1
|
Zhao J, Chen Y, Ding Z, Zhou Y, Bi R, Qin Z, Yang L, Sun P, Sun Q, Chen G, Sun D, Jiang X, Zheng L, Chen XL, Wan H, Wang G, Li Q, Teng H, Li G. Identification of propranolol and derivatives that are chemical inhibitors of phosphatidate phosphatase as potential broad-spectrum fungicides. PLANT COMMUNICATIONS 2024; 5:100679. [PMID: 37653727 PMCID: PMC10811373 DOI: 10.1016/j.xplc.2023.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.
Collapse
Affiliation(s)
- Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifen Ding
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daiyuan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Gao F, Chen C, Li B, Weng Q, Chen Q. The Gene Flow Direction of Geographically Distinct Phytophthora infestans Populations in China Corresponds With the Route of Seed Potato Exchange. Front Microbiol 2020; 11:1077. [PMID: 32528452 PMCID: PMC7264822 DOI: 10.3389/fmicb.2020.01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Phytophthora infestans is a widespread destructive plant pathogen that causes economic losses worldwide to potato production. In this study, we sequenced four mitochondrial DNA gene sequences of 101 P. infestans isolates from five potato-growing regions in China to investigate the population structure and dispersal pattern of this pathogen. The concatenated mtDNA sequences in the populations showed high haplotype diversity, but low nucleotide diversity. Although there was a degree of spatial structure, our phylogeographic analyses support frequent gene flow between populations and the direction of gene flow, primarily from north to south, corresponds to the route of seed potato transportation, suggesting a role of human activities in the dispersal of P. infestans in China.
Collapse
Affiliation(s)
- Fangluan Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changsheng Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiyong Weng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qinghe Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
3
|
High genotypic diversity found among population of Phytophthora infestans collected in Estonia. Fungal Biol 2016; 120:385-92. [DOI: 10.1016/j.funbio.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/31/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023]
|
4
|
Tian Y, Yin J, Sun J, Ma H, Ma Y, Quan J, Shan W. Population Structure of the Late Blight Pathogen Phytophthora infestans in a Potato Germplasm Nursery in Two Consecutive Years. PHYTOPATHOLOGY 2015; 105:771-777. [PMID: 25738550 DOI: 10.1094/phyto-03-14-0073-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As the causal agent of late blight on potato, Phytophthora infestans is one of the most destructive plant pathogens worldwide and widely known as the Irish potato famine pathogen. Understanding the genetic structure of P. infestans populations is important both for breeding and deployment of resistant varieties and for development of disease control strategies. Here, we investigate the population genetic structure of P. infestans in a potato germplasm nursery in northwestern China. In total, 279 isolates were recovered from 63 potato varieties or lines in 2010 and 2011, and were genotyped by mitochondrial DNA haplotypes and a set of nine simple-sequence repeat markers. Selected isolates were further examined for virulence on a set of differential lines containing each resistance (R) gene (R1 to R11). The overall P. infestans population was characterized as having a low level of genetic diversity and resistance to metalaxyl, and containing a high percentage of individuals that virulent to all 11 R genes. Both A1 and A2 mating types as well as self-fertile P. infestans isolates were present but there was no evidence of sexual reproduction. The low level of genetic differentiation in P. infestans populations is probably due to the action of relatively high levels of migration as supported by analysis of molecular variance (P < 0.01). Migration and asexual reproduction were the predominant mechanisms influencing the P. infestans population structure in the germplasm nursery. Therefore, it is important to ensure the production of pathogen-free potato seed tubers to aid sustainable production of potato in northwestern China.
Collapse
Affiliation(s)
- Yuee Tian
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junliang Yin
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jieping Sun
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hongmei Ma
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yunfang Ma
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junli Quan
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Weixing Shan
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
5
|
Harbaoui K, Hamada W, Li Y, Vleeshouwers VGAA, van der Lee T. Increased Difficulties to Control Late Blight in Tunisia Are Caused by a Genetically Diverse Phytophthora infestans Population Next to the Clonal Lineage NA-01. PLANT DISEASE 2014; 98:898-908. [PMID: 30708842 DOI: 10.1094/pdis-06-13-0610-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In Tunisia, late blight caused by Phytophthora infestans is a serious threat to potato and tomato. The Mediterranean weather conditions can be conducive to infection in all seasons and the host crops, tomato and potato, are grown year round. Potato is planted and harvested in two to four overlapping intervals from August to June and tomato is grown both in open fields and in greenhouses. The consequences of these agricultural practices and the massive import of seed potato on the genetic variation of P. infestans are largely unknown. We conducted a survey in which 165 P. infestans isolates, collected from five subregions in Tunisia between 2006 and 2008, on which we studied genotypic diversity through nuclear (simple-sequence repeat [SSR]) markers and combined this with a previous study on their mitochondrial haplotypes (mtDNA). The phylogenetic analysis revealed the presence of a major clonal lineage (NA-01, A1 mating type, mitochondrial haplotype Ia). Isolates belonging to this clonal lineage were found in all regions and showed a relatively simple virulence pattern on a potato differential set carrying different Solanum demissum resistance genes. Apart from isolates belonging to this NA-01 clonal lineage, a group of isolates was found that showed a high genetic diversity, comprising both mating types and a more complex race structure that was found in the regions where late blight on potato was more difficult to control. The population on potato and tomato seems to be under different selection pressures. Isolates collected from tomato showed a low genetic diversity even though potato isolates collected simultaneously from the same location showed a high genetic diversity. Based on the SSR profile comparison, we could demonstrate that the four major clonal lineages found in the Netherlands and also in other European countries could not be found in Tunisia. Despite the massive import of potato seed from Europe, the P. infestans population in Tunisia was found to be clearly distinct.
Collapse
Affiliation(s)
- Kalthoum Harbaoui
- Genetic and Plant Breeding, Institute National Agronomic of Tunisia, Tunis, Tunisia and Regional Field Crops Research Centre Béja, Tunisia
| | - Walid Hamada
- Genetic and Plant Breeding, Institute National Agronomic of Tunisia
| | - Ying Li
- Institute of Vegetables and Flowers (IVF), CAAS, Beijing
| | | | - Theo van der Lee
- Plant Research International B.V., Wageningen UR Biointeraction and Plant Health, The Netherlands
| |
Collapse
|
6
|
Hu J, Pang Z, Bi Y, Shao J, Diao Y, Guo J, Liu Y, Lv H, Lamour K, Liu X. Genetically diverse long-lived clonal lineages of Phytophthora capsici from pepper in Gansu, China. PHYTOPATHOLOGY 2013; 103:920-926. [PMID: 23550971 DOI: 10.1094/phyto-01-13-0016-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora capsici causes significant loss to pepper production in China, and our objective was to investigate the population structure in Gansu province. Between 2007 and 2011, 279 isolates were collected from pepper at 24 locations. Isolates (or subsets) were assessed for simple sequence repeat (SSR) genotype, metalaxyl resistance, mating type, and physiological race using cultivars from the World Vegetable Center (AVRDC) and New Mexico recombinant inbred lines (NMRILs). The A1 and A2 mating types were recovered from nine locations and metalaxyl-resistant isolates from three locations. A total of 104 isolates tested on the AVRDC panel resolved five physiological races. None of 42 isolates tested on the NMRIL panel caused visible infection. SSR genotyping of 127 isolates revealed 59 unique genotypes, with 42 present as singletons and 17 having 2 to 13 isolates. Isolates with identical genotypes were recovered from multiple sites across multiple years and, in many cases, had different race types or metalaxyl sensitivities. Isolates clustered into three groups with each group having almost exclusively the A1 or A2 mating type. Overall it appears long-lived genetically diverse clonal lineages are dispersed across Gansu, outcrossing is rare, and functionally important variation exists within a clonal framework.
Collapse
Affiliation(s)
- Jian Hu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sjöholm L, Andersson B, Högberg N, Widmark AK, Yuen J. Genotypic diversity and migration patterns of Phytophthora infestans in the Nordic countries. Fungal Biol 2013; 117:722-30. [PMID: 24119411 DOI: 10.1016/j.funbio.2013.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
In this study we investigated the genotypic diversity and the migration patterns of Phytophthora infestans in the Nordic countries. Isolates of P. infestans from outbreaks in 43 fields sampled in 2008 were collected using stratified sampling with country, field, and disease foci as the different strata. Microsatellites were used as markers to determine the genotypic variation in the sampled material. The results show a high genotypic variation of P. infestans in the Nordic countries with most of the genotypes found only once among the collected isolates. The major part of the genotypic variation was observed within the fields, with low differentiation between the fields. The observed low association of alleles among loci is consistent with frequent sexual reproduction of P. infestans in the Nordic countries. Coalescence analyses did not support a single common population for the four countries, thus indicating some degree of geographic differentiation. The analyses of migration patterns showed differing levels of gene flow among the Nordic countries. No correlation between migration rates and geographical distance could be seen. This could be explained by different degrees of genetic similarity between the pathogen populations in the different countries.
Collapse
Affiliation(s)
- Lina Sjöholm
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
8
|
Han M, Liu G, Li JP, Govers F, Zhu XQ, Shen CY, Guo LY. Phytophthora infestans field isolates from Gansu province, China are genetically highly diverse and show a high frequency of self fertility. J Eukaryot Microbiol 2012. [PMID: 23194320 DOI: 10.1111/jeu.12010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self-fertile (SF). The mitochondrial DNA haplotypes revealed both Ia (25%) and IIa (75%) haplotypes. Metalaxyl resistance occurred with high frequency (54%) in Gansu. Simple sequence repeat (SSR) genotyping revealed 26 genotypes (13 from the Tianshui region) among the 85 isolates, and 18 genotypes among the 21 isolates collected before 2004, without overlap in genotypes detected in the two groups. Cluster analysis showed clear subdivisions within the different mating type isolates. Among Gansu's isolates, Nei's and Shannon's diversity indices were highest in isolates collected in Tianshui where both A1 and SF isolates were found. Analysis of molecular variance of isolates from Gansu indicated that 51% and 49% of the variance was explained by within-area and among-area variance, respectively. The results suggest that the occurrence of SF isolates increases the risk of sexual reproduction, the formation of oospore as initial inocula in the field, and affects the genotypic diversity in the population.
Collapse
Affiliation(s)
- Miao Han
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Blandón-Díaz JU, Widmark AK, Hannukkala A, Andersson B, Högberg N, Yuen JE. Phenotypic variation within a clonal lineage of Phytophthora infestans infecting both tomato and potato in Nicaragua. PHYTOPATHOLOGY 2012; 102:323-330. [PMID: 22085300 DOI: 10.1094/phyto-02-11-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Late blight caused by Phytophthora infestans (Mont.) de Bary is a constraint to both potato and tomato crops in Nicaragua. The hypothesis that the Nicaraguan population of P. infestans is genotypically and phenotypically diverse and potentially subdivided based on host association was tested. A collection of isolates was analyzed using genotypic markers (microsatellites and mitochondrial DNA haplotype) and phenotypic markers (mating type, virulence, and fungicide sensitivity). The genotypic analysis revealed no polymorphism in 121 of 132 isolates of P. infestans tested. Only the Ia haplotype and the A2 mating type were detected. Most of the tested isolates were resistant to metalaxyl. The virulence testing showed variation among isolates of P. infestans. No evidence was found of population differentiation among potato and tomato isolates of P. infestans based on the genotypic and phenotypic analysis. We conclude that the Nicaraguan population of P. infestans consists of a single clonal lineage (NI-1) which belongs to the A2 mating type and the Ia mitochondrial DNA haplotype. Moreover, based on the markers used, this population of P. infestans does not resemble the population in countries from which potato seed is imported to Nicaragua or the population in neighboring countries. The data presented here indicate that the NI-1 clonal lineage is the primary pathogen on both potato and tomato, and its success on both host species is unique in a South American context.
Collapse
|
10
|
Guo L, Zhu XQ, Hu CH, Ristaino JB. Genetic structure of Phytophthora infestans populations in China indicates multiple migration events. PHYTOPATHOLOGY 2010; 100:997-1006. [PMID: 20839935 DOI: 10.1094/phyto-05-09-0126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
One hundred isolates of Phytophthora infestans collected from 10 provinces in China between 1998 and 2004 were analyzed for mating type, metalaxyl resistance, mitochondrial DNA (mtDNA) haplotype, allozyme genotype, and restriction fragment length polymorphism (RFLP) with the RG-57 probe. In addition, herbarium samples collected in China, Russia, Australia, and other Asian countries were also typed for mtDNA haplotype. The Ia haplotype was found during the first outbreaks of the disease in China (1938 and 1940), Japan (1901, 1930, and 1931), India (1913), Peninsular Malaysia (1950), Nepal (1954), The Philippines (1910), Australia (1917), Russia (1917), and Latvia (1935). In contrast, the Ib haplotype was found after 1950 in China on both potato and tomato (1952, 1954, 1956, and 1982) and in India (1968 and 1974). Another migration of a genotype found in Siberia called SIB-1 (Glucose-6-phosphate isomerase [Gpi] 100/100, Peptidase [Pep] 100/100, IIa mtDNA haplotype) was identified using RFLP fingerprints among 72% of the isolates and was widely distributed in the north and south of China and has also been reported in Japan. A new genotype named CN-11 (Gpi 100/111, Pep 100/100, IIb mtDNA haplotype), found only in the south of China, and two additional genotypes (Gpi 100/100, Pep 100/100, Ia mtDNA haplotype) named CN-9 and CN-10 were identified. There were more diverse genotypes among isolates from Yunnan province than elsewhere. The SIB-1 (IIa) genotype is identical to those from Siberia, suggesting later migration of this genotype from either Russia or Japan into China. The widespread predominance of SIB-1 suggests that this genotype has enhanced fitness compared with other genotypes found. Movement of the pathogen into China via infected seed from several sources most likely accounts for the distribution of pathogen genotypes observed. MtDNA haplotype evidence and RFLP data suggest multiple migrations of the pathogen into China after the initial introduction of the Ia haplotype in the 1930s.
Collapse
Affiliation(s)
- Liyun Guo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
11
|
Abstract
In their natural environment, plants interact with many different organisms. The nature of these interactions may range from positive, for example interactions with pollinators, to negative, such as interactions with pathogens and herbivores. In this special issue, the contributors provide several examples of how plants manage both positive and negative biotic interactions. This review aims to relate their findings to what we know about the complex natural environments in which plants have evolved. Molecular analyses of plant genomes and expression profiles have shown how intricately plants may regulate responses to single or multiple biotic interactions. Plant responses are fine-tuned by signalling hormone interactions. When multiple organisms interact with a single plant this may result in antagonistic or synergistic effects. The emerging fields of ecogenomics and metabolomics undoubtedly will refine our understanding of the multilayered regulation that plants use to manage relationships with their biotic environment. However, we can only understand why plants have such an intricate regulatory apparatus if we consider the ecological context of plant biotic interactions.
Collapse
Affiliation(s)
- N M van Dam
- Multitrophic Interactions Department, Netherlands Institute of Ecology, NIOO-KNAW, Heteren, The Netherlands.
| |
Collapse
|