angiotensin II. Finally, ouabain stimulated collagen synthesis and cell proliferation in wild type but not Cav-1(-/-) cardiac fibroblasts. Thus, we conclude that caveolae are important for regulating both pumping and signal transducing functions of Na(+)/K(+)-ATPase. While depletion of caveolae increases the pumping function of Na(+)/K(+)-ATPase, it suppresses CTS-induced signal transduction, growth, and collagen production in cardiac fibroblasts.
Collapse
Affiliation(s)
- Luis E M Quintas
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, OH 43614-5804, USA
| | | | | | | | | | | |
Collapse
|
38
|
Lingrel JB. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol 2010; 72:395-412. [PMID: 20148682 DOI: 10.1146/annurev-physiol-021909-135725] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Na,K-ATPase is the membrane "pump" that generates the Na(+) and K(+) gradients across the plasma membrane that drives many physiological processes. This enzyme is highly sensitive to inhibition by cardiotonic steroids, most notably the digitalis/ouabain class of compounds, which have been used for centuries to treat congestive heart failure and arrhythmias. The amino acids that constitute the ouabain-binding site are highly conserved across the evolutionary spectrum. This could be fortuitous or could result from this site being conserved because it has an important biological function. New physiological approaches using genetically engineered mice are being used to define the biological significance of the "receptor function" of the Na,K-ATPase and its regulation by potential endogenous cardiotonic steroid-like compounds. These studies extend the reach of earlier studies involving the biochemical purification of endogenous regulatory ligands.
Collapse
Affiliation(s)
- Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA.
| |
Collapse
|
39
|
Karpova L, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G. Sodium pump α1 and α3 subunit isoforms mediate distinct responses to ouabain and are both essential for survival of human neuroblastoma. FEBS J 2010; 277:1853-60. [DOI: 10.1111/j.1742-4658.2010.07602.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Liu J, Xie ZJ. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1237-45. [PMID: 20144708 DOI: 10.1016/j.bbadis.2010.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 12/12/2022]
Abstract
The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na(+) excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca(2+) signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na(+) excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor-effector coupling would reduce the ability of renal proximal tubular cells to excrete Na(+), thus culminating/resulting in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | | |
Collapse
|
41
|
Valente RC, Capella LS, Oliveira MMM, Nunes-Lima LT, Cruz FCM, Palmieri RR, Lopes AG, Capella MAM. Diverse actions of ouabain and its aglycone ouabagenin in renal cells. Cell Biol Toxicol 2009; 26:201-13. [PMID: 19757104 DOI: 10.1007/s10565-009-9136-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022]
Abstract
The cellular actions of ouabain are complex and involve different pathways, depending on the cell type and experimental conditions. Several studies have reported that Madin-Darby canine kidney (MDCK) cellular sensitivity to ouabain is not related to Na-K-ATPase inhibition, and others showed that some cell types, such as Ma104, are resistant to ouabain toxicity albeit their Na-K-ATPase isoforms possess high affinity for this glycoside. We describe here that the effects of ouabain and ouabagenin also diverge in MDCK and Ma104 cells, being MDCK cells more resistant to ouabagenin, while Ma104 cells are resistant to both molecules. This feature seems to correlate with induction of cell signaling, since ouabain, but not ouabagenin, induced an intense and sustained increase in tyrosine phosphorylation levels in MDCK cells. Moreover, ouabain-induced phosphorylation in Ma104 cells was approximately half than that observed in MDCK cells. The proportion between alpha and beta subunits of Na-K-ATPase was similar in MDCK cells, though Ma104 cells presented more alpha subunits, located mainly at the cytoplasm. Furthermore, a fluorescent ouabain-analog labeled mainly the cytoplasm of Ma104 cells, the opposite of that seen in MDCK cells, corroborating the results using anti-Na-K-ATPase antibodies. Hence, the results suggest that ouabain and ouabagenin differ in terms of Na-K-ATPase inhibition and cell signaling activation in MDCK cells. Additionally, MDCK and Ma104 cell lines respond differently to ouabain, perhaps due to an intrinsic ability of this glycoside to selectively reach the cytoplasm of Ma104 cells.
Collapse
Affiliation(s)
- Raphael C Valente
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodrigues-Mascarenhas S, Da Silva de Oliveira A, Amoedo ND, Affonso-Mitidieri OR, Rumjanek FD, Rumjanek VM. Modulation of the immune system by ouabain. Ann N Y Acad Sci 2009; 1153:153-63. [PMID: 19236338 DOI: 10.1111/j.1749-6632.2008.03969.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ouabain, a known inhibitor of the Na,K-ATPase, has been shown to regulate a number of lymphocyte functions in vitro and in vivo. Lymphocyte proliferation, apoptosis, cytokine production, and monocyte function are all affected by ouabain. The ouabain-binding site occurs at the alpha subunit of the enzyme. The alpha subunit plays a critical role in the transport process, and four different alpha-subunit isoforms have been described with different sensitivities to ouabain. Analysis by RT-PCR indicates that alpha1, alpha2, and alpha3 isoforms are all present in murine lymphoid cells obtained from thymus, lymph nodes, and spleen. In these cells ouabain exerts an effect at concentrations that do not induce plasma membrane depolarization, suggesting a mechanism independent of the classical inhibition of the pump. In other systems, the Na,K-ATPase acts as a signal transducer in addition to being an ion pump, and ouabain is capable of inducing the activation of various signal transduction cascades. Neither resting nor concanavalin A (Con A)-activated thymocytes had their levels of phosphorylated-extracellular signal-regulated kinase (P-ERK) modified by ouabain. However, ouabain decreased p38 phosphorylation induced by Con A in these cells. The pathway induced by ouabain in lymphoid cells is still unclear but might vary with the type and state of activation of the cell.
Collapse
Affiliation(s)
- Sandra Rodrigues-Mascarenhas
- Laboratório de Tecnologia Farmacêutica, Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Zhang Z, Guo H, Wang Y. Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 2009; 22:615-21. [PMID: 19049666 DOI: 10.1111/j.1472-8206.2008.00620.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A number of studies suggest that Na(+)/K(+)-ATPase in caveolae interacts with neighboring membrane proteins and organizes cytosolic cascades of signaling proteins to send messages to intracellular organelles in different tissues, mostly in cardiac myocytes. Low concentration of ouabain binding to Na(+)/K(+)-ATPase activates Src/epidermal growth factor receptor complex to initiate multiple signal pathways, which include PLC/IP3/CICR, PI3K, reactive oxygen species (ROS), PLC/DG/PKC/Raf/MEK/ERK1/2, and Ras/Raf/MEK/ERK1/2 pathways. In cardiac myocytes, the resulting downstream events include the induction of some early response proto-oncogenes, activation of transcription factors, activator protein-1, and nuclear factor-kappaB, the regulation of a number of cardiac growth-related genes, and the stimulation of protein synthesis and myocyte hypertrophy and apoptosis. Conversely, several factors acting through signal pathways, such as protein kinases, Ca(2+), ROS, etc., can modulate the activity of the Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- Linan Zhang
- Department of Pharmacology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | | | | | | |
Collapse
|
44
|
Abstract
Cardiac glycosides are a diverse family of naturally derived compounds that bind to and inhibit Na+/K+-ATPase. Members of this family have been in clinical use for many years for the treatment of heart failure and atrial arrhythmia, and the mechanism of their positive inotropic effect is well characterized. Exciting recent findings have suggested additional signalling modes of action of Na+/K+-ATPase, implicating cardiac glycosides in the regulation of several important cellular processes and highlighting potential new therapeutic roles for these compounds in various diseases. Perhaps most notably, the increased susceptibility of cancer cells to these compounds supports their potential use as cancer therapies, and the first generation of glycoside-based anticancer drugs are currently in clinical trials.
Collapse
|
45
|
Abstract
The Na-K-ATPase is an energy-transducing ion pump that converts the free energy of ATP into transmembrane ion gradients. It also serves as a functional receptor for cardiotonic steroids such as ouabain and digoxin. Binding of ouabain to the Na-K-ATPase can activate calcium signaling in a cell-specific manner. The exquisite calcium modulation via the Na-K-ATPase is achieved by the ability of the pump to integrate signals from numerous protein and non-protein molecules, including ion transporters, channels, protein kinases/phosphatases, as well as cellular Na+. This review focuses on the unique properties of the Na-K-ATPase and its role in the formation of different calcium-signaling microdomains.
Collapse
Affiliation(s)
- Jiang Tian
- Department of Physiology and Pharmacology, University of Toledo Health Science Campus, Toledo, Ohio, USA
| | | |
Collapse
|
46
|
Gross ML, Ritz E. Hypertrophy and fibrosis in the cardiomyopathy of uremia--beyond coronary heart disease. Semin Dial 2008; 21:308-18. [PMID: 18627569 DOI: 10.1111/j.1525-139x.2008.00454.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac disease is the leading cause of death in uremic patients. In contrast to previous opinion, coronary events account for a relatively small proportion of cardiac deaths, the most common causes being sudden death and heart failure. Against this background the current text will discuss noncoronary cardiac pathology, specifically the pathogenesis and the morphological findings caused by (pathological) cardiac hypertrophy, cardiac interstitial fibrosis and microvascular disease.
Collapse
Affiliation(s)
- Marie-Luise Gross
- Department of Pathology, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
47
|
Li Z, Xie Z. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Arch 2008; 457:635-44. [DOI: 10.1007/s00424-008-0470-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/24/2008] [Accepted: 01/29/2008] [Indexed: 01/01/2023]
|
48
|
Endogenous ouabain in hypertensive disorder complicating pregnancy. ACTA ACUST UNITED AC 2008; 27:717-20. [PMID: 18231752 DOI: 10.1007/s11596-007-0626-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Indexed: 10/19/2022]
Abstract
Expression of endogenous ouabain in placenta and the concentrations of serum ET-1 and NO were examined in 30 patients with hypertensive disorder complicating pregnancy (HDCP) and 30 healthy pregnant women to investigate the effect of endogenous ouabain on HDCP. Compared with the healthy pregnant group, the expression of endogenous ouabain dramatically increased in the HDCP groups (P<0.01). There was a significantly positive correlation between the expression of endogenous ouabain with ET-1 (r=0.5567, P<0.01), while the correlation of endogenous ouabain and NO was significantly negative (r=-0.6895, P<0.01). As expected, the correlation between ET-1 and NO was negative (r=-0.7796, P<0.01). ET-1 concentrations of maternal and cord sera in HDCP groups were significantly higher in comparison with healthy pregnant group (P<0.01). On the contrast, NO concentrations were much lower in the maternal and cord sera of HDCP groups as compared with healthy pregnant group (P<0.01). Our data suggest that endogenous ouabain is directly involved in the nosogenesis of HDCP, with accompanying decreased NO and the elevated of ET-1.
Collapse
|
49
|
Stähli BE, Breitenstein A, Akhmedov A, Camici GG, Shojaati K, Bogdanov N, Steffel J, Ringli D, Lüscher TF, Tanner FC. Cardiac glycosides regulate endothelial tissue factor expression in culture. Arterioscler Thromb Vasc Biol 2007; 27:2769-76. [PMID: 18029910 DOI: 10.1161/atvbaha.107.153502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tissue factor (TF) plays an important role in acute coronary syndromes and stent thrombosis. This study investigates whether Na(+)/K(+)-ATPase regulates TF expression in human endothelial cells. METHODS AND RESULTS Ouabain inhibited tumor necrosis factor (TNF)-alpha-induced endothelial TF protein expression; maximal inhibition occurred at 10(-5) mol/L, reached more than 70%, and was observed throughout the 5 hours stimulation period. The decrease in protein expression was paralleled by a reduced TF surface activity. Similarly, lowering of extracellular potassium concentration inhibited TNF-alpha-induced TF protein expression. In contrast, ouabain did not affect TNF-alpha-induced expression of full-length TF mRNA for up to 5 hours of stimulation; instead, expression of alternatively-spliced TF mRNA was upregulated after 3 and 5 hours of stimulation. Ouabain did not affect TNF-alpha-induced activation of the MAP kinases p38, extracellular signal-regulated kinase (ERK), and c-Jun terminal NH(2) kinase; activation of Akt and p70S6 kinase remained unaltered as well. Similar to the MAP kinases, ouabain did not affect TNF-alpha-induced degradation of IkappaB-alpha. Ouabain had no effect on TF protein degradation. CONCLUSIONS Na(+)/K(+)-ATPase is required for protein translation of endothelial TF in culture. This observation provides novel insights into posttranscriptional regulation of TF expression.
Collapse
Affiliation(s)
- Barbara E Stähli
- Cardiovascular Research, Physiology Institute, University of Zürich and Cardiology, University Hospital Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dvela M, Rosen H, Feldmann T, Nesher M, Lichtstein D. Diverse biological responses to different cardiotonic steroids. ACTA ACUST UNITED AC 2007; 14:159-66. [PMID: 17964766 DOI: 10.1016/j.pathophys.2007.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cardiotonic steroids (CS) such as ouabain, digoxin and bufalin, are steroidal drugs prepared from the seeds and dried leaves of the genus Digitalis, and the skin and parotid gland of amphibians, are used as a cardiac stimulant. Steroids similar or identical to the cardiotonic steroids were identified in human tissues. The available literature unequivocally supports the notion that these endogenous CS function as hormones in mammals. Recent studies show that although similar in structure, the different CS exhibit diverse biological responses. This was shown at the molecular, cellular, tissue and whole animal levels. This review summarizes these diversities, raises a possible explanation for their presence and discusses their implication on the physiological role of the different steroids.
Collapse
Affiliation(s)
- Moran Dvela
- Department of Physiology and Institute of Microbiology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|